(i)

STARTING PASCAL

on the Sharp microcomputer

R G MEADOWS

BSc, MSc, PhD, MIEE, CEng, MInstP, ARCS

(i)

SHARPSOFT LTD.
86-90 Paul Street,
London EC2A 4NE

Tel: 01-739 8559
C) R.G..Meadows 1983

All rights reserved. No part of this publication
may be reproduced, stored in a retrivial system
or transmitted in any form or by any means,
electronic, mechanical, photowpying, recording
or otherwise without prior permission in

writing of the author or his authorized agents.

This book may not be lent, resold, hired out
or be disposed of by way of trade in any form
other than in which it is published without
prior consent in writing of the author or his
authorized agents.

First published 1983

ISBN 0 907690 03 3

ASSOCIATED BOOKS BY SAME AUTHOR

A beginners guide to using the Sharp
microcomputers. (SHARPSOFT)

Microprocessors: essentials, components
and systems. (PITMANS)

(i)

CONTENTS

CHAPTER 1 GETTING STARTED

1-1

1ie:2

Introduction

Loading the PASCAL interpreter

1
1

1.3 Preparing and editing PASCAL programs 2

(a)
(b)
(ec)
(d)
(e)
(£)
(g)
(h)

1.4
|

1‘6

*

Entering programs via the keyboard
Executing programs

LIST commands

DELETE commands

KILL command

INSERT commands

LOADING programs on tape

SAVING programs on tape

General corrections
Clearing the display

Some introductory PASCAL programs

EEER R R R R R EE LSRR R

CHAPTER 2 SOME PASCAL FUNDAMENTALS

Introduction
Variables
Identifiers

Variable declaration

Assignment statements

1.2

LE
13

14

15

(iv)

2.6 Values and expressions

(a) INTEGER and REAL values

(b) CHARACTER values

(c) BOOLEAN values
2.7 WRITE and WRITELN statements
2.8 Formatting

2.9 READ and READLN statements
2.10 Compound statements

2.11 PASCAL program structure

LR EEEEEEEEREEEEEEEEEEEE SRR

CHAPTER 3 PASCAL EXPRESSIONS AND
STANDARD FUNCTIONS

3.1 Introduction

3.2 REAL expressions: arithmetic operators
3.3 INTEGER expressions: arithmetic operators
3.4 Comparison operators

3.5 BOOLEAN operators and expressions

3.6 Standard functions

3.7 Mathematical functions

3.8 Standard functions involving characters

ERE R EEEEEEEEEEEEEEEERERESEEE

16

18

20
23
26

28

19
29
51
ke o
35
38
39
41

\v)

CHAPTER 4 CONTROL STATEMENTS: .
CHOICE, SELECTION AND REPETION

4.1 Introduction - 43
4.2 The IF statements Lh
4.3 The CASE statement Ge
4.4 Repetition 1: the WHILE...DO statement 43

4.5 Repetition 2: the REPEAT...UNTIL statement 51

4.6 Repetition 3: the FOR...TO...DO statement 5S4
Akkkkhhhhhhhkrhhkkhhhhhkhkhhhxk

CHAPTER 5 PROCEDURES AND FUNCTIONS

5.1 Introduction S

5.2 Simple procedures: their declaration

structure and call 58
5.3 Procedures with value parameters 61
5.4 Functions: declaration and use 5

R EEEEE SRS E ST EEEREEEEE R R R EEE XN

CHAPTER 6 ARRAYS

6.1 Introduction 6"
6.2 Array declaration 6"
6.3 Examples of programs using arrays 6S

R R EEEE R EEEEE SR EETEEEEEEE L RSN

INDEX 13

(vi)
PREFACE

This book has been written for beginners
wishing to learn PASCAL so as to be able

to write thelr own programs in this import-
ant and now widely used language.

No prior knowledge of any other programming
language 1is assumed nor is it needed. The
text is written with the underlying purpose
of showing in the clearest and easiest
possible way how to write programs in
PASCAL.At every stage examples of complete
programs are included to support the Pascal
concepts being introduced. Good luck!

Richard Meadows
May 1983

DEDICATION

To Mike and Larry

CHAPTER 1
GETTING STARTED

LTINTRODUCTION

In this first chapter we start by loading

the PASCAL INTERPRETER tape and then learn

to use the basic edit commands, which you
will find absolutely essential in order to be
able to prepare, modify and run programs.

The chapter concludes with some simple

PASCAL programs designed to introduce

you to this language, get you conversant

with the edit commands and running PASCAL
PROGRAMS .

L2ZLOADING THE PASCAL INTERPRETER TAPE SP-4015

l. First turn on your computer—-the power
switch is located at the back. The
following will be displayed on your
screen:

*% MONITOR SP-1510 **| |*¥* MONITOR SP-1002 **

for the "A" for the "K"

Note for "A" users only. The Sharp
Interpreter SP-4015 can be used for
both A and K computers. However, for
the A you must now press

cntnf + | ¢

This operation essentially configures
the A as a K and must always be done
to avoid errors which would otherwise
occur in entering and running programs.

2. Insert the PASCAL INTERPRETER tape

SP-4015,

by CARRIAGE RETURN (the CR key),

LOAD <CR>

and type in LOAD followed

i.e.

A symbol used throughout text
for "press CR key".

3. |{$ PLAY will be displayed.

Press the PLAY key on the cassette
control unit.

LOADING PASCAL SP-4015

will appear within 10 or so seconds,
followed when loading is completed,
after about 2 minutes, by:

* INTERPRETER PASCAL SP-4015
31208.BYTES
READY

WE ARE NOW READY TO GO!

3 PREPARING AND EDITING PASCAL PROGRAMS

We begin straightway by entering a simple
PASCAL program so as to learn the basic
edit commands associated with preparing
and modifying programs for your future work.

Here

is a simple PASCAL program.

]

T

i

F o EMD

LHTO LIST SERSOMS OF YERRE

1.BEGIH

e WRTTELHE " ebsppehpbobopup 1 0
e WRITELHOM ZRREIHG tas
4. WRITELHC" SUMMER a3
2. WRITELHO! WIMTER AR
B WREITELH " skt pbsboshgbobog 0

We will first type it in and then see how
we can list it, run it, insert extra lines,
correct any errors, kill it ...etc.

The program writes out the seasons of the

year. You will probably have seen I have,
at this stage, missed out AUTUMN.

(a) TO ENTER A PROGRAM VIA THE KEYBOARD

1. Type in

B <CR>

This command is always used on
commencing entries.

is displayed.

Line numbers are automatically displayed.
O is the first, followed by 1,2,3 ...
after entering the line with <CR>.

2. Now type in the first line, in our example

{O.ZTO LIST SEASONS OF YEARZ <CR>
1.

automatically displayed
ready for next entry

3. Type in second line followed by <{CR>,i.e.

1.BEGIN <CR>

4. Type in subsequent lines of program,
taking great care to omit (or add)
nothing—the program must be exact
otherwise it is unlikely to run.
Don't forget the ; which terminate
most lines nor the . after END.

5. Finally after the entering the
"END." line press <CR> again.
No further line numbers will be
displayed, just the cursor
A command entry is now awaited.

(b) TO EXECUTE THE PROGRAM

Type in

G <CR> . the "G0" command

- This command runs the program. In our
case you will obtain the display:

£ SE ok oh SR S SR e o R
SPRIMG
SUMMER
AUTUMH - | In fact this Line does nof?
WIMTER Bppear Gl ofs evilied 55
ook bbbk ;;:ﬁﬁ"%ﬁg;:ﬁ arer

(c¢c) "LIST" COMMANDS

l. To list complete program: type in

P <CR>

The entire program will be displayed
on the screen.

2, To list complete program on printer:

i <CR> ‘

3. To 1list a specific line :

P <line number> <CR> for screen

H <line number) S for printer

For example,

B3 <{CR>

will display line 3, i.e. in our program

3. WRITELN(" SPRING ~)3

4., To list range of lines:

P <start line no.>-<end line no.> <CR>

For example,

P2~5 <CR>

will display lines 2,3,4,5.

5 To 1list up to a specific line:

P-<specific line no.> <CR>

For example,

P-4 <CR>

will display lines 0,1,2,3 and 4
(d) "DELETE™ COMMANDS

Exactly similar to "list" commands but with
D replacing P, i.e.

1. To delete one line:

D <line no.> <CR>

2. To delete a group of lines:

D <start no.>-<end no.> <CR>

3. To delete lines upto/after specific line:

D-<end no.>» <CR> D<{start no.> <CR>

DELETES all lines upto/after specified
line no. including also that line.

Examples

D3 <CR>| deletes line 3

D-12 <CR>] deletes lines 0,l...to 12

D65- <CR>| deletes lines from 65 upto
the end of the program.

(e) "KILL"™ COMMAND

To erase the entire program, type in

K/ <CR>

(f) TO INSERT ADDITIONAL LINES IN PROGRAMS
1. To insert a single line:
To insert an additional line between

lines (for example) 4 and 5 in our
"seasons” program, type in:

|5+ WRITELN(" AUTUMN ")

line we wish fo insert belween 4 andS
of old program

]L~this symbol is obtained

+] for the K: BY PRESSING [SHIFT] + [Z] keys
for the A: BY PRESSING [CTRL]+ [Z] keys

Check to see that the line is indeed inserted
by using the "list"” command, i.e.

P <CR>

A,%TO LIST SEASOMS OF YEARX

1.BEGIH .
e WREI TELM i seshsbsebasopsk oo _:l b
3. WRITELNC(Y SFRIMG :: A3
4. WRITELHL" SUMMER L
. WRITELN(Y BUTUH Mai
6. WRITELHC(® WIMTER tas
e WRITELM O "ok L
g. EM[s.

2. To insert more than one line:

To insert a number of lines, for
example, between lines 6 and 7, type in

!7* <CR>|

On pressing the carriage return
subsequent line number (beginning
at 7 in the above case) will be
automatically dispayed-now carry
on in with your entries.

3. To insert lines at beginning of program:

B <{CR> (Note same command

as to start entries).

4., To insert lines at end of program:

(g) LOADING A PROGAM ON TAPE: APPEND COMMAND

To load a program contained on tape,

type in
IA <CR> the LOAD command
[%ILENAME?E——-—-‘tJ is displayed

type in here name of program
followed by carriage return

1.4

129

$PLAY

is displayed, asking us to
press PLAY on cassette control

FOUND PAYOFF

is displayed when

program found,
followed immediately

LOADING PAYOFé] by

when “"ready"”
(with audible blip)

(h) SAVING A PROGRAM ON TAPE: SAVE COMMAND

RECORD.

S <CR>
FILENAME? PAYOFF <CR>
PLAY

WRITING PAYOFF

that is, simply type in S followed by
carriage return, FILENAME? is then

displayed.

Type in suitable name (as

always, followed by carriage return) and
your program will be stored on the tape
cassette, when you action RECORD PLAY

GENERAL CORRECTIONS WITHIN THE PROGRAM

—>
Use cursor control keys:

and instant delete key:

in exactly the same way as 1in correcting
BASIC programs.

CLEARING THE DISPLAY COMPLETELY

To clear the display on the screen use

SHIFT

+

CLR
HoME‘keys’

1.6

whilst to execute "clear display"” as a
program statement use statements of the
form:

WRITE(" "); WRITELN(™ ")

SOME PASCAL PROGRAMS

Try entering and running these programs.
They will provide you some practice in
using the edit and other commands and also
serve as an introduction to the form of
program structure used in PASCAL.

l. A very simple program using the

WRITELN("*%*%*%%%"). gstatement.

