P

Gomprocsys limited

ZX. ASZMVIC

ASSEEMBLY LANGUAGE

DEVELOPMEMNMT SYSTEM

C FRAZER JOHNSON

LIABILITY NOTICE

Because Comprocsys Ltd and their distributors have no
control over the circumstances of use of this product
no warranty is given or should be implied as to the
suitability of this product for any particular
application and no liability can be accepted for any
consequential loss, however caused.

Published for Comprocsys Ltd by
Microsource, 1 Branch Rd, Park Street,St Albans.

Copyright 1982 Comprocsys Ltd.
All Rights Reserved

This documentation, and the computer program or code to
which it refers are copyright, and reproduction in any
form is forbidden without the express written
permission of Comprocsys Ltd.

Comprocsys Ltd,
29 Campden Rd,
South Croydon,
Surrey, CR2 7ER.

s

CONTENTS

Page

5

7

17

23

31

39

53

59

65

71

75

85

87

99

Chapter
Chapter

Chapter

Chapter 4

Chapter
Chapter
Chapter
Chapter
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

1

2

3

Insertion & Overview
First Steps

First Steps Continued
More Debug Operations
Text Operations

The Assembler

Program Execution & Test
Graphics

General Information
The Shift Keys

Debug Commands

System Addresses

Z80 Instruction Set

Application Notes

-3-

Chapter 1

INSERTIONM AND OVERVIETT

Congratulations on your decision to buy ZX.ASZMIC. If
you have had previous experience of assembly and debug
systems you may wish to proceed immediately to the
first 3 appendices, which summarise the ASZMIC features
for you. Otherwise the next 3 chapters contain a series
of worked examples to help give you a feel for ASZMIC
usage. Chapters 5,6 & 7 are a more general discussion
of the features; chapter 8 introduces you briefly to
the graphics possibilities; and appendices 4 thru 6
contain useful reference information.

What exactly 1is ASZMIC? It was designed to be an ultra
low cost program development station for assembly
language. As such it gives you all the facilities you
need to write and edit programs, assemble them and then
run and debug them in a controlled environment. Since
the programs may also be run on an '8l fitted with
ASZMIC we tried to document some of the useful routines
in the monitor itself to help free you from that curse
of assembly language programming....Input/Output....,
and we parametrised the display routine to release the
graphics possibilities which were latent 1in the
hardware. Unlike some of the other offerings on the
market ASZMIC is almost completely independent of
Basic, and you should bear in mind that the personality
of the computer is completely transformed. ASZMIC tips
its hat in the direction of Cambridge and then does its
own thing. If you are experienced with microcomputer
development systems then much of ASZMIC will be
familiar to you; but if you are used only to Basic then
ASZMIC will give you a power which you could never
achieve when everything you did was filtered thru the
Basic interpreter. This 1is unfortunately a power for
both good and evil; since ASZMIC does what you tell it
to then a command which is, shall we say less than wise
can easily wipe out the system. Fortunately you will
not do this very often.

D

1.1 INSTALLATION

ASZMIC 1is a direct replacement for the Basic ROM in the
ZX81. To 1insert it 1in your computer you must first
seperate the case by removing the 5 screws from the
base of the ZX8l; three of which are concealed under
the peel-off rubber ‘'feet'. Then remove the three
screws which hold the printed circuit board onto the
lid and,taking care not to pull the 'tails' from the
" touch panel out of their holders, fold back the circuit
board and rest it and the lid on a clean surface. If
you do pull out the 'tails' they can be pushed back in
without too much difficulty.

If you now look at the component side of the board;
calling the edge with the edge connector 'top', that
closest to the keyboard 'bottom' and the edge with the
power, cassette & T.V. connections 'left', then the ROM
lies at the Dbottom of the board. You can look at the
diagram on p. 162 of the ZX81 manual to see the ROM
identified (and beware, in the picture it is inserted
upside down). Although modern technology has made MOS
circuits much more tolerant than they used to be you
may feel more secure working on a large sheet of
aluminium kitchen foil which is connected to a radiator
or earth of some sort, or a metal draining board is
excellent. Avoid wearing nylon clothing and try to
earth yourself before touching any circuit not in its
socket on the board. The Basic ROM will probably be in
a 28-pin socket, even though it has only 24 pins, so
there will be four empty 'holes' in the socket above
the ROM. ASZMIC also has 24 pins so when it is inserted
it also should be positioned at the bottom of the
socket with four empty 'holes' above it. ASZMIC should
be inserted so that the 1 on the label lies towards the
left. Remove the Basic ROM by gently levering it up
from top and bottom with a fine screwdriver until it
lies 1loose 1in the socket, and then lifting it away. If
you are too hasty you may bend the pins. Put it on a
little bit of foil. ASZMIC's pins may now need to be
bent slightly inwards so that you can press it into the
socket, but not too much since the socket generally
makes contact on the outside of the pins and you run
the risk of a bad contact on one or more pins if you

-6-

bend it too much. Push ASZMIC carefully into place.
Before putting everything back together again you might
like to connect wup the power and T.V. lines and check
that you have a blinking cursor. If not then you have a
bad connection and you should try to remove and replace
ASZMIC a couple of times.

If you plan to use both ASZMIC and Basic alternately
then you may wish to invest in omeswef the boardg

available visie==Frie=yste=EET RO ssmtapitaimtonpubers
[l B Gl E di@iimmdetraisbs . When we were developing

ASZMIC we cut a hole in the lid of an '8l (from 4 to 6
cms back from the touch keyboard for about 5 cms and if
you cut more than a mm into the keyboard you will kill
it) and piggy-backed a zero insertion force socket onto
the ZX81 ROM socket. This worked surprisingly reliably,
but a dual ROM board will give you the ability to
preserve regions of memory when you transfer control.

1.2 ZX80 INSTALLATION

The circuit board on the ZX80 is more accessible than
on ZX8l; you just have to remove plastic pins to
release the 1id and the ROM lies on the right. ASZMIC
should be inserted with the 1 closest to the UHF
modulator (metal box). You will not be able to use the
G command with a ZX80, and a steady display will not be
maintained under Edit operations.

Some ZX80's suffer from excessive load on the Al2
address 1line which can lead to difficulties in reading
the key group 6 thru O. This can be cured by soldering
a 4.7K resistor between the left hand (keyboard) side
of D7 to the earth plane below ICll & ICl7.

Chapter Z

FIRST STEFPS

2.1 POWER UP

After connecting the power to your ZX80/81 you will
have a clear screen, except for a funny little
character towards the bottom left (End-of-Data) and a
blinking cursor on the line just above it. The speed of
blink identifies which mode ASZMIC is in..... Fast
blink means EDIT, slow blink means DEBUG. With 16k of
memory on the system you will be in DEBUG mode but if
you are using a 'bare' machine then you will be in EDIT
mode. Shifting between EDIT & DEBUG modes is achieved
by wuse of the Shift 9 & Shift E keys. Experiment by
pressing Shift 9 (DEBUG) and Shift E (EDIT)
alternately, and watch what happens to the cursor blink
rate. There 1is only one difference between EDIT and
DEBUG modes, but that is an important one. When you hit
newline (we shall write newline as /NL/ in future) in
DEBUG mode the 1line you have just finished will be
passed to the Command Interpreter. In EDIT mode you
just start a new line.

2.2 EDITING

Press Shift E to get yourself in EDIT mode. The cursor
will be blinking quickly. Now type A. An "A" appears on
the screen & the cursor is advanced to the right. Type
A again, but this time leave your finger pressing on
the key. After half a second ASZMIC will start writing
A's at a rate of 8 per second. Take your finger off the
key before the line is full. This illustrates the very
useful key repeat feature built into ASZMIC. It works
on all keys, including /NL/. Now type /NL/ & then press

-9-

B for a second or two, type /NL/ and press C for a
second or two, type /NL/ and repeat the process till
you have 5 or 6 lines on screen. Notice how the display
is scrolled up with each /NL/. Now type a final line
of, say, G's but do not press /NL/ at the end. Instead
press Shift 5 (CURSOR LEFT) & keep your fingers on the
keys. The cursor will move left along the line till it
comes to line start. Press Shift 8 (CURSOR RIGHT)
continuously & watch the cursor advance along the line
to line end. Press Shift 5 (CURSOR LEFT) again until
the cursor lies in the middle of the line. Type 12345.
The figures are inserted in the middle of the line.
What actually happens 1is that everything wunder and
right of the cursor is shifted right, the character you
have typed 1is placed wunder the cursor, and then the
cursor is shifted one place to the right.

2.2.1 RUBOUTS

Press Shift O (RUBOUT). The 5 you have just typed will
disappear. This is the first type of rubout in ASZMIC,
and 1is the typing error rubout. The character to the
left of the cursor 1is deleted and everything past it
moved left one place. Press Shift 5 twice to position
the cursor over the 3. Press Shift Q (EDIT RUBOUT) and
watch the 3 disappear. This is the second type of
rubout; the editing rubout. The difference 1is that
Shift 0O 1is more convenient when you are typing in a
fresh 1line, and Shift Q is better when editing a file.
Experiment a bit with them 1if you like. Edit Rubout
does not work when there is only one character
remaining on a line. You can rubout /NL/'s with Shift
0. Beware that Shift-Q can also delete the '"padding"
blanks that ASZMIC inserts before a /NL/, which can
give problems with assembly & merging.

2.2.2 VERTICAL CURSOR OPERATIONS

Reset your ZX80/81 (turn off & on again). We ask you to
do this quite often because if you have only 1K of
memory these examples will soon fill up the text area.

-10-

for many ASZMIC operations. Now press Shift T (TOP).
The cursor and display jump up to the very top. This is
useful if you want to search down through large texts,
but is most important because the top line has a
special significance. It 1is the Shift Macro line, but
more of that later. Now press Shift 9 (DEBUG) and
notice how you have jumped down to the bottom line and
entered DEBUG mode. Press Shift E (EDIT) and note that
you have not only entered EDIT mode (fast blink) but
also jumped back to the point where you were when you
last pressed Shift 9. This enables you to toggle
between EDIT and DEBUG modes without having to search
for your place all the time.

Enter DEBUG mode with Shift 9. Type D O/NL/ .

ASZMIC responds with 0000 F5

Keep your finger on the /NL/ key until ASZMIC has
printed 0030 3E and then type . (period) followed by
/NL/ followed by E/NL/ to get back to EDIT mode. You
have actually done a Dump & Modify of the first 49
monitor locations but we want it just to have some text
to play with. Now press Shift 7 (CURSOR UP) and hold it
down. Watch the cursor move up the screen until it
reaches the top, and then watch the text scroll down
until the cursor has moved onto a blank line. Now press
Shift 6 (CURSOR DOWN) and watch the cursor move down
until it is on the final 1line just above the
End-of-Data character. It will not move down any
further. Now press Shift 4 (PAGE UP) a couple of times
and see how you flip up through the text. Press Shift 3
(PAGE DOWN) to reverse the process.

2.2.3 DELETING A LINE

Move the cursor up to 0020 7E or thereabouts. Now press
Shift 1 (DELETE LINE). The line will vanish. Repeat the
process and successive lines will vanish until you are
back down above the End-of-Data character. You cannot
delete this final line with Shift 1; you have to rub it
out character by character. This is to protect the
vital End-of-Data character which is used as a "stop"

-11-

the dump. Now press Shift 2 (delete file) . All the
text from the <cursor to the filemark will have been
wiped away.

2.2.4 FILES & FILEMARKS

Unlike the BASIC rom, ASZMIC does not construct a
special display file for you, but instead uses most of
memory as one big text area over which you move the
T.V. screen as a sort of window. A lot of operations
are controlled by a special character, the £ (sterling)
sign, which acts as a delimiter. Since blocks of text
seperated by & signs are treated as files, we call the
£ a filemark. It is used by itself to indicate the end
of a file, and is needed for print, assembly, cassette
save, merge, and file deletion operations to tell
ASZMIC that it is time to stop. You indicate the start
of a file by a name which is particular to it & does
not also occur in the body of the file. It is good
practice to have a filemark as the first character of
the name. Thus:-

£NURSERY.RHYME

1

2

BUCKLE MY SHOE

3

4

KNOCK ON THE DOOR
£

is an example of a file, and can be printed, saved,
edited etc. by referencing the name L£NURSERY.RHYME . A
filename can be any combination of alphanumeric
characters (0-9 A-Z) and . (period) and is terminated
by any other character.

Home the cursor (Shift 9) & type £/NL/ . Then press
Shift E to get into EDIT mode & move the cursor till it
blinks on the D of your original D O line at the top of
the dump. Now press Shift-2 (delete file). All the text
from the cursor to the filemark will have been wiped
away.

-12-

2.2.5 RUNNING OUT OF SPACE

Reset the ZX80/81 and hit Shift 9 (DEBUG, as you
probably know by now). Type D O 5000/NL/ . The screen
will go blank for several seconds because ASZMIC is
generating 625 1lines of formatted dump for you.
Unfortunately it would take more than a 16k memory pack
to contain so much text, even if ASZMIC had not divided
up your memory into 3 parts for text and 1 for
programs. When the display comes back try typing in a
character. Nothing happens. You <can move the cursor
around (try it) but you cannot insert any fresh text.
To wuse ASZMIC further you must delete some text. Move
the cursor up 4 or 5 1lines (Shift 7) and then hold
Shift 1 continuously depressed. You will delete the
last few 1lines. You can now insert characters (100 or
more) until you run out of text space again.

2.2.6 MACROS

We may as well wuse this mass of text for something.
Press Shift T. This takes the cursor up to the top
line. Now type E 40 but, since you are in DEBUG mode,
do not press [NL/ to execute the command but instead
press Shift~ 9 (DEBUG) to home the cursor on the bottom
line. Now press Shift R (Shift macro).

The effect of this is to execute the top line as a
DEBUG statement, irrespective of what mode you are in.
E 40 is a DEBUG command to enter EDIT mode and position
the cursor at the start of the first occurrence of the
string "40" above its current position, so you will see
the cursor blinking quickly on the "4" of a "40'". Press
Shift R several times and see how each "40'" in the dump
is successively searched out. You can have almost any
DEBUG command or concatenation of commands on the top
line and this 1is a way of doing a lot of work with a
single keystroke. (there is another sort of macro, a
Command Macro, built into ASZMIC and we will look at it
when we discuss file merging). Now delete the dump by
pressing Shift 9, typing £/NL/ (£ is not a valid DEBUG
command and is ignored by the Command Interpreter),

-13-

pressing Shift T, and then holding down Shift 6 to move
the cursor down to the "D" of D O 5000,and then
pressing Shift 2 (delete file). You should have cleared
out everything.

2.2.7 MERGING

Reset the ZX80/8l. Type Shift E (EDIT). Type the
following:-

>D 0 1/NL/
DO 2/NL/

D O 3/NL/

D O 4/NL/

D O 5/NL/

£

Now press Shift G (merge) once. Everything between the
> and £ characters has been duplicated. Try it again.
Every time you press Shift G a further 5 lines are
copied down at the cursor position. Move the cursor up
to the D of a DO 3 and press Shift G. The 5 lines have
been inserted before the D 0 3, because that is where
the cursor was. Now type Shift 9 (DEBUG).

In EDIT mode the Shift G is a pure merge key. Now that
you are 1in DEBUG mode the effect is rather different,
because every time ASZMIC writes a /NL/ to the text
area in DEBUG mode it passes control to the Command
Interpreter. Press Shift G. Every '"D" line hzas been
copied, but since each line is a dump command, it is
followed by the appropriate dump. Just by pressing 1
key we have executed 5 lines of DEBUG commands. This is
called a Command Macro.

Normally in EDIT mode merging you will want to copy one
piece of text into another. You do this by identifying
the text to be moved by the > and £ characters, putting
the cursor at the point you want the text merged into,
pressing Shift G, and then, if you want the original
text deleted, positioning the cursor on the > character

-14-

and pressing Shift 2 (delete file). Simple, flexible,
and, for the poor sweated labourer who wrote ASZMIC,
easy to implement. Check Appendix 4 for the symbols
SHFTD & SHFTF. If they appear then you have three merge

keys. Shift-D is like Shift-G but uses * as merge start
identifier, and Shift-F uses < .

2.3 WHAT NEXT?

You have now covered all the Shift keys which control
the EDIT functions. If you look at Appendix 2 you will
see a formal summary of each Shift. Try setting up some
text of your own and working with it. Then look at
Appendix 3 for a summary of the DEBUG commands. We are
going to look a little more closely at them, although
not in alphabetical order, since some of the commands
are more complex in their implications than others.

=15

Chapter =

FIRST STEPS COMNMTIMUED

3 SIMPLER DEBUG COMMANDS

Everything that you can do in EDIT mode you can also do
in DEBUG mode. The difference 1is that the Command
Interpreter is <called in DEBUG mode when you press
/NL/. However if you do any editing in DEBUG mode then
you cannot rely on Shift E (EDIT) to take you back to
the point where you exited from EDIT mode. It will take
you back to the location in memory where the cursor
WAS, but you may have edited in something different
there (such as a [/NL/, in which case the cursor will
not appear).

3.1 D for DUMP

Reset your ZX81. Hit Shift 9 to ensure you are in DEBUG
mode. Type D :4300 12/NL/ and you will get a display of
the form:-

4300 00 00 00 00 00 00 00 00
4308 00 00 00 00

This is an example of a Dump Range command. It
introduces an important new idea, that of a FIELD. The
command itself is just a letter D, followed by a field
which defines the starting address for the dump and
then a field which defines the number of bytes which
are to be dumped from successive locations. The

(colon) identifies the 4300 which follows as being a
hexadecimal value. Look at the definition of the field
types in ASZMIC which you will find in Appendix 1. The
use of fields defined there is common throughout ASZMIC

17~

with one exception which we shall discuss in a moment.
Fields are seperated by one or more blanks or a comma,
but not both. The first field can start immediately
after the DEBUG command letter, but an intervening
blank often looks better.

There 1is another form of dump which we call Dump &
Modify. Type D :4300/NL/
ASZMIC responds with:-

4300 00

and the cursor is waiting on the line for input.
Depress /NL/ 2 or 3 times. With each press the next
location and its contents are printed out thus:-

4301 00
4302 00
4303 00

How do you get out of this? Press . (period) followed
by /NL/ and you are back in ordinary DEBUG mode again.
So where does the Modify come in? Type D :4300/NL/
again. Now type 1 4 7 C 12/NL/ followed by . (period)
and /NL/. Then do a dump range of the form D :4300
6/NL/ . The response is:-

4300 01 04 07 Oc 12 00

Compare this with the result of the first D :4300 12
that you did. Dump & Modify is the exception to the
ASZMIC field rules that we mentioned earlier. Numbers
are ASSUMED to be hexadecimal even without the
(colon) prefix. If you want to type in a decimal number
use O+decimalno. For a more dramatic (?) demonstration
reset your ZX8l,enter DEBUG mode, type 15 or 20 £
signs, then look for the address of DSPBGN in appendix
4 and add 55 to it (e.g. :40B4+55). After terminating
your ££'s line with /NL/ type D :40B4+55/NL/ & then
1C/NL/ 1D/NL/ etc. You can see the £ signs being
~overwritten with the characters corresponding to the
codes that you typed in.

=18

3.2 C for COPY

Reset the ZX81 (if you have 16K of memory you need not
do this all the time). Enter DEBUG Mode (Shift 9). Type
the following commands:-

D :4300 20/NL/

D :4300/NL/
123456 7 8/NL/
./NL/

D :4300 20/NL/

C :4300 :4308 8/NL/

D :4300 20/NL/

Take a deep breath and look at what you did. First you
dumped 20 locations which were all O (the machine
zeroes memory on reset). Then you did a Dump and Modify
of the first 8, and a Dump Range to verify that they
had been modified. You then copied 8 bytes from the
location :4300 to the 1location :4308 (the bytes are
counted UP from the addresses you give) and finally you
dumped the 20 locations again to verify that the copy
had taken place.

The format for Copy is C from to count. It has logic in
it to ensure that if you specify overlapping memory
regions then the data moved to the destination region
is not <corrupted. The copy goes from top to bottom or
vice versa as required to ensure that the source region
is not overwritten by the destination region before the
source bytes have been copied.

3.3 F for FILL
Reset the ZX81 & enter DEBUG mode. Type
F :4300 :4310 :AA/NL/ .
Then type D :4300 16/NL/ and note that you have filled

the region with AA codes. The format is F from to
fillerbyte . The command is most often wused to

-19-

initialise regions of memory (notably to zero them out,
zero 1is the default fillerbyte if you do not specify a
third field)

3.4 E for EDIT

E by itself just shifts back to EDIT mode. If followed
by a symbol then ASZMIC searches up for the symbol and
positions the cursor at its start. Great for getting to
a file when you have a lot of text. You have already
used this command in 2.2.6 MACROS so we will not give
any examples. Look at the description of the subroutine
CMPSTR (used by E & many other ASZMIC commands) to see
what constitutes a valid comparison.

3.5 H for HORRIBLE JUMP

The format for this is H field and the result is a
jump to the address specified by the field whilst still
in the context of the Command Interpreter. You
presumably have a program at the address which does
something for you and then RET's to ASZMIC. Your
routine can analyse further fields on the line using
GETFLD, so this is a way of linking in your own
personalised commands. If you want an example try
looking up the address of INICON in Appendix 4 and then
doing an H to that address (remember the :). INICON is
the start of the ASZMIC initialisation so the effect
should be the same as resetting the ZX8l.

3.6 M for MACRO

This is an extension of the Shift G key. Reset the ZX81
and enter DEBUG mode.
Type:-

=D 0 8/NL/
£/NL/

+D 16 8/NL/
£/NL/

-20-

Then type M=/NL/ a couple of times and M+/NL/ a couple
of times. The dumps specified are generated. The
character after the M specifies the start character for
the command macro, unlike Shift G , which always uses >
as a start character. You thus have a wide choice of
macros.

3.7 O for OLD REGISTERS

In DEBUG mode type O/NL/. You will get a pair of
intimidating 1lines each with six 4-digit hexadecimal
numbers on it. These are the registers which are saved
in the register context area REGIM. See the definition
of O 1in Appendix 3 to tell you which is which. They do
not mean too much wuntil you start executing programs
and generating Breaks in them, which causes the
registers to be saved in the Image area. It is a very
good idea to put an O in the Shift Macro line when you
start a session with ASZMIC, since the Shift Macro line
is executed for every break condition, and you normally
are interested in register contents when a break has
occurred.

