
!
(i)

STARTING PASCAL

on the Sharp microcomputer

R G MEADOWS
BSc, HSc, PhD, MIEE, CEng , MlnstP, ARCS

i

O'O

SHARPSOFT LTD.
86-90 Paul Street,
London EC2A 4NE

Tel: 01-739 8559

(C) R.G. Meadows 1983

All rights reserved. No part of this publication
may be reproduced, stored in a retrivial system
or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise without prior permission in
writing of the author or his authorized agents.

This book may not be lent, resold, hired out
or be disposed of by way of trade in any form
other than in which it is published without
prior consent in writing of the author or his
authorized agents.

First published 1983

ISBN 0 907690 03 3

ASSOCIATED BOOKS BY SAME AUTHOR

A beginners guide to using the Sharp
microcomputers. (SHARPSOFT)

Microprocessors: essentials, components
and systems. (PITMANS)

(«•»’)

CONTENTS

CHAPTER 1 GETTING STARTED

1.1 Introduction

1.2 Loading the PASCAL

1.3 Preparing and editing PASCAL programs 2

(a) Entering programs via the keyboard
(b) Executing programs
(c) LIST commands
(d) DELETE commands
(e) KILL command
(f) INSERT commands
(g) LOADING programs on tape
(h) SAVING programs on tape

1.4 General corrections 8

1.5 Clearing the display 8

1.6 Some introductory PASCAL programs 9

CHAPTER 2 SOME PASCAL FUNDAMENTALS

2.1 Introduction 12

2.2 Variables 12

2.3 Identifiers 13

2.4 Variable declaration 14-

2.5 Assignment statements 15

16

Ov)

2.6 Values and expressions

(a) INTEGER and REAL values
(b) CHARACTER values
(c) BOOLEAN values

2.7 WRITE and WRITELN statements 18

2.8 Formatting 20

2.9 READ and READLN statements 23

2.10 Compound statements 26

2.11 PASCAL program structure 28

CHAPTER 3 PASCAL EXPRESSIONS AND
STANDARD FUNCTIONS

3.1 Introduction 29

3.2 REAL expressions: arithmetic operators 29

3.3 INTEGER expressions: arithmetic operators 31

3.4 Comparison operators 33

3.5 BOOLEAN operators and expressions 35

3.6 Standard functions 38

3.7 Mathematical functions 39

3.8 Standard functions involving characters 4-1

CHAPTER 4 CONTROL STATEMENTS:
CHOICE, SELECTION AND REPETION

4.1 Introduction 4-3

4.2 The IF statements 44

4.3 The CASE statement 46

4.4 Repetition 1: the WHILE...DO statement 48

4.5 Repetition 2: the REPEAT...UNTIL statement SI

4.6 Repetition 3: the FOR...TO...DO statement 54
'kJc‘kjc’kJc‘k'k-kJc'k'kJc*'k*,k'kjc*,kJc-k’k*‘kJc’k-k'k

CHAPTER 5 PROCEDURES AND FUNCTIONS

5.1 Introduction 51

5.2 Simple procedures: their declaration
structure and call 58

5.3 Procedures with value parameters Q>[

5.4 Functions: declaration and use

’k'k-k'k-k'k'k'k'k’k'k-k-k'k'k'k'k-k'k'k-k'k’k'k-k'k-k’k-k-k

CHAPTER 6 ARRAYS

6.1 Introduction £>“

6.2 Array declaration

6.3 Examples of programs using arrays GS
-k’k-k’k-k'k-k’k'k'k'k'k-k'k’kick'k-k-k-k-k-k-k-k'k'k'k'k’k

INDEX 72

(vi)

PREFACE

This book has been written for beginners
wishing to learn PASCAL so as to be able
to write their own programs in this import¬
ant and now widely used language.

No prior knowledge of any other programming
language is assumed nor is it needed. The
text is written with the underlying purpose
of showing in the clearest and easiest
possible way how to write programs in
PASCAL.At every stage examples of complete
programs are included to support the Pascal
concepts being introduced. Good luck!

Richard Meadows
May 1983

DEDICATION

To Mike and Larry

1

CHAPTER 1
GETTING STARTED

1. 1 INTRODUCTION

In this first chapter we start by loading
the PASCAL INTERPRETER tape and then learn
to use the basic edit commands, which you
will find absolutely essential in order to be
able to prepare, modify and run programs.
The chapter concludes with some simple
PASCAL programs designed to introduce
you to this language, get you conversant
with the edit commands and running PASCAL
PROGRAMS.

1.2L0ADING THE PASCAL INTERPRETER TAPE SP-4015

1. First turn on your computer-the power
switch is located at the back. The
following will be displayed on your
screen:

** MONITOR SP-1510 ** ** MONITOR SP-1002 **

for the "A for the "K

Note for "A" users only. The Sharp
Interpreter SP-4015 can be used for
both A and K computers. However, for
the A you must now press

CNTL

This operation essentially configures
the A as a K and must always be done
to avoid errors which would otherwise
occur in entering and running programs

2

2 .

3.

Insert the PASCAL INTERPRETER tape
SP-4015, and type in LOAD followed
by CARRIAGE RETURN (the CR key), i.e.

LOAD <CR>
symbol used throughout text
for "press CR key".

i PLAY will

Press the PLAY
control unit.

be displayed.

key on the cassette

LOADING PASCAL SP-4015

will appear within 10 or so seconds,
followed when loading is completed,
after about 2 minutes, by:

* INTERPRETER PASCAL SP-4015
31208.BYTES
READY

WE ARE NOW READY TO GO!

3 PREPARING AND EDITING PASCAL PROGRAMS

We begin straightway by entering a simple
PASCAL program so as to learn the basic
edit commands associated with preparing
and modifying programs for your future work.

Here is a simple PASCAL program.

0.3£T0 LIST SEASONS OF VEHR--;
1.BEGIN
JL n WRITELN i "

•-« ■ WRITELN " SPRING
4. WRITELN'" SUMMER i ■

5. WRITELN'" WINTER "

6 m WRITELN 1 1 " i

I

We will first type it in and then see how
we can list it, run it, insert extra lines,
correct any errors, kill it ...etc.

The program writes out the seasons of the
year. You will probably have seen I have,
at this stage, missed out AUTUMN.

(a) TO ENTER A PROGRAM VIA THE KEYBOARD

1. Type in

B <CR>

This command is always used on
commencing entries.

is displayed.

Line numbers are automatically displayed.
0 is the first, followed by 1,2,3 ...
after entering the line with <CR>.

2. Now type in the first line, in our example

j

3. Type in second line followed by <CR>,i.e.

4. Type in subsequent lines of program,
taking great care to omit (or add)
nothing-the program must be exact
otherwise it is unlikely to run.
Don't forget the ; which terminate
most lines nor the . after END.

1.BEGIN <CR>

0.%TO LIST SEASONS OF YEAR% <CR>
i • mi

automatically displayed
ready for next entry

<+

5. Finally after the entering the
"END." line press <CR> again.
No further line numbers will be
displayed, just the cursor
A command entry is now awaited.

(b) TO EXECUTE THE PROGRAM

Type in

G <CR>. the "GO" command

This command runs the program. In our
case you will obtain the display:

SPRING
SUMMER
AUTUMN—WINTER

** +:f:+::+:

In fait ikif Line tLoei not
appear since <oe ©mi fcte.il
in our proÿro-m — see lu.tt.f~
how we insert: if.