This statement is used to display on
the screen the characters enclosed
within the quotation marks.

i

% MAME AHD ADDRESS =

« BEEGIN

. WRITELHC "debbsobboh bbbk U g
WEITELHC "My noes iz
WEITELHLT FIERS STHFLETOM" »:
WRITELHCYT live atz'o:

[I < r-_l -

. WRITELMHC! s LYMHTON SLOFPE, "
Fu MREITELHC! WEST ARTFORD. ">
. WRITELMOM YORKEHIRE™ 23
9, WREITELMC Y dtbop bbb ehduh ok 100
18, END,

< “Go" or "RuN"

command.
fo S0 0 R N K0 R0 2 B SRR S0 KBS LR SR R SRR
[l rnames is:
FIERZ STRFPLETOM
I live ati
ol LYMTOH SLOFPE.
WEST ARTFORD.
YORFSHIRE

E S 2RSSR R R B B S0 R0 S S i v S0 A 0K S N

..

VYR

TR DA

SRRSO B0) V€] A IR R AN R ey T AR i 8

iv

We also use the comment statement:
B s esbmmmaem s T

This is used to add any comments we may
wish to include in our program (e.g.
what the program or what a certain
section of lines does).

Comment statements are ignored by the
computer when executing the program-

~ they are to help our understanding.

2.

To illustrate use of the WRITELN
statement in both display and calculation.
8,5 ARITHMETIC CALCULRTIONS X
1.BEGIH
2., WRITELHOU"4, 1245, 35=",4,12
. MWEITELHO"4,12-5,3e=".4,1Z
4. WRITELMO"S, 1245, 3a=".4,12
9. WRITELMO"4,12-5,76=",4,12
£. EME.
& {CR>
4. 1245, 36= .45
4,12-5, 3= o TR
4, 1245, 3= P
4,12-5. 3= 5 I T

To "draw—a-line”. A simple example of
an inter-active program. The READLN
statement asks us to input the LENGTH,
the program draws the line.

Q.5 TO DREAW A LIHE LEHSTH 1 TO 48 UMITS
1.UAR M. LEHETH: IMTEGER:

Z.BEGIH

S« UWRITEC"Enter lenath of lirne">:

4, EERDLMCLEMGTH»S

e 3 FOR Hi=1 TO LEMGTH DO

B WEITEC"—="2

r.EHD.

11

Finally a more complex program,

Input your LOAN, the INTERESTRATE and
REPAYMENT-the program shows how your

loan is (or rather will be) paid off.

. PRAYOFF YOUR LOAM X
'HE LOAM. INTERESTRATE : EEFRYMENT : REAL 3
MONTHHD: TNTEGER:
. BEGIN
MONTHHO: =13
WRITECYENTER LOAM REQUIRED »:
- RERDLHCLOAM
WRITEC"IMTEREST RATE X"
RERDLHCIMTERESTREATE 23

AR U RN I S | -h o] b = l"’!

19, READLNCREPRYMENT 25

11. WRITELHC“MOWNTH DEBT"::

12, WRITELHC" "as

D FEFEAT

14, LORM: =L0OAM+C 1. B+ IMTERESTRATE- 1286, &5
13 -REEFAYMEMT

16, WEITELHCMOMTHHO: 4, LOAN: 182 20

L4y MOMTHHO: =MONTHHO+1 5

S. UMTIL LOAM<I=8, 83

19. UWRITELNC" "33

28, WRITEC"LOAMW IS FAID OFF IH"»:
21, MWREITECMOMTHMO-1:3:" MOMTHS" >
22, EHD,

WRITEC"AMOUNT OF REPRNYMEMT PER MOMTH"3:

12

CHAPTER 2
SOME PASCAL FUNDAMENTALS

VARIABLES, STATEMENTS AND PROGRAM STRUCTURE
2.1 INTRODUCTION

In this chapter we deal with some fundamentals
concerning the definitions of terms, the rules
and structure of PASCAL, and how we apply
these to write programs.

A PASCAL program may be considered essentially
as a series of statements-written according

to the "grammar" or syntax of PASCAL-

which the computer subsequently executes step
by step. If the program does not follow these
rules exactly it will not run and you will

be told why-the computer automatically outputs
an error statement (see list of errors in
Appendix). Thus it is essential to gain at
least a basic understanding of the PASCAL
syntax to enable you to begin to write your
own "error-free" programs.

2.2 VARIABLES

The calculations and operations made in a
PASCAL program are applied to variables.

Each variable can be thought as a container

or box to which can be assigned a given value.
Once a value has been placed in a variable

it remains there but may be altered when

(or if) any subsequent program statements
assign the variable a new value.

*Appendix of Sharp Pascal MZ-80 Manuel
(pages 132-133)

13

In PASCAL there are four different types
of variables:)

INTEGER (whole numbers, e.g.
0, 10,.-87, 3059)

REAL (decimal numbers, e.g.
0.0, 100, =12:76; 999.8)
CHAR (characters, e.g.

'AI’IB',I]—',VZ!,I?YSI l)

BOOLEAN (used in decision making,
Boolean variables can
only take one of two
values: TRUE or FALSE).

2.3 IDENTIFIERS

Variables (and, as we see later, procedures
and functions) are all represented by
identifiers. An identifier is the name

we assign to a variable.

In PASCAL all identifiers must begin with
a letter. They can then be followed by any
sequence of letters or numbers.

You should always try to choose meaningful
identifiers for the variables in your
program. This helps in understanding

what your program is about and does-
especially useful for future reference

and for other users.

The syntax diagram for an identifier is
shown below.

IBENTIFIER
(rRenTried) s

14

Syntax diagrams will be used extensively
in our explanations. They provide an easy
pictorial means of illustrating PASCAL
syntax—-just follow the arrow directions-
provided you always go in their direction
you can pass round a loop as many times
as you like.

Examples of legal identifiers:

lNUMBER, JKFLIPFLOP, X11, AlX2, HIGHTEMP]

Not allowed:

I1NUMBER (starts with "1", should be a letter)

X+Y ("+" sign must not be used, only letters
or numbers)

MIN SPEED ("space™ used).]

2.4 VARIABLE DECLARATION

In PASCAL we create variables by what is
known as a declaration: the VAR declaration.
This is normally done close to the beginning
of our program.

In declaring variables we must specify both
their identifiers (names) and their types
(i.e. whether REAL, INTEGER, CHAR, or
BOOLEAN) .

The syntax diagram for the VAR declaration
is given below:

i h
{ VAR DECLARATION)

VAR P IDENTIFIER TYPE

¢

oy
)

15

Examples.

1. Suppose the identifiers for REAL variables
we wish to use in a program are:

VOLUME, SURFACEAREA, RADIUS, PI

These are declared at the beginning
of the program as follows:

VAR VOLUME,SURFACEAREA,RADIUS,PI:REAL;
¢ t I

each variable seParnteA bj Comma,

semicolon
ot least one space between e egore i
VAR and first (deabifier o e ik 650
f f aﬁv::%hlgp in dulgsahhn.

2. If variables of more than one type are
used they are declared as shown in the
example below:

VAR LOAN,INVESTMENT,RATE:REAL;
MONTH, YEAR: INTEGER;
RED,QUESTION,ANSWER: CHAR;
LLOYDS,BURNLEYBSOC,
NATSAVE, PAIDOFF ,INDEBT: BOOLEAN;

2.5 ASSIGNMENT STATEMENTS

An assignment statement "assigns” a value
to a variable. The general form of assignment
statement is given in the syntax diagram below:

ASSIGNMENT STATEMENT

VARIABLE —»CE_}—* EXPRESSION —*—

(::) means "is assigned” exscute ¢ = by
or “"takes the value” pruofr\am Jollowed by @

Ku.,s

2.6

16

Some examples:
REAL
1. X:= 5.2;] means the[variable identified
by X is assigned the value 5.2

Note the statement is not a mathematical
identity. The statement says:
"whatever value the variable had (if any
was previously given) now give it 5.2"

2. DAYOFWEEK:= 7; | means the INTEGER variable
identified by DAYOFWEEK
is given the value 7

3. APPLE:="A"'; means the CHAR variable
identified by APPLE 1is
assigned the value A

Note for character variables we can only
assign a single character as its value
and this character must be contained
within the single quotation marks ' '.

4. HITEMP:= T>=100;| means the BOQLEAN
variable identified

by HITEMP 1is assigned
the value TRUE when

the integer variable T
is greater than or

equal to 100 and FALSE
when T is less than 100.

VALUES AND EXPRESSIONS

In the assignment statement a value or more
generally an expression is assigned to a
variable. We will be dealing with
REAL expressions, e.g. X-Y, X*Y , (X+Y)/34.62,
INTEGER expressions, e.g. A DIV B, A MOD B
BOOLEAN expressions, e.g. P AND Q, NOT(P OR Q)
in later chapters. No similar operations are
available to perform "calculations” on CHAR

17

values, although they may be compared and
used in READ and WRITE statements- again to
be considered later.

However, at this stage it is worth while
introducing some idea of expressions and
now clarifying some important points
concerning REAL, INTEGER, CHAR and BOOLEAN
values.

(a) INTEGER AND REAL NUMBER VALUES

PASCAL distinguishes between INTEGERS

(+ or - whole numbers) and REAL numbers
(numbers with a decimal part even if this
is zero, e.g. 10.0 MUST BE SPECIFIED in
this way to represent the REAL value 10.

Examples of INTEGER values:
0 10 543 -5000 =43 +12000

Examples of REAL values:
0.0 12.78 -1000.0 +4+999.9
4.5E6 (= 4.5%x1000000 or 4.5x10)
SE~3 (=5x%x0.001=0.005 or 5x10)

(b) CHARACTER VALUES

A character variable may be assigned the
value of any character available on the
keyboard,which include:
1. Upper and lower case letters
AyBiCiyDviese s X3 Y3 Z “@ayb,CaesseX ¥,2
2. The ten denary digits
O’1a2’3’4)5’6:7,8)9
3. Punctuation marks
! S

4. Space and graphical symbols

Remember, the character value-known as the
character constant—- must always be

entered in between the single quotation
marks in the assignment statement, e.g.

QUESTIONMARK:='?"'; SPACE:=' "';

-

2.1

18

(c) BOOLEAN VALUES

Boolean variables can only be assigned one

of the two values: TRUE or FALSE. For

example, if A and B are declared as

BOOLEAN variables they may be assigned:
A:=TRUE; B:=FALSE;

Boolean values very often arise from the

result of a comparison. For example,
YOUNGAGE :=AGE<18

assigns the BOOLEAN variable the value

TRUE when the integer variable AGE has

the value of less than 18.

WRITE AND WRITELN STATEMENTS

The WRITE and WRITELN statements are the
basic output display statements of PASCAL.
They correspond to the PRINT statements
used in BASIC.

(a) The WRITE statement
The WRITE statement is used
(i) to effect calculations and display
the results
(ii)to display character strings, i.e.
the characters enclosed within

double quotation marks.

To effect and display the result of a
calculation:

WRITE(<calculation expression));
To display a character string:
WRITE("<character string>");

For example:

19

8.% SIMPLE CRLCULATION .
1. %ILLUSTRATIMG USE OF WRITE STRTEMEMT:
A.”HP “YiREAL:
. BEGIH
4. mi=ldodrte=4,87:
e HEITE&"“f”“".ﬁ+?3
&. EMD.
L s <Cﬂﬂ < The "GO" command
A= : T ey |e— Result

(b) The WRITELN statement

The WRITELN statement performs the same
function as the WRITE statement but in
addition makes a carriage return after

the statement has been obeyed. Any subsequent
output will then be started on a new line.
The WRITE statement does not make this
carriage return.