If you are feeling dynamic try looking up the addres of
REGIM in Appendix 4 and then modifying some locations
between REGIM and REGIM+24 and noting the effect on the
0ld Register dump lines.

3.8 P for PRINT

This command will do precisely nothing for you if you
do not have a Sinclair printer attached. If you do then
reset the ZX8l and enter EDIT mode. Type:-

£PRINT.FILE
ANY

SORT

OF

RUBBISH
WILL DO

£

-21-

and then hit Shift 9 to enter DEBUG mode. Type P
LPRINT.FILE/NL/ and the file will be printed. If you
want to terminate the printing prematurely (e.g. if you
forgot the £ sign which terminates the printing) you
just have to hit the Break key.

This concludes the simpler DEBUG commands. In the next

chapter we shall be looking at some of the more
complex, and interesting, ones.

D

Chapter 4

MORE DEBUG OPERATIONMS

4 SAVING & LOADING

It is now time to 1look at the ASZMIC cassette
interface. This wuses the same recording format as the
BASIC Rom, so that it is possible, using some tricks
described in the chapter on Text Ops, to read in a
program saved by BASIC, modify it with ASZMIC e.g.
writing REM's full of machine code and then write it
back so that it can be loaded by BASIC again. The price
you pay for this compatibility is the dreadful slowness
of the interface, but of course you are used to that by
now.

When ASZMIC writes out a file to cassette it first
writes out a title line which identifies the program or
file which follows, waits 5 seconds, and then writes
out the file or memory region you specified. When you
are loading from cassette ASZMIC detects the title line
and writes it to screen, using the 5 second pause
before data to display it to you. You thus get a
catalog of everything on the tape built up for you,
which 1is informative and soothing because you know that
your system has not disappeared into one of those black
holes which lurk around cassette reading.

4.1 K for KASSETTE (sic)

Reset your ZX8l, enter EDIT mode and type in a file,
such as:-

BB

£LIMERICK

THERE WAS AN OLD MAN OF DUMBREE

WHO TAUGHT LITTLE OWLS TO DRINK TEA
FOR HE SAID TO EAT MICE

IS NOT PROPER OR NICE

THAT AMIABLE MAN OF DUMBREE

£

Now enter DEBUG mode, connect your cassette recorder
just as you do for BASIC, and type in :-

KES "POETRY" £LIMERICK/NL/

The sequence

K £ S space "

is very important. If you do not write it like that,
with only 1 blank between S and ", then ASZMIC will not
recognise it as a file title and you will never ever
(unless you are very smart) be able to read the file
back.

After you hit /NL/ you have 5 seconds to turn on your
cassette recorder. It does no harm to turn it on early.
The screen then blanks out for half a second and the
title line 1is written out. The display returns for a
further 5 seconds and then the file itself is written
out. The display comes back again when the save is
complete. You can abort a save at any time with the
BREAK key. Stop the recorder .

Now type F :4300 :4320 :BB/NL/ to set a region of
memory to "BB'" codes. Do another save, but this time of
a memory region:-

KES "MEMSAVE" :4300 :4320/NL/
Cassette operating procedure 1is as above. Rewind the

tape.

24—

4.2 L for LOAD
Reset the ZX81 and enter DEBUG mode. Type:-

L "NOTHING'"/NL/
and start the recorder in playback mode with the same
volume setting that you wuse for BASIC. After a while
the screen will light up with:-

KE£S "POETRY" E£LIMERICK
for 5 seconds and then blank out again. A little later
there comes another 5 second burst but this time the
line:-

KE£S "MEMSAVE'" :4300 :4320
has been added to the display.Since there is no file
called "NOTHING" on the tape you may as well hit BREAK
to come back in EDIT mode. Now rewind the tape, enter
DEBUG mode and, wusing the same procedure as above but
with:-

L "POETRY"/NL/
to load the file you first saved. Check that it is O.K.
Reset the ZX81, enter DEBUG mode and rewiad the
cassette. Check that :4300 to :4320 contains zeroes (D
:4300 32 /NL/) and load the second file with:-

L "MEMSAVE'"/NL/

Dump :4300 to :4320 to verify that it now contains '"BB'"
bytes.

EASY?

_25-

4.5 A for ASSEMBLE

The ASZMIC assembler was developed from a 1K assembler
(yes, 1K) written for NASCOM 1 and normally called,
with mixed emotion, the '"Dirty Dog' assembler.It is a 2
pass assembler with full Zilog mnemonics. If you are
not familiar with Zilog's assembly language then it
might be a good idea, to put it mildly, if you bought a
book on the subject. There are references in Chapter 26
of the ZX81 manual.

Reset the ZX8l, enter EDIT mode and type the following
sequence (we are going to assume that you know enough
to terminate each line with a/NL/):-

£FILE
ORG :4300
START LD HL,0

LD DE,0

LD B,10
LOOP INC DE

ADD HL, DE
LOOPEND DJNZ LOOP
RST 0
£

This 1is a program. Please always start every program
with an ORG directive to tell the assembler where it
should be located. It will probably start at (TXTLIM)
if you do not, but that default may not necessarily be
in your version of ASZMIC. Now we are ready to do an
assembly. Enter DEBUG mode and type:-

A £FILE 1

The '"1" 1is an option to say that you want an assembly
listing. Almost instantaneously ASZMIC comes back to
you in EDIT mode (It can assemble at up to 300
statements a second) with a listing showing the code
generated for each statement, plus the location in
memory it has been assembled at. Enter DEBUG mode and
dump the program (D :4300 14) to see that it really has

-26-

been assembled for you. We call this generated machine
executable code '"object code'.

Now delete all the text in the text area, but do not
reset the ZX81 because we do not wish to lose the
program.

4.6 J for JUMP

We are now going to execute the program. It generates
the sum of the numbers from 1 to 10 in the HL register.
To help wus see what is happening we are going to use a
Shift Macro which is automatically executed whenever a
BREAK condition is encountered. (BREAK means
breakpoint, single step, RST 0 code or externally
generated NMI interrupt). Hit Shift T, type O (not 0)
without a newline and then Shift 9 to come back in
DEBUG mode. Check Appendix 3 for the O command if you
have forgotten it. Type:-

J :4300

You now have a dump of the registers at the end of the
program. Look at HL. It should contain :0037, which is
the hex equivalent of decimal 55. DE should contain
:000A which is 10 of course.

4.7 B for BREAKPOINT

Let wus now try to execute the program again, but this
time with a breakpoint inserted to stop execution '"in
midstream'". Type B LOOPEND/NL/ (the DJNZ instruction)
and then J START /NL/. Now take a 1look at the
registers. Both DE and HL should contain :0001, and B
should still contain :0A, since the breakpoint takes
effect before the instruction at whose location it was
inserted is executed.

Breakpoints work by saving the byte at the breakpoint
location and substituting a RST O (:C7) code. When you
hit a breakpoint in the course of normal execution the
'mormal" byte is put back there (check with D LOOPEND

=D T

1). Now type B /NL/. Since you did not specify an
address the breakpoint was reinserted at the previous
breakpoint location (check with D LOOPEND 1 again).
Type B O/NL/ to clear the breakpoint.

4.8 G for GO

Now type G/NL/. You have advanced one instruction. Type
it a couple more times.This is called single stepping.
You can see the Program Counter (PC) changing as well
as the registers you are working with. Since we did not
specify an address with the G command it used the saved
Program Counter address in the register image area (PCl
in REGIM).

Now why not try executing 20 instructions before
jumping back to the monitor? Type G START 20/NL/ . The
"START'" tells the G command where to go and the "20"
tells it to execute 20 instructions before it comes
back to you. You will see that the Program
Counter ,which points to the next instruction to be
executed, is :4308, HL is :0015, DE is :0006 and B is
:04. If you add it all up you will see that this is the
sixth time through the 1loop and we have in fact
executed 20 instructions. Then type J /NL/. This shows
how J without an address will just continue the program
to its end.

We sneaked in a little subtlety without mentioning it
to you beforehand. You have wused the symbolic names
FROM YOUR PROGRAM in DEBUG instructions, and they
worked. That sort of thing makes debugging a program
very much simpler. By the way, if you try single
stepping through a breakpoint then you will single step
into the breakpoint logic, which may not be exactly
what you had in mind.

-28-

4.9 I for IMMEDIATE

We conclude this chapter by looking at the immediate
instruction facility in ASZMIC, which to the best of
our knowledge 1is unique. It is a way of giving you the
sort of interactive capacity you have in BASIC by
allowing you to specify assembler statements which are
immediately executed 1in your program context, and
function as an extension of the program itself without
the need to recompile.

Clean up the text area if you have a 1K system. Type I
LD HL,1/NL/ and 1look at the HL register in the "O"
dump. It contains :0001. Type I EX DE,HL/NL/ and note
that the DE and HL registers have been exchanged. You
can put any instruction in an Immediate command, and
even define labels with the EQU directive, but relative
jumps and the other directives (ORG, DEFB, DEFW, DEFM)
are meaningless and can crash the system when the I
command tries to execute them.

Finally try LD HL,1+243+44+45-15/NL/ and look at HL in
the register dump. It should be zero, thus

demonstrating how you can do simple arithmetic with
fields.

We now recommend that you look at the formal definition
of the DEBUG commands in Appendix 3 to see what you
have been doing all the time. There is one more Debug
command, the N command, which is used in conjunction
with a special board which holds both Basic & ASZMIC
ROMs to switch between ROMs whilst preserving memory.
Its use is described in the board documentation.

-29-

Chapter =

TEXT OPERATIOMS

This and the next two chapters discuss features of
ASZMIC to help 'flesh out' the bare bones of definition
in the Appendices and the exemplars of the previous
chapters. They should not be taken as comprehensive
descriptions of everything which is available.

5.0 INTRODUCTION

The second partition in ASZMIC memory, lying between
DSPBGN & (TXTLIM), 1is wused for text preparation and
editing. On a 16K system this means you have around
12000 characters available; more if you move up the
TXTLIM pointer vyourself. ASZMIC treats this as an
allowed space in which you can insert characters at
will, and your T.V. screen becomes a window which is
moved over this enormous area under control of the
Editor Shift keys. There is no specific display file as
with BASIC, but instead the whole text area is a
display file, and the BASIC notions of program,
variable and display space are no longer relevant. This
is a software utilisation of one of the main strengths
of the ZX81, viz. that it allows most of memory to be
mapped onto a video display. We force a few conventions
of our own onto this space to make life a bit more
meaningful for you.

5.1 FILES
The first convention is to introduce a protocol which
divides up the text in the text area into identifiable

sections. We call these sections files. A file is
identified by a symbol whose first character is a £

=31~

(sterling) sign left justified on the first line of the
file. This symbol, plus its preceding £ sign, becomes
the NAME of the file. The end of a file is signalled by
a &£ sign as the first character of a line. We call the
£ signs FILEMARKS in consequence. The ASZMIC character
string comparison routine CMPSTR is coded to recognise
a comparison of strings beginning with £ only if the
destination string is the first on a line. This all
sounds a bit complicated but it works out very well in
practice, because if you start every file with an
unique filename, and terminate it with a filemark, the
ASZMIC commands will unerringly pluck out the file you

are interested in from the text area and process it for
you. The convention is fully integrated into the Debug
commands .

This means that you can have as many files as you like,
subject only to space restrictions. We should point out
that the Debug commands will often work if you have
specified an invalid filename for a file (i.e. one not
starting with a filemark) but there are no guarantees.
Forgetting the terminating filemark can be a nuisance
for cassette ops and printing, and a total disaster if
you then try to assemble or merge the endless file.

5.2 MERGING & DELETING

We implemented these functions as Edit Shift
operations, rather than Debug commands, to give extra
flexibility and to tie up with the 'Show it rather than
tell it' philosophy of a full-screen Editor. The cursor
is wused to 1identify the starting point for merge &
delete operations; and a filemark is used to terminate
the operation. When a merge key is pressed ASZMIC
searches from a little past the shift macro line down
to a little beyond the current end of data pointer to
find the merge start character (> for Shift-G < for
Shift-F * for Shift-D) and then copies the source text
down (or up) to the cursor position until it finds a
filemark in the source text. Long merges can blank the
screen for a moment.

=32

At one extreme this 1s a conventional file merging
operation, at the other it becomes a text macro. You
can, for example, copy 1in a file of subroutines from
tape and merge them into a program. You can also, if
you are writing a program with a lot of data in it,
code something 1like > DEFB £ high up in the text area
and then whenever you hit Shift-G the string DEFB will

be 1incorporated into your program. This can save quite
a lot of typing.

When you want to delete the source file/string which
you have merged you just position the cursor onto the
merge character and press Shift-2 and, Presto, it has
been deleted. A filemark will always stop a delete or
merge operation. Failure to terminate a merge source
string with a filemark will mean that the poor computer
will go on trying to merge forever. You cannot escape
back to ASZMIC. Deletes just refuse to work if they
cannot find a terminating filemark.

5.3 EDITING

You have covered the EDIT functions pretty
comprehensively in Chapter 2, so here we will just give
a few hints & tips. Remember the use of the E string
command as a Shift Macro when you want to search out
all occurrences of a name in a file. Hitting /NL/ in
the middle of a previously written line will corvert it
to 2 lines, and Typing Rubout can be wused to
concatenate lines by deleting a /NL/. Please try not to
edit in the top 20 lines of the text area unless you
are working with a shift macro. These lines are really
padding to preserve a clean display and deleting them
could mean that you generate an illegal display. In
particular using Type Rubout to delete the /NL/ at the
very beginning of display can leave the vital (but
invisible) start of data marker exposed with later
disastrous consequences. Editing out the blank which
ASZMIC ensures is before every /NL/ can also cause you
to lose the cursor in some circumstances and can cause
cosmetic errors in assembly and merging. Writing more

=33

than a few lines with more than 36 characters in them
on any one display page can also cause ASZMIC to
position the cursor off the visible page, although this
does no harm.

When you want to insert lines 1in a text you should
position the cursor on the 1line above the desired
insertion point, hit Shift-W to get to the end of the
line and then hit /NL/ to create a new blank line.
Shift-7 followed by Shift-6 will take you back to the
beginning of a line. Remember that Shift-Q rubs out
under & forwards whilst Shift-0 rubs out backwards.

5.4 PRINTING

The way the printer operates is determined by 2 bits in
ASSFLG. This flag is set automatically by the Assembler
(it is in fact the options byte) and zeroed at assembly
termination (unless you wused the Break key to escape
from an assembly) so if you want to control the printer
you have to set these bits yourself. Bit 1 set to 1
will route almost everything ASZMIC, as opposed to you,
writes to printer and Bit 5 will set the printer in
fine pitch mode with 64 chars per line.

You can fool the printer into writing double height
characters if you want. If you write a line of up to 32
characters and then pad it out with blanks (no /NL/)

to a total of 48 characters, and then type in the 32
characters again in EXACTLY the same order you will
get, not a long line with 2 messages, but a single
message with double height characters when the line is
printed. This <can be effective for titling, and if you
do it a lot you will learn to use the merge facility as
a convenient way of generating the double texts. If you
get the number of blanks wrong the effect is, well,
interesting but hardly legible. This technique will
also work for fine pitch printing but double up to 64
chars of message and 32 padding blanks.

34—

Remember the wuse of the Break key to get you out of
print situations when you have forgotten the
terminating filemark. Finally, printing takes place
indirectly, that is ASZMIC jumps to the print routine
via an address in RAM. If you alter the contents of
PRTIJMP to the address of your own print routine then
ASZMIC will use yours instead of the Sinclair interface
built in. Print 1is entered with the stack containing
the start of the line to be printed, and your routine
must clear this and exit with a RET with HL pointing at

the first character after the /NL/ which terminated the
line.

5.5 CASSETTE OPERATIONS

Your cassette recorder should function with ASZMIC at
the same volume and tone settings as with Basic. ASZMIC
should in fact work rather more reliably since it
maintains a tone to the recorder wuntil just before
recording starts; so that the automatic gain control on
most low cost cassette recorders will not be so
obtrusive as it 1is for Basic. If you want to set up
your recorder for a new tape brand then try recording a
sequence of blanks (K&£S "NULL" :7000 :7FFF); just
after switch on when the program area is empty works
very well. Try loading it back in with your recorder
volume control set to minimum and then watch the effect
as you slowly increase the volume. The screen will
change from ''white & swimmy'" to a series of well
defined striated bands to a predominantly black screen
when the volume is too high. The volume control is best
set in the middle of the '"band" region.

5.5.1 HEADERS & FILES

Since there are 2 types of "file'" we can manipulate
with cassette; genuine text files and defined regions

of memory, we have to give each tape file a seperate
identification since memory regions do not have file
names. When 7you 1issue a save command to ASZMIC it
writes out the command itself as a header and then

-35-

pauses before writing out the file proper. On playback
the syntax of the save command represents a virtually
unique character sequence which ASZMIC recognises, and
causes it to be displayed for a few seconds to identify
what is on tape. If the identification in the header
and the Load command correspond then ASZMIC checks the
rest of the header to find out if it is loading text or
memory and reacts accordingly. You always come back
from Load in Edit mode. There are a couple of extra
features associated with 1loading a memory region. The
first is that the region 1into which the saved
program/data is loaded is offset by the contents of the
OFFSET variable, so you can do a relocated load from
tape. The second 1is that if you analysed the contents
of LABSTK & LABEND and wrote out a Symbol Table to
tape, then if you followed the ‘'end of region'
definition with a space and then the letter L ASZMIC
will recognise the load as a Symbol Table and set
LABEND accordingly. LABSTK is wunchanged so you must
have the same size memory and not have relocated the
Symbol Table before the save. A small feature but
Symbol Tables are sometimes worth saving for library or
debug purposes.

The physical seperation of header and file on tape
gives you the chance to do some very complex things by
juggling and over-recording. This is for the benefit of
those hardy souls who are not content till they have
abused a system to a maximum, or the more practical who
wish to recover a poor recording. The details you have
to work out for yourself. Note that if RDCASS is called
before the tape has run onto the half-second silence
before a file or header it <can pick up rubbish
(depending on volume setting and screen contents at
record time). The silence will, however, synchronise it
onto a byte boundary so that the file may be displaced
but will not be corrupted.

As ASZMIC will treat everything following the K£S thru
to the End of Data marker as the header, the cassette
save command should be the final command in the text
area when /NL/ is pressed.

=36~

5.5.2 CREATING BASIC PROGRAMS

There IS one creative abuse of the cassette recorder
which we must mention. For those of you who do not have
a board which holds both ASZMIC and BASIC ROMs the
cassette recorder 1is the most accessible form of
communication between the two. In the Application notes
you will find a listing for a general purpose program
which simulates the context of a Basic program with a
single REM in it. By placing your own code at the
indicated point you can <cause it to be incorporated
into the REM. A cassette save of the program will then
be loadable by Basic, for the example given the
identifier "123456789" 1is wused, and you can then add
lines of genuine Basic and reference the code in the
REM by a USR (16514). Your code should not affect the
HL' register. You will need to use the OFFSET facility
when assembling the program. On a 16K system ORG :4000
and OFFSET = :3000 works very well, but you must have a
9 byte header since the first 9 bytes of the variables
in Basic are not recorded.

If you want to go back in the other direction (it takes
all sorts.....) then you must start by initiating a
save of a memory region large enough to hold the Basic
program. You can abort it with Break as soon as the
memory starts to be written out; all you want is the
header. Then back the tape so that you are just before
the data which began to be recorded. If you then
perform your save of a basic program it can be loaded
back by ASZMIC. You will have to abort the load
manually when the Basic program 1is complete.
Alternatively you can write a very small program which
uses RDCASS to get bytes from the tape and store them.
This latter approach 1is probably quicker and more
controllable.

In the beginning ASZMIC had a super fast cassette
interface with parity checking and lots of goodies,
plus an offset ASCII character set and an RS232 style
printer interface. We changed it all to give you
Sinclair compatibility on characters, printer &
cassette so we hope that someone does make use of this,
otherwise it was all wasted.

s Te

Chapter &

THE ASSEMBLER

Before discussing the Assembler section of ASZMIC we
should look at what an assembler does for us. Unlike
BASIC, assembler statements are closely related to the
actual operations of the Z80 cpu. The Z80 has a well
defined set of logical, arithmetic and data movement
operations which it can perform..... operations which
are relatively easy to understand even if it takes a
little time and practice to use them to perform
'useful' work .Unfortunately the instructions which
direct these operations when they are read in from
memory are more meaningful to the digital decoding
logic in the Z80 than they are to flesh and blood.

6.1 MNEMONICS

The first thing an assembler can do for us is to allow
us to write down the instructions for the Z80 in a form
which is more expressive for wus, and then translate
them to the Z80 codes; for example CCF as an
abbreviation for Complement Carry Flag 1is easier to

remember than hexadecimal 3F. This can be extended
further by allowing us express the Z80 instructions in
terms of operations on operands meaningful in terms of
the Z80 internal architecture(which is relatively
comprehensible) and having the assembler decode the
fields down into valid instructions. The assembler thus
enables us to write Z80 instructions in terms of our
conceptual picture of the Z80.

-39

6.2 SYMBOLS

The other thing that the assembler can do for us is to
allow wus to wuse symbols instead of the binary codes
that the Z80 enjoys to represent data and addresses.
Data items can be written in the decimal or character
formats which we are wused too. The Z80 works with
defined addresses in memory. Very often we do not know
as we code a program where its constituent routines and
entry points 1lie. We can give them symbolic names,
called LABELS, and let the assembler bear the burden of
assigning precise addresses to them.

Some of the symbols the assembler wuses are
self-defining, things 1like numeric constants, and the
rest tend to be labels which can either be explicitly
defined with a directive to the assembler, or can
appear as the first field of a statement in which case
they are assigned the address at which the code
generated by that statement will lie in memory. This
address is called the 1location of the code, the
assembler keeps track of it by an internal variable
called the location counter, and there is a special
symbol, the §$ sign, which the assembler interprets
every time it encounters it as the value of the
location counter at the point of encounter. Thus the
statements:-

LABLAB JP LABLAB
JP $

have the same effect when assembled.