(c) "LIST" COMMANDS

1. To list complete program: type in

P <CR>

The entire program will be displayed
on the screen.

2. To list complete program on printer:

H_<CR>

3. To list a specific line :

for screen

for printer

P <line number> <CR>

H <1ine number> < >

For example,

P3 <CR>

will display line 3, i.e. in our program

3. WRITELN(” SPRING ");

4. To list range of lines:

P <start line no.>-<end line no.> <CR>

For example ,

P2-5 <CR>

will display lines 2,3,4,5.

5. To list up to a specific line:

P-<specific line no.> <CR>

For example ,

P-4 <CR>

will display lines 0,1,2,3 and 4

(d) "DELETE” COMMANDS

Exactly similar to "list" commands but with
D replacing P, i.e.

1. To delete one line:

D <line no.> <CR>

2. To delete a group of lines:

D <start no.>-<end no.> <CR>

e>

3. To delete lines upto/after specific line:

D-<end no.> <CR> D<start no.> <CR>

DELETES all lines upto/after specified
line no. including also that line.

Examples

D3 < CR> deletes line 3

D-12 < CR>

D65- < CR>

deletes lines 0,1...to 12

deletes lines from 65 upto
the end of the program.

(e) "KILL" COMMAND

To erase the entire program, type in

K/ < CR>

(f) TO INSERT ADDITIONAL LINES IN PROGRAMS

1. To insert a single line:

To insert' an additional line between
lines (for example) 4 and 5 in our
"seasons” program, type in:

WRITELN(AUTUMN) ;

Line, we week to insert heiuetn. A
oj »ld. pro

-this symbol is obtained
3 for the K: BY PRESSING ISHIFTl + Tz~l kevs

for the A: BY PRESSING |CTRL |+ [Tl keys

Check to see that the line is indeed inserted
by using the "list" command, i.e.

P < CR>

7
\

0.y.J0 LIST SEASONS OF YEAR*-;
1.BEGIN
2. WRITELNC 11)?

3. WRITELNC" SPRING ");
4. URITELN C " SUMMER " >;
5. WRITELNC' AUTUMN » ;
6. WRITELNC" WINTER 11);
7. WRITELNC"*5
8.END.

2. To insert more than one line:

To insert a number of lines, for
example, between lines 6 and 7, type in

7-* <CR>

On pressing the carriage return
subsequent line number (beginning
at 7 in the above case) will be
automatically dispayed-now carry
on in with your entries.

3. To insert lines at beginning of program

B <CR> (Note same command
as to start entries).

4. To insert lines at end of program:

Z <CR>

(g) LOADING A PROGAM ON TAPE: APPEND COMMAND

To load a
type in

program contained on tape,

A <CR> the LOAD command

is displayedFILENAME?;;:--r

"T Ltype in here name of program
followed by carriage return

8

±PLAY is displayed, asking us to
press PLAY on cassette control

FOUND PAYOFF

LOADING PAYOFF

is displayed when
program found ,
followed immediately
by
when "ready"
(with audible blip)

(h) SAVING A PROGRAM ON TAPE: SAVE COMMAND

S <CR>
FILENAME?PAYOFF <CR>
RECORD. PLAY
WRITING PAYOFF

that is, simply type in S followed by
carriage return, FILENAME? is then
displayed. Type in suitable name (as
always, followed by carriage return) and
your program will be stored on the tape
cassette, when you action RECORD PLAY

1-4- GENERAL CORRECTIONS WITHIN THE PROGRAM

Use cursor control keys:

and instant delete key: IMJT
T>6L

in exactly the same way as in correcting
BASIC programs.

1.5 CLEARING THE DISPLAY COMPLETELY

To clear the display on the screen use

keys,SHIFT CL«
HOME

whilst to execute "clear display" as a
program statement use statements of the
form:

WRITE(" "); WRITELNC" ");

1.6 SOME PASCAL PROGRAMS

Try entering and running these programs.
They will provide you some practice in
using the edit and other commands and also
serve as an introduction to the form of
program structure used in PASCAL.

1. A very simple program using the

WRITELN("*******"); statement.

This statement is used to display on
the screen the characters enclosed
within the quotation marks.

0.
1.

NAME AND
BEGIN

ADDRESS

XL m WRITELNC 1 1 " i;
T WRITELNC"My riant is!")"

4. WRITELNC" PIERS STAPLETON");
cr WRITELNC"I live ot:" >;
b m WRITELNC" 68 LS-NTON SLOPE,")!
r a WRITELNC" WEST ARTFORD,"):
o. WRITELNC H VORK'SHIRE"):
9.i@! WRITELNC

END.
" '' ;i

|G <CR> | •*-

My no.fit is!
PIERS STAPLETON

I live- at.!
SO LVNTON SLOPE,

WEST ARTFORD,
'YORKSHIRE

+•++:++:+:+' ■+■+:+:*+:+::+:+ÿ+':+:

"GO of 1?UN
ComiHftwl

XU

We also use the comment statement:

% % ;

This is used to add any comments we may
wish to include in our program (e.g.
what the program or what a certain
section of lines does).
Comment statements are ignored by the
computer when executing the program-
they are to help our understanding.

2. To illustrate use of the WRITELN
statement in both display and calculation.

3. To "draw-a-line". A simple example of
an inter-active program. The READLN
statement asks us to input the LENGTH,
the program draws the line.

0. TO DRHU fi LINE LENGTH i TO 48 UNITS L
1.UfiR N? LENGTH:INTEGER?
2.BEGIN
3. URITE("Enter 1 e-ns t.h of line");
4. REfiDLNCLENGTH);
5. FOR Ns =1 TO LENGTH DO
6. URITEc: >
7.END.

11

4. Finally a more complex program,
Input your LOAN, the 1NTERESTRATE and
REPAYMENT-the program shows how your
loan is (or rather will be) paid off.

0. PAYOFF YOUR LORN
1.UAR LOAN,INTERESTRATE,REPAYMENT:REAL 5
2. MONTHNO:INTEGER?
3.BEGIN
4. MONTHNOs =1;
5. WRITE'("ENTER LOAN REQUIRED");
6. READLN(LOAN);
7. WRITE-("INTEREST RATE 5iH);
8. READLN ■(I NTERESTRATE);
9. WRITE'("AMOUNT OF REPAYMENT PER MONTH");

10. READLN ■(REPAYMENT);
1 1. WRITELN -("MONTH DEBT");
12. WRITELN'C ");
13. REPEAT
14. LOAN:=LOAN+'(1.0+1NTERESTRATE.--1200.S)
15. -REPAYMENT;
16. WR ITELN C MONTHNO:4,LOAN:10:2);
17. MONTHNO:=MONTHNO+1;
18. UNTIL LOAN<=0.0;
19. WRITELN'(" ");
20. WRITE'("LOAN IS PAID OFF IN");
21. WRITE'C MONTHNO-1:3," MONTHS")
22.END.

i

12

f

” "

CHAPTER 2

SOME PASCAL FUNDAMENTALS

VARIABLES, STATEMENTS AND PROGRAM STRUCTURE

2.1 INTRODUCTION

In this chapter we deal with some fundamentals
concerning the definitions of terms, the rules
and structure of PASCAL, and how we apply
these to write programs.