The use of the WRITE and WRITELN statements
is illustrated in the following program:

g, WAk H. Y RERL:
1 BEGIH
T, Hi=tE,@rYei=S56.7:
I. WREITEC"THE AHSWER TO X-% I2"):
4. WREITELH{=E-%23
S, WRITELHC™ "is
£. WRITEC"THE AMSWER TO W-o8 ISYa:
T WREITELMOSE-SY S
. EMLD.
[& <Cr> |

4
7T

ANSWER TO X~Y 15 41,2
NSWER TO X/VY 15 1.728395

i)
X
T

20

(c) The PWRITE and PWRITELN statements

These have the same action as WRITE and
WRITELN but output the results, character
strings..etc. to the printer.

(d) General comments on use of WRITE and
WRITELN for display and cursor movement

WRITELN(" ")3;} produces a line feed

WRITE("@") ; [WRITELN('@") ;|

use, %HIFT + ,fé’:e_‘keys

used to clear screen completely

lyRITE(“E"); cursor is shifted to top
left hand corner of screen
without clearing display

WRITE("@"); WRITE("®");
WRITE("B"); WRITE("@") ;

used to shift cursor respectively
UP, DOWN, TO RIGHT, TO LEFT

2.8 FORMATTING THE WRITE AND WRITELN OUTPUTS

Formatting the output is very useful especially
when the output display or copy is to be
tabulated and also when the exact number of
output digits or number of decimal places are
to be controlled.

This may be accomplished by following each item
in the WRITE or WRITELN statements by
formatting information consisting of a conmma,
and one or two positive integer values
separated by colons.

21

1. WRITE(A,B,C); and WRITELN(A,B,C);

These statements display the value of each
vaiable or expression so the least significant
digit (for REAL and INTEGER items) or
character (for CHAR values) is 15 SPACES

to the right of the current cursor position.
For example:

8. UAR M1.M2: INTEGER:
1.BEGIHN
h.Hi--—-471$t4"‘”=
JLWREITECHL M2

4. EMD.

G <CRY | ———— The “GO" command
SE2 |

+———1I5 spaces ———>— IS5 spaces——>

- AT
e Mt

‘.L'

8. UAR LETTERA. LETTERZ: CHAR:

1.BEGIH

2.LETTERA:="A s LETTERS:="2 "3
SWRITELHILETTERH. LETTERS
4. EHD.

I A]

|5 s paLes———p ¢ 5 spacey —————-an

2. WRITE(<Kexpression>:N);
and WRITELN(<expression:N);

These statements display the value of the
expression so the least significant digit

or character (in the case of a CHAR variable)
is N (N=1,2,3...etc.) to the right of the
current cursor position.

For example:

et ot ol e

22

d.UER A, B CHAR:
1 BEGIH
2 k=R Bi="R
S.WRITELHCA: 16, B 1@
4 EHL.
G <>

. g

4— |0 specss —F<4—— 0 spaces——>

@.URR .Y REAL:
1.BEGIN

2,81 =23, 5431 =9
T

L WRITELMC S 8,
4. EHMD.

[G <erd

23.5¢ 9,83 23149236

oo 0

34:
SR

G poics P Bap — P 12 spues——

WRITE(<expression:N:P>);
and WRITELN(<expression>:N:P>);

These statements display the value of the
variable or the result of the expression

so the least significant digit is N spaces

to the right of the current cursor position
whilst the second integer P specifies the
number of decimal places given in the result.
These form of statements are valid only

for REAL values.

Examples:

8.UAR x.%:REAL:
1.BEGIH

o ovte T DT
Ladhe TG O

T WRITELHOH: 61 7
4. EMD.

34,87 -6.68 -S.2150)

23

A.UAR H.Y1 INTEGEE:

1.BEGIHN

E.H:=4“;T:=1HE?.
ZUWRITELHCOK Yo

4. URITELHC" “W;

S WRITELHCK S Y ig0s

B WRITELH(" *)3 :
T UWRITELMNCY W=t ¥i32s
S.WRITELHC" "3 '
AMRITELMHOY P e =
18, EHD.

G {cr

13 I3 S N 393 u R BUNIYN I

LJ”H T T i e x5

ls‘spucs iSspaces —————>

([L [T+ fresn (x:5, v:03)
(T [b G T T T e, <53

e § >

LT lw-H Hﬁﬂf LEVRL A EET] o {umimean (- Bamen Y=, ¥: €]

—g—> — f—>

2.9 READ AND READLN STATEMENTS

The READ and READLN statements are the basic
PASCAL statements requesting the input of
data. They correspond to the INPUT statement
used in BASIC.

REAL, INTEGER and CHAR values can be "READ",
BOOLEAN values cannot.

(a) READ(<identifier>); and READLN(<identifier));
READ(A); and READLN(A) ;

When this form of statement is executed

a ? is displayed on the screen and an input
of data (corresponding to the value of the
identifier, A in our example) is awaited
from the keyboard.

When the value is keyed in and carriage
return pressed the program continues

24

The difference between READ and READLN

is READLN makes a carriage return after
the input (e.g. if the next program state-
ment were WRITE(...); the output would
commence on a new line), the READ does not
make a carriage return.

Example. This program uses READLN statement
(line 5) to request input of radius
and then calculates and displays
volume of sphere.

8.%T0 DETERMINE UOLUME OF A SFHEREX
LLURR R PI-UOLUME: REAL:

2.BEGIN
3.PI:=3.14159;
4, WRITEC"ENTER RRDIUS "is

5. READLMCR S
6. VOLUME: =4, G+F T+R+eR®RE-3, B35
FLURITELHC"WOLUME= " UOLUME: S 30

&. EHD.
[6 <er> |
ENTER RADIUS ? 5.62 <CRD

e VALUE OR RADLUS

ENTERED FROM KEYBOARD

VOLUME = 743.528
t DISPLAY OF RESULT

(b) READ(A,B,C); and READLN(A,B,C);

When this form of statement is executed
the first displayed awaits the value
of A to be entered. Enter the value
followed by a comma (or alternatively

a carriage return).

A Second is then displayed. Enter
value of B followed by a comma (or <CR>)
The third displayed awaits value of C.
Enter value of C and press <CRD>,

Program execution then countinues.

25

There is a practical limit to the number

of characters that can be inputted using

the READ(A,B,C,D...) statement. In our case
it is not more than two lines (80 characters
including the ? prompts).

The READLN statement overcomes this difficulty
by making a carriage return after the last
value in the READLN brackets has been

entered. For example,

READ(A,B,C,D,E,F,G,H,I)
could easily exceed 80 charactres of data
and is better programmed, for example, as
READLN(A,B,C,D);
READ(E,F,G,H,I);

Example

8.UAR A.B.C: INTEGER:
1.BEGIN

2 RERDLHCA B Cos
SLWRITELNC"A+B+C=", A+B+C 16D
4, END.

[G <CR>]

? 365,487,334 LcR?
t $ 4

VALUE OF A ENTERED
FoLLoweDd BY [2]

VALUE OF B ENTERED
FolLLOWED BY E

VALUE OF C (LAST ENTRY)
Fotlowéd BY <(CRD

A+B+C = 1186
4

Ny

DISPLAY OF RESULT

26

2.10 COMPOUND STATEMENTS

In PASCAL there are basically two types of
statements:

simple statements...statements that cannot
be grammatically divided;
an assignment statement
is an example of a
simple statement

compound statements...statements which
consist of a number
of simple statements
preceded by BEGIN
and terminated by END

The executable sections of a PASCAL program
normally consist of a combination of simple
and compound statements.

The main objective of a compound statement
is to cause a sequence of simple statements
to be bracketed together and treated as a
single statement for syntax purposes. This
is done within the program by bracketing the
required sequence of statements between
BEGIN and END. It is good practice to indent
a compound statement by starting each line
making up the compound statement with 2or
more spaces, although normally not more

than 5.

The syntax diagram for a compond statement
is given below:

STATEMENT END

9\

COMPOUND]
sTATEMENTl 4‘\,}

27

Example.

The following program, which finds the average
of any number of quantities entered via the
keyboard.

The program contains a number of simple
statements, e.g. the assignement statements
on line 3; the WRITE and WRITELN statements
on lines 4,6,7 and 15; and the READLN
statement on line 5.

The WHILE...DO... statement (line 8) 1is

one form of repetitive statement used in
PASCAL and will be considered in detail in
Chapter 4. In our example: "while the number
entered is not equal to -9999.0", the
COMPOUND statement from line 9 to 14 is
obeyed. When the last value has been entered,
the repetition is stopped by typing in
-9999.0. The AVERAGE is then outputted by

the WRITELN statement of line 15.

1
@.% TO FIND AVERAGEX
1.UAR SLIM, HUMBER . M: REAL 3
2. BEGIN
3. Hi=@.0:5UM:=8, 8
4. WRITEC'ENTER FIRST HUMBER"):
S. READLMCHUMBER 3
€. WRITELM{“#%+ AFTER LAST MUMBER ###"3;
7. WRITELN("s#% TYPE IN —3999.8 ###")
8. WHILE NUMBER<{>-9933.@ [C
3, EEGIN
1a. SUM: =SUM+NUMEER 3
11 Mi=H+1.@:
i WRITE("EMTER MEXT HUMBER™)3
13, READLM¢MUMEER:
14, EHD
15, WRITELNCAUVERAGE= ", SUM-Mig:i2:
| 1E.END.

28

2.1 pASCAL PROGRAM STRUCTURE

By now you will be fairly familiar with the

form PASCAL programs take. All PASCAL progams

have a basic structure and an order that
must be followed. The order for programs
when using the SHARP PASCAL INTERPRETER
SP-4015 (when no procedures or functions

are declared-we consider these in Chapter 5)
is as follows:

1.

VAR section (variable declaration section)

All VARIABLES used in your program are

declared right at the beginning.

A unique IDENTIFIER must be allocated

to each variable. Identifiers of the

same type are separated by a comma

and their TYPE (REAL, INTEGER, CHAR,

BOOLEAN) stated at the end of each

type group, preceded by : and terminated

by 3

e.g. VAR INCOME,EXPENSES:REAL;
NOOFYEARS:INTEGER;
QUESTIONMARK:CHAR;
SHORT,TALL,OVERWEIGHT:BOOLEAN;

2. PROGMM STATEMENTS

After the VAR section we write the
statements used to solve our problem,

the executable statements. This section

is always commenced with BEGIN

The various simple and compound statements
then follow in the order they are to be
executed. Each individual statement must

always be terminated by a

3

except the very last one or the last
statement of a compound statement
(in this case the bracketing END

is terminated in ; i.e. END;

All progams must be "ended" by typing
in END. (do mot forget the full-stop
after the END.

29

CHAPTER 3

PASCAL EXPRESSIONS
AND STANDARD FUNCTIONS

3.1 INTRODUCTION

In this chapter we consider

* REAL and INTEGER arithmetic and comparison
expressions and operations, e.g.+,—,%,/
DIV,MOD and <,>,=...etc. used, for example,
in making calculations and comparing
data.

* BOOLEAN expressions and operators, e.g.
AND,OR,NOT,XOR used for making decisions.

*# STANDARD FUNCTIONS availiable in PASCAL
for performing prescribed tasks, e.g.
SQRT(X),SIN(X) ,ARCTAN(X) ,RND(X),0DD(X),
CHR(X),TRUNC(X) ,FLOAT(X) ,ABS(X)...etc.

3.2REAL EXPRESSIONS: ARITHMETIC OPERATORS

The following are used with REAL data and
variables:

ADDITION + key e.g. W:=A+B;

SUBTRACTION - key e.g. X:=A-B;

MULTIPLICATION * key e.g. Y:=A*B;

DIVISION / key e.g. Z:=A/B;
The usual rules of precedence apply, 1.e.
* and / before + and -.