6.3 HOW DOES IT DO IT?

When the assembler reads through your program for the
first time, and it encounters a label wused as an
argument in a statement, then if the label has been
previously defined to the assembler the address or
value associated with it can be incorporated in the

-40-

instruction, but if the label is something like a jump
address further down 1in the program then the poor old
assembler is stuck for a value. The solution to this
problem is that the assembler always assembles your
program twice (makes what the refined refer to as a
second pass over over the program). The first pass
pretends to generate code, but really only generates a
table (The Symbol Table) which at its conclusion
contains a defined value for every label. The second
pass can then reference the Symbol Table to substitute
valid values for symbols and generate executable
(object) code, fancy 1listings and error messages.
Whilst we are talking about the Symbol Table let us
slip in a few definitions. A label which is encountered
as an argument before it is defined is called a forward
reference, a label which is defined more than once in a
program is called a duplicate definition, and a label
which is referenced but never defined within the
program is called an unsatisfied reference unless you
have found some way to define it into the Symbol Table
(e.g. Immediate statements or use of force pass 2
option) externally in which case it is called,
surprisingly enough, an external reference.

6.4 OPTIONS

When you use the A command to tell the Command
Interpreter to invoke the Assembler you specify a file
which is to be assembled, and also an OPTIONS field,
which tells the Assembler how it is to work. Some of
the options are pretty obvious. You can elect to
generate an assembly listing...very important when
debugging your program. You can elect to have the
listing and any error messages directed to printer,
with 64 characters per line if you wish. You can
suppress the generation of object code.... useful in
the first stages of checking a program and in other
circumstances too.

Then 7you can select some less obvious options. They are
concerned with the 1linking together of seperate
programs into a functioning whole. Normally when you
initiate an assembly you zero out the Symbol Table, but

ili]

you can elect to preserve it if you wish. Why? To allow
your program to use external references defined in it.
You can also elect that the assembler will proceed
immediately to pass 2, which from our discussion
earlier should be disastrous. Why? Because when coupled
with the Symbol Table preservation option this allows
us to assemble together many seperate programs with
cross-references into a functioning whole.

If you look in Appendix 3 at the A command it
summarises the options available and the numbers which
represent them. The options field is just the sum of
the numbers for the options you want . So if a listing
on printer, normal pitch, but with no object code is
your desire the options field becomes 64+2+1 or, if
your mental arithmetic is good and your patience weak,
you can write 67 directly.

6.5 OFFSETS

There 1is a variable called OFFSET, whose location you
will find in Appendix 4, which has a special
significance for both assembly and loading from
cassette. The value of this variable is normally zero,
and it is used as a relocation offset by the Assembler.

The way it works is this:- Normally when you code a
program you expect it to be assembled at the location
you have specified with an ORG staement so that it will
execute at that location. We say that in that case the
EXECUTION LOCATION COUNTER and the LOAD LOCATION
COUNTER are synchronous. But what happens if you are
writing a program which will not be executed after
assembly, but will instead be written out to an EPROM
programmer to generate an EPROM which is supposed to
execute starting at location zero. You have to write an
ORG O statement at the start of the program so that the
program is internally consistent, but if you just left
it at that the assembler would try to generate the
object code on top of the ASZMIC ROM. This would do no
harm but your object code would be lost. You need some

way to tell ASZMIC that it must place the object code
somewhere else.

“42-

The OFFSET variable is the technique you use to achieve
this. When ASZMIC is writing out object code it adds
the contents of the OFFSET variable to the execution
address to generate a load address at which each object
byte 1is to be situated. If, before an assembly, you set
OFFSET to :7000 then code which is supposed to execute
starting at location O will in fact be loaded into
memory starting at address :7000.

Remember to reset OFFSET to O when you are finished.
ASZMIC will not do it automatically for you and you
will have a fine old time wondering where your next
assembly has vanished to.

6.6 ASSEMBLING

You invoke the assembler by typing in A followed by the
name of the file you wish to assemble and, unless you
want to take the default of object code, no listing,
error messages on screen, and new symbol table, an
options field to control the assembly.

You must obviously have first written the program you
wish to assemble, wusing the Editor or loading in a
previously written file from cassette. Make sure that

the file containing the program obeys ASZMIC
conventions i.e. that it starts with a filename whose
first character is a filemark, and that it is

terminated by a filemark as the first character of the
line after the final program line. Within the file the
program lines, assembly statements, are written
according to the conventions used by ZILOG and MOSTEK,
the manufacturers of Z80 chips (the only exceptions are
the EQU directive and the format :1000 instead of
1000H for hexadecimal numbers). These conventions are,
in brief, that the first character of the statement
should be a blank unless you wish to specify a label at
that point, and that any label be terninated by at
least one blank. There then follows an op-code or
directive which must be terminated by at least one
blank. If the op-code or directive needs it there then
comes one or two arguments. If there are two arguments

43-

they must be seperated by a comma without any preceding
or following blanks. The final field (argument, op-code
or directive) that you write may be terminated by a
/NL/, a blank or a ; (semicolon). If a semicolon is
found then any characters after it on the line are
trated as comments.

If the first character of a statement is a semicolon
then the whole statement is treated as a comment. If a
label starting in column 1 of the statement 1is
terminated by an = <(equals) sign then the assembler
assumes you are wusing an EQU directive to define the
label, and searches for an argument after the = sign
(you can have intervening blanks if you want) which is
evaluated and assigned to the label.

Please note that the Assembler exits by using an RST O
instruction instead of a RET, so that you can use the O
command to see the end of the region for object code in
the IX and IY registers.

6.6.1 DIRECTIVES

The ASZMIC assembler has two genuine directives, ORG
and =, which do not generate executable code, and three
pseudo-directives, DEFB, DEFW, and DEFM which do not
generate EXECUTABLE code but produce object code which
is a representation of the data values expressed in the
argument after the directive itself. We touched on = in
the last paragraph; so we will look at ORG now. ORG
causes the following argument to be evaluated and
transferred to the execution location counter (the IX
register). You can use it at program start to define
where the program expects to be executing (and where
object code will be located if you have left OFFSET at
0) and in the middle of a program to generate space. A
cunning wuse of ORG in mid-program is a statement of the
type:-

ORG $+20

A

which will reserve 20 bytes of empty space in
mid-program for wuse as a buffer or whatever. ZILOG use
a DEFS directive for this purpose which we did not
implement in ASZMIC because it was redundant. You
cannot use forward references in ORG or = directives
(there are ways round this but please phone your
friendly 1local wuniversity computer department to find
out about them rather than us).

DEFB will quite simply generate one byte of object code
with the value, modulo 256, of the argument in it. DEFW
will generate 2 bytes but with the least significant
byte first in the way the Z80 expects so that:-

DEFW :1234

will produce what looks like :3412 in memory.

DEFM searches for a " (quote) sign and then transforms
every character after it to a byte in memory according
to the Sinclair wvalues assigned to each character,
until it finds another " which tells it to stop. This
means that you cannot have " signs in a DEFM argument.
Do not try coding two together to get round this, it
just does not work.

6.6.2 OP-CODES and ARGUMENTS

Op-codes are the mnemonic representation of Z80
operations. You can read about them in the Z80 assembly
manual of vyour choice, and remind yourself about what
they are and what they do by browsing thru Appendix 5.
Arguments are expressed in the standard ASZMIC form
which you have been using already. They are defined for
you in the "FIELDS" paragraph of Appendix 1.

The only argument you will encounter which you do not
use generally throughout ASZMIC is the § (dollar)
symbol, which represents the value of the execution
location counter at the start of the statement in which
the $ occurs. This has been a short paragraph for a
large topic because this is the information which you
will hopefully have gleaned from your book on Z80
Assembly Programming.

452

6.6.3 COMMENTS

Comments are always said to be a VERY GOOD THING in a
program of any sort, and are particularly desirable in
assembler programs because the code tends to obscure
function by detail (the Devil's Data Dictionary claims
that by the time the average professional programmer
has reached the twelfth line of a program he has
completely forgotten what the first six did). We follow
ZILOG conventions by allowing you to terminate a
statement with a semicolon and then fill up the rest
of the 1line with commentary. Unfortunately the screen
can only have 36 characters on a line (32 for the
printer) so that by the time 7you have allowed 16
positions for location and code in an assembly listing
you are liable to lose long arguments from the program
statement, mnever mind comments tagged onto the end.
They are still useful in the source code (sorry, source
code is the name for the programs you input to the
Assembler). Option Bit 5 will remove the truncation
effect, and also set the printer in fine pitch mode to
give you wup to 64 characters per line. The ZX81 does
not have all that much memory to play with, and has a
diabolically slow cassette interface, so for large
programs the hardware offers little encouragement for
in-line documentation. One recommends even so that you
try to describe what each section of the program is
doing as you code it. You will forget sooner than you
believe possible what was going on otherwise.

6.7 ERRORS

In a tight 1little 4K ROM there was a limit to the
amount of error analysis which could be done by the
Assembler. The authors also had some problems deciding
what sort of errors should be checked for, since they
never make mistakes (ouch). After clandestine
observation of their less gifted colleagues they came
to the conclusion that euthanasia was the best error
checker. Joking apart, once you have gained some
experience with assembly programming (remember as you
struggle and curse at the beginning that you will be a

46~

beginner for a few weeks and an expert for the rest of

your life) the mistakes you make fall into 3
categories. You muddle up label names by misspelling,
coding the same subroutine twice or forgetting to

include it at all; you insert so much code between a
relative jump and its destination that the jump goes
out of range; and you make mistakes with
Op-Codes,normally by coding them in column 1. These are
the three classes of error that ASZMIC will identify
for you.

Errors are signalled to you by the setting of a
non-blank column 1. If you are not generating an
assembly 1listing the errored lines will be displayed
for you in any case.

The nature of the character in column 1 could tell you
a lot about the error, but the rules are so
complicated that it 1is easier to set about it
logically instead. First look to see if any object code
appears on the error 1line. If it does not then you
have an Op-Code error. Possible causes are starting the
Op-Code in column 1, terminating it with a comma
instead of a blank, or just misspelling it (because of
its unusual design the Assembler can only detect
seven-eighths of the possible misspellings). Then look
to see if the you have a relative jump in the
statement. If so the error is almost certainly a jump
out of range. Finally you are left with duplicate
definitions or unsatisfied references for labels, so
look at the label(s) in the arguments and find out if
it has been defined, or defined more than once.

In addition, if you code a number with an invalid

character for the base of the number, ASZMIC will
signal an error.

6.8 SEQUENCE

We recommend the following sequence when assembling a
program:-

47 -

1) Edit the program.
2) Save it on tape immediately.
3) Assemble it with option 64.

4) If any errors were indicated identify them and
go to 1).

5) Assemble it with option 65 (67 if you have a
printer).

6) Check the listing to see if this is what you
really wanted. If not go to 1).

7) Assemble with no options field.

8) Debug as described in chapter 7. If errors
detected go to 1).

9) Save the object code, and possibly Symbol Table
on tape (Remember the L field).

6.9 LISTINGS

The hallmark of the assembly language programmer is a
battered and well annotated assembly listing. It is the
fundamental aid to getting your programs in working
order. If you do not have a printer life will be that
much harder for you. ASZMIC tries to help you by

permitting the use of program labels in Debug
statements, allowing you to generate listings on
screen, into which you can edit filenames and filemark
delimiters and then save and restore them using

cassette, and the ASZMIC Editor is good enough to let
you wuse the screen listing as a notepad so that
development is still possible, but it can never replace
a true listing (hard copy).

The assembly 1listing consists of four distinct fields.
The first is the single byte error flag which is placed

48~

in column 1. The second is the four hexadecimal digit
location at which the code generated from each
statement will 1lie (i.e. the wvalue of the Execution
Location Counter at the start of each statement); the
third 1is a hexadecimal representation of the one to
four bytes of code which each statement can generate
(note that DEFM can generate up to 5 bytes before
truncation); and the fourth is as much of the original
statement as the Assembler can fit into a 32 character
line.

The 1listing, or error messages if a listing is not
selected by the OPTIONS field, will be routed to
printer instead of to screen if bit 1 of the OPTIONS
byte is set.

6.10 LIBRARIES

If you are just beginning with assembly programming you
can 1ignore this section and the next one. They describe
slightly exotic functions which you probably will not
want to use for a while. A library is a piece of object
code which contains frequently used routines accessable
to many different and independent programs. If you
write a program which needs such a routine you could
always load in the source code from cassette (or
microdrive when they become available), merge it into
your program and then assemble the whole, but after a
while you tend to find this a cumbersome and unecessary
procedure. How much more pleasant to load 1in your
collection of useful object code routines once (things
like input and output routines, drivers for special
peripherals, multiplication and division routines and
the 1like) and have them available for all comers when
required. Such a collection of routines is called a
library (no prizes for guessing why) and is
characterised by the fact that the routines within it
are internally self sufficient, and do not need to
reference any external program. A library contains
definitions, but no external references.

-49-

How would you wuse such a set of routines with ASZMIC?
To begin with you would assemble the library modules
(module = constituent program) and save both the object
code (the library itself), AND THE SYMBOL TABLE WHICH
ITS ASSEMBLY HAD GENERATED. When you needed to assemble
a program which referenced (used) some routine in the
library you would first load in the Symbol Table as
described earlier, and then perform an assembly with
bit 2 ("4") of the OPTIONS field set. This would mean
that your program would start off with a Symbol Table
which defined the addresses of all the names in the
library programs, and references made to them would not
be flagged as errors. Of course when you came to
execute the program you would have to be sure that you
had remembered to load the library into memory
otherwise the result would be disaster.

6.11 CROSS REFERENCING

The next stage in your development as a jejeune
assembler programmer is to write programmes so large
that you do not have enough memory to assemble them as
a single entity, or to co-operate with friends or
colleagues to write seperate sections of the same
programme. In this case you are faced with a situation
rather different from that we met with libraries,
because each seperately coded and assembled section
contains not only definitions which other sections can
use, but references to the other sections as well. how
do we handle a situation like this? it is probably
simplest to postulate an example with three seperately
coded but mutually (sic) dependent programs; PROGA,
PROGB and PROGC. PROGA is coded and as its final
statement line has ENDA=$. PROGB starts with an ORG
ENDA and terminates with an ENDB=$. PROGC starts with
and ORG ENDB statement.

If you then assemble PROGA with an OPTIONS byte which
includes bit 6 (no object code) and then assemble both

-50-

PROGB and PROGC with an OPTIONS byte which includes a
setting of both bits 6 and 2 (see Appendix 3) then you
will have built up a symbol table which includes label
definitions from all three programs. You then assemble
all three programs again, but this time wusing an
OPTIONS field which includes both bits 7 and 2, and you
will have at the conclusion a single piece of object
code which 1is internally self consistent, always
assuming that you have not made any errors.

What you did was to suppress object code the first time
you assembled the three programs in sequence so that at
the end you were left with a Symbol Table which
contained all the symbol definitions for all three
programs, plus a bunch of error messages which,
providing they refer only to wunsatisfied <cross
references, are irrelevant. Because PROGB and PROGC
were assembled selecting the symbol table preservation
option the definitions ENDA and ENDB were available in
the Symbol Table at the time the ORG statements were
assembled so that the programs automatically lie
together in memory. The second time we assembled each
program we used a preserve Symbol Table option so that
all the definitions were available but, since the
purpose of the first pass of any assembly is just to
build wup the Symbol Table and we had done that already,
we also wused a bit 7 (Force Pass 2) option to prevent
the creation of a lot of duplicate definitions.

6.12 VALETE

That pretty much covers all we wanted to say about the
Assembler. The next chapter tells you how to debug your
assembled object code. It is a very good idea to save
your object code on cassette before you try to execute
it for the first time, since mistakes can wipe out the
system, and if you want to use program labels in your
DEBUG commands you might also save the Symbol Table.
Remember that ASZMIC comes back in EDIT mode after an
assembly and, please, always start each program with an
ORG directive.

-51-

Chapter 7

PROGRAM EXECUTION £ TEST

When you have written and assembled a program you
naturally want to execute it. ASZMIC gives you two
major commands for program execution and one for single
stepping through a program (we are discounting
possibilities such as referencing the program in an
immediate statement wusing CALL or JP). We shall start
by looking at the DEBUG statements available for
program testing.

7.1 THE J COMMAND

This is your primary command for program test. It can
be specified with an address field, in which case the
first instruction executed is at the address specified,
or by itself, 1in which case the address stored in PCl
when 1last a Break condition occurred will be used as a
transfer address. The J command is characterised by the
fact that all the registers are loaded up from the
register image area (REGIM) before execution, and that
the I register 1is set to 1 to facilitate non-maskable
interrupt (NMI) handling and Break conditions. If your
program does not perform register initialisation then
you can initialise the register image area using I or D
commands.

This is all straightforward, but if you J to your
program and it <contains a fault, then your chances of

getting back to ASZMIC to find out what happened are
slim wunless you have an NMI interrupt button fitted to
break you out of unforeseen loops. Your first line of

defence against the self-immolating program is the
breakpoint.

=53

7.2 BREAKPOINT

A breakpoint is an RST O code. It can be inserted via
the B command, in which case ASZMIC will handle the
restoration of the original byte and manipulate the
saved Program pointer value so that you can continue
with the instruction when you wish, or you can insert
it yourself by the D command or by placing it in the
original code in which case you must perform any
skipping or replacement needed yourself. The
conventional way to use a breakpoint is to divide your
program into logical sections, and then wuse the B
command to place a breakpoint at the end of the first
section. When you execute the program and come to the
breakpoint you can check wusing the DEBUG D and O
commands that everything has gone as you wish, and then
move the breakpoint to the end of the next section and
use the J command to execute the second section. The
process 1is repeated until you identify a section which
fails. Very often the mere identification of the part
of the program which is failing will concentrate your
mind most wondrously and enable you to isolate and
correct the mistake. Remember that the RST O code is
removed, and the original byte replaced, when the
breakpoint is encountered; so if you want to break
again at that point use the 3 commands G B J to get you
thru the breakpoint, restore it, and restart execution.
If you have a breakpoint active and load in another
program on top of the one in which you had the
breakpoint then subsequent moving of the Breakpoint
will restore the byte from the old program into the
new. Remember that you cannot single step through a
breakpoint without single stepping into the breakpoint
handler.

7.3 THE G COMMAND

When you have isolated the section of a program which
is failing you can then examine its functioning in
detail wusing the G command. This is the ASZMIC single
step feature. It has the effect of the J command but
with an automatic Break condition occurring after each

54—

instruction. Break conditions always cause context
saving in the REGIM area. If you want to step thru a
number of instructions before coming back to ASZMIC you
can specify a step count as a second field in the G
command. In that case you have to specify the first
field, the address to GO to, explicitly even if it is
the stored Program Counter value.

The use of a step count with the G command can be
extremely wuseful. Remember that although you do not
return to ASZMIC wuntil the step count is exhausted
there 1is a break with context save and restoration
after every instruction so that execution is very much
slower than it would be normally. Since the single step
feature works by wusing the ZX81 NMI coupled timer to
simulate a breakpoint, the breakpoint and single step
breaks are handled by the same code, and this gives you
the facility to simulate a ROM breakpoint. If you have
a home cooked Eprom with routines starting at :2000,
and you want a breakpoint at :2122, then you use a B
:2122-1 command and execute the Eprom routine with a G
:2000 32767 command. ASZMIC will then single step
through the Eprom code until it has executed the
instruction before that at :2122, and then it will
think that it has encountered a breakpoint and stop the
single stepping.

The G command uses the ZX81 NMI interrupt timer in a
special way, and is thus not fully compatible with
routines which drive the display since they require an
I register with 14 in it and an enabled maskable
interrupt. A little ingenuity with breakpoints and
single stepping over non critical sections will
probably see you through problems like that.

7.4 THE O COMMAND

This command, which displays the saved registers from
the REGIM context save area, really comes into its own
when you are program testing. The registers are
displayed as 2 lines in the order:-

PC HL HL' BC' DE' AF'
AF BC DE IX IY SP

-55-

The . (prime) registers are the Z80 alternate
registers. PC is the Program Counter which tells you
which instruction you are next due to execute. SP is
the Stack Pointer and the rest are the standard
register pairs. We are sorry that we could not print up
headers above the dumped registers, but it takes as
much ROM space as a printer interface to do that and it
burns wup the text area twice as quickly, so we felt
that it was better to ask you to refer to the
documentation.

The O command is usefully placed as a Shift Macro when
you are debugging a program (i.e. hit Shift T and type
O on the top line). Every Break condition, be it
breakpoint or single step, then gives you an automatic
register dump. If you have important variables in your
program which you also want to dump out at each
breakpoint you can concatenate commands on the Shift
Macro 1line, using ;/ (semicolon slash) as a delimiter
between each command and starting the command
immediately after the /. This facility is really meant
for dump commands but most Debug commands WILL work
there; but do not use an I command since it will then
chase its own tail for eternity (purists call this a
reiterative loop).

7.5 THE I COMMAND

We are told that some CP/M debugs have the equivalent
of the I command in them, which proves that it is such
a good idea that many people will discover it
independently, not that we ripped off the notion from
CP/M. The I command enables you to write a line of
assembler which is then immediately assembled and
executed for you. Before execution the registers are
loaded up wusing an internal form of the J command, and
after the assembled instruction 1is executed a
breakpoint is forced to save the context again, so that
the I commands execute in the context of your program.
Providing you still have the original assembly Symbol
Table intact you can specify labels from your program
in I commands, just as in other Debug commands. The
only snag 1is that an I command will change the stored

-56-

PC value, so remember to J or G to a specific address
if you have wused I before them or you will start
executing the ASZMIC stack. Use of I is a good way to
rectify some unimportant omissions in a program and
continue with mainstream testing.

The I command is normally used for priming registers,
but any executable command can be given. If you do not
leave a space between the I and the start of the
assembler statement then you will be presumed to have
started the statement with a 1label which you are
declaring via the = directive. The only snag is that
the label declaration logic in ASZMIC uses /NL/ as a
delimiter so that the I is taken to be part of the
label. You can declare any label you like so long as it
starts with I. Henry Ford would have approved.

7.6 THE D, F & C COMMANDS

These commands are fairly straightforward in their
operation, and we really only mention them to preserve
an illusion of completeness. Dump, and Modify, are the
kernel commands of any debug system. Fill is valuable
for initialising buffer or workspace areas to an
initial wvalue. C, whilst having its primary use in the
relocation of code assembled or loaded using OFFSET,
can often be useful to reinitialise complex data arrays
from a ‘'spare' copy in memory when you want to return
to an earlier stage in a program for re-testing without
the trouble of reloading the program. F and C are
excellent ways of wiping out the system, so check for
typing errors before hitting /NL/.