A PASCAL program may be considered essentially
as a series of statements-written according
to the "grammar" or syntax of PASCAL-
which the computer subsequently executes step
by step. If the program does not follow these
rules exactly it will not run and you will
be told why-the computer automatically outputs
an error statement (see list of errors in

41Appendix). Thus it is essential to gain at
least a basic understanding of the PASCAL
syntax to enable you to begin to write your
own "error-free" programs.

2.2 VARIABLES

The calculations and operations made in a
PASCAL program are applied to variables.
Each variable can be thought as a container
or box to which can be assigned a given value.
Once a value has been placed in a variable
it remains there but may be altered when
(or if) any subsequent program statements
assign the variable a new value.

★Appendix of Sharp Pascal MZ-80 Manuel

(pages 132-133)

13

In PASCAL there are four different types
of variables:

INTEGER (whole numbers, e.g.
0, 10, -87 , 3059)

REAL (decimal numbers, e.g.
0.0, 10.0, -12.76, 999.8)

CHAR (characters, e.g.
'A' ,'B','1','2',•?',' ')

BOOLEAN (used in decision making,
Boolean variables can
only take one of two
values: TRUE or FALSE).

2.3 IDENTIFIERS

Variables (and, as we see later, procedures
and functions) are all represented by
identifiers. An identifier is the name
we assign to a variable.

In PASCAL all identifiers must begin with
a letter. They can then be followed by any
sequence of letters or numbers.

You should always try to choose meaningful
identifiers for the variables in your
program. This helps in understanding
what your program is about and does-
especially useful for future reference
and for other users.

The syntax diagram for an identifier is
shown below.

|l»6NTlFIERI -(BETTER)-
'

-N

Lt 1 TtK J—r—
’—(DIGIT)-
-f.

i_
/

14

Syntax diagrams will be used extensively
in our explanations. They provide an easy
pictorial means of illustrating PASCAL
syntax-just follow the arrow directions-
provided you always go in their direction
you can pass round a loop as many times
as you like.

Examples of legal identifiers:

NUMBER, JKFLIPFLOP, XI 1, AJX2, HI.GHTEMP

Not allowed:

1NUMBER (starts with "1", should be a letter)
X+Y ("+" sign must not be used, only letters

or numbers)
MIN SPEED ("space" used)._

2.4 VARIABLE DECLARATION

In PASCAL we create variables by what is
known as a declaration: the VAR declaration.
This is normally done close to the beginning
of our program.
In declaring variables we must specify both
their identifiers (names) and their types
(i.e. whether REAL, INTEGER, CHAR, or
BOOLEAN).
The syntax diagram for the VAR declaration
is given below:

f VAR DECLARATION!
\

/ Tsrrvf'Ti CT 1dO - TYPEv r , * IJPfcN 1 1 r ifcK i Lv
-e—1

L_ __/*') J

v.. -J

15

Examples.

1. Suppose the identifiers for REAL variables
we wish to use in a program are:

VOLUME, SURFACEAREA, RADIUS, PI

These are declared at the beginning
of the program as follows:

VAR VOLUME,SURFACEAREA ,RADIUS,PI:REAL ;
t t f
ea-ck i/an'o-We sepo.ro.ttA bj Co»**i«.

at least one *pace. bettoeert c»lDn
VAR and first identifier' clefninj tijp£

aj- 1/o.r.able

Stmt colon
o-t end oÿ
eo-tb type
to dcilaration.

2. If variables of more than one type are
used they are declared as shown in the
example below:

VAR LOAN,INVESTMENT,RATE:REAL;
MONTH,YEAR:INTEGER;
RED,QUESTION,ANSWER:CHAR;
LLOYDS,BURNLEYBSOC,
NATSAVE,PAIDOFF ,INDEBT:BOOLEAN;

2.5 ASSIGNMENT STATEMENTS

An assignment statement "assigns” a value
to a variable. The general form of assignment
statement is given in the syntax diagram below:—ASSI&NMttNT STATEMENT

VARIABLE EXPRESSION—1.-) *
k
_ _)

CD means
or

"is assigned”
"takes the value

excoulc. , — by
preM.*3 (T) /.IGwtA by f-E)
K*yS

16

Some examples:
■REAL

means the/variable identified
by X is assigned the value 5.2

Note the statement is not a mathematical
identity. The statement says:

"whatever value the variable had (if any
was previously given) now give it 5.2”

2. DAYOFWEEK:= 7; means the INTEGER variable
identified by DAYOFWEEK
is given the value 7

3. APPLE:='A'; means the CHAR variable
identified by APPLE is
assigned the value A

Note for character variables we can only
assign a single character as its value
and this character must be contained
within the single quotation marks ' '.

4. HITEMP:= T>= 100 ; means the BOOLEAN
variable identified
by HITEMP is assigned
the value TRUE when
the integer variable T
is greater than or
equal to 100 and FALSE
when T is less than 100.

Z.b VALUES AND EXPRESSIONS

In the assignment statement a value or more
generally an expression is assigned to a
variable. We will be dealing with
REAL expressions, e.g. X-Y, X*Y , (X+Y)/34.62,
INTEGER expressions, e.g. A DIV B, A MOD B
BOOLEAN expressions, e.g. P AND Q, N0T(P OR Q)

in later chapters. No similar operations are
available to perform “calculations" on CHAR

17

values, although they may be compared and
used in READ and WRITE statements-again to
be considered later.
However, at this stage it is worth while
introducing some idea of expressions and
now clarifying some important points
concerning REAL, INTEGER, CHAR and BOOLEAN
values.
(a) INTEGER AND REAL NUMBER VALUES- PASCAL distinguishes between INTEGERS
(+ or - whole numbers) and REAL numbers
(numbers with a decimal part even if this
is zero, e.g. 10.0 MUST BE SPECIFIED in
this way to represent the REAL value 10.

Examples of INTEGER values:
0 10 543 -5000 -43 +12000

Examples of REAL values:
0.0 12.78 -1000.0 +999.9
4.5E6 (= 4.5x1000000 or 4.5x10)
5E-3 (=5x0.001=0.005 or 5x10)

(b) CHARACTER VALUES

A character variable may be assigned the
value of any character available on the
keyboard ,which include:
1. Upper and lower case letters

A,B,C,D....X,Y,Z a,b,c.....x,y,z
2. The ten denary digits

0,1,2,3,4,5,6,7,8,9
3. Punctuation marks

i . f .
4. Space and graphical symbols

Remember, the character value-known as the
character constant- must always be
entered in between the single quotation
marks in the assignment statement, e.g.

QUESTIONMARK:='?'; SPACE:='

18
(c) BOOLEAN VALUES

Boolean variables can only be assigned one
of the two values: TRUE or FALSE. For
example, if A and B are declared as
BOOLEAN variables they may be assigned:

A:=TRUE ; B:=FALSE;
Boolean values very often arise from the
result of a comparison. For example,

YOUNGAGE:=AGE< 18
assigns the BOOLEAN variable the value
TRUE when the integer variable AGE has
the value of less than 18.

2.1 WRITE AND WRITELN STATEMENTS

The WRITE and WRITELN statements are the
basic output display statements of PASCAL.
They correspond to the PRINT statements
used in BASIC.