Brackets may also be used in the normal way
e.g. G:=(A-B)/(A+B); H:=23.0%(2.5-5.6%A/B);

30

NOTE. In SHARP SP-4015 PASCAL REAL and
INTEGER values and variables cannot be
mixed. Thus, although +,-,* operators
exist-also for INTEGER variables the
following expressions, for example, will lead
to an ERROR message in program execution:

A+N A-N A*N
if variable A is REAL and N is INTEGER
It should be noted, however, in "standard"”
PASCAL INTEGER values may be used in a REAL
expression without qualification. The integer
value is automatically converted to the
corresponding real value in program execution.

Examples

The following programs illustrate REAL
expressions in some simple calculations.
We use the WRITE and WRITELN statements
to make the calculations and also fomat
the results. COMMENT and READLN state-
ments are also employed.

A,UHF B.B:FEAL:
1.BEGIN

B r=dZ. 8B =10, 8
3. WRITELHC"A+B=".A+B:15:11x:
4, WRITELHY"R-B=".RA-B:rSili:
S, WREITELHC"A+E=",[+EI D
&, WRITELHOY"A-B=".H-BiIZ:li:
T WRITEC"(R-BX-(H+BI="23
2. WREITELHLCR- E STHFEDE DD
3. ERD,
[G <Cﬁ>j “—— The “GO" command

A+B= S7.8

A-B= 27¥.4 «— Kesults

OxE= E3H

A-B= 2.8

CH-Br<CR+BE= 473

31

a.% TO DETEEMINE RESISTANCE R X
1.% OF Bl AHD RZ IN PARRLLEL X
2. UAR R.R1.EZ:REAL:
F.BEGIH
4. WREITEC"EHNTEE E1 UALLIE "i:
S, EERDLHOREL 33
&. WRITEC"ENTEE E2 URLLE Y>s
7. EEADLHCEZ»:
a8 R'“LEl*E; ALR1¥R203
R WEITELHC "sebsbbashobobopdeg V' 3 3
18, WRITELM("R=".RigZiZ);
11, WRITELN " sehokobobobotodopsobbotogsg)
12BN,
[G <cR> |
EMTER R1 WALLE 7 32 | 30 entered by us

EMTEFR F2 UALLE 7 28 «—————— 20 enlered
B T S R R A o iRt ch ch o s e e o
f= 12,808 <« Result
BEE oE S8 o8 B o b shoh R s sk o B

3.3 INTEGER EXPRESSIONS: ARITHMETIC OPERATORS

We have already noted that PASCAL distinguishes
between REAL and INTEGER variables and data.
There are also certain distinctions in dealing
with arithmetic operations.

The addition, subtraction and multiplication
operators + - * are identical for both REAL

and INTEGER variables. Division, however, is
different. The / 1is not used for INTEGER
variables and data.

The DIV and MOD operators are used:

The DIV operator performs DIVISION WITH
TRUNCATION, e.g.

X:=25 DIV 7 assigns X the value 3
i.e. 25 divided by 7 to the nearest whole
number rounded downwards.

32

The MOD operator provides the REMAINDER,e.g.

XR:=25 MOD 7 assigns XR the value 4
i.e. 25-7=3 with a remainder of 4

Y:=100 DIV 20 assigns Y the value 5
YR:=100 MOD 20 assigns YR the value 0

Examples

8. UAR C.D: INTEGER:

1. EEBIH

i =42:Di=15:

e ldEITELHk "C+["‘" 2 L+ 70
4, WRITELNC"C-D=".C D'T“
9. WEITELNC"C#D=", i T7h;
6. WRITELN("C DIU D=",C
7a WRITELHC"C MOL D=".C
o 8. END.

1 G <crR)

C+h= ST
C-D= 27
L= RS
CDIYWD= 2
CoMoD D= 12

Ill [l,, ~,|:
00 e 3o

~"'l'—l

This program illustrates the use of the MOD
operator in finding whether a number has a
given factor, 7 in our example. We use the
IF...THEN...ELSE statement (considered in
the next chapter in more detail) to make
the decision.

ELEE
WREITELMC®F IZ MOT A FRCTOR OF".Higl
- MDY

A.URR H: IMTEGER:

1.BEGIN

2. WRITEC"EMTER MUMBER "33

3. REHDLMHCH?:

. IF M MOD v=8 HEH

s WRITELMC"Y IS A FACTOR OF".Migd
]

33
3.4 COMPARISON OPERATORS

The operators =,<>,<,>,{= and>= are used
in comparing two data values. They can be
used with REAL, INTEGER and CHAR data but
not in a mixture, i.e. both members in a
comparison expression must be of the same
type. Comparison expressions always give
a Boolean result, i.e. either TRUE or FALSE.

" The comparison operators have the following
meaning:

= equality; e.g. the expression A=B checks
whether the left hand
term A is equal to the
right hand term B

<> 1nequality;e.g. A<{>B checks whether A
is not equal to B

<= less than or equal to; e.g. A<{=B
>= greater than or equal to; e.g.A>=B

< less than; e.g. A<CB checks whether A
is less than B

> greater than; e.g. A>B checks whether
A is greater than B

In the case of CHAR values you may wonder
what meaning is given to their comparison.
It is assumed, for example, that the alpha-
betical characters follow an increasing
order so A<{B, F>C ...etc.

The comparison operators must be used with
care with REAL data. REAL values are stored
in the computer to a limited number of
significant figures (typically 7 to 8 in
our case). Thus two real numbers cannot in
general always be safely compared for
equality, e.g. A=2.34178 and B=2.34172
would not be regarded as equal in the
expression A=B.

e T I IR L S e PSRN

34

Comparison expressions are extensively
used in conjunction with the control

type statements considered in the next
chapter. The examples given below employ
one of these,

the IF (...comparison expression...) THEN
statement. The comparison expression
result, 1i.e. TRUE or FALSE , is used to
determine the course of action.

Exaiples

This simple program shows how CHAR data
can be compared.

Ae=“Q“iRi="B 50i="C"3
. READLHCKY:

IF w=H THEM WRITELHC"1.".x:3]
IF ®>B THEM WREITELHC"Z.". ki
IF ®<{C THEM WRITELHC{"3.".x:

T T

monen

i
1
]

$ T LR e

Fy EHD.

-

This program uses a compariscn expression
and the IF...THEN...ELSE statement to test
whether a runner has reached a qualifying
time of 24.0 seconds for, say, 200 metres.

=

8. UAR TIME:REAL:

1.BEGIH

2. WRITELN{"ENTEE RUMHER S TIME"::
READLHITIME >3

. IF TIME<=24.5 THEH

. EEGIH

PR 00) O LI s e

; EHD

‘ ERSE
14, BEGIH
i) WEITEC'TIME IS ".TIME-Z24.8:4:1."
12 WREITELMO" QUTSIDE QUALIFYIMHG TIME

13: EMD
14.EML,
o

WRITEC"TIME IS ".24.8-TIME:g4:1." S
WRITELHC" IMSIDE QUALIFYIMG TIME":

5y
m
[l
[fa]
"

{ g8

35

3.5 BOOLEAN OPERATORS AND EXPRESSIONS

Boolean expressions'are used essentially
for making decisions within a program.
A Boolean expression can take only one
of two values: TRUE.or FALSE.
In addition to the comparison operators,
four Boolean or logic operators:

NOT, AND, OR, XOR
are used to create Boolean expressions.
Their meaning is explained below:

NOT the logical NOT or logical negation
e.g. NOT A is TRUE if A is FALSE
is FALSE if A is TRUE.

AND the logical AND

e.g. A AND B is TRUE if and only if A and B
are both TRUE; if A and/or B are FALSE,
A AND B is assigned a FALSE value.

OR the logical OR

e.g. A OR B is TRUE if either or both A and
are TRUE; if A and B are both false
A OR B is assigned a FALSE value.

XOR the logical EXCLUSIVE OR

e.g. A XOR B is TRUE if either A or B is
TRUE; if A and B are both TRUE or
both FALSE A XOR B is FALSE.

PREECEDENCE: the order of precedence of
these operators in evaluating Boolean
expressions 1is as follows:
highest NOT
AND
OR, XOR
=, K> ,8= 0%, {52

A simple Boolean expression consists of a
series of Boolean values separated by
AND, OR, XOR or preceded by NOT,

36

e.g. suppose A,B,C,D are declared as
BOOLEAN variables and assigned
either TRUE or FALSE values, then

A AND B AND C AND D 1is TRUE
if and only if A,B,C,D are
all assigned TRUE values

A AND NOT D is TRUE if A is TRUE
and D is FALSE

A OR C OR D 4is TRUE if one or more
of the variables 1is assigned TRUE

C XOR D is TRUE 1if either C or D
is TRUE, otherwise it is FALSE.

When it is required to combine comparison
expressions or indicate precedence brackets
must be used,
e.g. if X and Y are INTEGER variables,
then the Boolean expression:
(X>10) OR (¥<=100)
is assigned a TRUE value if the value
of X is greater than 10 OR the value
of Y is less than or equal to 100.
(Note the comparison expressions must
be enclosed in brackets).

Examples

[@, SIMULATION OF THERMOSTAT COMTROL %
1.UAR LOWTEMF.HITEMF, TEMF: REAL:

2.BEGIN

Se LOWTEMP:=15.8sHITEMF: =25, &3

4. FRERDLNCTEMP:

5: IF TEMP<=LOWTEMF THEH

E. WRITELHC"SWITCH OH HEATER+EOOST" o :
o IFCTEMP >LOWTEMF »GH0 TEMP S HITEMFP
8. THEH WREITELHC"HERTER COH. SWITCH OFF BOOST™ s
Q5 IF TEMF>=HITEMF THEH

18, BEGIN

37 WRITEC"SWITCH OFF HERTER. "o

12 WRITELHC"SWITCH O FAMY

138 EHDs

14. EMD.
L

37

This program simulates a simple thermostat
control where a heater and/or boost and/or
fan is turned on or off. It employs com-
parison operators, the logical AND and
IF...THEN statements.

5% UPEH THE BRFE ! =&

AR TIMESREAL:

COMBEIMATION: IMTEGER:

ML OCKAM: UNLOCKFM: BOOLEAM:
.BEGIM

RETTECYEMTER. TIME: ¥)}
FERDLMCTIME:

WREITEC"EMTER COMEIMATION":
FERCLMCCOMEIMATION

UHLOCKAM: =CTIME>E, @ 2AMDCTIMEC1 2. 82

Fedt et 0500 LN) 0 0 L ed P R T
L] L o " u u - - L] L]

1 AHDCCOMBETHATION=12332 21

1 UHLOCKPHM:=CTIME 14, 83AMNDCTIMEC 16, 32

1 AMHDCCOMEIMATION=2147223

13 IF UNLOCEAM OF UHLOCKFM THEM

14. WRITEC"SAFE IS HOW OFEH® 2

13 ELSE

186, WRITEC"SOUMD THE ALARM!

17, EHD.)