7.7 VALETE

Debugging a program, even more then writing one, is a
black art in which 1luck, logic and intuition are
inextricably blended. Logic and intuition you must
supply for yourself, but we wish you all the luck in
the world.

=57=

Chapter &

GCRAPHICS

ASZMIC offers high resolution graphics facilities. The

display driver 1in the Basic ROM uses a fixed number of
rasters (lines) for every character which it displays.

This severely limits the graphics possibilities
available with Basic wunless you install special
hardware. ASZMIC has a programmable driver which allows
you to set the parameters which control display

yourself, and has also substituted for the Sinclair
graphics characters a special set which are independent
of the hardware offsetting based on raster count. The
effect 1is that from a machine language program you can
plot on a 255 x 144 matrix, maintain a continuous
display (ZX81 only), and still have time to do
computation for movement effects. We suspect that
although ASZMIC was really designed as a development
station for assembly language programs, and to a lesser
extent as a teaching tool, many people may use it just
because it 1is the cheapest way to give yourself a
convincing 'Dungeons & Dragons' scenario on the ZX
computers.

8.1 THE ASYNCHRONOUS DRIVER

In the Application notes this program is identified as
the KERNEL routine. Its function is to create a blank
display file, display it 50 times a second, handle
syncs & keyboard read, and hand over control to the
user program when it is not busy. From a user point of
view all his program has to do is manipulate the
display file contents; the KERNEL takes care of all the
rest. If you are using a ZX80 you cannot use the KERNEL
but must instead build wup your display, send it out
using OFRMl, and handle timing and frame sync yourself.
If you have a ZX81 and use KERNEL then your program can
act as if the mechanism of displav was invisible to it.

~59-

Do not take KERNEL as sacrosanct; we wrote it quickly
(as did we all the graphics examples) just to show thw
possibilities. You can probably do better yourself You
might start by tuning NNN and IDLE (rasters at bottom
of frame and sync pulse length tuning respectively) so
that they suit your television.

8.2 PLOT

The PLOT routine in the Application notes is fed by a
subroutine CALL with the B register containing the X
coordinate and the C register containing the Y
coordinate relative to screen bottom left. It computes
the byte in the display that contains the point,
decodes what is in the byte and inserts the new point,
and then encodes the byte back again. UNPLOT does the

same but deletes the relevant point instead. It does
not check for point out of range; that you can put in

yourself. It uses a shift and subtract algorithm to
compute line address, and a little bit of fiddling with
the high order bit in the desired byte to convert to
and from the four points (pixels) which each byte can
contain.

8.3 LINE

There 1is another subroutine given which will use PLOT
to generate a line beteen two specified points. If the
line 1is between XY & X'Y' then D=Y, E=X, B=Y' & C=X'
when the subroutine is called. It uses a successive
incrementing algorithm to calculate the points needed
with the increment maximised to avoid redundent
plotting. It works in theory, and in practice too, but
other algorithms can give lines which are subjectively
more pleasing; particularly when the line subtends only
a small angle to one of the axes. A 'dotted line'
algorithm in particular can often look much neater
since one tends to join wup the dots mentally with a
much higher resolution than the screen can achieve; but
we hesitated to provide any 'psychological'
subroutines. They seemed to be straying too far from
our path of self-imposed utilitarianism. ULINE deletes
a line between the two specified points.

-60~

8.4 UPROG's

This 1is the wunlovely name we give to the application
programs which «create requests for points and lines
which PLOT & LINE generate, and KERNEL displays. We
offer two examples. STRUCTURES will generate diamond
patterns wusing PLOT which can 1look 1like futuristic
space cages. MOIRE will just write tightly packed lines
to give a watered silk (who wears watered silk
nowadays?) effect. We suggest that you get down and
write your own UPROG to get the feel of the graphics.
One wuseful technique that you can use is to achieve
translation of images on the screen by use of LDIR
instructions. A move of 1less than 37 bytes will
translate on the X axis, and a multiple of 36 will give
Y translation. This 1is a much easier way of moving
composite images than painstakingly deleting and
re-drawing them. You CAN also mix text and graphics by
starting the text on a raster ('Y') which is a multiple
of 8 from screen top and writing it 8 times on
sucessive lines (Y's). Remember that if you put a byte
with bit 6 set to 1 in the display then the Sinclair
hardware will try to execute it as an instruction, with
results varying from minimal to a full blooded system
crash.

8.6 OTHER RESOLUTIONS

You can alter the vertical resolution of each pixel by
altering PIXSIZE in the KERNEL, and the total number of
vertical pixels by changing RASTERS, and the number of
blank 1lines at screen top by changing TOPS. If the
product of PIXSIZE and RASTERS is summed with TOPS and
NNN, and the result is around 300, then you will still
probably have a synchronised display. Cheap portable
T.V's seem most tolerant of 1liberties taken with
display timing, and costly colour sets the least. We
have to be a bit general about this since there are
over ten billion display type alternatives. Choose one
by muttering to yourself

-61-

"TOPS changes blank space at screen top"

'""NNN controls my compute time per frame'

"RASTERS controls the number of active lines in
the display"

"PIXSIZE sets the vertical size of each pixel™

and looking at your application. We do not frankly see
anyone wanting to use a PIXSIZE larger than 2. Remember
to change CLEAR and DISPEND if you change the display
file size or position.

8.7 SPECIAL OPERATIONS

When ASZMIC initialises at startup, it tests location
:1000 at the end of initialisation to see if there is a
JP instruction there, and if so does a CALL :1000. This
means that you can add your own ROM onto a system with
ASZMIC and cause it to integrate itself into ASZMIC.
You have seen already how DADDR can be used to
intercept command handling, PRTIJMP to link in your own
printer routine and INTJMP to take over break
conditions after context save (that is what KERNEL
does). There is one final reflection that we have not
previously mentioned. KEYJMP normally contains the
address KEYRET. If you put the address of your own
handler there it can take over key interpretation (BC
contains the undecoded result from KEYBRD) and then
either jump back to KEYRET or RET to LIX if you have
done all the work yourself.

The address SAVMEM can be used as a jump point if you
ever want to reset ASZMIC whilst still retaining data
in high memory, or to initialise it for a >16K memory .
The HL register is loaded up with the address which is
to be taken as the top of memory and then a JP made to
SAVMEM. This roughly corresponds to a Basic '"NEW" with
RAMTOP altered.

When you are debugging programs it can be quite useful
to have an external non-maskable interrupt button. The
J command supports this by loading up the I register
with 1 so that a single NMI pulse gives the effect of a
breakpoint. You should, of course, use a Schmitt

-62-

debounced monostable to provide this but we got pretty
good mileage out of a 300 pF capacitor wielded on ZX80,
where in the absence of a G command you really need
NMI. Failure to debounce correctly may cause the screen
to assume an ‘'heiroglyphic'" appearence but the first
key pressed cures this. On ZX80 bad debouncing can also
fool ASZMIC into thinking that it is living in a ZX81;
easily cured by providing a further 270 NMI pulses so
perhaps you had better build a proper circuit instead.

8.8 THE END

We would like to apologise for a slight flippancy which
seems to have manifested itself in places 1in this
documentation. We have felt increasingly frustrated by
our 1inability to do any more than sketch out the bare
bones of ASZMIC usage unless we issue a 3 volume set in
a year or two; and this manifests itself as a seeming
lack of seriousness. There 1is just so much which you
can do with ASZMIC. We hope that you find it
stimulating and wuseful. In the future there will
probably be quite a lot of supporting hardware and
software developed for it, and we are scheduled to work
on a microdrive version, so with luck it will prove a
long term extension to the capabilities of your
ZX80/81.

C FRAZER JOHNSON
Nykoeping Sept. 1982

-63-

Hppendix 1
GENMNERAIL TNFORMATION

INITIALISATION

After turning on a ZX80/81 equipped with ZX.ASZMIC,
memory will have been divided into 3 partitions. The
first consists of system variables, buffers, stack and
register image area (REGIM). The second, which lies
between DSPBGN and (TXTLIM), is the text area. The
third is the program and data area which lies between
(TXTLIM) and the top of memory. This area is sized to
one quarter of the available memory on the system. The
pointers LABEND and LABSTK both point to the top of
memory. These pointers define the Symbol Table, and
assembler operations will cause (LABEND) to be the
address of the current bottom of the Symbol Table.
(LABSTK) is always the top of available memory. The IY
register 1is loaded with :4000, the I register with 14,
and the interrupt mode set to 1.

If any key is held depressed for more than half a
second it will repeat at a rate of around 8 per second
until released.

The screen contains 34 lines of up to 36 characters
each. The ZX81 hardware automatically generates a new
line for longer lines but since the EDIT display logic
works by counting /NL/ characters this is a facility
which should be used sparingly.

=65

EDIT & DEBUG Modes

ASZMIC has 2 modes: EDIT mode, identified by a fast
blinking cursor, and DEBUG mode, identified by a slower
blink rate. The difference between them 1is that in
DEBUG mode the typing of a /NL/ (newline) causes the
line just terminated to be passed to the Command
Interpreter. If the first letter of this line lies in
the range A-P then some action will be taken, since the
line 1is then assumed to be a command. It is otherwise
ignored.

Keystrokes which do not pass control to the Command
Interpreter use a vertical synchronisation clock which
does 1its best to hold the screen steady whilst the

keystroke is processed. The Command Interpreter
disables the clock for the duration of its operations.
The overall effect 1is that scrolling and cursor

operations generate a slight flicker but still maintain
a readable display. This feature is not available on
ZX80.

FIELDS

The Assembler and Command Interpreter both use a
subroutine called GETFLD, which 1is a general purpose
field interpreter. The fields which are wvalid as
arguments are:-

a) A decimal number containing the characters 0-9
(1 to 5 digits).

b) A hexadecimal number identified by a : (colon)

prefix and containing the characters 0-9 A-F (1 to
4 digits).

c) A $ sign, meaning the current contents of the
IX register (used as a location counter by the
Assembler).

d) One or two characters enclosed in quotation
marks ().

-66-

(Items a) thru d) are self defining fields)

e) A Symbol. This is a character string consisting
of 3 or more characters in the range A-Z 0-9 .
(period) and starting with a character in the
range A-Z. A symbol is only meaningful when it has
been defined by’ appearance in the label field of
an assembled statement (via A or I commands). If a
symbol is preceded by a ? (question mark) WHEN
REFERENCED AS AN ARGUMENT then the rules for
minimum number of characters and alphabetic start
character are relaxed. The ? is purely to identify
the following string as a symbol,and is not a part
of the symbol itself.

f) Any combination of items a) thru f) seperated
by + or - characters. + causes subfield addition,
- causes subfield subtraction. Parentheses are not
used. (A left parenthesis will cause BFLAG to be
set non zero).

Fields are terminated by a blank or comma
both.

, but not

Examples:-

1A

12345

212345

FUDGE
ACCOUNTS.PAYABLE

$
12345+ A%"+:12345-FUDGE+$~- ?2HL+ACCOUNTS . PAYABLE

FILES

A file 1is a portion of the text area which is
identified by a filename at its start and a filemark
(£) as the first character of its terminating line. The
filename should have a filemark (£) as its first
character and can contain the characters A-Z 0-9 .
(period).

-67-

Example

NOTHING
RUBBISH
£FILEL

THIS IS AN
EXAMPLE OF
A FILE

£

MORE RUBBISH

The file £FILEl is defined as the 3 lines

THIS IS AN
EXAMPLE OF
A FILE

and may be used by commands such as A (not recommended
in this case) P, K & E. The user can define as many
files as he wishes, providing each filename is unique.

PARTITIONS

The wuser can create more file or program space for
himself by manipulating the TXTLIM pointer which
defines the boundary between text and program areas.
Use Dump & Modify or Immediate statements. The symbol
table may be relocated by altering LABEND (low memory
bottom of Symbol Table) & LABSTK (high memory table
top) pointers, and moving the content of memory between
them if the table was not empty.

If a non standard memory wunit is attached to the
zX80/81 then the ways in which memory can be divided up
will depend on the decoding which the unit provides.
Bear in mind that execution of a program over the 32K
boundary can activate the ZX80/81 display logic
hardware, which also relies on duplicate mapping of the
16-32K & 48-64K regions for its effect.

-68-

USE OF ASZMIC ROUTINES

Internal subroutines exist in ASZMIC to aid the user in
handling I/0 and various encoding and decoding
functions. These must normally be used from an ASZMIC
context (System variables internally consistent, IY=
:4000, 1I=14, 1IM 1, 22 bytes of stack available).
Routines include:-

GETFLD decode a field

PUTDE encode a hex number

WRITA encode a single hex byte

WSTRNG write contents of print buffer to screen
NRM?2 write a character to screen
OUTFRM write out a frame to screen
KEYBRD do basic keyboard decode

KEYINT translate decode to a character
RDCASS read a character from cassette
WRCASS write a character to cassette
PRNT write a line to printer

& many others. See the application notes for
definitions, calling sequences and examples.

ASSEMBLER

The Assembler 1is a small, very fast subprogram within
ASZMIC which will accept all standard ZILOG mnemonics
for assembler statements. The DEFM, DEFW, DEFB & ORG
directives are supported. The EQU directive is
supported in a nonstandard form. Instead of "LABEL EQU
value'" wuse "LABEL=value" without imbedded blanks. The
DEFS value directive is not supported: use ORG S$+value
instead, which has the same effect of reserving (value)
bytes of free space. There are no conditional
compilation, 1listing control or macro directives (hence
the SET directive is not implemented).

A comments field may be appended after every assembler

statement if preceded by a ; (semicolon). A ; in column
1 makes the whole line commentary.

-69-

Always start each file to be assembled with an ORG
directive. ASZMIC will probably default you at (TXTLIM)
but this is not a design feature and may be withdrawn.

ORG & EQU directives may not use forward references.

Assembler options (see A command in appendix 3) can be
used to control object code generation and routing of
listings.

Errors tested for include label errors (undefined and
doubly defined), Op-Code & relative jump range errors.
An error is indicated by a non blank column 1 and error
lines are listed even if no 1list option has been
specified.

Use of the Symbol Table preservation option, combined
with the '"force pass 2" flag, enables many seperate
programs with cross references to be assembled
seperately to generate a single piece of internally
consistent object code. The OFFSET variable can be used
to generate an offset between 1load and execution
counters which enables code to be loaded at one
location for subsequent movement to and execution at
another.

-70-

Lppendix 2Z

THE SHIFT KEYS

These are the keys which control the editing and macro
functions of ZX.ASZMIC.

Shift-0 TYPING RUBOUT

The cursor is moved 1 position to the left, the
character under it is deleted and all subsequent
characters to the right are shifted left 1 place.
Positioning the cursor to the start of a line and then
using Shift-0 will delete the preceding /NL/ to
concatenate the two lines.

Shift-9 HOME TO DEBUG MODE

Set ASZMIC in DEBUG mode. Remember the current cursor
position for wuse by the Shift-E keyin. Move the cursor
to the bottom line of the bottom page and move the
display file pointers so that this line appears on
screen. The DEBUG mode flag automatically causes the
cursor to assume a slow blink.

Shift-8 CURSOR RIGHT

Move the cursor 1 character to the right but never onto
a /NL/ character.

=]

Shift-7 CURSOR UP

Position the «cursor at the left of the line above its
current position. If necessary scroll down the display
so that the <cursor remains on screen. Do not move
cursor onto or past an End-of-Data character.

Shift-6 CURSOR DOWN

Like CURSOR UP, but cursor moves down & scrolling is
upwards.

Shift-5 CURSOR LEFT

Move cursor 1 character to left, but never onto a /NL/
character.

Shift-4 PAGE FLIP UP

Move the display start up 27 lines. Position the cursor
at the middle 1line of the screen. Do not move display
onto or over an End-of-Data character.

Shift-3 PAGE FLIP DOWN

As for PAGE FLIP UP, but the display is moved down 27
lines. If you move to the final page then the cursor
is positioned at the bottom line.

Shift-2 DELETE FILE

All text from the current cursor position right to the
first filemark (£) detected is deleted. No action if a
terminating filemark not detected. If the deletion
moves the current cursor position onto the final
display page then the cursor is homed onto the bottom
line.

-72-

Shift-1 DELETE LINE

Delete the 1line which currently contains the cursor.
Position cursor at start of next line. Do nothing if
the cursor is currently on the bottom line of the final

page.

Shift-T GO TO DISPLAY TOP

Move the <cursor to the Shift-Macro definition line at
the top of the display. Display page 1is altered
accordingly.

Shift-R SHIFT MACRO EXECUTION

Independent of the current ASZMIC mode (EDIT/DEBUG)
pass the contents of the Shift-Macro 1line to the
Command Interpreter for execution. Cursor and display
page are wunchanged unless as a result of the executed
DEBUG commands. If the line is empty no action results.

Shift-E EDIT RETURN

Change the ASZMIC mode to EDIT. Position the cursor at
the location it had when HOME (shift 9) was last
pressed. Alter display page if required to keep cursor
on screen. Effect wunpredictable if editing has taken
place whilst in DEBUG mode. Fast blinking cursor
identifies EDIT mode.

Shift-W RIGHT JUSTIFY CURSOR

Move the cursor to the rightmost position of the
current line.(note:- There is no corresponding left
justification key. Use CURSOR UP followed by CURSOR
DOWN instead)

=] B

Shift-Q EDIT RUBOUT

Like TYPING RUBOUT, but the cursor is not shifted left
and it 1is the character at the current cursor position
which is deleted. (It is not possible to delete the
last character on a line with a edit rubout i.e. one
which lies between 2 /NL/ characters)

Shift-G MERGE

Search down from beginning of display file to find a
merge character (>). Copy all text after it up to but
not including a filemark (£) into the text position
identified by the current cursor position. Effect
disastrous if merge and filemark characters missing. In
DEBUG mode if a /NL/ 1is copied then the line it
terminates is passed to the command interpreter, thus
making the copied text into a Command Macro. In DEBUG
mode Shift-G has the same effect as a M> command (see M
in Appendix 3).

UNSUPPORTED FEATURE - The Shift-D & Shift-F keys may be
implemented on your system. they are like Shift-G but

ot

with start character * and < respectively.

Sedekkdkkkok

Input of a normal character causes everything under &
to the right of the cursor to be shifted right one
place and the character input is placed under the
cursor. The cursor 1is then moved one position to the
right. The EOD pointer is incremented.

Input of a /NL/ character will cause a trailing blank
to be appended to the line if the previous character
was non-blank. The cursor is advanced past the /NL/ to
the start of the next line. The display page is moved
down one line (i.e. text is scrolled up a line). The
EOD pointer is incremented as required.

If input of a character would cause the EOD pointer to
be incremented past the (TXTLIM) text area upper
partition then the character is ignored.

Tl

Appendix =

DEBUG COMMANDS

Whenever a /NL/ character is written to the text area
by ASZMIC when in DEBUG mode the line just terminated
is passed to the Command Interpreter, which identifies
the command by the first letter on the line and calls
the appropriate handler subroutine. A first character
not in the range A-P is ignored.

Several DEBUG commands may be concatenated on a single
line by wusing the seperator character sequence ;/
(semicolon slash) and commencing the next command
immediately after the slash e.g.

DO 3;/D5 3;/D :7000 10

The contents of the Shift Macro line are also passed to
the Command Interpreter when a Shift R key is typed,
and this line is also executed whenever a BREAK
condition 1is encountered (Breakpoint, RST 0, Single
Step, External NMI).

-75-

A ASSEMBLE
A £filename options

The named file is identified and assembled down to its
terminating filemark (£) under the control of the
option field. If no option field is specified the
default is a 2 pass assembly with object code
(executable machine code) generation but no assembly
listing and no preservation of a previous symbol table.

The option field 1is converted to an 8-bit byte whose
bits when set represent the following options :-

BIT 7..(128).. force second pass

BIT 6..(64).. do not generate object code

BIT 5 (32).. Fine pitch mode on printer. No
truncation of listing lines.

BIT 2..(4).. ikeep and add onto a previous Symbol
Table

BIT 1..(2).. direct listing output to printer

BIT 0..(1).. generate assembly listing

Thus an option field to generate a listing on printer
without object code would be :43 (decimal 67) or 64+2+1
(you can write it like that).

Assembler lines start with either a ; in column 1, in
which case the line is treated as a comment; another
non-blank character, in whi¢h case the character is
assumed to be the first character of a symbol to be
defined, or a blank. There then follows an Op-Code or
assembly directive delimited by a blank, plus up to 2
argument fields seperated by a comma. A comment field
can terminate the line if it 1is preceded by a ;
(semicolon). The file 1is terminated by a line with a
filemark (£) in column 1.

~76-

Example : -

£EXAMPLE

ORG :7000

NRM2=:492 ;CHECK VALUE FOR YOUR SYSTEM IN APP. 4
START LD HL,$+120 ;ACTUALLY THE ADDRESS OF TABLE

LD B, TABLEND-TABLE
LOOP LD A, (HL)

PUSH HL

PUSH BC

CALL NRM2

POP BC

POP HL

INC HL

DJNZ LOOP

; AND NOW EXIT TO ASZMIC
RST 0

b

ORG :7000+120
TABLE DEFM "TEST"
TABLEND=$
£
A £EXAMPLE 1

NOTE:- If the variable OFFSET 1is non-zero its value
will be wused to relocate the object code produced,
although the code itself will be generated to execute
at its ORG'd location. OFFSET wraps-around, i.e. ORG
:8000 & OFFSET :C000 will locate the object code at
:4000.

B BREAKPOINT

B address
B

If an address is specified then the current breakpoint

is removed (saved byte substituted back at the current
breakpoint address) and the address specified becomes

-77-

the new breakpoint address. The byte at that address is
saved and a RST 0 (:C7) code substituted. When the
breakpoint is encountered 1in the course of program
execution the saved byte is automatically restored
ready for recommencement of execution. If the B command
is given without an address then a RST O code is placed
at the current breakpoint address.

C wwwewe COPY
C from to bytecount

An intelligent copy operation of the specified number
of bytes from the first address specified to the
second. If the source and destination ranges overlap
the copy will proceed so as not to corrupt the data in
the destination range.

D..... DUMP

D address bytecount
D address

In the first case a formatted dump of the specified
number of bytes starting at the address specified is
produced. There are 8 hexadecimal bytes to a line
preceeded by a hexadecimal address. Long dumps may
cause screen blanking for a few seconds whilst the dump
is generated. Break key aborts a dump.