(a) The WRITE statement

The WRITE statement is used
(i) to effect calculations and display

the results
(ii)to display character strings, i.e.

the characters enclosed within
double quotation marks.

To effect and display the result of a
calculation:

WRITE(<calculation expression>);

To display a character string:

WRITE("<character string>");

For example:

19

0. SIMPLE CALCULATION':
1.*ILLUSTRATING USE OF WRITE STATEMENT*
2.UAR X,VsREAL;
3.BEGIN
4. X:=12.4? Vs =4.87?
3. I..IRITE<"X+V= 11

? X+V ::
6.END.
G <CR?| <--The 11GtO

X+V= 17.27 M-tfescUrt

(b) The WRITELN statement

The WRITELN statement performs the same
function as the WRITE statement but in
addition makes a carriage return after
the statement has been obeyed. Any subsequent
output will then be started on a new line.
The WRITE statement does not make this
carriage return.
The use of the WRITE and WRITELN statements
is illustrated in the following program:

20

(c) The PWRITE and PWRITELN statements

These have the same action as WRITE and
WRITELN but output the results, character
strings..etc. to the printer.

(d) General comments on use of WRITE and
WRITELN for display and cursor movement

WRITELN() ; produces a line feed

WRITE("E”);
T

WRITELN("0");

use. SHIFT CLR
HOME keys

used to clear screen completely

WRITE("0”); cursor is shifted to top
left hand corner of screen
without clearing display

WRITE("S3 "); WRITE("SJ");
WRITE("S")5 WRITE(”H“);

used to shift cursor respectively
UP, DOWN, TO RIGHT, TO LEFT

2.8 FORMATTING THE WRITE AND WRITELN OUTPUTS

Formatting the output is very useful especially
when the output display or copy is to be
tabulated and also when the exact number of
output digits or number of decimal places are
to be controlled.
This may be accomplished by following each item
in the WRITE or WRITELN statements by
formatting information consisting of a comma,
and one or two positive integer values
separated by colons.

21

1. WRITE(A,B ,C); and WRITELN(A,B,C);

These statements display the value of each
vaiable or expression so the least significant
digit (for REAL and INTEGER items) or
character (for CHAR values) is 15 SPACES
to the right of the current cursor position.
For example:

8.UHR HI,H2:INTEGER;
1 BEGIN
2! Hi:=34•-*y N2:=9562;
T WRITE'::m N2 y
4 END.
Q |<- "GO

15 SfM-c.es--IS Spu.es

■ IS spaai- ■ IS SfMces-

2. WRITE(<expression>:N);
and WRITELN(<expression:N);

These statements display the value of the
expression so the least significant digit
or character (in the case of a CHAR variable)
is N (N= 1,2,3...etc.) to the right of the
current cursor position.
For example:

22
1

i
t 0.UAR fi,B CHAR:

1.BEGIN
3:='B

3.WRITELN:H:107 B:10>
4.END.

| G <c<>

A B
<-tO Sf+cjs-H-10 ipoces-

12

3. WRITE(<expression:N:P>);
and WRITELN(<expression>:N:P>);

These statements display the value of the
variable or the result of the expression
so the least significant digit is N spaces
to the right of the current cursor position
whilst the second integer P specifies the
number of decimal places given in the result.
These form of statements are valid only
for REAL values.
Examples:

0.UAR X 7 V:REAL;
1.BEGIN
2.X:=34.8725 V:=-6.683?
3.WR I TELN <X J 6:27 V:8:27 X--V:10:4)
4.END.
G <ca>l

34.87 -6.68 -5.2180

23

ivH i mm i 1 1 M ~j~~|-4—|U)KITELM("-8»PM«> -Y=,'> Y:6]
*-8-*ÿ -— *

2.9 READ AND READLN STATEMENTS

The READ and READLN statements are the basic
PASCAL statements requesting the input of
data. They correspond to the INPUT statement
used in BASIC.
REAL, INTEGER and CHAR values can be "READ”,
BOOLEAN values cannot.

(a) READ(Cidentifier>); and READLN(<identifier>);

READ(A); and READLN(A);

When this form of statement is executed
a ? is displayed on the screen and an input
of data (corresponding to the value of the
identifier, A in our example) is awaited
from the keyboard.
When the value is keyed in and carriage
return pressed the program continues

24

The difference between READ and READLN
is READLN makes a carriage return after
the input (e.g. if the next program state¬
ment were WRITE(...); the output would
commence on a new line), the READ does not
make a carriage return.

Example. This program uses READLN statement
(line 5) to request input of radius
and then calculates and displays
volume of sphere.

0.5STO DETERMINE UOLUME OF H SPHERE':
1.UOR R.- PI,UOLUME:REAL;
2.BEGIN
3.PI:=3.14159’
4.WRITECENTER RADIUS
S.READLNCRX:
6.UOLUME:=4.Q+PI*R*R*Rÿ3.O;
7.WRITELNC"UOLUME= ",UOLUME:8:3>
8.END.

G <c«>
ENTER RADIUS ? s.62 <CR>

1-VALUE OH RADIUS
ENTERED FROM KEYBOARD

VOLUME = 74-3.5~2 8

t-DISPLAY OF RE3ULT

(b) READ(A,B ,C)j and READLN(A,B ,C);

When this form of statement is executed
the first (T| displayed awaits the value
of A to be entered. Enter the value
followed by a comma (or alternatively
a carriage return).
A second jT] is then displayed. Enter
value of B followed by a comma (or <CR>)
The third [Tj displayed awaits value of C.
Enter value of C and press <CR>.
Program execution then continues.

25

There is a practical limit to the number
of characters that can be inputte-d using
the READ(A,B ,C,D...) statement. In our case
it is not more than two lines (80 characters
including the ? prompts).

The READLN statement overcomes this difficulty
by making a carriage return after the last
value in the READLN brackets has been
entered. For example,

READ(A,B,C,D,E,F,G,H,I)

could easily exceed 80 charactres of data
and is better programmed, for example, as

READLN(A,B,C,D);
READ(E,F,G,H,I);

Example

Q.URR fl? BJ C:INTEGER?
1.BEGIN
2.REflDLN(H B>C >;
3.WRITELNC"fl+B+C=",fl+B+C:ft)
4.END.
G <CR>]
? 3(,S, V87, 33 4- <CR>

t _1_ VALUE OP A ENTERED
FOLLOWED BY (7)---VALUE OF B ENTeRED

FOLLOWED BY (7]--VALUE OF C (LAST ENTRY)
FOLLOWED BY <C«>

fl +B + C = 11 86

DISPLAY OF- -RESULT

26

2.10 COMPOUND STATEMENTS

In PASCAL there are basically two types of
statements:

simple statements...statements that cannot
be grammatically divided;
an assignment statement
is an example of a
simple statement

compound statements...statements which
consist of a number
of simple statements
preceded by BEGIN
and terminated by END

The executable sections of a PASCAL program
normally consist of a combination of simple
and compound statements.
The main objective of a compound statement
is to cause a sequence of simple statements
to be bracketed together and treated as a
single statement for syntax purposes. This
is done within the program by bracketing the
required sequence of statements between
BEGIN and END. It is good practice to indent
a compound statement by starting each line
making up the compound statement with 2or
more spaces, although normally not more
than 5.