This program uses the logical OR to
create a BOOLEAN variable "UNLOCK".
When the value of this variable is
TRUE the safe is opened if FALSE

an alarm is sounded.

|

AR ASBLCLDRE-Ff IMTEGER:
ZH-5B- 50 500 SE. 5F - G BOOLEAM:
EEhIH
FEADLMCA CoD-E-Fos
SH: ~H“1~“E-~E~1 SCi=C=1:
shi=D=1:SEt=E=1:SF:=F=13

IF @=TRUE THEH
WREITELHC"REUN PROCESSM:
EHEEL E WRITELNC"COMBITE: HOT CORRECT

ot RDR U B T AR § S R g y.__‘. H |"-'|

e
15

Hi=%H AHD SE AND 20 AMDOSD OR SEXAMHD HOT SF:

3.6

38

This program can be regarded as a simple
example of a control program for an
industrial process governed by the
following conditions:
the process runs 1if
A the start button is "on"
AND B the flow of material is sufficient
AND C the temperature is high enough
AND D OR E either one or other of two
other conditions are 0.K.
AND NOT F the emergency stop button
is not pressed
In the program execution these conditions
are first "read”, i.e. the INTEGER variables
A,B,C,D,E,F simulate the process input
information to the computer. We then
define corresponding BOOLEAN variables
SA,SB,SC,SD,SE,SF which take either TRUE
or FALSE values on the basis of this input
information, 1.e. if A=]1 then SA is assigned
a TRUE value, 1f A=0 then SA is FALSE
...and so on.
The process runs if the “control™ BOOLEAN
variable Q (containing all the necessary
requirements to be satisfied) has a TRUE
value. Otherwise a warning is given that

the run conditions are incorrect.

Try executing the program with various
combinations of 1-0 values for A,B,C,D,E,F
You will find that the process only "runs”
when A=B=C=1, D and/or E=1, F=0.

STANDARD FUNCTIONS

Several standard functions are provided
in PASCAL for performing prescribed tasks
on REAL, INTEGER and CHAR DATA.

We describe the form and meaning of these
in the following sections.

39
3.7 MATHEMATICAL FUNCTIONS
1. SQRT(X)

This gives the square root of X for X REAL
e.g. A:=SQRT(81.0) assigns 9.0 to the
REAL variable A

2. SIN(X)

This gives the sine of X where X is REAL
and expressed in RADIANS. Remember
X(radians)=X(degrees)x /180
e.g. to find sin(42):
A:=SIN(42.0%3.1415927/180.0)

3. COS(X)

This gives cosine of X where X is REAL
and assumed to be in radians.
e.g. A:=C0S(45.3%3.1415927/180.0)
assigns to the REAL variable
A the value cos(45.3)

4. TAN(X)

This gives tan(X), X must be REAL and
is in radians.

e.g. TAN(56.0%3,1415927/180.0) gives tan(56)
S. ARCTAN(X)

This gives the angle whose tan is X,
the result being specified in radians
between - /2 and + /2.X must be REAL;
e.g. A:= ARCTAN(1.0) assignes to A the
value 0.7853982 radians,
fe€e {2 or 45 s8ince tan(45.)=1+0

6. EXP(X)

This gives e , the exponential function.
X must be REAL. :

40

7. LN(X)

This gives 1n(X), the natural logarithm.
X must be REAL and greater than 0.0.

8. LOG(X)

This gives log(X) to base 10.
X must be REAL and greater than 0.0

9. ABS(X)

This gives the absolute value of X.
X may be either REAL or INTEGER;
e.g. A:=ABS(-89.3) assigns A the value 89.3
B:=ABS(-457) assigns B the value 457

10. TRUNC(X)

The TRUNC function converts the REAL

value X to the nearest INTEGER value

to X rounded "downwards";

e.g. A:=TRUNC(4.8) assigns A the value 4
B:=TRUNC(-7.8) assigns B the value -7

Note X must be REAL and TRUNC(X) gives

an INTEGER value result.

11. FLOAT(X)

The FLOAT function converts an INTEGER
value to a REAL value;
e.g. C:=FLOAT(20) assigns C the REAL value 20.0
D:=FLOAT(-8) assigns D the REAL value -8.0
Note X must be INTEGER and FLOAT(X) gives
a REAL result.

12. ODD(X)

The parameter X must be INTEGER and
ODD(X) gives a Boolean result, TRUE

if X is odd, FALSE if X is even;

e.g. P:=0DD(5) assigns the BOOLEAN variable
P the value TRUE

Q:=0DD(6) FALSE is assigned to Q

%1

13. RND(X)

This function generates psuedo-random
numbers. X must be REAL.

When X is greater than 0.0, then RND(X)
gives the "random"” number next to the
one previously given in the group;

when X is 0.0 or negative, RND(X) gives
the initial value of the group.

3.8 STANDARD FUNCTIONS INVOLVING CHARACTERS

1. CHR(X)

X must be INTEGER and the character
function CHR(X) gives the character
value whose code is the number X.

X corresponds to the denary number

equivalent to the ASCII code for the
character,

e.g. A:=CHR(75) assigns to CHAR variable
A the character K whose code is 75
Program example:
Note 63 is the code for ?
88 is the code for X;
the program displays X 7

., LUHE QUESTIOMMARK: LETTERR: CHAR:
1.BEGIN
2. GUESTIOMMARE : =CHR{&Z) :
3. LETTERH:=CHRE{2Z;:
4. WEITELMCLETTERY: 3. QUESTIOMMARK: 33:
S EMD.

L6 <CR>] +—— THE "GO" CoMMAND

[ﬁ?i ¥ 47 +—— DISPLAY

42

2. ORD(X)

X in this case must be a CHAR value.
The order function ORD(X) gives the
INTEGER value to the code for X;

e.g. if X:="'?" then N:=0RD(X) gives 63,
the code for the character ?

Note also the CHR and ORD are inverse
functions.

3. PRED(X)

X must be a CHAR value. The predecessor
function PRED(X) gives the character
which has the code specified by X, minus 1;

e.g. 1if X:='M' then A:=PRED(X) gives L,
B:=PRED('Z') gives B the value Y

4. SUCC(X)

X must be a CHAR value. The successor
function SUCC(X) gives the character
which has the code specified by X, plus 1;

et et o e

e.g. C:=SUCC('A') assigns C the value B
Note the PRED and SUCC are inverse functions.

R DA S B . | N

it

(itn o

4.1

43

CHAPTER 4
CONTROL STATEMENTS

CHOICE, SELECTION

AND

REPETITION

INTRODUCTION

PASCAL provides directly for three important
requirements that are frequently . needed in
the solution of problems:
% CHOICE of one or other course of action
*%** SELECTION of one of many courses of action
**% REPETITION of a section of program.
In this Chapter we consider the PASCAL
statements used to exercise these types of

controls
examples

CHOICE:

We explain and give program
for the following "contol constructs”

the IF...THEN
and IF...THEN...ELSE statements.

SELECTION: the CASE statement.

REPETITION:

&)
(2)
(3)

WHILE some condition is satisfied,
the WHILE...DO statement.

UNTIL some codition is satisfied,
the REPEAT...UNTIL statement

FOR a given number of times,

the FOR...TO...DO statement.

44
4.2 THE IF STATEMENTS

In PASCAL choice of one of two different

courses of action can be made using the
IF... THEN

and IF... THEN... ELSE statements.

The syntax diagrams for these IF statements
are given below.

IF statement (without ELSE):

EXPRESS 10N
L »{ THEN STATEMENT |—p—
(Test condition)

Note: 1. The expression following IF is
a test condition,i.e. a Boolean
type of expression.

2. The statement following THEN is
"then" executed if the test

_ condition yields a TRUE value.

E 3. If the test expression gives a

§ FALSE value the statement is not

: executed and execution of the

subsequent sections of the

program is continued.

IF statement (with ELSE):

EXPRESSION
(Test condition)

Y

STATEMENT 1 o

-

Y

ISTATEMENT 2

45

Note: 1. IF the test expression is satisfied,
i.e. yields a TRUE value, THEN
statement 1 is executed.

2. ELSE (if the test expression yields
a FALSE value) statement 2 is
executed.

The IF...THEN...ELSE statement enables
alternative courses of action to be
specified in a single statement. If either
action consists of a number of statements,
use BEGIN and END to bracket these into a
compound statement.

Examples.

This program "tests” whether a candidate
has passed or failed an exam. Enter
“personsmark”, the program displays
“pass™ or "fadil".

—

&, UAR PERSOMNSMBRE . FRSSMARK: INTEGER:

1.BEGIH ‘
ZMREITELHO"ERPASE MARE FOR THIS EXAM IS 48%"H;:
2. PRSSMAREK: =443

G, MEITEC"ENTER CRMDIDATE “5 MARK ="):

S READLMNCPERSONSMARK > 5

&. IF PERSOMSMARE >=PASSMARE THEH

F WRITELHC"MWELL DOME. Y0OU HAVE FPRSSED">
& eLSE

. WRITELMC"SORRY, YOU HAVE FAILEDR":

18, END.

This program can be used to calculate your
income tax (figures refer to 82/83 year).
Enter your taxable income. The IF...

THEN statements compute your tax. For
example, IF your "taxincome"” is less than
£12800 the test expression on line 4 ylelds
a TRUE value, THEN the statement on line

46

5 will be executed to compute "tax",
followed by line 11 (all the other IF
expressions are FALSE, so none of the
other statements is executed).

- R
B, XTHx 22-83%
1.UAR TAXINCOME. TRX:REAL:
_.EEbIH
3. EERDLHCTASIMCOME»:
4, IF TREIMCOME<=12260. 8
i THEM TRHE: =8, 3+TRSIMCOME:
b. TFETHSIMCOME »=12881, @ ANDC TRSINCOME =15105. 03
T THEM TR::=@,I3+12388,8
=, +UTHSIHCOME- 12880, 8x+@, 43
E1 IFCTAKIMNCOME >=151a1, 8xANDC TRM IHCOMES=191868, 85
14, THEH TR:: =35848, 8+926, 0+ TRAINCOME-151608, 02:+8, 453
1 A IFCTAXINCOME »=12181 . A3AHDC TAN THCOMES LSTBB.Eb
12, THEN TRX:=6588, 8+ (TAXIHCOME-121688, 80 +0, 53
13, WRITELHC TR
14, EHD.

4.3 THE CASE STATEMENT

The IF statements allow only for the choice
between two courses of action. Frequently we
require the ability to select one of several
alternative courses. For this PASCAL provides
the CASE statement. The syntax diagram for
this statement is given below.

(o)

CONSTANT
(Index label)

case) EXPﬂEsSlD.N
("seleckor ")

The expression after CASE acts as the

action to take.
by a CONSTANT, known as the index label. The
selector and constant values must be of the

"selector"”
to determine which of the alternative courses of

Each alternative is identified

same type (INTEGER,CHAR or BOOLEAN but not REAL).

47

For example,
CASE N OF 1: statement 1
23 statement 2 ;
3: statement 3 ;
“selectar” b cist Label onitait

the selector expression in this example is
simply the INTEGER variable N. If N=1,
THEN statement 1 following 1: is executed;
if N=2 then statement 2 following 2: is
executed...and so on.

CASE LETTER OF '"A': statement
'B': statement

'C': statement
'D': statement

O awp
s we Lo w

in this case the selector expression is

the CHAR variable LETTER; when LETTER='A"',
then statement A is executed, if LETTER='B'
statement B is executed...and so on.

Program examples.

Q. 5HOLIDHY TRARIFF FOR CHILDREM:

1.

1.UAR AGE: IMTEGER:

2. BEGIM

3. WRITELH: "EERRRORnOOE: 11

4, WEITELN("EWTER CHILD 'S AGE AS"»:

3. MEITELHC"AT LAST BIRTHDRAY "3

E. REACLHCAIGE 2 5

Pl WRITELH: "EROZROSRON" 5

2 CASE AGE OF

i 8 TG THWRITELHC "$48 PER WEEEK" 23
i@, SS9 18I WRITELHY "$#50 PER WEEK™ 23
il. 111213 14 RITELHI "8 FPER WEEE "™
g EHD:
13 CRSECAGE =15 0RCAGE 4 »0OF
i4. TRUE:

5 EEGIH

& MEITEC"SORRY. WE DO MOT CATER":
17, WEITEC" FOR CHILDREM OF THAT AGE":
18, EHD
g EH
SHLEMD.