The second example is of a Dump & Modify mode. The
contents of the address specified 1is displayed and
ASZMIC waits for input. Successive bytes are placed in
memory starting at the prompt address. Input is
terminated by a . (period) after the prompt. This is
the only case where hexadecimal fields do not have to
be preceded by a : (colon). The colon is assumed, and
decimal values must be input as O+decimal field.

NOTE:- 1If bit 1 of ASSFLG has been set to route dump
output to the printer then the user must precede input
on each line by at least 8 blanks.

~-]8=

E EDIT

E
E symbol

If no argument 1is specified ASZMIC merely sets itself
in EDIT mode (fast cursor blink). In addition, if a
symbol is specified, the string is searched for upwards
from the end of the file, and the cursor placed at its
start. The display page is altered if needed. No action
is taken if the symbol is not found. (Any character
other than & . 0-9 A-Z will terminate the symbol
comparison operation. & 1is only allowed as the first
character)

F wseses FILL

F from to fillerbyte
The specified range is filled with the filler byte.
G .cc.. GO *%% ZX81 ONLY %%

G
G address
G address stepcount

This 1is ASZMIC's single step feature. If no arguments
are specified then the context 1is restored from the
register 1image area, and execution of the instruction
at the saved Program Counter address (PCl) takes place.
A single step break is generated at the end of the
instruction, the new context is saved in the register
image area, (if the INTJMP variable has been modified
to contain an address other than INTRET a jump to
(INTIJMP) occurs at this point) and the Shift Macro line
is executed before returning control to ASZMIC.

If an address is specified then it overwrites the saved
Program Counter address (PCl) & becomes the address of
the instruction to be executed.

-79-

If a stepcount is specified then the operation proceeds
as above, but after context save and before Macro
execution the saved step count 1is decremented &, if
still positive, then context 1is restored & the next
instruction executed. The rate of execution 1is
typically a hundredth of normal, so a large stepcount
may take some time to work thru. Maximum stepcount is
:7FFF (decimal 32767). The G command will not work on
ZX80.

NOTE:- The single step feature can be used to simulate
a ROM breakpoint. Set the breakpoint for the desired
address-1 & wuse G address 32767. Break handling logic
will then think it has reached a breakpoint, &
terminate single stepping, when the stop address is
reached.

H..... HORRIBLE JUMP
H address

This is not really so mnasty. It 1is just a
straightforward jump to the specified address in the
context of the ASZMIC Command Interpreter. HL register
points to the command line after the address, & the
routine jumped to can do processing in the ASZMIC
context, terminating with a simple RET. An easy way to
link in your own commands.

I IMMEDIATE
I assembler line

An unusual feature which enables immediate assembly and
execution of assembler statements. The assembler line
follows immediately after the I (i.e. if a blank
follows the I then no label has been specified). The
line 1is assembled 1into object code in the low stack,
followed by a break code, and then executed immediately
using an internal form of the J command. It thus
operates in the saved program context of the REGIM
area. After execution the new context is saved just as
for a normal BREAK.

-80-

Labels should only be defined via the '"Label=value"
statement form in immediate statements, & the
directives ORG, DEFM, DEFB, DEFW & the JR and DJNZ
instructions should be avoided.

J ee.e. JUMP

o
J address

This is just 1like the G command, except that there is
no single step break in execution, which continues
under the program logic unless the B command has been
used to insert a breakpoint somewhere 1in the logic
flow. The effect of a breakpoint, or an externally
generated NMI interrupt, is similar to the single step
interrupt.

K CASSETTE SAVE

KES "i.d." £filename
KES "i.d." from to
KES "i.d." from to L

ASZMIC wuses the same recording protocol as the standard
zX80/81, but the way in which it is used is rather
different. ASZMIC can save either files or regions of
memory (which presumably contain programs or data).
When you type a K command there is a 5 second wait to
allow you to turn on your recorder, then the command
line itself 1is written out to tape to identify the
file, a further 5 second pause ensues, and the file or
memory region is written out.

The command must start with the 5 character sequence K
FILEMARK S SPACE QUOTE as shown above since this is
used to identify a title 1line to the cassette load
routine. The string enclosed in quotes identifies the
file for the load routine, just 1like a standard
ZX80/8l. The filename or memory region to be saved is
then indicated. If the memory range is followed by
"space L" then the 1load command will alter LABEND to
contain the "from" value when the region is loaded.

-81-

In response to this command the cassette input is
scanned continuously, and if a wvalid title line is
found it is written to screen and the display activated
for 5 seconds, thus generating a running catalogue of
the tape contents. If the "i.d.'"s of the Load Command
and the saved title line match then the title line is
analysed to determine if a file or memory load is
required, and the following file is loaded. In the case
of memory load the program/data is loaded in the region
specified on the title line unless the variable OFFSET
has been set to a non zero value, in which case this
value 1is used as a relocation offset for the region. If
the region range in the title line is followed by an L
then the region will be presumed to be a Symbol Table,
and LABEND will be modified to contain the "from"
value. This presumes that save & load took place on the
same size systems.

Both K & L commands can be aborted by the Break key,
which simulates a BREAK condition.

M..... MACRO
M character

This is very 1like Shift G, but you can specify the
start 1identifier yourself instead of wusing > as a
default. Terminator is &£ as usual. Do not specify M by
itself, always give a character after it and remember
it 1is the first occurrence of the character(except for
the Shift macro line) which defines macro start.

N NEW
Loads up BC with (TXTLIM). Sets HL to :3CA (Basic NEW

command implementation). Jumps to (TXTLIM). Used in
conjunction with dual Basic / ASZMIC board.

-82-

O OLD REGISTERS
0

The register image area is dumped as 2 lines of 6 four
hexadecimal digit numbers,
The registers appear in the order:-

PC HL HL' BC' DE' AF'
AF BC DE IX IY SP

where PC is the Program Counter, SP the Stack Pointer,
and the prime suffix (') indicates one of the alternate
registers. We recommend that the wuser place an O
command in the Shift Macro line as a useful default,
since the registers will then be displayed whenever a
BREAK condition occurs.

P ..o.. PRINT
P £filename

The named file is written out to printer until a
terminating file mark 1is encountered as the first
character of a 1line. The operation may be aborted at
any time by pressing the Break key.

NOTE:- If PRTJMP variable is set to a value other than
PRTRET then the address in it will be used as the
address of the Print Line routine. This enables the
implementation of users own print routines.

-83-

o

Function

-
-

P

Hex Addr Name Size
4000 MELAS 1 Flags: bit 7 is edit/debug flag; rest used as NMI counter
#001 GRG & Used by GET2 to decode debug command arguments
4003 ARG2 2
4005 ASSFLG 1 Assembler options byte described in manual
4006 BOPSAV 1 Breakpoint saved byte
4007 BADDR 1 Breakpoint address
4009 SSCNT 2 Single step counter
400B OFFSET 2 Offset value used by load & assemble
- 400D TEMP. 2 Assembler storage’
400F STMEND 2 Latest keyboard decode (see KEYBRD routine)
4011 USAMOD 4 Unused
4015 PRTJMP 2 Address of printer routine
4017 KEYJMP 2 Addres of STMEND analysis routine
4019 INTJIMP 2 Address_of routine to handle breaks after context save
401B DADDR 2 Address of debug command interpreter
401D ECPOSN 2 Cursor address when shift 9 last pressed
401F CURSOR 2 Cursor address
4021 EOD 2 Address of current end of text
4023 DFILE 2 Address of :76 before first byte of current display
4025 TXTLIM 2 Address of partition between text & program areas
4027 LABEND 2 Bottom of symbol table address
4029 LABSTK 2 Top of symbol ta‘ble pointer;usually top of memory
402B PRBUFF__ 65 _ Printer buffer _
406C TEMP2 2 Temporary storage; mostly for assembler
406E LSTEXP 1 No of frames to delay for keyboard debounce
__406F REPEAT 1 No of frames to delay for key repeat
i 4070 FRAMES 2 Frame count; used for keyin simulation after a no of frames
4072 ELEMI1 2 Result of GETFLD analysis
4074 - 4079 6 GETFLD working variables
407A STKLOW 32 ASZMIC stack area
409A REGIM 24 Context save area pcl hll hl2 bc2 de2 af2 afl bcl del i:é%)liyl
40B4 DSPBGN Start of text area

ACOM2
ARG2
BADBR
BIGMEM
cce
CLDIR
CMFSTX
COMRTX
CRHNDL
CURSOR
DCONT
DFILE
DLOOF1
pMouT
DOTTIM
ECFOSN
EDLF2
EX103
EXINTA
EXZIR
EXTNHL
FNDIL.CR
G2INZ
G4INZ2
G8NIXY
GEO1
GCOM2
GETCHR
GFDLEX
GROUFP1
GROUFP7
GROUFD
HFLIF
HOMEZ
HSHERR
INHERE
INTRET
JMF2
KEYADD
KYRDLP
LDLF1
L. INEND
LOOFGF
MFLAG
MSEINT
NGENT
NOGCNT
NEM2
NXTSTF
FARSE
FREUFF
FRTJMP
FUTDE
@COMM
RCOMP
RDCS
REFEAT
RUEOK
SHFT8
SHFTR
SINGLE
S8CNT
STRCDE
TXTLIM
WCNORM
WRCASS
WSTRLF
ZXJFTE

e

089
4003
4007
Q1AS
OBC2
0577
QRAE
0O50F

ACOMI

»

8C3

ASEXY 86C

RC1
BLONE
CCOMM
CLNLF
CHMRTX1
COMXTR
CSTR1
DADDR

 DE1

2T DFLIF

Q5RO
0803
401D
Q775
0A10
QPRD
0AZA
QAR6
0028
QR87
QAL
OAFO
OR339
0972
0224
0Ces
093E
QOACF
OR&0
QQ70
0432
Q912
QC9E
Q1FA
06ZE
027D
014D
06C4
00C1
OREF
4000
Q04A
OCRZ
0&61F
0490
0879
0825
402R
4015
0Z17
0761
one8
07C4
4OLF
OZ76
0454
Q36A
01DS
4009
0762
4025
0O8F7
077F
02DA
Q4F 3=

- DLOOFZ2

DMFMOD
DFG1
EDCODE
ELEM1
EX104
EXZDER
EXZIRX
FCOMM
FNDRCR
G2SECN
G4INZ
692
GECOND
GCOMM
GETFLD
GFDNUM
GROUFZ2
GROUFS8
GROUFE
Htit
HOMEZ
HSHLF1
INICON
IX1
JMFTYF
KEYBRD
LAEREND
LDLP2
LIX
LSTEXP
MIDWAY
MSMTCH
NGHNDL
NOLIST
NRM4
ocomm
FC1
FRCLR
FRTRET
FUTDEF
QUOTE
RCOMFX
RDCASS
RESTOR
SAVMEM
SHFT®?
SHFTR
SINGLX
START
STRSCH
UFDG1
WCRFT
WREG
WSTRNG

40A8
05sC
0S5F
0944
0510
051R
02R1
401ER
40AA

O3FC
0080
4072
O9F3
0A12
0A41
0602
QOZ0
OR75
0A75
OAFF
OR3Z6
0615
0010
OC3F
0978
OAEZ2
OR&67
409C
0446
08CA
o17Cc
40AC
O64E
0143
4027
0&6D3
022

406E
OC6F
0ZCE
0cs2
0858
04A4
0732
4097
O2FF
07D1
0314
QOOR
ODAF
07A1
0628
018k
042E
QO3ZAF
Q1FO
0000
0761
0416
OBEOQ
073R
02D4

EO7

ACOMM
ASSFLG
RC2
BOFSAV
CDLF1
CLNUP
CMSM1
CONLIN
CTAR
DETLIM
DEZ2
DIGCON
DLYOS
DMFREG
DSFEGN
EDEXIT
EQD
EX105
EXZ2IND
EXCF1
FILCHR
FRAMES
G2SUR
G41INg
GAHERE
GCENTX
GCUNC
GFCHAR
GFDREG
GROUFP3
GROUFP?
GROUPF
HL2
HOMLF1
IAENT
INIT -
IXIY
JFTAR
KEYINT
LABSTK
LDLPZ
LIX2
LX
MEDEF
NCOMM
NLELF
NORMSV
NRMCHR
OFFSET
FCHAR
PREADY
FSLP
FUTENT
RASCON
RDC1
RDCX
RETNR
SAVSTR
SHFTD
SHFTT
SNLF1
STENT
TABLE
UFDG2
WCTAR
WREGL.
X1

Nz
]
afals)
4006
047F
0940
02C1

0584
40A2
0Z25
QODO
0732
40R4
05F7
4021

0A4s
QAR
09A1

Q00C
4070
0008
0A78
QR17
0228
OBSC
0Cs&0
QCEC
0A48
QOAF2
QOE70
40%9E
0448
061A
017A
4074
OBCD
0275
4029
Q704
0234
4000
0016
0729
0Cc44
0691
048F
400R
Q7F7
0708
0755
QEBAD
07E1
07A1
O7AF
QC23
OO1R
QZ37
O3ES
0699
039D
0082
041F
0ODCé&
0741

Q010

AF1
ASEMEL
BCOMM
BRECHE
CHRTAE
CLFPRLD
COMINC
CRCHAR
CTABZ
DCLF1
DECL.OK
DLLP1
DMD2
DOLLAR
DSFPSET
EDIN
EODCHR
EX107
EX2NAF
EXCF2
FLDFND
FRMSND
GI4TAR
G4AREG
GANOER
GCHERE
GDLOOF
GFDCLN
GFDTN
GROUF4
GROUFA
HASH
HLRIN
HRTINI
IcomM
INITZ2
Iv1
KED1
KEYINX
LEINX
LDLFR
LIXIMM
Ly
MRGCHR
NEGEND
NLONF
NOTERE
NUL INZ
OFRM1
FCOMM
FRIGET
FTCON
FUTNN
RASFRS
RDC2
REG
RLE
SFILE
SHFTE
SHFTW
SNLP2
STELOW
TEMP
usAMOD
WCTAERX
WRITA

X2

40A6
0B6F
054A
03208
one1
ORE7
ocz2
0076
oD4aA
0880
08A1

0OD4
OSED
OC1D
019C
0AC?
Q00S
0ABOD
09F8
O9CF
4076
Q0E3
0AAL

0ASSE
OR22
QE47
OB&62
OBEO
oC37
0A4C
ORO2
08C&
OCCF
094F
0656
0187
40AE
0O0F6
0273
08AR
08AZ
0239
4015
0017
QCAF
0023
0213
04E4
Q16R
0751
0923
OOCE
OE8D
0043
Q7A3
4078
OR9S
067F
0396
0392
Q6A7
407A
400D
4011

"ODEZ

Q31C
0020

AF2
AUDUMP
RFLAG
BREOD
CINCRT
CMDSUR
COMINT
CREN1
CUDRET
DCOMM
DEFMNT
DLLFS
DMDLF1
DONCHR
DSFTCH
EDINX
EODOK
EX1213
EX2NAG
EXCF3
FND2
FRMSNX
G3G4
G6INX
GARNDX
GCINX2
GELOOP
GFDHEX
GHXVAL
GROUPS
GROUFE
HASHDN
HLRTST
HRTLF
IGNELK
INITZ
JCOMM
KED2
KEYJIMP
LCOMM
LDNZ2
LIXSUR
LZ
MRGIN
NEGFLG
NOEBRE L
NOTHL
NULINE
OFRMZ
FDOT
FRNTER
FUTA
PUTNNX
RASTER
RDCZ
REGCOD
RLOAD
SHFTO
SHFTF
SHIFTS
SF1
STMEND
TEMP2
Vv

WRC1
WSTR1
X3

app4
A40M4 Ei&i
0221 AXX
4075 BFLGST
00C7 CALLAS
0O46E CEINV
0293 CMPSTR
0505 COMMND
0459 CRGEN1
048K CUDRTX
057A DCOMX
DELAYS
DLN1
DMODIN
OC6D DONE
09446 ECOMM
OAC8 EDLP1
O4RBSs EX102
QOPEA EX1NN
0AOL EXZNR
OAZO EXTNAC
OC82 FNDLEL
O0OES6 G1COMN
0AB2 G42ER
OACD G6&6FPA
OEB11 GAUNC
0977 GCNTSE
OE68 GETZ2
0C19 GFDLEL
QBDD GROUFO
OAAR GROUF&
OB2F GROUPC
O8DER HCOMM
QCD& HMCHE
0952 HSHDNZ2
0020 IMTAR
0181 INTJIMP
0&668 JGENT
QOF8 ECOMM
4017 KEYRET
0O6E8 LDF2
O&LED LDN&
QOAD LODFIL
405E MCOMM
O350 MRGLP1
4077 NEGNOT
062% NOBXRE
OCE® NOTIXY
04D7 NXTPLN
Q16F OUTFRM
0808 FDOTX
Q7CC PROFF
OB9C PUTB
QE?1 PUTOUT
07D4 RCOMM
Q7R1 RDC4
4079 REGIM
QCE4 RUEDNO
0424 SHFT1
3B SHFTG
Q337 SHOME
40RO SRECUR
400F STREOK
406C TIMING
0040 VRSION
0782 WRC2
Q2FO WSTRG2
0030 ZXJPND

4001
0545
0C2D
0822
GCYE
02A1
0528
0455
0485
057F
OODA
OZDE
0SCE

+ OCE8
QSFO .

0774
09EQ
09AE
09E2
09CE
0C71
096D
QA4C
OACSE
OR1A
024E
0059
oces
09SE
OARB
QOEZB
0653
Q3IF7
08FD
OABS
4019
0617
066C

=~
252

071A
QO&EC
0717
Q725
0359
OCAE
061E
Q95K
0817
0167
07F8
081D
OR9E
QEEE
0761
Q7R3

LAFIFIETILIE A T N

SYSTEM ADDRESSES

To ensure that the ASZMIC ROM corresponds to the version
described here, check the two bytes at MKDEF against the
declared variable '"VRSION" in the 1list. They should
correspond; i.e. VRSION EO4 has MKDEF 04 OE.

ACOMZ 0891 CREN1 045B EDEXIT OSF7 G4IN2 O0AbLY
ACUMIN 08C4 CRGEN1 0457 EDIN OACA G4IN3 O0OA76
ACOMM 052D CRHNDL 0C24 EDINX OACY G4IN4 O0A79
AF 1 40A6 CSTR1 02B3 EDLP1 0775 G4REG OAS7
AF2 40A4 CTAR oD04 EDLP2 0776 G&6INX OACE
ARG1 4001 CTAB2 OD4B ELEM1 4072 G6PA OAC7
ARG2 4003 CUDRET 048D EOD 4021 GBNIXY OAF1
ASEXIT 086D CUDRTX 0487 EODCHR 0005 GR2 - 0BOO
ASSFLG 4005 CURSOR 401F EODOK 04B8 GAHERE 0B18
ASSMBL 0870 DADDR 401B EX102 O9E1 GANOBR 0B23
AUDUMP 0223 = pBTLIM 0S84 EX103 0A11 GARNDX OR12
AXX 03547 DCLP! 0881 EX104 O9F6 GAUNC O0B1B
BADDR 4007 DCOMM 0S7A EX105 0A47 GBO1 OB3A
BC1 40A8 DCOMX OS57F EX107 0A81 GBCOND OB37
RC2 40A0 DCONT 0895 EX1213 09BB GCENTX 022A
BCOMM 0354C DE1 40AA EXINN 09AC GCHERE O0OBR48
BFLAG 4075 DE2 40A2 EXINTA 0O9BE GCINX2 0978
BFLGST OCZ2E DECLOK O08A2 EX2DBR 0A13 GCNTSB 0250
BIGMEM O1A7 DEFMNT 0934 EX2IND OA2A GCOM2 0973
BLONE 0SSE DELAYS 00DC EX2NAF Q9F9 GCOMM 0615
BOFSAV 4006 DFILE 4023 EX2NAG OAO07 GCUNC OBSD
BRKCHK 030D DFLIP 032E EX2NB 09E3 GDLOOP 0OB&3

BRKOD 00C7 DIGCON 0327 EX3IR OA3B GELOOP OB&9
CALLAS 0823 DLLP1 O0OODé& EX3IRX 0A42 GET2 0059
ccc OBC3 DLLPS 0O0OD4 EXCF1 09AZ GETCHR 0226
CCOMM 0561 DLN1 03EO EXCF2 09%DO GETFLD 0010
CDLP1 0481 DLOOP1 OS8E EXCF3 0A31 GFCHAR 0OC&1
CHRTAR 0OD92 DLOOPZ 0585 EXTNAC 0%9CC GFDCLN OBE1
CINCRT 0470 DLYOS 00D2 EXTNHL OAZ27 GFDHEX OC1A
CKINV OC9F DMD2 OSED FCOMM 0602 GFDLBL 0C8%9
CLDIR 0577 DMDLP1 OSDE FILCHR 00O0C GFDLBX 0C86&
CLNLP 0945 DMODIN OSCB FLDFND 4076 GFDNUM 0C40
CLNUP 0941 DMOUT OSBO FND2 ocs83 GFDREG OCBD
CLPRLD OBES DMPMOD OSB3 FNDLBL 0OC72 GFDTNM 0OC38
CMDSUB 0295 DMPREG 0733 FNDLECR 0028 GHXVAL OBDE
CMPSTR O2A3 DOLLAR OCI1E FNDRCR 0030 GROUPO 09SF
CMPSTX 02BO DONCHR OC&E FRAMES 4070 GROUP1 O095F
CHMRTX! 0S12 DONE OCE®9 FRMSND OOES GROUP2 097C
CMSM1 O02C3 DOTTIM 0804 FRMSNX OOES8 GROUP3 0A49
COMINC 0OC23 DPG1 O3FE G1COMN 096E GROUP4 OA4D
COMINT 0507 DSPBGN 40B4 G2IN2 0BS8 GROUPS OAAC
COMMND , 052D DSPSET 019E G2SBCN OB76 GROUP& OABY
COMRTX 0511 DSPTCH 0947 G2S5UB 0008 GROUP7 OADO
COMXTB 051D ECOMM OSFO G34TAB 0AAZ2 GROUP8 OAE3
CONLIN 0023 ECPOSN 401D G3G4 0A83 GROUPS OAF3
CRCHAR 0076 EDCODE 0080 G42ER 0OA4D GROUPA OBO3