The syntax diagram for a compond statement
is given below:

27

Example.
The following program, which finds the average
of any number of quantities entered via the
keyboard.
The program contains a number of simple
statements, e.g. the assignement statements
on line 3; the WRITE and WRITELN statements
on lines 4,6,7 and 15; and the READLN
statement on line 5.
The WHILE...DO... statement (line 8) is
one form of repetitive statement used in
PASCAL and will be considered in detail in
Chapter 4. In our example: "while the number
entered is not equal to -9999.0", the
COMPOUND statement from line 9 to 14 is
obeyed. When the last value has been entered,
the repetition is stopped by typing in
-9999.0. The AVERAGE is then outputted by
the WRITELN statement of line 15.

0.5S TO FIND AUERAGE’.'
1.UAR SUM,NUMBER,N:REAL;
2.BEGIN
3. N:=0.8;SUM:=0.0;
4. WRITE("ENTER FIRST NUMBER">5
5. READLN(NUMBER);
6. WRITELNC'*** AFTER LAST NUMBER ***");
?. WRITELNC*** TVPE IN -9999.0 ***“>;
8. WHILE NUMBER<>-9999.0 DO
9. BEGIN
10. SUM:=SUM+NUMBER;
11. N:=N+1.0;
12. WRITE("ENTER NEXT NUMBER">;
13. READLN(NUMBER>
14. END;
15. WRITELN<"HUERAGE= ",SUM- N:8:2>
16.END.

28

PASCAL PROGRAM STRUCTURE

By now you will be fairly familiar with the
form PASCAL programs take. All PASCAL progams
have a basic structure and an order that
must be followed. The order for programs
when using the SHARP PASCAL INTERPRETER
SP-4015 (when no procedures or functions
are declared-we consider these in Chapter 5)
is as follows:

1. VAR section (variable declaration section)

All VARIABLES used in your program are
declared right at the beginning.
A unique IDENTIFIER must be allocated
to each variable. Identifiers of the
same type are separated by a comma
and their TYPE (REAL, INTEGER, CHAR,
BOOLEAN) stated at the end of each
type group, preceded by : and terminated
by ;
e.g. VAR INCOME,EXPENSES:REAL;

NOOFYEARS:INTEGER;
QUESTIONMARK:CHAR;
SHORT,TALL,OVERWEIGHT:BOOLEAN;

2. PROGRAM STATEMENTS

After the VAR section we write the
statements used to solve our problem,
the executable statements. This section
is always commenced with BEGIN
The various simple and compound statements
then follow in the order they are to be
executed. Each individual statement must
always be terminated by a ;
except the very last one or the last
statement of a compound statement
(in this case the bracketing END
is terminated in ; i.e. END;

All progams must be "ended" by typing
in END. (do not forget the full-stop
after the END.

29

CHAPTER 3

PASCAL EXPRESSIONS
AND STANDARD FUNCTIONS

3.1 INTRODUCTION

In this chapter we consider
* REAL and INTEGER arithmetic and comparison

expressions and operations, e.g.+,-,*,/
DIV ,MOD and .etc. used, for example,
in making calculations and comparing
data.

* BOOLEAN expressions and operators, e.g.
AND ,OR,NOT,XOR used for making decisions.

* STANDARD FUNCTIONS availiable in PASCAL
for performing prescribed tasks, e.g.
SQRT(X),SIN(X),ARCTAN(X),RND(X),ODD(X),
CHR(X),TRUNC(X),FLOAT(X),ABS(X)...etc.

3.2REAL EXPRESSIONS: ARITHMETIC OPERATORS

The following are used with REAL data and
variables:

ADDITION + key e-g- W:=A+B;

SUBTRACTION - key e.g. X:=A-B ;

MULTIPLICATION "k key e•g• Y:=A*B ;

DIVISION / key e.g. Z:=A/B;

The usual rules of precedence apply, i.e.
* and / before + and -.
Brackets may also be used in the normal way
e.g. G:=(A-B)/(A+B); H:=23.0*(2.5-5.6*A/B);

30

NOTE. In SHARP SP-4015 PASCAL REAL and
INTEGER values and variables cannot be
mixed. Thus, although operators
exist also for INTEGER variables the
following expressions, for example, will lead
to an ERROR message in program execution:

A+N A-N A*N
if variable A is REAL and N is INTEGER
It should be noted, however, In "standard"
PASCAL INTEGER values may be used In a REAL
expression without qualification. The integer
value is automatically converted to the
corresponding real value in program execution.

Examples

The following programs illustrate REAL
expressions in some simple calculations.
We use the WRITE and WRITELN statements
to make the calculations and also fomat
the results. COMMENT and READLN state¬
ments are also employed.

<— "Results

1

a.UflR A,B:REAL;
1.BEGIN
2. A:=42.0;B:=15.0'
3. UR ITELN < ”P+B=",A+Bs 5:1 >;
4. WR ITELN <"0-8=",A-Bs 5s 1 > s
5. UR ITELN <"A+B=",fi*B:5>;
6. UR ITELN <"fl.--B=" fVB:5:1 > 5
7. UR ITEC"C A-B)•••" < A+B > =" > s
8. UR ITELN <(A-B > •••-(A+B>:5:3>
9.END.

Q The 'GO Comr>ÿO.r\JL

31

0- 3£ TO DETERMINE RESISTANCE R *l.y. OF R1 AND R2 IN PARALLEL !£
2.UAR R,R1,R2:REALS
3.BEGIN
4. WRITEC"ENTER R1 VALUE ”)5
5. READLN(Rl):
b. WRITER "ENTER R2 VALUE ">J
7. READLN<R2>S
8. R i = R 1+R2 /(R1+R2 5
9. WRITELN <"****************" > \
10. WR ITELN C"R=",R:8:2)5
1 1. WRITELN <"****************")
12.END.

G <H7>~|
ENTER R1 VALUE ? 38* -30 »dtr«L !j u.s

ENTER R2 VALUE 12.3 *»--2otnW

3.3 INTEGER EXPRESSIONS: ARITHMETIC OPERATORS

We have already noted that PASCAL distinguishes
between REAL and INTEGER variables and data.
There are also certain distinctions in dealing
with arithmetic operations.
The addition, subtraction and multiplication
operators + - * are identical for both REAL
and INTEGER variables. Division, however, is
different. The / is not used for INTEGER
variables and data.

The DIV and MOD operators are used:

The DIV operator performs DIVISION WITH
TRUNCATION, e.g.

X:=25 DIV 7 assigns X the value 3
i.e. 25 divided by 7 to the nearest whole

number rounded downwards.

R= 12.00 *-

32

The MOD operator provides the REMAINDER,e.g.

XR:=25 MOD 7 assigns XR the value 4
i.e. 25-7=3 with a remainder of 4

Y:=100 DIV 20 assigns Y the value 5
YR:=100 MOD 20 assigns YR the value 0

Examples

0.UAR C,D:INTEGER;
1.BEGIN
2. C:=42;D:=15;
3. URITELNC"C+D=",C+D:7> 5
4. URITELN< 11C-D=",C-Ds7>;
5. WRITELN <"C*D=",C+Ds7>;
6. URITELN("C DIU D=",C DIU D:3>;
7. URITELN<"C MOD D=",C MOD D:3)
8.END.

l G <CR |

C+D= 57
C-D=
C+D= 630
C DIU D= 2
C MOD D= 12

This program illustrates the use of the MOD
operator in finding whether a number has a
given factor, 7 in our example. We use the
IF...THEN...ELSE statement (considered in
the next chapter in more detail) to make
the decision.