48

1. UAR HAME: CHAR:
2« BEGIN
FLWRITEC"E" 23

22.< EMD

24.EHND.

4. WREITELHC"EMTEFR FIREST LETTER OF

8. X5TAFF TELEFHOHE LIST=

5. EERDLHOMHAMEs:

& CASE MRAME OF “A7:

Vs BEGIH

8. WEITELHO"ADAMS B M 3242 299000
o WRITELHC"AWIS W E :145 &FTE7F" 2
14, WEITELHC"AZUL M M 12441 45 55
£ £ EMDs

1. ‘Bt

3 BEGIH

14. WEITELHC"BEENARRD F J 189 45727535
15 WRITELHCYEROMH T T L #7283 33c1M2
1&. EMD:s

1i L

138, BEGIN

g WRITELHC"CLARE H E 1355 3I341"2;:
28, WRITELMCUCOOK F B :7E8 12123%0
21 EHD

23.% CONTIMUE =AME FOR OTHERE HMAMES [0 TO ZX

SURNAME OMHLY" 23

4.4 REPETITION 1:

THE WHILE..

.DO STATEMENT

Frequently we require the computer to execute
a section of a program repeatedly WHILE a

given condition is satisfied.
accomplished using the WHILE..

Statement.

This may be
.DO form of

The syntax diagram for this statement is given

below

"—’(NH(LE}ﬁ EXPRESSION -——»(DO

STATEMENT| .

49

The expression between WHILE and DO controls
whether repetition occurs. This expression
is evaluated at the beginning of each cycle,
rather than at the end (as in the REPEAT
statement). If it is TRUE "before", the
statement (or compound statement) following
DO is executed. The looping process con-
tinues so long as this expression yields
TRUE, as soon as this gives FALSE, the
statement is "skipped” and execution jumps
to the next part of the program.

Program examples

This program uses the WHILE...DO loop to
display N,N*,N3 for N=1 to 10. The first
cycle corresponds to N=0, so obviously the
N<10 expression is TRUE. The last cycle
corresponds to N=9 (at the beginning of

the loop) so when N:=N+1l,i.e.N=10 at line 5,
the next test of N<K10 gives FALSE so no
further repetition occurs.

—

~
4, URR H: IMNTEGER:
1.BEGIH
Z.HE=Es
S WHILE Ma1g DO
4, BEGIN
T Ha=H+13
. WRITELMOH: 32 kMo & Nk e B0 s
7. EMD
_ E.EHD. 3
[6 <cr> | < "GO" CoMMAND
1 1 1)
g hss W g
4 15 £ 4— RESULTING
5 :5 ::5 DISPLAY
= S 215
7 43 343
o B)
= a1 Fes
18 186G 1886
\ o)

50

This program gives an example of a simple
engine check routine. The pressure,temp-
erature, fuel, o0ill are first read and

if 0.K. (i.e. the RUN yields a TRUE value),
the compound statement following DO 1is
executed. "ALL CONDITIONS O.K." is dis-
played, followed by a "re-read” and test

of these parameters. While RUN=TRUE looping
continues; as soon as RUN=FALSE execution
jumps to line 14 and the particular fault
is displayed.

AEMGINE CHECEX
UHF PRES. TEMF. FUEL . OIL:REAL:
FLUH: BOOLEAMS
. BEGIH
READLMCPRES, TEMP-FUEL . OIL 2
FUN:=(PRES »>=18. 8)AHDCTEMP<= 15
ANDFUEL »=8. S0AMDCOIL =4,
. WHILE RUM DO
EEGIH
WRITELHC"ALL COMDITIONS O,k "

L

Py = 0 40 00 =) O L) e G B e 0

8 ™

1 READLHCPRES ., TEMP. FUEL. QIL
11 FUH: =(FRES »=18, 8 2AHD { TEMF "‘IHU u-
i FAHOCFLUEL »=8, So[HDOTL y=4, 25
i S50 EMD s
14. IF FRES<18.58 THEH
154 WRITELHC"FRES LOW™ a2
1. IF TEMF>1868.8 THEH
15 WRITELHC"TEMF HIGH" 23
&, IF FUEL<R.S THEH
19, WREITELNC"CHECKE FUEL"»:
28, IF OIL<4.2 THEH
&1 WRITELHC"TOR P DILY2
22. EMD.
.
LG <cR> |

(7 12.2,81.86,93, 6.4 <crR>
L 4 o ¢ L d

ENTRY oF PRES,TEMP, FueL
ol YARUES

DISPLAY OBTAINED

L? 4 AWRITING NEXT ENTRIES

ALL CoNDITngNS 0.K.

51

4.5 REPETITION 2: THE REPEAT...UNTIL STATEMENT

The syntax diagram for the REPEAT...UNTIL
form of statement is given below. This

form is used, rather than WHILE...DO, when,
for example, we do not know how many
repetitions may be necessary and/or

until some condition is satisfied.

%KEPEADT STATEMENT ,{ENT@——» EXPRESSION

fo)
<

The REPEAT statement causes the statement(s)
grouped between REPEAT and UNTIL to be
repeatedly executed until the expression
immediately following UNTIL is TRUE. These
statements are obeyed at least once. They
must be sequenced correctly and contain

at least one statement which has an effect
on the terminating condition (the expression
after UNTIL) and which eventually will

cause looping to stop— otherwise the
repetition will continue forever.

Progam examples.

This program lists your "outstanding” loan
each month until it is paid off. The REPEAT
statement 1s used to work out and display
the amount owing each month until LOAN<=0.0
is TRUE. Repetition is then discontinued
and the program ends by displaying the
total number of months required to pay

off the loan. Try running the program

by entering some values. Note the program
will run forever if your repayments are
insufficient. Can you correct the program
so this condition cannot occur?

52

8.% PRAYOFF YOUR LOAH &

1.UARE LOAM INTEEE“TFHTE REFHYMEMT: REAL S
MONTHHC: THTEGER:

3.BEGIN

4 H'

4. HMOMTHHO: =13

9. WRITEC"EHTER LOAM REGUIRED" %

. REARLNCLORMY:

¥« WRITEC"INTEREST RATE X"a:

8. FREADLMCIMTERESTREATE:

3. WRITECY"AMOUMT OF REPAYMEMWT FER MOMTH"»:
18, READLHCREFPAYMEMNT 23

11. WRITELMO"MOMTH CEET" 33
12, WRITELMC" "33
L3, FEFEART

i4. LOAM: =LOAM+C 1 B+ IMTERESTRATE- 1286, 82
e ~REFRYMENT 3

16, WRITELHCMOHTHHO: 4, LOAM: 182253

ir. MONTHHO: =MOMTHNO+1 3

18. UMTIL LOAHS=6,8;

12, WRITELNC" "

28, WRITEC“LOAM IS PRID OFF IH "3
21, WRITELMCMOMTHHO-1:3." FOMHTHS"
22.EHD.

The next example (shown at top of following

page) uses the REPEAT statement to read

letters typed in and count the total number

and numbers of respective vowels "until"”
a full-stop is entered.

Note in running the program on the Sharp
a carriage return must be entered after
each letter.

The final example (lower half of following

page) simulates an acceptance test and
count procedure. Lengths are entered
in, tested to be within +1% of 100 and

the numbers accepted and rejected counted.

The process 1s terminated by entering
LENGTH as 0.0

53

O T o Ged P e 0 00 e O R e L] b e

w4 1]

P e
LT

CWEITELHO"ETOTAL K

AR CH: CHAR:

MR- E2 I.0, U INTEGERS

. BEGIHN

Mz =@sfls=RsE s =0 I r=0s0: =112 =083

FEFERT

REALCCH s

Ha=H+1s

IF CH="B"THEH H:=R+1:

IF CH="E“THEHW E:=E+1:

IF CH="1"THEH I:=I+1:

IF CH="0"THEHM O:=0+1:

IF CH="U“THEH L:i=l+1
UHTIL CH=".

Lo -
i)

OF CHRREACTERS=".H:53:

WRITELNC"ND, OF ﬂ5=":H=4Ja
LWRITELMO"NO., OF Es=".Eid;s
WEITELMO"HO, OF Is=".Tid33
WRITELMC MO, OF Os=",0:423
LWRITELMO MO, OF Us=%,la40h:

9. BN,

o]
[%

TR S R B s S) O Y O SR T Sl |
n

12.

.% ACCEPTANCE COUMT FROCEDUREX
AR M M2 INTEGERS

LEMGTH:EEAL:
RCCEFPT: BOOLEAM:

.BEGIHN
SlE=E5H =685

REFPERT
WRITEC"ENTER LEHGTH "23
RERDLH(LENGTHY 3

CACCERPT: =(LEMGTH>=%3, @3AHD (LEHGTHI=161.85:

IF ACCEFT THEH
BEGIH
Me=p+13
HEITELMC"WITHIN SFECY2
EHL
ELSE
BEGIM
Mi=M+1s
WRITELMS "REJECT" 2
EME:
UMTIL LEMGTH<=@.8;3

MRITELNC"BNO, LENGTHS WITHINM SPEC.=".M:id)s

MWEITELHO"HO. OUTSIDE SPEC.=".H-1:14)
> EHE.

Sk

When we wish to execute a statement or
compound statement for a given number
of times (the number not depending on
any statements within the loop) we use

4.6 REPETITION 3:THE FOR...TO...DO STATEMENT

the FOR...TO...DO form of statement,the

syntax diagram for which is given below.

VARIABLE -
FOR | P wewme
IDENTIFIER @ e %ﬁfﬁfs\i{ay)
ToO

| EXPRESSION STATEMENT]
(end volue)

The variable identifier after FOR is known
as the control variable of the FOR statement.

The control variable can be INTEGER or
CHAR but must not be REAL.

The "start"” and “"end”™ values must be of the

same type as the control variable.

When the start value is less than the end
value TO applies, for the opposite situation

DOWNTO applies.
For example:

8. UAR H: IMTEGER:

1.BEGIH

2. FOR Hi=1Z DOWHTO 1 DO
S WRITECH: 22

4, EHE.
"o comn
1ot 18 8 8 7 6 5 4 3 2 1

&= DISPLAY

55

~

d.UAR i INTEGER:

.EBEGIH

FOR HM:=1 TO
WRITECH: 3

12 Do

. EMD.
<CR>

T Gt

g.UAR LETTER: CHAR:
1.BEGIH

2 FOR LETTER:="Z2 DQWHTO
WRITECLETTER: 22

M 7T

{2 3 4 5 & 7 8 918 11 12 |+ Dsruar
| &.URR LETTER:CHOR:
1.EBEGIN
3. FOR LETTER:=-‘R“T0 “M“DO
3. WRITECLETTER: 27
4., EHE.
G <CR>
ABCDEFGHIJKLMAE 4 Diseray

Program examples

This example uses FOR...TO...DO...
ments to draw rectangles.
of the sides required (A upto 22,
21),

§— DISPLAY

state-

Enter the values
B upto
the computer displays the rectangle.

o

- LAR HDRSHL - UDASH . HDASHZ : CHAR S
H:EB:HMH: INTEGER:
.BEGIH
HORZHL s ="_ "1 UDASHI =4
FEALCH- B3
WRITEC"E" 3
FOR Mi=1 TO A DO
WREITECHDHESHL 105
WREITELHC R 23
FOR Hy=1 TO B DO
WRITELNCUDASH: 1. VDASH:I A :
FOR M:i=1 TO A [O
WMEITECHRASHZ: 1)

oS U W o Bl 0 S § A RPN I O BN

.,._
%
=

P s ool
1 i

b

-3

EMD,

“$HDASHZ =3

56

This program uses FOR loops to display
a bar chart.