-85-

GROUPB
GREUPE
GROUPD
GROUPE
GROUPF
HASH
HASHDN
HCOMM
HFLIP
HL1
HL2
HLRIN
HLRTST
HMCHK
HOME?2
HOMES3
HOMLP1
HRTIN1
HRTLP
HSHDNZ2
HSHERR
HSHLP1
IAENT
ICOMM
IGNBLK
IMTAR
INHERE
INICON
INIT
INITZ2
INIT3
INTJIMP
INTRET
IX1
IXIY
IY1
JCOMM
JGENT
JMP2
JMPTYP
JPTAB
KBD1
KBDZ2
KCOMM
KEYADD
KEYBRD
KEYINT
KEYINX
KEYJMP
KEYRET
KYRDLP
LABEND
LABSTK
LBINX
LCOMM
LDFZ2
LDLP1

0B30

SB3C

oBé&1
oB&8
OB71
08C7
08DC
0652
0070
409C
409E
OCDO
OCD7
O3F92
0434
0448
044A
09350
0253
O8FE
0913
08CB
061A
0655
0020
OAB6
OC9F
O17E
o17C
0189
0183
4019
O1FC
40AC
4074
40AE
0667
0617
063D
064D
OBCE
OOF8
OOFA
066B
027F
0145
0277
Q27S
4017
0254
O14F
4027
4029
OBAC
06B7
0719
06C3

LDLPZ2
LDLP3
LDLPB
[LDNZ2
LDN6&
LLINEND
LIX
LIX2
LIXIMM
LIXSUB
LODFIL

LOOPGF
LSTEXP

LX

LY

| 4
MCOMM
MFLAG
MIDWAY
MKDEF
MRGCHR
MRGIN
MRGLP1
MSKINT
MSMTCH
NCOMM
NEGEND
NEGFLG
NEGNOT
NGENT
NGHNDL
NLBLF
NLONP
NOBRK 1
NOBXRK
NOGCNT
NOLIST
NORMSY
NOTBRK
NOTHL
0TIXY
NRM2
NKM4
NKMCHR
NULINZ
NUL INE
NXTPLN
NXTSTP
0COMM
OFFSET
OFRMI
OFRM2
OUTFRM
PARSE
PC1
PCHAR
PCOMM

06D2
0703
08BA4
O06BC
046BB
00C1
022
023
023B
QOAD
0716
OBFO
406E
4000
4015
406E
0724
4000
OC70
0016
0017
0352
035SB
Q04A
02D0
0728
OCBO
4077
OCAF
oCB4
0C33
0oCa4s
0023
0623
0b61E
O061F
0859
0690
0215
OCEA
096C
0492

04R6
0491

04E6L
04D
0818
087A
Q73S
400B
016D
0171
0169
0826
40%9A
07F8
0752

PDOT
PDOTX
PRBUFF
PRCLR
PREADY
PRIGET
PRNTER
PROFF
PRTJIMP
PRTRET
PSLE
PTCON
PUTA
PUTB
PUTDE
PUTDEF
PUTENT
PUTNN
PUTNNX
PUTOUT
QCOMM
QUOTE
RASCON
RASPRS
RASTER
RCOMM
RCOMP
RCOMP X
RDC1
RDC2
RDC3
RDC4
RDCS
RDCASS
RDCX
REG
REGCOD
REGIM
REPEAT
RESTOR
RETNR
RLB

RLOAD
RUEDNO
RUBOK
SAVMEM
SAVSTR
SFILE
SHFTO
SHFT1
SHFT2
SHFT3
SHFT4
SHFTS
SHFTS&
SHFT7
SHFT8

-86-

0809
O7F<
402B
0301
07D%9
0924
07CD
081E
4015
07D2
0756
O0CB
OB9D
OB9C
0319
0316
OBAE
OBBE
0B?2
OBBF
0762
000B
O7EZ2
0043
O7DS
0762
oD<?9
ODBO
O7R2
O07R4
07B2
07B4
07CS
07A2
07BO
4078
4079
409A
406F
0628
oCc24
0B96

OCES
0380
0378
18D
001B
067E
0426
OZBE
03E2
0408
0412
0423
0473
O045F
0456

SHFT9
SHFTD
SHFTE
SHETF
SHFTG
SHFTRQ
SHFTR
SHFTT
SHFTW
SHIFTS
SHOME
SINGLE
SINGLX
SNLP1
SNLP?2
SP1
SRECUR
SSCNT
START
STENT
STKLOW
STMEND
STRBOK
STRCDB
STRSCH
TABLE
TEMP
TEMP?2
TIMING
TXTLIM
UPDG1
UPDG2
UsAMOD
v
VRSION
WCNORM
WCRPT
WCTAB
WCTABX
WRC 1
WRC?2
WRCASS
WREG
WREGL
WRITA
WSTR1
WSTRG?
WSTRLP
WSTRNG
X 1

042D

0339
0398
033D
0341
036C
03B1
03B7
0394
0339
03AE
01D7
O1F2
0698
06A8
40BO
0679
4009
0000
039F
407A
400F
0773
0763
0762
0082
400D
406C
0066
4025
0418
0421
4011
0040
OE04
08F8
OBE1
oDnC7
ODE4
0783
078B
0780
073C
0742
031E
02F2
O2E?
02DC
02D6
0010

Hppendix S

ZEO TNSTRUCTIONS

-87-

« PaLe)suel) eq 01 B PUIB) S8IAQ
JO WNOD @ SB 8AJSS g JO 5ius1L0T) Ybiy 01 Aowaw mof woly Bub ') J0 S1LBILOD AQ pessaip
-pe uod /| 01 TH JO SILAIUOD AQ PISSIIPPE LONEDO| AJOWEL WO BIEP JO D0/ & JjSsues |
L+ (W] —[H]
1o (8]—(8)
[1QLBIEA{tel)]
10=[8] mMmun 18edey ¢ 3 e Z HUO
» D 10 S181U0D 8yl AQ pessesppe Lod (/) 01 s81s1B8) WOy 1ndinQ
(6e4]—[[2}) z Ba.(0} 1No
{v] Siv-8v
wod [y-QV .SNg Sseippy
LOG (/| PessS8IpPe ANdeup 01 JO1NWN32Y Wwouy Inding
[¥}—[rod] 4 v'uoa 1no
. SSa UNSBP PUBR 1UNOD B81AQ YI10Q 1UBWBID8(J JH JO SIUBIU0D AQ
POSSBIPPE UOILRD0 AJOLAL 0 S1U81L0D AQ pesseippe Lod () /| WOoJj BIEP JO 81AQ © J8Suel |
L (R]—(H]
L -[8]—(8])
(3] —=[H)) ¢ d ¢ 4 ONI
2 $50IPPE UOHRUISEP JUBWRIOU! PUF 1UNOD 91AQ 1USWAIDe TH 4O SIURILOD AQ
POSSRIPPE LONEIO| AIOWEW O1 J) jO §1UGILOD AQ POSEIPPE LIOT (/| WO BIBP JO GIAQ § J8jSURI)
L+ [H]—=[H]
i-(8)—(8)
(BRI Ct] e : ~
. 'PaUejsuUR) 8Q 01 Buiuiewe: se1AQ S
JO WUNCO B 88 9AJ8S g O 51U01UCT MOf 01 89%38.pPR YBIy Woy Buod i JO §1UIUOD AQ peesesp
P UOREDO| AJOWRW 01) O 5IUGIUOD AQ PessEIPPE LoD ()/] WO} BIBP JO Y30/ § J8UkS[
Lo [K)—{H)
1 -(8]—(8]
(DN —{[H))
0= (8] 1un 18edey 13 2. {4 Z dAON!
o PoLB SUBY eq 01 Buiuiewes selAq
0 1UNOD @ §8 84185 g ;0 5iL61LOD YBiy 0) 58858.pPE MOf WOy BuoB | JO 51UBILOD AQ pessesp
-P@ UOREDO| AJOWEW 0)) jO SIURILOD AQ PsSSEIPPEe LOd ()/| WOJ} R18P JO XD0(q © JOJSues|
L+ ()= (TH)
L -(8)—(8]
{ENER{R]
:0=[g] Ihun 1eedey ¢ ¢ & 4 HINI
pe1eye 8q | sBey oyl Ajuo 9o, s1 e1Aq puodes
+ D JO S1UBILOD BY) AQ pesse.ppe Lod O\._ wouy 0151864 01 Indu)
[[D])—(Bes) X d X z {0) Bes N
(V] Siv-8v
wod (y-QV sng sSeippy
uOd /| POSSEIPPE ANDEND WO JO1EINWNDDY 0) induy
(vod]—(v) 4 wod'y Ni
Oy |oid | s
J3WHO04H3d NOILVH3d0 S3148 (SIONVHY3dO JINOW3INW 3dAl

SNLVLS

{c]

*Addréss Bus. AO-A7:

_88-

(8]

A8-A15

18151882 XSPU| JO BIUGIUOD 01 SANBIS PRSEEIPPR LONEDO] AJOWeW 01 J915188) 81015
{BeJ)—[dsip + [Ax])

Bumseippe eAnees eseq Buisn uoneoso Aowews wouy seisibes peo
[dsip + [Ax]]—[Bas)

H JO 81UBILOD Byl AQ POSSEIPPE UONEROO| AJOWEW O} 83UIL0D ,181Bes 81015
{8011 [[K1)

“1ed 16151891 POYIoRdE B JO BILBILOD BY) AQ PEESEIPPE LOIBOOI AJOWSW O] JOIEINWINDDY 8JOIS
[¥])—[[30]} % [V]—[[28)]

“IH JO $1UBIUOD AQ Pesse.PPe LUONEIO| AJowew WoJy JeiBas peoy
([WH]) — (0]

sed 33151631 peyrdads Byl JO SIUBILOD Byl AQ POSSEIPPE UONEIO| AJOWSW WO JOIBNWNDDY Peo

([30]] (V] © [[28}]—[V]

“Asowrsw pessaippe Apdesp 01 1015188 xepul s0 ned Je1sIBes JO SIULIUOD BIOIS
[OWAX] —[50P8] “[(IHAX]—[1 + sPpe]
J0 ({01] —[4ppe] “[(IH)A] —[1L + sppe]

UOIRIO AJOWBW POSSBIPPE AlIDEP 0) i JO SIU8IUOD 81015
(1]—[Ppe] [H]—{1 +PpPe)

‘UONEDO| AJOWBLW PESSEIPPE AIDENIP Ul STUBIUOD JOIBIULNIDY 81015
{v)—[ppe]

Aowew passeippe Ajdanp wosy seisibesr xepuy 1o ned seisiBes peoy
[4PPR] — [(OTAX] "1 +1PP8] — [(IHMX
J0 [Jppe] [(O)A] ‘[+IpPR] (1K))

AJOWSW POSSBIPPE AOsIp WOl TH peo)
(#PPE]—{1] (1 +PPE}—[H]

UONED0] AJOWIBU! POSSBIPPE AIDBHD WO JOIBNWLNIDY Peo
Ppe)—(v]

)

Bes(asip + Ax)
(981D + Ax)Bes
Bau(IH)
v1(3Q)

Vo8]

(H)Ba:

{301V
08)'v

AX(sppe)
rppe)

WEPPe)

v {appe)

JppeyAX

ippelds

Jppe)IH

uppe) Yy

al

al

a

al

a

al

ay

ay

al

a1

an

a1

JON3YI33H AHOWIW AHVWIHG

« SSJPPE B2INOS PUE JUNOD BIAQ YIOG 1UBWEIN8 "D JO SIUBILOD AQ Pessaip
pe 1od (/1 01 TH JO SIUBIUOD AQ PISSBIPPE LOHEDO| AJOWeW WOl B1ep JO 91AQ & J8jsue)|
L-[H}—=[H]
L-18)—(8)
[OH)—[121)
o+ SSBIPPE BIUNOS JUBWIBIOUI PUE JUNOD 81AQ 1UBWISIDB(Q "D JO $IUBIUOD AQ Pesselp
pe Lod /) 01 TH O SIUBILOD AQ PassSeIppe LOIEDO| AJOWSW WOJ) elep jO Bl1AQ B Jojsues)
L+ [MH]—[H]
L-[8)]—[8]
[(H}]—1oN
+ Pouejsuen aq 0) Buuewss selAq
JO 1UNOD € SB BAIBS g JO SIUBIUOY) MO| 01 Asowew yBiy wosy BuoB ') jo s1ueluvd AQ pesselp
pe wod ()/] 01 TH 4O SIUBIU0D AQ PASSaIPpe UONERDO| AJOWSaW WOoJj BIBP JO %001q @ Ja)Suesj
L[] —[H]
t-(8]—[8)
(HN—({0)]
10=(g] mun 1eaday

o~

ainc

uno

4410

(penunuoD) o/1

G3WHO4H3Id NOiI1vH3dO

Oy

0O/d S

cntwaic

S3LA8

iSIONYH340

JINOWINW

3dAL

-89-

[T

S8WO023Q 1UNOD 31AQ BY) UBUA JO PUNOJ SI YD 1EW B UBYAM L A0 01 sassaappe ubiy woay buob

WwNIdy O S1UBIU0D B:edwo)
L (08]—(08)
LK) —=[H)
ipaidaje ase sbey Ajuo) ((H)] - (V)
0={28) 0 [[WH)])=[V] nun 1eeday
OyON.

1H 10 S1UBIVOD AQ PBSSBIPPE ¥D0IQ AJOWAL O BSOYL Ylia:

58UI0D6G 1UNOD BIAQ BY) UBUM 10 PUNO) SI UIIBW € UBym COIS ybiy 01 Sassaippe moy woly buiob
TH 1O S1UBIUOD AQ PESSBIPPE ND0JA AJOWIBLL O SOyl Yliam i01RINWINIDY jO SIUBIU0D 3sedwo)
L (98] —(08)
L+ (M) —[H]
pa1dayje aue sbey Auo) ([TH]] - [V]
0= {08] TH])=[V] mun 1esday
1UN0d 31AQ pue

$8SSEIPPHE LOILLUNSIP PUB 8IINOS 1UBWEINB 3 JO SIUBILOY B4y1 AQ PESSBIPPE LUONEIC AJOWAW
AUl 0i TH JO SIUBILOD BUL AQ PESSAIPPE LONEDO| AJOWAL: 3Ul 1501 B1RD JO 91AQ BUO JBjSuel]
L-(08)—(08]
L [(H)-=[H]
i -(30)—(30])
((H)]1—[(30])
1uNOD 31AQ 1UBWAIDGP pue

$95S8IPPE UOHBUINSAD PUB 8DINOS 1UBWIAIDU] J() O Siuw AG PASSBIPPE UONEBDO| Asowew

5015 21ep O 91AQ U0 13)SUR) |
L (08) (28]
L+ (H)—[H)
L +(30]--[30)
((OH])—((301]]

POLIBJSURIL 3Q O) SBIAQ JO JUNOD B SB BAJBS D JO

U1 01 JH O SIWAILOD BUY AQ PBSSEIPPE LOURIO| AIOWIEL:

S1U61L07) MO| 01 sesseippe YBiy woyy BB "3Q JO SIUBILO2 BYL AQ PESSBIPPE UOIRDO| AJOWeW
AUl C1 K JO S1UBILOD BYI AQ PBSSEIPPE LOIRDOI AJOW A aul WioJ) B1eD JO ¥D01q B J8jsuel|
L (08) (28]
L[] —=[H]
L (30)—(30}
(W) —((301)
10=[08) mun 1eedey
PO1IBJSURIL B8Q O1 SEIAQ jO 1UNOD & Se dA8s D JO
51u81U07) "ybiy 01 sessBIpPpPe MOI WOy BB '3 JO SIUBILOD BYI AQ PESSAIPPEe LUONEDO| Asowews
AUl 01 H JO SIUBILOD BY) AQ POSSBIPPE UONEIOI AJOWBL: BuUl WO} B1BP JO FI0Iq € JOJSURIJ
- [08)—(08)
L+ [H]—{H])
1+(30]—(30)
((WR])—([30))
(0= (28] mun 1vedey

didd

[e[ex]

4qaat

Ellen]

HOHV3S ONV H34SNVHL X008

G3WYH04H3d NOIIVH340

0/d S

SN1vLS

S31A8

{SIANVYH3I40

DINOW3INW

3dAlL

-90-

Buisseippe eaneles eseq 10 Buisseippe peydwi Bursn Juewerdeq € (asip + Ax)
L= [081p + [AX]] = (OS1p + [AX]] 10 | = [[WH]]—[[H]) tlx | o i (H) 230
Buisseippe sAne)e: aseq Jo Buissaippe peyduwi Bursn juewesdu| € (asip + Axj
L+ [OSIp + [AX)]—(dsip + [AX]] 20 | + [[TH]]—[[H]] 0 X 0] { H)
‘perdejje ese ONI
sbey ayy AjuQ Burssaippe eanele.s aseq 10 Buissaippe penduit Bursn J01eINWNDdY Yim esedwo) £ (Osip + Ax) %
[dsp s (] - (V) O (OHN -(v] | L | x | © ' () 4 o
Buissaippe aaness eseq 10 Buisseippe payduwt Buisn JO1BINWNODY Y HO-BAISNOX3 € {OSID + Axj W
(95 + (AX]) A [V]—(V] S0 [[MH]] ALV]—[V] ¢ d i H) HOX 9
Buissaippe saneas eseq Jo Bussesppe peidw Buisn x01giNWNd2Y QM YO € {asIp + Ax) M
[dsip s (AX]] A[V]=[V] 0 (M ALVI—[V] | 0 | t | d i () 40 2
Buissauppe aanejss aseo 10 Bussaippe pandui Buisn 10184NWNJDY YuMm GNY € {dsIp + Ax) M
[dsp + (Ax]) v (V]—=[V] 20 [(H]] V (V]—[V] Y t d t (1) aNv 2
Buissaippe aanejas pseq 10 Buissasppe peyduwi Buisn Aued Yim 19engng € (dsp + Ax) <
2 [9s 4 (AX]] - (V] —[V] 200~ [WH]] - (V]—[V] L x| o ; QH) 8 A
Buissauppe sane aseq 10 Buissaippe panduw Bursn JO1RINWNDDY WOoJ 128NgNg € (0s1p + Ax) -
(dsp + (Ax]] - [V]—([V] © [[H]] - [V]—[V] L X 0 n (WH) 8ns m
HBuissaippe aaneds aseq 0 Burssaippe pendus Bursn Aue) yim ppy € (dsp + Ax) m
D[0P+ [Ax]) 4+ [V]—[V] 0D+ [[H]) +[V]—[V] 0 X o} L OH) 2av
Buissaippe salepRl aseq 10 Buissasppe peydwi Buisn J01eINWNIDY 01 PPY £ (s + Ax)
(9510 + (AX]) +[V]—[¥] 0 [[H]] +[V]—(V] 0 | x 0 ! (H) fay
1UNOD 31AQ pue ssaippe Juawesdeq
14 JO S1UBIUOD AQ PASSBIPPE LUONEDO| AJOWBW JO 3SOY) YIM JOIBINWNIDY JO SILGIUOD B1eCWOo) m
L -[08)—[08] mm
t-[HI—=(H] » X
(perdajye ese sbey Awo) ([H]] - (V] L X X 14 add 23
JUNOD 3IAQ JUBWIBIDEP PuB SSBIPPE JUBLIBIIU|) W
TH O SIUBILOD AQ PISSBIPPE UONED0) AJOWBW JO BSOYI Y1M JOIBINWNDDY JO SIUGIL0D 8sedw o) m @
1 -108)—[08] 25
L+ [H])—[H] 2z
(pe10aye ase sbey Auo) [[TH]] - [V] i X X 4 4D [S]
N Oy | 0/d
Q3WHO4H3Id NOILYH3IdO0 S31A8 (S)IONVH3IL0 JINOW3INW 3dAl

-91-

SNiviS

Bursseippe 8ANBe) 958Q 1O PIdLI BUSN UONEOOI AJOWBW 01Ul BIRIPAW W PROT v 81@p (08I + AX}
e1ep—[dsip + [Ax]] J0 eiep—[[IH]] 4 e18p(IH) a1 z
10151861 xepu| 0 Jied e1518e) OJUI B1BP P1BIPOWWI JO S1IQ 9| PEO) v 9l eep Ax M
gleiep—[Ax] Jo g|eiep—[ds] £ g|eiep'ds ol =}
19151861 01Ul OIMIPOWIWY PROY ﬂ
@1ep — [Beu | z e1ep 6o, a m
(144S 1e21607) GSW Jeep pue 1yBu UONEIO| AJOWSW JO SIUBILOD YIUG
[(9sip + (Ax]] 0 [[WH]) v {dsip + Ax)
To -+ /[Tlo 0 o d X ¢ (H) s
(YYS dueWYILY) GSW BAeseud pue 1yBu LUONEDO| AIOWBW JO SILBIUOD NS
(ds1p + [Ax]] Jo [[H]]
12 (dsp + Ax)
!‘l ... s U 0 0 d X 14 H) VS
(JI4S 2NOWYILY) §ST JE6 PUE LB UONEDO| AIOWeW 4O SIUBIUOD LIuS
[Osip [Ax]) S0 [T T] v (d51p + Ax) z
o= }—w{35] |o|° || : i v | §
[e]
Aug) yBnouy 1yBu LONEIO| AJOWeW JO SIUGIUODI B1BI0Y M
[dp + (AX]] 10 [(WH]) y (osip + Ax) 2
% 0 - | T._ ol 0} 4| x 4 M) uy 2
z
ALED) YoURJQ YW 1yBU UOREDO| AJOWL JO S1UBIUOD 81RI0Y o
b}
[dmp + [AX)] 20 [[WH]] , (O91p + Ax)]
T 0 ¢—— /[j o] o] 4| x z (M) ouY %
m
ALeD yBnouy 10| UONEDO| AJOLIeW JO B1LURILCD MIBIOY
(deip + [Ax]] 40 [[IH]) '3 (d®1p + AX)
j'*o —— nTll'ﬂHlJ o 0| 4| x z () W
AuE) Youesq Yim Lo (BuisseIppe 8ANRI 088 0 PeNdLLI) LOREBDO| AJOLWSW JO SIUBILOD 1.0y
dsy Ax]] 10
[dmp + [AX]] 10 [[TH]) ’ -
1 0 ——————— i o | 0| 4| x z M) o
N Oy | ord S
G3WHO4H3d NOILYH3IdO S3LA8 (S)ONVHIHO OINOWINW 3dAlL