S.UAR N:INTEGER;
1.BEGIN
2. WRITE-("ENTER NUMBER
3. REflDLHCN);
4_ IF N MOD 7=0 THEN
5. WEITELN<"7 IS A FACTOR QF'SN:6>
6. ELSE
7. WEITELN <"7 IS NOT A FACTOR OF",N:6>

33
3.4 COMPARISON OPERATORS

The operators =,<>,<,>,<= and>= are used
in comparing two data values. They can be
used with REAL, INTEGER and CHAR data but
not in a mixture, i.e. both members in a
comparison expression must be of the same
type. Comparison expressions always give
a Boolean result, i.e. either TRUE or FALSE.

The comparison operators have the following
meaning:

= equality; e.g. the expression A=B checks
whether the left hand
term A is equal to the
right hand term B

<> inequality;e.g. A<>B checks whether A
is not equal to B

<= less than or equal to; e.g. A<=B

>= greater than or equal to; e.g.A>=B

< less than; e.g. A<B checks whether A
is less than B

> greater than; e.g. A>B checks whether
A is greater than B

In the case of CHAR values you may wonder
what meaning is given to their comparison.
It is assumed, for example, that the alpha¬
betical characters follow an increasing
order so A<B, F>C ...etc.
The comparison operators must be used with
care with REAL data. REAL values are stored
in the computer to a limited number of
significant figures (typically 7 to 8 in
our case). Thus two real numbers cannot in
general always be safely compared for
equality, e.g. A=2.34178 and B=2.34172
would not be regarded as equal in the
expression A=B.

3ÿ

Comparison expressions are extensively
used in conjunction with the control
type statements considered in the next
chapter. The examples given below employ
one of these ,
the IF (...comparison expression...) THEN
statement. The comparison expression
result, i.e. TRUE or FALSE , is used to
determine the course of action.

Examples

This simple program shows how CHAR data
can be compared.

0.UAR A,B,C,X:CHAR?
1.BEGIN
2. A:= "'A -ÿ ■ B:= "'B ■";C:= "'C *

3. READLN(X);
4. IF X=A THEN URITELN<"1.",X:5> 5
5. IF X>B THEN WRITELN("2.",X:5> 5
6. IF X<C THEN URITELN<"3.%X:5>

This program uses a comparison expression
and the IF...THEN...ELSE statement to test
whether a runner has reached a qualifying
time of 24.0 seconds for, say, 200 metres.

0.UAR TIME:REAL?
1.BEGIN
2. URITELN("ENTER RUNNER'S TIME";';
3. READLN<TIME>;
4. IF TIME<=24.0 THEN
5. BEGIN
6. URITE<"TIME IS ",24.0-TIME:4:1," SECS."):
7. URITELN(" INSIDE QUALIFYING TIME")
8. END
9. ELSE
10. BEGIN
1 1. URITE< "TIME IS ",TIME-24.0:4:1," SECS.">;
12. URITELN(" OUTSIDE QUALIFYING TIME")
13. END?
14.END.
(
_

35

3.5 BOOLEAN OPERATORS AND EXPRESSIONS

Boolean expressions are used essentially
for making decisions within a program.
A Boolean expression can take only one
of two values: TRUE or FALSE.
In addition to the comparison operators,
four Boolean or logic operators:

NOT, AND, OR, XOR
are used to create Boolean expressions.
Their meaning is explained below:

NOT the logical NOT or logical negation
e.g. NOT A is TRUE if A is FALSE

is FALSE if A is TRUE.

AND the logical AND
e.g. A AND B is TRUE if and only if A and B

are both TRUE; if A and/or B are FALSE,
A AND B is assigned a FALSE value.

OR the logical OR
e.g. A OR B is TRUE if either or both A and B

are TRUE; if A and B are both false
A OR B is assigned a FALSE value.

XOR the logical EXCLUSIVE OR
e.g. A XOR B is TRUE if either A or B is

TRUE; if A and B are both TRUE or
both FALSE A XOR B is FALSE.

PREECEDENCE: the order of precedence of
these operators in evaluating Boolean
expressions is as follows:

highest NOT
AND
OR, XOR
=,<>,<=,>=,<,>

A simple Boolean expression consists of a
series of Boolean values separated by
AND, OR, XOR or preceded by NOT,

36
e.g. suppose A,B,C,D are declared as

BOOLEAN variables and assigned
either TRUE or FALSE values, then

A AND B AND C AND D is TRUE
if and only if A,B,C,D are
all assigned TRUE values

A AND NOT D is TRUE if A is TRUE
and D is FALSE

A OR C OR D is TRUE if one or more
of the variables is assigned TRUE

C XOR D is TRUE if either C or D
is TRUE, otherwise it is FALSE.

When it is required to combine comparison
expressions or indicate precedence brackets
must be used,
e.g. if X and Y are INTEGER variables,

then the Boolean expression:
(X>10) OR (Y<= 100)
is assigned a TRUE value if the value
of X is greater than 10 OR the value
of Y is less than or equal to 100.
(Note the comparison expressions must
be enclosed in brackets).

Examples_
0.*: SIMULATION OF THERMOSTAT CONTROL
1.UAR LOWTEMP,HITEMP> TEMP:REAL;
2.BEGIN
3. LOWTEMP:=15.O;HITEMP:=25.05
4. READLN<TEMF'>;
5. IF TEMF'OLOWTEMP THEN
6. WRITELN("SWITCH ON HEATER+B00ST")?
7. IF(TEMP>LOWTEMP>AND(TEMP -:. HITEMP>
8. THEN WRITELNC"HEATER ON, SWITCH OFF BOOST")?
9. IF TEMP>=HITEMP THEN
10. BEGIN
11. WRITE("SWITCH OFF HEATER.-
12. WRITELN("SWITCH ON FAN")
13. END;
14.END.

37

1

This program simulates a simple thermostat
control where a heater and/or boost and/or
fan is turned on or off. It employs com¬
parison operators, the logical AND and
IF...THEN statements.

e.y. OPEN THE SAFE ! V.
l.UAR TIME:REAL?
2. COMBINATION:INTEGER;
3. IJNLOCKAM UNLOCKPM:BOOLEAN 5
4.BEGIN
5. WRITECENTER TIME ");
6. READLN(TIME):
7. WR ITEC"ENTER COMBINATION"):
8. READLN(COMBIHATION > 5
9. UNLOCKAM:=<TIME>8.8)AND <TIME<12.0)

10. AND(COMBIHATION=12332)?
1 1. IJNLOCKPM:=(TI ME>14.0)AND <TIME<16.3)
12. AND <COMBIHAT10N=21472)5
13. IF UNLOCKAM OR UNLOCKPM THEN
14. WRITE*:"SAFE IS NOW OPEN")
15. ELSE
16. WRITE("SOUND THE ALARM")
17.END.

This program uses the logical OR to
create a BOOLEAN variable "UNLOCK".
When the value of this variable is
TRUE the safe is opened if FALSE
an alarm is sounded.