3, XEAR CHERT SHOWIMG SALES FISURESH

BEGIH

LWRITECUTYPE IM SALES1 TO HEAREST £l1@@"»:

« READLHCSALEST 23

JMRITEC "SALESZ=" 13 REALLME SALES2) 3

JRITES "SALES3=": READLM: SALES) :
JIRITEC"SALES4="1: READLME SALES4) 8
LDREITEC"SALESS=" s FERDLMCSRLESS 3
SWRITELHO"E" 2%

LREITELHO"SALES FER DFT. I £188 UHITS")
11, I_I,IF.:I TELH DR TR S S T S 17 SOV IR S 93 LY B CR UL (R AR FR (Y Y SR FR R R AR R R R W

CE0 A 00 ~f 0 0 G f e

[N

12, WRITELNCY = 1 15 28 25 45 IR
13, WRITELN{"=——r ——ee —mmme e e e e ® i

14, FOR Mi=1 TO SALES1 DO

153, WRITEC"™S&"XiWRITELMC" SALES1"»:
16, WRITELML" "33

17, FOR M:=1 TO SALES2 DO

1&. WRITEC"#" 3 WRITELHC" SALESZY 33
19, WREITELMC" "o

28, FOR H:i=1 TO SRLESE DO

21 WEITEC"#" 33 WRITELNCY SALESZS" 33
22, WREITELHO" "as

A FOR HMi=1 TO SARLES4 DO

24, WRITEC S 3 WRITELMHC" SRLES4" 53
20, WRITELHC" "3

26 FOR HNe=1 TO SALESS DO

A WREITEC"#" 3y WRITELMO"Y SALESS" >
28.EHD,

AR SALESL. SALES2. SALESZ: SALES4: SALESS, M: INTEGER:

DISPLAY OBAINED AFTER ENTERING :SA SL 23 ;2:14;3:30;4:11; 5:6.

SALES PER DPT. IN £100 UNITS

WA P MMM B A M AR RN R R R WA

e A L. S SIS - S e
R O P A R R T A RO) SALES1

fir e s e e e, ten] SALES 2

[e Tt e e e e) SALES A

[:.:.:.:._-.: o AR] SALES 4.

ALESS

35

57
CHAPTER 5

PROGEDURES AND FUNCTIONS

5.1 INTRODUCTION

In this chapter we introduce the use of
PROCEDURES and FUNCTIONS : how they are
declared, their basic structure and how
they are used in PASCAL programs.

A procedure is essentially a subroutine

designed to accomplish a given task and

once written may be "called" into action
wherever and whenever it is required in

the program.

A function is in many respects similar
in both construction and use to a proc-—
edure. However,whereas a procedure is
used to identify a particular set of
actions a user defined function is used
to perform a specific calcuation or sim-
ilar task in an identical way as carried
out by the standard functions previously
considered in chapter 3, section 3.6

The use of PROCEDURES and FUNCTIONS have
three important advantages:

**% they avolid duplication in a program;
each procedure and function is written
only once but may be "called"” (merely

by writing their identifier) as many times
as 1is required in the program;

#% Jarger and more complex programs are
easlier to develope (sections of the sol-
tion can be developed and tested indivi-
dually and then subsequently incorporated
in the full program as procedures and
functions);

5.2

Y

S8

**% complex programs are much easier for
other user's to both read and understand.

SIMPLE PROCEDURES:
THEIR DECLARATION, STRUCTURE AND CALL

First let us consider the simple type of
procedure in which no formal parameter
list is used. The basic construction

for this type is shown in the syntax
diagram given below:

L—

y
%PROCEDURE)‘H mmnmsx}»@a
| earT

A

BoDY oOF
PROCEDURE:
STATEMENTS ; e
CoMPouND
STATEMENTS

Every procedure must be allocated an
identifier (i.e. a name, in the same way
as for variables). This identifier follows
immediately after PROCEDURE.

The PROCEDURE IDENTIFIER is followed by
the VAR declaration for any variables to
be used "locally"” within the procedure.
Then follows the body of the procedure:
the simple and/or compound statements
making up the execution part of the
procedure.

Procedures (and functions) are declared
immediately after the VAR declaration of
the full progam and followed by the
execution sections of the main program.
Thus the order of a program containing
one or more procedures or functions is:

59

VAR section
(declaration of main or
"global"” variables)

/

PROCEDURE and/or
FUNCTION sections

11

BEGIN

MAIN PROGRAM
STATEMENTS

END.

A simple procedure is "invoked"” or "called"”
into operation in the main program just by
writing its identifier. For example, if we
have a program containing a procedure
whose identifier is PRINTALINE, any
statement of the form:

PRINTALINE;
in the main program section will cause
the task contained in this procedure to
be carried out.

Program example.

The following program illustrates the
basic ideas of how simple procedures
are written, incorporated in the main
program and how they may be called.
Note the order of the program:

1. The variables of the main program
are first declared (only one N in
our example).

2. The procedures (MONEY and MILESTOKM
in our example) are then declared.

3. The VAR and PROCEDURE sections are
then followed by the main program
statements, which in our example
contain calls to procedures in lines
34 and 35.

60

The program can be used to convert ¥ to
French francs or miles to kilometres.
Any number of other procedures could, of
course, be included.

#.UAR H: IMTEGER: <« VARIBLE DECLARATION FoR
1.%THE FOLLOWIMG FROCEDURES:y ™ Freeea
2, %1.MOMEY. 2.MILESTOKM, X
..HFE FIRST DECLAREDS:

. FROCEDURE MOHEY: e

“HF F F FEHL €———— VAR DECLARATION OF "LotAL”
BEGIH VARABLES PROCEDURE

WRITES"EMTER SUM IH £ "o y eNEY
READLMIF) s

Fi=1@, 63+F;
18, WRITE("EREORGs" Pegr s, t=ray | | Exccutasie
11. WRITELM(F:9:2," FRANCS" 33 Cov o
12, WRITEC"AT THE CURREMNT RETE"):]| frecepuxe)
13 WRITEC" OF £1=FF1@.63")
14 EHD3)

ROCEDURE MILEGTORM:

16 URR M, KM:REAL ;

F«. BEGIH PROCEDURE
18, WRITEC"EMTER CISTAMCE IH MILES "33 ||miestokm
13. FEADLM M 5 b
28, KMe=1, GE9THMN:

24 WRITE("ERESE: Mig:Z, " MILES"):
20, KMz=1, SRS

e WRITECKM:S: 2. " KILOMETRES" 33
24, EMD:

(S .EEGIH)
6, WRITELMS"EIF YoOU WISH To"i:

7. WRITELM("1.COMUERT £ TO FREMCH FRAHCS"::
8. WRITELMC "scktbkEHTER 1 ook 33

Q. WRITELMHL™ "ois MAIN
@, WRITELMC"Z.COMUERT MILES TO KM, " \

L0 00 g !..ﬂ .:.. l’.-'

1. WRITELMC "sotskwEHTER Debofsbod 33 SR
32 FEADLMCH s

a3 WRITELME "E" s) s

34, e THEN: MBS s SiL FoR PROCEIRE

By ELSE MILESTOEM¢———caLL For PRocEDURE

36.EMD. MILESTokM

61
5.3 PROCEDURES WITH VALUE PARAMETERS

We can greatly increase the versatility of
procedures by employing "value" parameter
variables. Different values to these par-
ameters may be given each time the procedure
is called.

The value parameter variables are declaered
by including a "formal" parameter list
immediately after the procedure identifier
in the manner shown in the syntax diagram
below.

A

LIST

FoRMAL VAR :ROCEDN(E
oDY, i.e.
»GRocEnuRE IDENTIFIER PARAME TER o-@» oy ps »@-» it
r

(P‘”‘MCQ" "dt'tﬂffcfi g par ident, 2 g s TYPE)

As an example of the use of value parameters

let us consider the drawing of a bar chart

using procedure calls to generate the bars

of the specified length and also to provide

a simple form of labelling.

We make use of two value parameter variables:
A to specify length; M to label the bar.

The procedure could then be written as

follows:

PROCEDURE BAR(A,M:INTEGER) ;
VAR N : INTEGER;

BEGIN

FOR N:=1 TO A DO

WREITRLY ™)

WRITE(” QUANTITY" ,M:2);
WRITELN(" ");

END;

62

This procedure may then be called any-
where in the main program by assigning
values to the value parameter variables
in the following way:

BAR(18,5);
I e value parameter M is assigned the volue 5
value parameter A s nsst'jneal. the value (B
Such a call would cause a bar of length

18 units followed by it's ‘label QUANTITY 5
to be displayed.

The following example illustates a complete
program which displays a bar chart of sales
figures plus corresponding labels.

The main program first requests us to enter
in the sales figures (see READLN statement
in line 10). It then calls procedure BAR
(see lines 12,13 and 14) to effect the
display of each SALES bar plus label;

the A value parameter being assigned the
the corresponding SALES1,2 or 3 value and

M the label value 1,2 or 3.

a. AR SRLES1.SALES2 . SRLESZ: THTEGER:
1. PROCEDURE RO M IMTESER»:
. WUAR M IMTEZER:

Ss. . BEGIM

3, FOR Mi=1 TO A 0O

=, WRTTE ¢ "ty s

6. WRITELML" SALESY. M2

0 WRITELHC" "a

2. EHD:

Q.BEGSIH
18, BEALLMocsAL ES . SRl ESR. SRl ESS s
110 WRITELML e =
12, BRARcEOLESL 13
130 BORCSOLEEZ . 21t
T osRapeeol Faw T
5. EMD.

L

63

LG <eR> J‘-*————— "GO” CoMMAND To Run PROGRAM

720,12,18 <cR>
. S

VALUES OF SALES1,2,3 ENTERED

i
DISPLAY
OF

e BAR
o CHART

)

Further program examples

This program converts (x,y) coordinates
to polar coordinates (r,§) using the
procedure POLAR(X,Y).

4 (:8)
g

r S

d.% TO COMUERT CATESIAM w=.w TO POLRR %
1.URRE W Wi REAL:
S PROCEDURE POLARCE.YTREAL s
ILUERE R AMGLE REAL
F.BEEGIH
S, RTSSORT R
HECTHHOY w188, B
IFCx<a. 8oTHEHN
AMGLE: =120, 8+0MHGLE:
WREITELHO"R=",Ri&: 2, " THETA=".AMGLE:&:1 20
« EFDs
BEEGIH
WREITELHO"ENTER VALUES OF .33
WRITEC"x= " 2sRERDLMH{KX 2
MRETTE"w= "1i1READLNCY 31
FOLFAR S %
ErE,

i

21l SRS

o (T

ki
58 Gl T8
& =

U St B 0

sk i

) {_q o£x

64

This program may be used to plot a graph
using the procedure PLOTAPOINT(A,B). The
value parameters are assigned at each call
the values of the X,y coordinates entered
in via the keyboard and procedure
PLOTAPOINT(A,B) displays the point

(x,y) by "*".