-92-

pe1oeye ase sbey oyl AUO S1UBIUOD JOIBINWNIDY YliMm RlBp BleIpewwl ssedwoy)

eep- (v} ¢ X 0 X 4 elep dJ
JO1BINWNIDY YliM 81e1peLUWIl YO -8AISN|IX3
RIepA(V] —[V] 0 { d X 2 eiep HOX
JO1INWNDDY YIIM 01RIPOWWI YO M
Q1ep A (V] —([V] (9] it d X {4 ewep HO Z
JO1RINWINDIY YIIAM 81eipewull ONY M
Qlepy (v]—(V] 0 L 4 X z ewep ANy m
AuRT) YliM B1RIDOWWI }081AaNS m
J-eep- (v]—[V] ! X o X z e1ep 28S m
JOIRINWNDDY WOl S1RIPAWWI 10810 b
eep - [v)—[V] i % [e] X (4 elep ans m
ALRD) YIIM @1BIDBLIWI PPY
Deeep s (v]—[v]) 0 X ¢} X z eep Dav
Ny 01 BleIPBWW! PPY
ewep+ (V) —(v) 0 % 0] X 4 eiep aav
95UBNDAS UI BNUNUOD 'BSIMIBYIO 'POYSIIES SI LOIIPUOD §I BUNOIQNS WOJ) WMaY i puod 13y
auNnNoIQNs WoJj uNdy
Z+(dS)—[dS]) a
(1 +(dS]]—[IHDd} » @
. zZ 2
([d$]]— (100] i 13 o O
‘@0UaNDBS Ul BNUNUOD 'BSIMIBHIO (PBYSIES I UONIPUOD Ji BUNNOIGNS O} dwn(€ feqey’puod Nnvd 2 M
‘jeqe| Aq peiuesesdss ssaippe e Buiuels sunnoigns o) dung m .m
1€ —(3d | 2 2
2-{dS])—I[dS]) =
((OWdd]—(2°[dS]]
[HRd) —[1-[4S 1] € 19qe] Vo
-18151881 X8pU| JO T Ul PaUIRILOD SSBsppe 01 dwnf l (Ax)
[Ax)—[2d] © [H]—[2d} ! () dr
401un0) WesBo.g JO s1ULILOD Juesesd O} BAnee) dwnf m
ds1p + 7 +(2d)—(2d] 4 dsip ur Z
‘Jeqe| AQ peiueseides §s8ppe 18 UONONIISUI 01 dwnr v
1998 —{2d} 3 10qe| dr
N Oy | 0/d S
G3IWHO04H3d NOILYY3IdO S31A8 (S)IONVY3d0 DINOWINW 3dAl

SNLV1LS

-93.

sued w181Bes srewele pue sued se1s1881 abueyoxy

(K] (]
(30) | —-{ (30]
[(.08]) [08) L XX3
smels weuBoid s1ewele pue smeis wesBosd sbueyoxy
4V]——[3V] ! AL x3
1H pue 3@ 4O S1ue1u0d ebueydx3
{WH]——[30] b H3a X3 o
181U ¥0€1G O1 JB1siBes xepu| JO SIUBIUOD BAOKW M
{AX]—[dS) 4 AX'dS [eh] *
WIUOY XOBIG O TH JO S1ue1u0d 8AOW ..IJA
. P
(] ~[dS] ! HdS i S
JOIRINWNDDY WOl 1915188 yseuey peon %
V18] 4 vy a]
JO1RINWINDDY WOJ; 18151581 10128 A 1ANLBIV| PeO (2
v]—(A1} ¢ VAl a Z
I01EINWNDDY 0) 585188, 4S8y JO SIUSIUOD SAOW g
(4)--v) o o ! X 4 y'v a1 m
JOY 20y 01 1815186, JOI1DBA 10NUBIL| JO SIUSIUOD BAOW
[A)—(V] 0 0 [X 4 AV a»
190 H 30D 8V equyoee
ABW 18p pue s suoneuBrsep o168y 8ISl LONBUNSEP 01 18151884 BDINOS JO SIVBILOD BAOW
[25s)—[1spP) i 2sisp G
0 10U St ynsaJ Ji JBIUNO) WeiBolg jO SILAIUOD O] BAILRBI CWN(Pue g JO SILEIUDD 1UBWEID8G
dsip+ 7+ [Dd)—[Dd) uew 0+ (8] 4
Lo (8)—(8) 14 asip INFQ
1880, 51 bey 0107 §i 101UN07) WeIBOLY O SIUBIUCD Ol BAILRIBS OWN(m
98P + 7+ [Dd)—[Od] VoY) ‘0= Z } i dsIP'ZN Hr 2
195 si Dey 007) 01uN0) wesBoig JO SIUIUOD 01 BAnee) dwn(M
OSP4+ 24 [Dd]—[Dd] voul 1=Z ¥ T asp'z Hf z
19s52: s1 Beyy Aue) i 101un0) wesBoly o S1UeIV0d 0y BAneies dwnr m
a8 + 7+ (0d]—(Dd] vew 0= 4 z IPIN ur 3
105 st Bey Aue) jis8runo) wesBoiyg Jo $1ue1u0d 01 BANE) dwn 3
0P+ 74 (0d]—[Dd] Uewl ‘1= 7 asip'y ui 2
NI SI LOIPUOST BYI Ji 1BQe| AQ PBIUSSEI38. SSBIPPE 18 LONDNIISUI O) dwn(
©Q8 —[Dd] UYL ‘PuOD | £ 18qe|’puod dr
N Oy | 0/d S
G3WHO0s43d NOILVYY3d0 S3LA8 {SIANVH3d40 JINOWINW 3dA1L

SN1VLS

9l

1015160 xapu| 10 ted 1815168 JU SIUeLIUOT WUBWaIXeQ & Ax
{2 () [AXY s - {d)][] g 730
51U81U0D Ja1S1B6) 1WBWeI28Qq 2
{ - (Bes)—[Boi] x | o X z Bas 230 2
18151601 x0puj 10 ned 1e1siBes JO S1UBIU0D 1UeWeIDY| Ax m
|+ [AX]—-[AX] JO | + [d2]—[ds] e ONI 2
51601000 10151668 JUBLWeIDU| w
|+ [Bos)—[Ba1] x | o | x 6o N m
(1UBLLIBIOWOD SOMI) JO1eINWNOJY BieBaN =]
L+ (Y)—1v] X o X ’ 93N
(1UBWIBICLIOD $BUO) JOIRINWNIDY 1UBWEIAWOD)
(yl—I(v] 3 | WO
spuesedo Qg
JO 90UBIBHIP O WNS BY) Bue SIUAIUOD JO1RINWNDJY eyl Burunsse 01BINWNIdY 1snipe [gweq X d X vva
(dS Al ‘30 'D8= 1) A| 18151661 x8pU| JO $1UBILOD 01 S1VBIUOD sed 19181601 ppe uq-g|
(U] +[Al)—[AI} 13 Z AN aqv
{dS ‘X1 "3Q D8=0d) x| :@151681 xapuj JO SIUBIUOD 01 SIUBIVOD sned 4
(0d] +[XI1]—[X1] ¢ ¢ aax| aav
qH JO S1UBIL0Y WOy S1UeLLOD ned saisiBas Aue) yum 10enQNs 1q-g|
2-[d1) - (H]—[H] ¢ o X 4 DN 08S
IH JO S1UBIV0D 01 S1LAIUOD ned sa1siBas AueD i ppe 1q-9]
D4 () +[MH]—[H] ¢ (0] X 4 dIH 2av %
1H JO S1URIUOD 01 S1LBIU0D sed 181siBas ppe 1q-gL iy
[@] + (H]—[H] ¢ ' EIRT aav e
peideye sue sBey syl AjuQ 1018INWINIDY JO SIUBIUOD Yim 10151881 JO S1UEILUOD B1edWOD H
[Bes] - (V] X (] X ' 69, 42 o
J01INWNDOY JO SIUBIUOD Y JB1SIBEI JO SILUBIUOD YO-BAISNIOXT B
[801] A[VI—(V] L d X o, HOX m
JO1BINWINDDY JO S1URILOD Yim JeistBes jO SIURI0D YO 3
(681} A[V]—([V] L d X 6oy 4O w
JO1RINWNDDY JO SIUBILOD Yim se1s1Bes JO SIUeIL0D ONY 2
[Bes] vV [V]—I[V] ! d X 6a aNV B
J01BINWNDDY WOy Aue) pue 10151661 JO S1UEILOD 1e1GNS m
3-[Bei] - [V]—[V] X (¢} X i 6os 08s
J018INWND0Y WO 1815188 JO SIUBIUOD 108NgNS
[601) - fw]—[V] X e} X t 6o, ans
J018INWNDJY 01 ALe) pue se1siBal JO S1URILOD PPY
D+ [Be1] +[v]—[V] X o X ‘ 6as 2av
J018|NWN2DY O} JB1stBal JO S1UBILOD PPY
[661] +[V]—(V] X o X ! 62, aav
Oy | o/d s
Q3WHO04H3d NOILVH3IdO S31A8 (S)IONVH3ILO JOINOWINW 3dAl

SNLVLS

-95-

(HYS dnawuiLy) gSW 8Aesasd pue 1yBu 18151681 JO S1UBILOD YIS

[Beu)
n‘llolll[ﬂ oo | ¢ x : 6o, vis
IS dnewyiuy) 930 Jeepd pue ey 13151681 JO S1UBILOD JIuG
(Be4)
O|'._ 0 ==y Z fs] [¢] d X z Bas LA
Ase) ybnosy 1ybu Je1siBes JO S1UBILC) BIRIOY
(Beu)
%O - [TA_ G 0 d X [4 bes ¥y
“Aue) youesq yim 1ybu saisibes jo siueiuod eleloy
(601]
.‘lﬂx—o - Rj o | o 4| x 4 ge: oy
“Aue) yboosyl 149| Je1siBes JO S1UBIUOD B1RI0Y
Bo. »
[Bey) m
@
10 S — W T'.-J 0 0 d X 2 66: Y &
=
Aused 4ouesq Yim 19} 315168 JO S1UBILOD d1eI0Y M
paiy 7
L é oo | 4« ¢ 6o ow 2
]
‘Aue) ybnougs 1ybu Jorenwnooy aleloy %
=
v] >
-
BT =————0= [« _
‘Aue) youeiq Yiva 1yBu Jo1eInWNoVY 81810y
(v]
z 0 —— / j o | o ! vouY
Aue) ybnoug yef 10181NWNJDY B1RI0Y
(v]
i NT.V.J o | o ‘ vy
AUED YoURIQ I 18 JO1BINWNIDY BIBI0Y
(v]
10 S —— i o | o ' vo
N |Ov|omd| s
G3WH0443d NOILVH3IdO S31A8 (S)JONVH3Id0 OINOWINW 3dAL

SNLV1LS

-96-

1§ jo doi pue isibas xapu| H

51081000 abueysx3

(tds)) —11j 24 AX(dS)
[L+ (e8] —[H) ‘ Has! X3
1BIUIG XDIS WUBWBIOUI pue 1815155, xapuj 30 ned 181siBas U yORLS O JO1 JO SIUBIUOD Ing
¢+ (d8)—(ds] 4
{1+ (dS]]—[lkpd) z Ax W
{(aS) —{t0WC]} \ & 404 =
RIUI0G YDRIG 1UAWAIDEP pue XVBIS JO 001 Lo 13151691 xapu} »0 sed 1a1siBai jO S80I Ing
z-[dS])—[dS]
(O8] —(2-[dS 1) ¢ Ax
(UH4pa) == (1-{dS)] ‘ o HSNd
‘(Buisseuppe 8angjes 8seq 10 BuISSEIPPE PO UONRDO| AJOWEW Ul LG PA1BDIPU! 1888Y 14 {dsip + Ax)'q
o N OSIp + [Ax)] 10 0 —(Q[IH]] 4 (HI'q S3Y
ba sasiBes paieoipul 1956y
0 —-|qps: (¢ Berq 534 m
(Buissaippe aAnee. 8seq 10 BUISsaiIpPE PENALI} LONEDOL AJOWBW JO 1IG PAIRDIPU! 18 v (dsip + Ax)'q Z
3SIP « {AX] 40 1—(Q)[IH]) 14 OHya 13s >
S RUSAR DRSS z
|- (aps: 4 bosq 135 =
(Buissaippe saneBl aseq N
10 Buisseippe pendur) UOLEDO| AJOWBW BY) JO 1 PAIDEIBS O 1UAWBIKWOS suieluod Beyy o087 12 (dsip + Ax)'Q <)
z
Qqase « (Ax]] —Z 10 (Qf[IK]] —2 B ¢ ¢ z HQ L8
1q se15i681 P128IRS AUl 40 JUAWSIdWOD SUIRILCD Beyy 0587
16as - 7 { 2 p z Basq 18
'
Pe10aj48 10U @8 J01RINWNDIY Byl JO JIey 1BAdN Byl O SIUBILOY
{Buissaippe parjdwi) u0NEed0] AJOWaW PUe JOIBINWNIIY 8y} Udemlaq 1wybu ubp goHg auo 3ler0y
((H]) (V) >
= 8
o] d X 4 Dea avy
lc B) fo [] S
S R S — @
>
Pa1Da}e 10U B8 JoleInWIN JO 4jey BAON BUYL JO SIUAIU0D) ow
o
(Buissauppe pandwi) UONRDO| AJOWBW PUe JOIRINWNDDY Uil LAEMIBG 18] LBIP Dg BU0 a1e10Y W M
[H]) lv) 2 ¢
»
[s I o gz
[¢] d X 4 any - o
[o gly] lo clv] °
J o
=
(QpuS [eBoY) gow seais pue 1ybu sa1sibal jo s1u8Iu0d YIus W
(Ber] m
B—{oc =—— ¢ 0 of 4| x ¢ s
Oy | o/d S
G3WHO4H3d NOILVYH3d40 S3LAS8 (S)YONVH3Id4O0 JINOW3NW 3dAL

SN1v1LS

P Ly o

SBUOWAW BY11BIOA USB13s 01 SON SOIND8X3 ‘S1jey NdD)

3 LIVH
POYS81}a; BJ8 SBUOWAW JNBIOA —— UONRIAAO ON i 4ON
Bey Aue) 1wswadwor o
2-- 2 L 300 M
Beyy Aue) 185 e
o] 0 i 308 L
4
i
720 'L 0 9pOow 10nuBIu 183G 4 0 Wi
1UNUBIUL BIQEYSRWUOU WI0J) UIMaY z N134
1dNUBIUN WO wNay 4 1138 2z
L0oned0; pareubisap e Leisay u
9tu-8)—[2d] m
2 (dS)—(dS) u
1024] —(2-(dS))
(UHDd) —[1-[dS]) I u sy
‘sidnusiu aIqeus i 3
sidnuaiul 3iqesiqy L ia
Oy | 0/d S
Q3WH0343d NOILYY3d40 S31A8 (S)ONVH34O0 JINOWINW 3dAlL

SN1vLS

-98-

Svppopencix &

HPPPLICATION MNMOTES

Appendix &4 contains a variable VRSION which defines the
model number of ASZMIC which you are using. This is
also stored as DEFW at MKDEF in the ROM so you can
check that the addresses given 1in Appendix &4 are
correct for the ROM you are using.

NAME ... BRKCHK

FUNCTION ... Check break key; simulate BREAK condition
if pressed

CALLING SEQUENCE ... CALL BRKCHK

EFFECT...Also sets sync pulse level low

USES ... Abort routines

Fedkk kg dokkhdodkkdkdkkkdokk

NAME ... CMPSTR

FUNCTION ... Compare two strings

CALLING SEQUENCE ... CALL CMPSTR (HL) points to found
string-1, (DE) to base string

EFFECT...end comparison on encountering a /NL/ or any
character < . (if the found string is not preceded by a
character less than . (period) then the comparison is
declared invalid. If the first character of the found
(& base) strings is a filemark then a /NL/ must precede
the £ in the found string for the comparison to be
accepted).

If strings are the same then carry reset, HL points at
the beginning of the found string, DE points at the
base string delimiter. If the strings are not identical
carry is set and HL,DE unchanged.

REGISTERS USED ... A,HL,DE
USES ... String identification

)
R R T TR R S ek

-99.-

NAME ... COMMANDS

FUNCTION ... £

CALLING SEQUENCE ... All commands have form *COMM,
where * is DEBUG letter.

HL points at first non-blank char after DEBUG letter.
They exit by RET (to LIX)

EFFECT ... Performs actions appropriate to the Command.
USES ... &£

KhFkhhhhdhhhhhhhihidhs

NAME ... DFLIP

FUNCTION ... Set address jumped to for Command
Interpretation

CALLING SEQUENCE ... CALL DFLIP HL contains new
Command Int. address

EFFECT ... Loads HL into DADDR, takes old value and
returns with it on stack. Uses HL.

USES ... User handling of newline character i.e. ASZMIC
EDITOR used as an input routine for user programs.

B R R R e S S P S T

NAME ... DELAY5

FUNCTION ... Display for 5 seconds

CALLING SEQUENCE ... CALL DELAY5

EFFECT ... Send out a display for 5 seconds and return
to caller. FRAMES is loaded with 250 & FRMSND invoked.
See FRMSND for details of return. There is another
delay called DLYO5 which sets sync low and then loops

for half a second before returning (uses A & DE).
USES ... £

R R e R A S S R P P T

NAME ... EDLP1

FUNCTION ... Entry point for STRSCH which expects DE to
point to base string, HL to point to high end of search
region and BC to be search region size in bytes+l.
CALLING SEQUENCE ... CALL EDLP1 registers as above
EFFECT ... See STRSCH

USES ... Table search

B R R

-100-

o WEVNW do doWF eV - 5 @ ‘- L LiNA 4Ll UL LUV LLLICE Lillal A LC L o

CALLING SEQUENCE ... RST 40 HL points to text
EFFECT ... Positions HL to the left of the first

newline found left (above) its initial position. Uses A
& HL.

USES ... Syntax analysis, text manipulation.
B T T

NAME ... FNDRCR

FUNCTION ... Find first newline char to right

CALLING SEQUENCE ... RST 48 HL points to current text
position

EFFECT ... Positions HL to the right of the first
newline char found right (below) its initial position.
Uses A & HL.

USES ... See FNDLCR

NAME ... FRMSND

FUNCTION ... Transmit a display file to screen until
FRAMES (if positive) becomes zero or a key is pressed.
CALLING SEQUENCE ... CALL FRMSND DFILE must contain
address of a valid display file.

EFFECT ... Sends display file to screen; generates sync
pulses; reads keyboard and performs debounce; blinks
cursor; returns with carry set if key pressed, reset if
FRAMES timeout. KEYBRD value lies in BC and STMEND, not
HL.

USES ... Display

R S S

NAME ... GETFLD

FUNCTION ... Analyse a field down to a 16 bit value
CALLING SEQUENCE ... RST 16 HL points at or before
field start

EFFECT ... HL advanced to field terminator; field
converted to 2 bytes in DE and ELEMl. Zero flag set on
return if no field found. Any argument recognisable to
ASZMIC may be in the field. Uses all registers except

BC, IX, IY,I.
USES ... Myriad
L R R E T T

-101-

NAME ... GET2

FUNCTION ... Analyse up to 2 fields

CALLING SEQUENCE ... CALL GET2 HL points at or before
start of fields.

EFFECT ... Uses GETFLD. Loads ARGl and BC with first
field value, ARG2 and DE with second field value. Zero
flag set on return if less than 2 fields found before ;
or /NL/ terminator. HL points after last field
processed. I,IX,IY unaffected.

USES ... Syntax analysis

R R R R R e R R e R

NAME ... IGNBLK

FUNCTION ... Advance HL register to point at a
non-blank character

CALLING SEQUENCE ... RST 32 HL points at character
string

EFFECT ... HL advanced until a non-zero byte pointed
to. A contains (HL).

USES ... Syntax analysis

Kukkhkhhhhddhrhhhhhikx

NAME ... KEYBRD

FUNCTION ... Scan keyboard matrix

CALLING SEQUENCE ... CALL KEYBRD

EFFECT ... Read the keyboard matrix into H (D5-D1 +
shift as DO), plus 8 address line bits in L. Both H & L
= :FF if no key pressed. Uses A,BC,DE,HL. HL also
stored in STMEND. See ZX81 construction leaflet for
key-address/data line connection.

USES ... Read keyboard; Initiate vertical sync pulse.

Thhhhhhhhhhhhhdhdhdhts

-102-

NAME ... KEYINT

FUNCTION ... Decode a key stroke

CALLING SEQUENCE ... CALL KEYINT BC contains HL
pattern obtained from KEYBRD

EFFECT ... Both B & C must contain at least one zero
bit if routine is to return. Carry set on return if
unallowed multiple key depressions. Otherwise HL is
absolute address of byte containing and A is offset
from TABLE start (HL=TABLE-1+(A)). Note that the
shifted keys A-G, Q-T, 1-0 do not return a valid
character.

USES ... Keyboard read interpretation

P R T R R R o e e R

NAME ... LIX

FUNCTION ... Return point for all handlers in ASZMIC
CALLING SEQUENCE ... &

EFFECT ... £

USES ... £

P R R T X e e L ke

NAME ... MSKINT .

FUNCTION ... Set up some aspects of ASZMIC context
CALLING SEQUENCE ... CALL MSKINT

EFFECT ... Loads I=14,IY=:4000, resets bit O of MFLAG,
sets interrupt mode 1. Uses A register.

USES ... Programs entered by J command may need this if
they use ASZMIC routines.

R T R = T T b TS e ek

NAME ... OUTFRM

FUNCTION ... Transmit a single frame to screen

CALLING SEQUENCE ... CALL OUTFRM valid DFILE content
required. B should contain the number of lines to be
written and C should contain the number of blank
rasters at screen top.

EFFECT ... Display a frame

USES ... Display

B R T x & kX e R e

-103-

NAME ... OFRML

FUNCTION ... Special purpose OUTFRM

CALLING SEQUENCE ... CALL OFRML like OUTFRM but in
addition D register must be loaded with no of rasters
per line.

EFFECT ... £

USES ... Graphics

R R R e e e S R e S

NAME ... OFRM2

FUNCTION ... Specialised display

CALLING SEQUENCE ... CALL OFRM 1like OFRM2 but in
addition user is responsible for the OUT instruction to
clear the vertical sync pulse and to load A with the
number of Ml's before the first horizontal sync pulse
is required.