0.OAR AJBJCJD?EJF:INTEGER5
1. SA,SB,SC,SD,SE,SF Q:BOOLEANS
2.BEGIN
3. REflDLN(A » B» C» D? E?F)J
4. SA:=A=1jSB:=B=1 SC:=C=1 “

5. SD:=D=1;SE:=E=1;SF:=F=1;
6. Q:=SA PHD SB AND SC ANDOSD OR SE)AND NOT SF:
7. IF Q=TRUE THEN
8. WRITELN< "RUN PROCESS")
9. ELSE WRITELNCCONDITS. NOT CORRECT")
10.END.

i

38

This program can be regarded as a simple
example of a control program for an
industrial process governed by the
following conditions:
the process runs if
A the start button is "on”
AND B the flow of material is sufficient
AND C the temperature is high enough
AND D OR E either one or other of two

other conditions are O.K.
AND NOT F the emergency stop button

is not pressed
In the program execution these conditions
are first "read", i.e. the INTEGER variables
A,B,C,D,E,F simulate the process input
information to the computer. We then
define corresponding BOOLEAN variables
SA,SB ,SC,SD,SE ,SF which take either TRUE
or FALSE values on the basis of this input
information, i.e. if A=1 then SA is assigned
a TRUE value, if A=0 then SA is FALSE
...and so on.
The process runs if the "control" BOOLEAN
variable Q (containing all the necessary
requirements to be satisfied) has a TRUE
value. Otherwise a warning is given that
the run conditions are incorrect.

Try executing the program with various
combinations of 1-0 values for A,B,C,D,E,F
You will find that the process only "runs"
when A=B=C=1, D and/or E=l, F=0.

3-6 STANDARD FUNCTIONS

Several standard functions are provided
in PASCAL for performing prescribed tasks
on REAL, INTEGER and CHAR DATA.
We describe the form and meaning of these
in the following sections.

39

3.7 MATHEMATICAL FUNCTIONS

1. SQRT(X)

This gives the square root of X for X REAL
e.g. A:=SQRT(81.0) assigns 9.0 to the

REAL variable A

2. SIN(X)

This gives the sine of X where X is REAL
and expressed in RADIANS. Remember
X(radians)=X(degrees)x /180

e.g. to find sin(42):
A:=SIN(42.0*3.1415927/180.0)

3. C0S(X)

This gives cosine of X where X is REAL
and assumed to be in radians.

e.g. A:=COS(45.3*3.1415927/180.0)
assigns to the REAL variable
A the value cos(45.3)

4. TAN(X)

This gives tan(X), X must be REAL and
is in radians.

e.g. TAN(56.0*3.1415927/ 180.0) gives tan(56)

5. ARCTAN(X)

This gives the angle whose tan is X,
the result being specified in radians
between - /2 and + /2.X must be REAL;

e.g. A:= ARCTAN(l.O) assignes to A the
value 0.7853982 radians,
i.e. /2 or 45 since tan(45)=1.0

6. EXP(X)

This gives e , the exponential function.
X must be REAL.

40

7. LN(X)

This gives ln(X), the natural logarithm.
X must be REAL and greater than 0.0.

8. LOG(X)

This gives log(X) to base 10.
X must be REAL and greater than 0.0

9. ABS(X)

This gives the absolute value of X.
X may be either REAL or INTEGER;

e.g. A:=ABS(-89.3) assigns A the value 89.3
B:=ABS(-457) assigns B the value 457

10. TRUNC(X)

The TRUNC function converts the REAL
value X to the nearest INTEGER value
to X rounded "downwards";

e.g. A:=*TRUNC(4.8) assigns A the value 4
B:=TRUNC(-7.8) assigns B the value -7

Note X must be REAL and TRUNC(X) gives
an INTEGER value result.

11. FLOAT(X)

The FLOAT function converts an INTEGER
value to a REAL value;

e.g. C:»FL0AT(20) assigns C the REAL value 20.0
D:=FL0AT(-8) assigns D the REAL value -8.0

Note X must be INTEGER and FLOAT(X) gives
a REAL result.

12. ODD(X)

The parameter X must be INTEGER and
ODD(X) gives a Boolean result, TRUE
if X is odd, FALSE if X is even;

e.g. P:=0DD(5) assigns the BOOLEAN variable
P the value TRUE
Q:=0DD(6) FALSE is assigned to Q

41

13. RND(X)

This function generates psuedo-random
numbers. X must be REAL.
When X is greater than 0.0, then RND(X)
gives the "random” number next to the
one previously given in the group;
when X is 0.0 or negative, RND(X) gives
the initial value of the group.

3.8 STANDARD FUNCTIONS INVOLVING CHARACTERS

1. CHR(X)

X must be INTEGER and the character
function CHR(X) gives the character
value whose code is the number X.

X corresponds to the denary number
equivalent to the ASCII code for the
character.

e.g. A:=CHR(75) assigns to CHAR variable
A the character K whose code is 75

Program example:
Note 63 is the code for ?

88 is the code for X;
the program displays X ?

0.UAR QUESTIOHMARK,LETTER*:CHAR;
1.BEGIN
2. QUESTIOHMARK:=CHRC63>;
3. LETTER*:=CHR(88>;
4. ORITELN <LETTER*:3,QUESTIOHMARK:3 :
5.EHD.________

{ G <CR>] --THE "GO'1 COMMAND

[x ?) •+ DISPLAY

42

2. ORD(X)

X in this case must be a CHAR value.
The order function ORD(X) gives the
INTEGER value to the code for X;

e.g. if X:='?' then N:=ORD(X) gives 63,
the code for the character ?

Note also the CHR and ORD are inverse
functions.
3. PRED(X)

X must be a CHAR value. The predecessor
function PRED(X) gives the character
which has the code specified by X, minus 1;

| e.g. if X:='M' then A:=PRED(X) gives L,

IB:=PRED('Z') gives B the value Y

4. SUCC(X)

IXmust be a CHAR value. The successor
function SUCC(X) gives the character
which has the code specified by X, plus 1;

e.g. C:=SUCC('A') assigns C the value B
Note the PRED and SUCC are inverse functions.

43

CHAPTER 4
CONTROL STATEMENTS:
CHOICE, SELECTION
AND REPETITION

4.1 INTRODUCTION

PASCAL provides directly for three important
requirements that are frequently needed in
the solution of problems:
*** CHOICE of one or other course of action
*** SELECTION of one of many courses of action
*** REPETITION of a section of program.

In this Chapter we consider the PASCAL
statements used to exercise these types of
control. We explain and give program
examples for the following "contol constructs":

CHOICE: the IF...THEN
and IF...THEN...ELSE statements.

SELECTION: the CASE statement.

REPETITION:
(1) WHILE some condition is satisfied,

the WHILE...DO statement.
(2) UNTIL some codition is satisfied,

the REPEAT...UNTIL statement
(3) FOR a given number of times,

the FOR...TO...DO statement.

44
4.2 THE IF STATEMENTS

In PASCAL choice of one of two different
courses of action can be made using the

IF... THEN
and IF... THEN... ELSE statements.

The syntax diagrams for these IF statements
are given below.

IF statement (without ELSE):

Note: 1. The expression following IF is
a test condition,i.e. a Boolean
type of expression.