#,% To plot o araph =

1.UAR .4, P M INTEGER:
2.FPROCEDURE PLOTAPOIMTOR.E: IMNTEGER 2
3.5 LOCATING POSITION OF POIMTY:
4, UaR M: IMTEGER:

S.BEGIN

B WRITEC"MY 25

T FOR H:=0 TO A DO

82 WRITELY™ "33

2., FOR Hi=0 TO B DD
18. WRITE{"E" s

11. WRITE("Z+®")
12.END;
R EEbIHHIHb OF MAIHN FPREOGAME:
14.BESIHN
1S.WRITELH E" 11

1A WRITELHO"EMTER HO, OF FOTHTES TO BE PLOTTEDR" s

17 EERDLH MY 5

18 WRITELHC"ENTER w.w CORDIMATES OF EACH FOIHTY b3

19 WRITELHC"E" 3

PAMRITEC! ——=—See o] A=] T = e = 5 = T I

SLoWRITELNS @Y »
22 MRITECEORODCRONND B SHHHH N HA BRI TS R
25 FOR Pe:=1 TO M DO
4., BEGSTH
25 WEITEC "H" >3
26, RERD . Was
A FLOTAPOIMT M. Y
25, EHND
29, EHD.

5.%

Y

Y

y
-

FoRMAL
RESULT VAR 1
»@cmh‘}»msmmsj}—» mnmmn+@> e *@*,w}m@fﬂ;ﬁ,

65

FUNCTIONS: DECLARATION AND USE

A function rather than a procedure is used
when, for example, the results of a calcul-
ation or expression may be required more
than once in a program. A simple way of
distinguishing between the two is to think
of a procedure as producing some effect
whilst a function gives some value.

We have already met many of the standard
functions (e.g. SIN(X), TRUNC(X), ORD(X)...)
in chapter 3. We now consider how we can
declare our own "user defined" functions,
the syntax diagram for which is shown below.
Note this is very similar to that of a
procedure except that the result type

must also be included.

(Y

LIsT

e

(parameter identifier 1, 2,3 -+ 3 TYPE)

Program examples

PASCAL provides no direct means of computing
powers. This program provides such a function
P(X,Y) which may be used to calculate %

The base X can take any REAL value greater
than zero and the exponent or power Y is

also REAL but may be positive or negative.
The example given in the program calculates

2]
C = 3.0 #2.0

s e ke e S T

66

JQE H.B.C:REQL:

D Pouger furnctiory =
i RERAL

F”TITI“H Fis. Yt RERL Y :REAL: —

r 1S
EEGIM To CALCULATE

» PErsEEPOYslLMOMYY x7

m
T
[It..
e B

S IR B s A | N r,..] r yl r-*- 1'_'5;_:

4 Qi=2.0:Bi=5,0;
2., Ci=P 3. 0.[x+FPC2. 8B
Y. WREITELMHSCIG: 22

Py
&N
=
g3k
e
gy |
=

This example applies the cosine rule:

Z = X + Y -2XYcos(§)
Enter in two lengths and the angle included
by the lengths. The function A(X,Y,ANGLE)
calculates the third side.

B.UHR B.C.AMGLE: REAL:

1. .‘ Furu'.*i =15 nrM im 5:~f:i5~il"i55‘ ridle %

UHE ZJTHETH EEHL.
. BEGIM
THETR: =ONGLE+Z,
EHESTE ol L A +
Qi=SRRTIE
EMDs
PEGIN
WRITEC"EHNTER LEMGBTH B "3
READL MoEs
WELTECENTER LENGTH C "):
READLH(C Y
MRITEC"ENTER QAMELE va:
READL HORMELE >3
HETTELLEHGTH =" B, L. OHELE 282 23

EHE,

RO Rt B T B SN

®

[T e O el =)
=od O LI Ja e B e 05
k-3

il

67
CHAPTER 6

ARRAYS

INTRODUCTION

The use of arrays in programs makes it
very much easier for us to handle and
process larger volumes of related inform-
ation.

We can then give, for example, an assoc-
iated group of variables a collective
name — the array identifier - rather than
a series of individual identifiers. We
can also easily refer to any of the ind-
vidual variables by the array identifier
plus subscript(s) to identify the part-
icular element. This saves a great amount
of "writing"” space and is especially use-
ful when reading in, processing and writ-
ing out large volumes of information.

6.2 ARRAY DECLARATION

The syntax diagram for declaring an array
is given below:

ARRAY o POSITIVE A\ Trre
—-(:)— RRA 0
VAR M IpENTIFIER A [,NTEGER]

68

Examples of array declaration
1. One-dimensional arrays

VAR XLIST:ARRAY[10] OF CHAR;

TYPE "5 variable

IDENTIFIER SUSCRIPT o) bt

d.c-tenm‘nfnj no. of elements
This delares a primary or one-dimensional
array whose identifier is XLIST and which
comprises 11 CHAR vaiables:
XLIST[O0], XLIST[1], XLIST[3]+++-XLIST[10]
2. Two dimensional arrays
VAR XYTABLE:ARRAY[9,6] OF INTEGER;

This declareé XYTABLE as a two—-dimensional
array of 10 x 7 = 70 INTEGER variables:

XYTABLE[0,0] XYTABLE[O,1]....XYTABLE[O0,6]
XYTABLE[1,0] XYTABLE[1l,1]....XYTABLE[1,6]

XYTABLE[9,0] RN XYTABLE[9,6]
3. Three-dimensional arrays
VAR XYZBLOCK:ARRAY[12,10,5] OF REAL;

declares XYZBLOCK as a three-dimensional
array of 13 x 11 x 6 REAL variables

4. Declaration of similar size and type

When the size and variable type of more

than one array are identical, they may
be declared as shown in the following
example:

VAR XTYPE,YTPE,ZTYPE:ARRAY[32] OF REAL;

69

6.3 EXAMPLES OF PROGRAMS USING ARRAYS

1.

Two arrays NOITEMS and PRICE are decl~
ared in this program. When running the
program we systematically enter in the
number and price of each item, 10 pairs
in all (see lines 4 and 5). The program
then displays the data we have fed in.

AR HOITEMZ:gRRAYIZIOF IHTEGER:

?, PRICE:CORREAYISIOF FEAL:

g Mz IMTEGER:

IZ.BEGIH

4, FOR MW:i=86 TO 9 .00

5., FREADLHCHOITEMSIMI-FREICEDMI»:

Fia FOR HMi=a TO =2 O

Ta WRITELMCHOITEMSIMNI 4. FRICEIMI 25 25
2. EHD.

A modification is made to the last
program to not only list the number
and price but also to display sub-
and total prices.

4, AR HOITEMS. FFIIE ARERYL2I0F REAL:
L H: IMTEGER: S:FEAL:

2.BEGIN

Z.51=0, 83

4, FOR Mi=B TO 9 DO

S. READLMOHOITEMSIHI-FRICELHI::

S, WETITELHC" MO, PRICE SUB-TOTAL Y » 2
Ty FORE HWe=8 TO 9 [0

8, BEGTH

9, WREITELHCHOITEMSINI 4. PRICEIMII S 2,
1a, HDITEH IHIPRICELMI® 12220
(g S =R+NOT TEMSIHI#FRICELM]

12, Erlas
13 bR TTELMCY "hs
T4 WETTELH O TOTAL= B o 1320

15 ERD,

70

Lo G <cR> | +— “G0" command

o,
i1
—
o |
=
il
et
.
(]|
[n]
Lit
A
ey

M. PRILE SUBE-TOTAEL

Gl S ExamrLe
=1 5"."..:- L1k 117688

2 i G, 17 oF
473 £, 95 274,14 RESULTS
15 S, BE AESE AR
i 484, B DISPLAYED
L3 i b 1781, 588 A
B ar T (after feeding
12 87.45 1849, 45 o o,
5 4, 43 156G, 87 and PRICE
:';_ [_"]‘_:; . “;: ;:lﬁ [r\forma.tion.

This program gives a simple example of the
use of two-dimensional arrays. MARKS is the
identifier for a 3x3 array. In lines 3,4,5
we read in data, e.g. student's marks. Lines
6-15 provide a tabular display of this data.

A UAR MARKS:ARRAYLZ. 210F REARL:
. RO, COLLMH: THTEGER:
2. BEQIN
FOR Row:=1 70 2 DO
FOR COLUMH:=1 TO Z DO
READLHOMARESIROM, COLUMMHI s
FOR ROou:=1 TO 2 [
SEGIM
WREITELMOY i
B I B e

P2

F]

R I SO W % SN Y |

e R

{
i
1

4

14, WREITECEDOW: 20
i g FOR COLUMH:=1 TO 2 O
2. WREITECMARRSIROW, COLUMHT 0

i3 CoEND;

14, WRITELH:" “a:

b UBEITEL M et o e 1§
5. EHD.

71

4. The program below is essentially a modification
of the last program using procedures INREAD and

OUTWRITE to enter and display the marks of 6
students for 4 subjects followed by procedure

AVSTUDMARK to display the average mark
for each student in his/her subjects.

]
1
4
g

RN RN

O g L B e

rv.) T‘...‘ e ot Pt ks ke P perk ok ek ek

L T o O B B Y
s a

S EMIDs
LEBEGIN

. IMREERD:
LUTHEITE:
ALSTUCMARE
LEMD.

AR MAEES: RERAY LS. 410F REAL:

FOW. COLUMM: THTEGER:

. FROCEDURE INRERD:
. BEGIN

FOR ROM:=1 TO & DO
FOR COLUMH:=1 TO 4 D0
READLMCMARES RO, COLUMMHT 35

. EMis
 FPROCERURE OUTWRITE:
LBESIH

FOR ROW:=1 TO & DO
BEGIHN
WREITELMC™ "3
o B o R WS
W TTELME o B 5 Y
WRITE(ROW: 303
FOR COLUMMi=1 TO 4 DO
WRITECMARKSIROW, COLUMNI 2 &2
EHD:

LRI TELHCY Mg

LRI TELH Y e e e e e e e e e e e "
« EMLs

L FROCEDURE AUSTUDMARE:

AR SUMIREALS

LEBEGIH

WREITELHO"AUERAGE STUDEMT 7S MARKS: "
FORE REOW:=1 TO & [0

EEGIHN

sUME =083

FOR COLUMH:==1 TO 4 DO

SUM =SUM+HMARKES DROW : COLLIMMHT 3
WRITELHOREOW: 3. C5lUM-d. 8015213
EMD

=

72

On running the program we first enter in
the subject marks for each student.

These are then displayed in tabular form
followed by a list of their average, e.g.

- b &r S (=]

P T et = ol

4 ot [l i =¥
gl - { sy i | -
) K] P [l Yl
- : i = -
o vl i i 12

- AUERAGE STUDEMT S MARES:
1 -

o~

L

T Rt AN

JLJ S LR
[O T N Y

n
‘.—l-

INDEX

13

Arithmetic operators
for REAL
for INTEGER
Arrays
Array declaration
Assignment statements

B

BOOLEAN
operators,expressions
values

C

CASE statements

CHAR varibles, values
Clear (display)
Comparison operators
Compound statements
Control statements
Corrections

D
Delete command
E

Editing programs
Expressions
REAL
INTEGER
BOOLEAN
Execution command

F

FOR statements
Formatting
Functions
standard
mathematical
character
user defined

49-30
3¥=32
67-72
67-68
15

35-38
1.8

46-48
1317

53
26-=27
43

29%31
3132
35-38

54=56
20-23

36

39-40
41-42
65-66

e T T R Y

I AN

& o

&
j A

7%

G

GO command

I

Identifier
IF statements

K

KILL command

L

Loading (interpreter)

Loading (programs)
LIST command

P

PASCAL program struct.

Procedures
declaration

R

READ,READLN
REPEAT..UNTIL statem.
Repetition

S

SAVE command

Structure (of program)

\Y

Values
Variables
VAR declaration

W

WRITE, WRITELN
WHILE..DO statement

13
hb-46

S~ d -

28
57-64
58,61

2.3~i2.5
51=53
48

16-18
12-13
14

18-20
48-50