EFFECT ... £

USES ... Sophisticated graphics

dhdhhhddhhhhhhhhhdhdhd

NAME ... PRCLR

FUNCTION ... Clear printer buffer to zeroes
CALLING SEQUENCE ... CALL PRCLR

EFFECT ... Blanks out PRBUFF. Uses HL,BC,DE.
USES ... User abuse of PRBUFF

B R R e e

NAME ... PRNTER

FUNCTION ... Print a line on Sinclair printer

CALLING SEQUENCE ... CALL PRNTER HL points at start
of line to be written. Line is written out to printer
until a /NL/ is encountered. On return HL points to

char after the terminating /NL/. Uses AF, BC, DE, HL.
EFFECT ... £

USES ... Printing

B e e e T)

-104-

NAME ... PUTDE

FUNCTION ... Hexadecimal encode

CALLING SEQUENCE ... CALL PUTDE HL points to output
region, DE contains the number to be encoded into the
region.

EFFECT ... Uses WRITA to encode the contents of the DE
register as four hexadecimal digits starting at (HL).
HL is incremented past the last digit. PUTDEF is an
entry point which presets HL to PRBUFF+l. Uses HL, A.
USES ... Output routines

khkkdkhkhkkhkhhhkhkhkhrkx

NAME ... RDCASS

FUNCTION ... Read a byte from cassette recorder
CALLING SEQUENCE ... CALL RDCASS

EFFECT ... Returns with a byte read from cassette in
the A register. Can be aborted by Break key. Uses
A,HL,BC,DE. You have about 800 microseconds to process
the byte before RDCASS must be called again to catch
the next byte.

USES ... Specialised tape analysis

E R R I R R R R R

NAME ... SHIFTS

FUNCTION ... £

CALLING SEQUENCE ... All Shift commands are called by
the sequence CALL SHFT* where * is the shifted
character and must have HL=(CURSOR) on entry. They
perform action approprate to the shift and then return
to caller.

EFFECT ... £

USES ... £

NAME ... START

FUNCTION ... Breakpoint or , if I=0, Restart
CALLING SEQUENCE ... RST O

EFFECT ... Restart initialises ASZMIC. Breakpoint
causes saving of context and return to ASZMIC
USES ... Monitor return

Fkdkdkkhhhhkhdhhkhikk

-105-

NAME ... STRSCH

FUNCTION ... String search

CALLING SEQUENCE ... CALL STRSCH HL points at first
char of base string

EFFECT ... If (HL)<DSPBGN+40 then HL first loaded from
CURSOR (Shift Macro use). Text area from (HL) to
DSPBGN+50 searched to find a destination string which
matches the base string. Uses CMPSTR so carry set if
not found or set if found and HL & DE as for CMPSTR
except that if not found HL points at DSPGN+39. Uses
AF,BC,DE,HL. EDLPl is an entry point which expects DE
to point to base string, HL to point to high end of
search region and BC to be no of bytes to be
searched+l.

USES ... Syntax analysis

kkhhhhhhhhhhhhhdhhhhiix

NAME ... WRCASS
FUNCTION ... Write a byte to cassette recorder

CALLING SEQUENCE ... CALL WRCASS HL points to byte
to be written out.

EFFECT ... Byte written out using Sinclair BASIC
standard. On return HL has been incremented and A
contains byte just written. Uses AF,BC,DE,HL.

USES ... Special cassette operations

Fhkrhhhhhhhhhhhdhdhist

NAME ... WRITA

FUNCTION ... Encode a byte

CALLING SEQUENCE ... CALL WRITA A contains number,
HL points to encode region

EFFECT ... Number encoded as 2 hex digits. HL
incremented past second

USES ... output

B R e o R T T e X T

-106-

NAME ... WSTRNG

FUNCTION ... Write out PRBUFF to screen or printer
CALLING SEQUENCE ... Call WSTRNG PRBUFF contains at
least 1 non blank char.

EFFECT ... Presets B to length of PRBUFF. Fills PRBUFF
backwards with /NL/'s until a non-blank char found.
Drops thru to WSTRGZ2. Uses A,B,HL

USES ... Output

NAME ... WSTRGZ

FUNCTION ... See WSTRNG

CALLING SEQUENCE ... CALL WSTRG2 B preset to max no
chars to write

EFFECT ... If bit 1 of ASSFLG is set then PRNTER
invoked followed by PRCLR and return. Presets DE to
PRBUFF. Drops thru to WSTRI.

USES ... &

R R R S R R S R Ak ok R e

NAME ... WSTR1

FUNCTION ... Write string to screen

CALLING SEQUENCE ... CALL WSTR1 DE points at string
start. B preset to max no of chars to be written.
EFFECT ... Writes out from (DE) to screen, increments
until B count exhausted or a /NL/ written. Drops thru
to PRCLR. Uses all registers except IX,IY,I.

USES ... Output

Kekkhkhkkkdhhkihhhhkhnx

-107-

EXAMPLES

Invoke by H command. Use = directives to declare the
addresses of the undefined symbols as defined in
Appendix 4. Use an ORG directive appropriate to your
system memory size.

1 WRITE A CHAR TO SCREEN

START LD A, "X"
CALL NRMZ
RET

2 WRITE OUT A STRING TO SCREEN

START LD DE, STRING

LD B,7

CALL WSTR1

RET

STRING DEFM "ABCDEFG"

3 ADD 2 NUMBERS AND DISPLAY RESULT. CALL BY H START NOl1
NO2

START RST 16 ;GETFLD
PUSH DE

RST 16 ;GET 2ND NO
POP HL

ADD HL,DE

EX DE,HL

CALL PUTDEF

LD (HL),:76

CALL WSTRNG

RET

-108-

4 PALINDROME. INVOKE WITH H START. IMPORTANT BECAUSE IT
SHOWS YOU HOW TO LINK IN YOUR OWN PROGRAM AS A COMMAND
INTERPRETER, AND HOW TO RESTORE ASZMIC AT END. AFTER
THE H START YOU TYPE IN THE LINE TO BE INVERTED.

START LD HL,HANDLE; ADDRESS OF USER C.I.
CALL DFLIP; SWAP CI ADDRESSES
JP LIX ;JUMP TO ASZMIC CONTEXT STILL ON STACK

b
HANDLE RST 48; FNDRCR

RST 40; FNDLCR

SET 7,(IY) ; SET EDIT MODE

LOOP LD A, (HL)

PUSH HL

PUSH AF

CALL NRM2

POP AF

POP HL; CHAR WRITTEN

DEC HL

CP :76 ;DID WE WRITE A /NL/?

JR NZ,LOOP; LOOP IF NOT

POP AF ;CLEAR LIX RETURN ON STACK

POP HL ;ASZMIC CI ADDRESS STORED BY DFLIP
LD (DADDR),HL; RESTORE ASZMIC CI ADDRESS

RES 7,(IY) ;ONLY IF YOU WANT TO RETURN IN DEBUG
MODE
RET

5 PRINT NUMBERS FROM O TO 6. USE H START

START XOR A

LD HL,PRBUFF
LOOP LD B,A; SAVE A
CALL WRITA

LD A,B; RESTORE
INC HL; SPACE
INC A

cP 7

JR NZ,LOOP

CALL WSTRNG

RET

-109-

6 PRINT A LINE

START LD HL, TEXT
CALL PRNTER
RET
TEXT DEFM "SAMPLE TEXT"
DEFB :76; /NL/

7 CREATE A BASIC PROGRAM WITH A SINGLE REM STATEMENT
WHICH CONTAINS MACHINE CODE WHICH YOU CAN WRITE
YOURSELF (SEE THE FINAL SECTION IN CHAPTER 5)

ORG :4000
DEFM ''12345678"
DEFB '9'"+128 ;FINAL TITLE CHAR INVERTED A LA ZX81
DEFB 0
DEFW 1
DEFW DFILE
DEFW DFILE+l
DEFW VARS
DEFW 0
DEFW VARS+1
ORG $+9
DEFW MEMBOT
DEFW 512
DEFW 0
DEFW :FDBF
DEFW :37FF
DEFW DFILE
ORG $+9
DEFW -1
DEFW O b
DEFW :218C
DEFW :4018
ORG $+32
DEFB :76
MEMBOT ORG $+32
DEFW 256
DEFW DFILE-PROG
PROG DEFB :EA ;REM

-110-

;

)

; PUT HERE THE CODE WHICH YOU WANT TO BE INCLUDED
IN THE REM '

b

DFILE=$+1
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676
DEFW :7676

VARS DEFB 128

8 GRAPHICS PROGRAMS SEE DESCRIPTION IN
CHAPTER 8
ENTER BY H :7000

;DEFINITIONS FOR EO4 ASZMIC..... CHECK FOR YOUR
VRSION

ORG :7000
INTIMP=:4019 v
DFILE=:4023"
PCONE=:409A
TXTLIM=:4025~
FRAMES=:4070
OFRM1=:16D :|tE
MFLAG=:4000%
RESTOR=:628
KEYBRD=:145 =% 2
STMEND=: 400F -
SAVMEM=:18D -/ & &
NNN=46

TOPS=1

PIXSIZE=1
IDLE=30

-111-

RASTERS=255
DISPEND=:6501
DSTART=:4100

)

; KERNEL ROUTINE

3
KERNEL LD HL,ONEP

LD (INTJMP),HL ;INTERCEPT BREAK PROCESSING BY OWN
HANDLER

CALL CLEAR ;SETUP DISPLAY

LD HL, UPROG

LD (PCONE),HL ;PRIME CONTEXT SAVE TO RETURN TO
UPROG

2
ONEP CALL KEYBRD ;READ KEYBOARD (RAW)

LD HL, (FRAMES)

INC HL

LD (FRAMES),HL ;BUMP FRAME COUNT

LD B, IDLE

DJNZ $;YOU JUST KEEP ME HANGIN' ON

LD D,PIXSIZE

LD B,RASTERS

LD C,TOPS

CALL OFRMl ;WRITE OUT A PART FRAME

LD A,l

LD (MFLAG),A ;LET NMI INTERRUPT HANDLER KNOW IT
MUST BREAK ON O COUNT

LD C,NNN+NNN+1 ;SETUP C FOR G COMMAND
EXX

JP RESTOR ;GO INTO MIDDLE OF G HANDLING

]
; SETUP DISPLAY FILE,,,,COULD BE IMPROVED

b
CLEAR LD HL,DSTART
LD DE,DSTART+2

LD BC, :2400

LD (HL),:76 ;/NL/
LD (DFILE),HL

INC HL

LD (HL),O0

LDIR

RET

-112-

’

; PLOT & UNPLOT SUBROUTINES.....Y->B X->C

b
PLOT LD D,15

JR S+4
UNPLOT LD D,0

LD A,3 ;MASK FOR PIXEL NO IN BYTE

AND C

SRL C

SRL C

INC A ;C IS NOW X BYTE, NOT PIXEL

LD E,16 ;BIT MASK
LOOP1 SRL E

DEC A

JR NZ,LOOP1 ;LOOP UNTIL 0-3 CONVERTED TO 8,4,2,1
IN E N

CP D ;UNPLOT

JR NZ,ENT2 ;J IF NOT

LD A,E

CPL

LD D,A ;MASK OUT BYTE
ENT2 PUSH DE

LD HL,DISPEND ;PREPARE TO COMPUTE Y ADDRESS
LD DE, :1200

LD A,B

LD B,8
LOOP2 RLCA

JR NC,NOSUBT

OR A

SBC HL,DE ;SUBTRACT ONLY IF BINARY POWER PRESENT
IN Y VALUE
NOSUBT SRL D
RR E ;SHIFT SUBTRACTOR
DJNZ LOOP2
ADD HL,BC ;ADD ON X TO GET TARGET BYTE
NOW PROCESS THE BYTE TO PUT IN THE PIXEL
POP DE

)

LD A, (HL)

BIT 7,A ;GET ROUND INVERSE TRICKERY
JR Z,5+3

CPL ;CONVERT 8,2,1,0 TO 3,2,1,0

AND 15

-113-

OR E

AND D ;PIXEL NOW IN

; REENCODE

cp 8

JR C,NOTINV

;DO NOT NEED INVERSION
CPL

AND :87
NOTINV LD (HL),A

b

: FOLLOWING CODE JUST CAUSES SUBROUTINE TO LOOP
AROUND UNTIL

;A FRAME HAS BEEN SENT. IT IS NOT ESSENTIAL BUT
SLOWS PLOTTING

;DOWN A BIT

b
NLINE LD DE, FRAMES

LD A, (DE)

LD B,A
LOOPX LD A, (DE)

CP B

JR Z,LOOPX

;END OF DELAY CODE
RET

>
;LINE OR UNLINE FROM XY TO X'Y'

)

; X->E Y->D X'->C Y'->D

’
LINE LD A,15
JR $+3
UNLINE XOR A
LD (DORDEL),A ;MEMORY TO DETERMINE PLOT OR UNPLOT
LD HL,XMID
; INIT CELLS
XOR A
LD (HL),A
INC HL
LD (HL),E
INC HL
LD (HL),A
INC HL
LD (HL),D
INC HL

-114-

LD (HL),C
INC HL

LD (HL),B
;

; NOW CALCULAT THE INCREMENTS

b

LD L, G

LD D,A

LD H,A

SBC HL,DE

PUSH HL ;X'-X

LD L,B

LD H,A

LD A, (YMID+1)

LD E,A

SBC HL,DE ;HL NOW Y'-Y

POP DE ;LEFT JUSTIFY INCREMENTS TILL ONE >=
128/256

JUSTIFY LD C,L

LD A,H

RLCA

RL L

ADC A,0

EX AF,AF!'

LD B,E

LD A,D

RLCA

RL E

ADC A,0

JR NZ,JSTDUN

EX AF,AF!

JR Z,JUSTIFY

JSTDUN LD E,B

LD B,H

b
; DE IS XINC BC IS YINC
b
LLOOP LD HL, (XMID)

ADD HL,DE ; INCREMENT

LD (XMID),HL

LD HL, (YMID)

ADD HL,BC

LD (YMID),HL

EXX ;PRESERVE INCREMENTS
LPLOT LD A, (XMID+1)

-115-

b

o o

’

3 X
YMID+1)
A Y

D DORDEL)

3

A
(
A
(
A

e et e
o o
o> tw> 0

b

CALL UNPLOT+2 ;PLOT OR UNPLOT THE NEW POINT
LD HL,XPRIM

LD A, (XMID+1)

CP (HL)

INC HL

EX AF,AF'

LD A, (YMID+1)

CP (HL)

EXX

JR NZ,NYLIM ;HAVE NOT REACHED Y LIMIT
LD BC,0 ;ZERO YINC IF AT Y LIMIT
NYLIM EX AF,AF!'

JR NZ,NXLIM

LD DE, O ;ZERO XINC IF A X LIMIT
NXLIM LD A,D ;USE XINC + YINC BOTH O AS END OF
LINE TEST

OR E

OR B

OR C

JR NZ,LLOOP

RET

5
; DATA REGION

b

XMID DEFW O ;ORDER IS IMPORTANT
YMID DEFW O

XPRIM DEFB O

YPRIM DEFB 0

DORDEL DEFB 0

’

-116-

Fkdokkkhk
MOIRE

Fhhkhkhkhkhkx

UPROG LD SP,:7F00
MAINLOOP LD DE, :4078
LD BC,:101
MLOOP PUSH DE
PUSH BC
CALL LINE
POP BC
POP
INC
INC
INC
INC
INC
INC
LD A,250
CP B
JR C,0UTCOD
LD A, (STMEND)
AND 1
JR NZ,MLOOP
; ZXCV PRESSED HERE
LD HL,:8000 ;FIRST LOC OF UNAVAILABLE MEMORY
JP SAVMEM
OUTCOD CALL CLEAR
JP MAINLOOP

Tmwwo oy
=

-117-

STRUCTURES

kkkhdhkdrhhhkhk

UPROG LD SP, :7F00
JR OUTCOD
MAINLOOP LD IX,XVAR
CALL PROSUB
LD IX,YVAR
CALL PROSUB
LD B, (IX+VAR)
LD A, (XVAR)
LD C,A
CALL PLOT
LD A, (STMEND)
AND 1
JR Z,0UTCOD
JR MAINLOOP

b
OUTCOD LD HL, DUMMY
LD DE,XVAR
LD BC,12
LDIR ;INIT VARIABLE REGION
CALL CLEAR
LD HL, (FRAMES)
LD A, (HL)
AND 15
INC A
LD (XVAR+1l),A
INC HL
LD A, (HL)
AND 7
INC A
LD (YVAR+l),A
JR MAINLOOP

-118-

b
PROSUB LD A, (IX+VAR)
ADD A, (IX+DIR)

LD (IX+VAR),A

CP (IX+MAX)

JR NC, OUTCOD

CP (IX+LOW)

JR NC,POSCHEK

LD A, (IX+INC)

CPL

ADD A, (IX+LOW)

LD (IX+LOW),A

CALL DIDLIM
POSCHEK LD A, (IX+VAR)
CP (IX+HIGH)

RET C

LD A, (IX+INC)

ADD A, (IX+HIGH)

LD (IX+HIGH),A

)

DIDLIM LD A, (IX+DIR)
NEG

LD (IX+DIR),A

LD A, (IX+INC)

)

DEC A

JR NZ,$+3
INC A

;
LD (IX+INC),A
RET

;

; DATA

b

VAR=0
INC=1
DIR=2
LOW=3
HIGH=4

-119-

MAX=5

b}
XVAR ORG $+6
YVAR ORG $+6

DUMMY
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB 75
8
-1
70
90
135
110
12
1
90
130
240
0

-120-

-

EO7 ASIMIC TUNED FOR USE IN UNITED STATES OF AMERITA

This version of ASIMIC has been produced with assembly parameters for use

in the USA on &0 Hz 525 line domestic televisions. We regret that this means
that the number of lines displayed on screen has had to be reduced to 28.

If yvou wish to use the [graphics then the parameters in the kernel routine
will need some madification to give a &0 Hz frame rate. The product of
EIXSIZE % RASTERS summed with TOFS % NNN will need to be about Z44. In the

example given on pp 111-112 if rastors is decreazed to 2

1800 decimal

is subtracted from DISFEND (i.e. S50 lines of 36 bytes) and from the value
loaded into EBC in the OLEAR; then everything should synchronize nicely. If
vou use the UFROG's given then you may need to trim some of the end values
to keep points on scregn: or better still put limit checking in FLOT at the

very beginning.

You may find discrepancies in the manual, which was written for European

525 line ASIMIC, % ever in the functions of ASZMIC although

., frankly, we

doubt it; but we normallly thrash our software for several months before
releasing it and the mention in "BYTE® forced us to turn on the USA assembly
parameters sooner than |we had intended in order to meet the very positive

response from enthusiasts in America.

We took the opportunity to clear up all outstanding "buags"

(both of them)

and in consequence some portions of code do not have the addresses given in
Appendix 4 (p.85). Please use the system address list below instead.
COMPROCSYS will be producing more exciting add-ons for ZX81 in the near future.

- il e Aemmm i

	1 - Insertion and Overview
	Installation
	ZX80 Installation

	2 - Fist Steps
	Power Up
	Editing
	Rubout
	Vertical Cursor Operations
	Deleting a Line
	Files and Filemarks
	Running out of Space
	Macros
	Merging

	What Next?

	3 - First Steps Continued
	Simpler Debug Commands
	D for DUMP
	C for COPY
	F for FILL
	E for EDIT
	H for HORRIBLE JUMP
	M for MACRO
	O for OLD REGISTERS
	P for PRINT

	4 - More Debug Operations
	Saving and Loading
	K for KASSETTE
	L for ÖOAD
	A for ASSEMBLE
	J for JUMP
	B for BREAKPOINT
	G for GO
	I for IMMEDIATE

	5 - Text Operations
	Introduction
	Files
	Merging and Deleting
	Editing
	Printing
	Cassette Operations
	Headers and Files
	Creating BASIC Programs

	6 - The Assembler
	Mnemonics
	Symbols
	How Does it Do It?
	Options
	Offsets
	Assembling
	Directives
	OpCodes and Arguments
	Comments

	Errors
	Sequence
	Listings
	Libraries
	Cross Referencing
	Valete

	7 - Program Execution and Test
	The J Command
	Breakpoint
	The G Command
	The O Command
	The I Command
	The D, F and C Commands
	Valete

	8 - Graphics
	The Asynchrnous Driver
	PLOT
	LINE
	UPROG´s
	Other Resolutions
	Special Operations
	The End

	A1 - General Information
	Initalisation
	EDIT and DEBUG Modes
	Fields
	Files
	Partitions
	Use of ASZMIC Routines
	Assembler

	A2 - The Shift Keys
	Shift-0 Typing RUBOUT
	Shift-9 Home to Debug Mode
	Shift-8 Cursor Right
	Shift-7 Cursor Up
	Shift-6 Cursor Down
	Shift-5 Cursor Left
	Shift-4 Page Flip Up
	Shift-3 Page Flop Down
	Shift-2 Delete File
	Shift-1 Delete Line
	Shift-T Go to Display Top
	Shift-R Shift Macro Execution
	Shift-E Edit Return
	Shift-W Right Justify Cursor
	Shift-Q Edit Rubout
	Shift-G Merge

	A3 - Debug Commands
	A: Assemble
	B: Breakpoint
	C: Copy
	D: Dump
	E: Edit
	F: Fill
	G: GO (ZX81 Only)
	H: Horrible Jump
	I: Immediate
	J: Jump
	K: Cassette Save
	L: Load
	M: Macro
	N: New
	O: Old Registers
	P: Print

	A4 - System Addresses
	A5 - Z80 Instructions
	A6 - Application Notes
	BRKCHK
	CMPSTR
	COMMANDS
	DFLIP
	DELAY5
	EDLP1
	FNDRCR
	FRMSND
	GETFLD
	GET2
	IGNBLK
	KEYBRD
	KEYINT
	LIX
	MSKINT
	OUTFRM
	OFRM1
	OFRM2
	PRCLR
	PRNTER
	PUTDE
	RDCASS
	SHIFTS
	START
	STRSCH
	WRCASS
	WRITA
	WSTRNG
	WSTRG2
	WSTR1
	Examples
	Write a Char to Screen
	Write a String to Screen
	Add 2 Numbers and Display Result
	Palindrome
	Print Numbers from 0 to 6
	Print a Line
	Create a Basic Program
	Graphic Programs