2. The statement following THEN is
"then” executed if the test
condition yields a TRUE value.

3. If the test expression gives a
FALSE value the statement is not
executed and execution of the
subsequent sections of the
program is continued.

IF statement (with ELSE):

-GZ> EXPRESSION
(Test condition)

<THEN> STATEMENT 1

(HE} 5TATEMENT 2

45

Note: 1. IF the test expression is satisfied,
i.e. yields a TRUE value, THEN
statement 1 is executed.

2. ELSE (if the test expression yields
a FALSE value) statement 2 is
executed.

The IF...THEN...ELSE statement enables
alternative courses of action to be
specified in a single statement. If either
action consists of a number of statements,
use BEGIN and END to bracket these into a
compound statement.

Examples.
This program "tests” whether a candidate
has passed or failed an exam. Enter
" personsmark" , the program displays
"pass" or "fail".

0.UAR PERSONSMARK,PASSMARK:INTEGER J
1.BEGIN
2.URITELN<"EPASS MARK FOR THIS EXAM IS 40*");
3.PASSMARK:=40?
4.l.iJR ITE<"ENTER BANDIDATE'S MARK J£")5
5.READLN<PERSONSMARK):
b. IF PERSONSMARK>=PASSMARK THEN
7. WRITELN("WELL DONE., VOU HAUE PASSED")
3. ELSE
3. WRITELN("SORRV? YOU HAUE FAILED")
10.END.

This program can be used to calculate your
income tax (figures refer to 82/83 year).
Enter your taxable income. The IF...
THEN statements compute your tax. For
example, IF your "taxincome" Is less than
£12800 the test expression on line 4 yields
a TRUE value, THEN the statement on line

46

5 will be executed to compute "tax",
followed by line 11 (all the other IF
expressions are FALSE, so none of the
other statements is executed).

0. TAX 82-83V.
1.UAR TfiXINCOME,TAX:REAL;
2.BEGIN
3. READOUTAXINCOME::';
4. IF TAXINCOME<=12800.0
5. THEN TAX:=0.3+TAXINCOME5
6. IF<TAXINCOME>=12801.0>AND<TAXIHCOMEC=15100.0>
7. THEN TAX:=0.3*12800.0
8. +CTAXINCOME-12800.0>*0.4;
9. IFCTAXINCOME>=15101.0>AND(TAXINCOME<=19100.0)
10. THEN TAX:=3840.0+920.0+<TAXINCOME-15100.0)+@.45;
11. IF<TAXINCOME>=19101.0>AND(TAXINCOME<=25300.0>
12. THEN TAX:=6560.0+<TAXINCOME-19100.6)+0.5;
13.WRITELNCTAX>
14.END.

4.3 THE CASE STATEMENT

The IF statements allow only for the choice
between two courses of action. Frequently we
require the ability to select one of several
alternative courses. For this PASCAL provides
the CASE statement. The syntax diagram for
this statement is given below.

The expression after CASE acts as the "selector"
to determine which of the alternative courses of
action to take. Each alternative is identified
by a CONSTANT, known as the index label. The
selector and constant values must be of the
same type (INTEGER ,CHAR or BOOLEAN but not REAL).

47
For example,

CASE N OF 1
2
3
1"stle-c-tor■J

statement 1
statement 2
statement 3
Case- [a-bfcL Constant

the selector expression in this example is
simply the INTEGER variable N. If N= 1 ,
THEN statement 1 following 1: is executed;
if N=2 then statement 2 following 2: is
executed...and so on.

CASE LETTER OF 'A' statement A
1 B' statement B
* C statement C
'D' statement D

in this case the selector expression is
the CHAR variable LETTER; when LETTER='A',
then statement A is executed, if LETTER='B'
statement B is executed...and so on.

Program examples.

0.’.HOLIDAV TARIFF FOR CHILDREN.’:
1.UAR AGE:INTEGER:
2. BEGIN
T UIRITELNC "EBBBBBBBBBB");
4. WRITELIK"ENTER CHILD'S AGE AS">;
ET
•_l » WRITELNC"AT LAST BIRTHDAV"> 5
6- READLN(AGE):
r ■ l.JRITELN< "EBBBEBBBBB" > 5
8. CASE AGE OF
9. 5,6,7:WRITELN<"$46 PER WEEK">;
10. 8,9,10:WRITELN<"$50 PER WEEK">;
11. 11,12,13,14:WRITELN<"$60 PER WEEK">
12. END:
13. CASE(AGE>15>OR < AGE<4)OF
14. TRUE:
15. BEGIN
16. WRITE*"SORRY. WE DO NOT CATER">:
17. WRITER" FOR CHILDREN OF THAT AGE")
18. END
19. END
20.END----------------— J

48

0.JiSTAFF TELEPHOHE LIST’;
l.UAR NOME:CHARS
2.BEGIN
3.WRITE("E")5
4.URITELNCENTER FIRST LETTER OF SURNAME ONLV")?
5. READLN(NAME);
6. CASE NAME OF -'A-':
r ■ BEGIN
o

* URITELNCADAMS B N :342 8990" > ; 1
9. URITELNCAUIS U E :45 6767">?10! WRITELNCAZUL M M :19441 45 65")
11.
12.
13.

END;
"B
BEGIN

14. URITELN< 1 BERNARD F .J :89 4572");
15. URITELN(.'BROUN T T L :783 3361")
16. END;
17. -'C
18. BEGIN
19. URITELN< "CLARK H ! :555 3941")?
28. URITELN(."COOK F B :78 12123")
21. END

END
m /J CONTINUE SAME FOR OTHER NAMES D TO Z-;

4.4- REPETITION 1: THE WHILE.-.DO STATEMENT

Frequently we require the computer to execute
a section of a program repeatedly WHILE a
given condition is satisfied. This may be
accomplished using the WHILE...DO form of
statement.
The syntax diagram for this statement is given
below

49
The expression between WHILE and DO controls
whether repetition occurs. This exptession
is evaluated at the beginning of each cycle,
rather than at the end (as in the REPEAT
statement). If it is TRUE "before", the
statement (or compound statement) following
DO is executed. The looping process con¬
tinues so long as this expression yields
TRUE, as soon as this gives FALSE, the
statement is "skipped" and execution jumps
to the next part of the program.

Program examples

This program uses the WHILE...DO loop to
display N,NZ,N3 for N= 1 to 10. The first
cycle corresponds to N=0, so obviously the
N<10 expression is TRUE. The last cycle
corresponds to N=9 (at the beginning of
the loop) so when N:=N+1 ,i.e.N= 10 at line 5,
the next test of N<10 gives FALSE so no
further repetition occurs.

so
This program gives an example of a simple
engine check routine. The pressure.temp-
erature, fuel, oil are first read and
if O.K. (i.e. the RUN yields a TRUE value),
the compound statement following DO is
executed. "ALL CONDITIONS O.K." is dis¬
played, followed by a "re-read” and test
of these parameters. While RUN=TRUE looping
continues; as soon as RUN=FALSE execution
jumps to line 14 and the particular fault
is displayed.

0.JiENGINE CHECK*:
1.UAR PRES,TEMP,FUEL,OIL:REAL;
2. RUN:BOOLEANj

3.BEGIN
4. REflDLN <PRES,TEMP,FUEL,0IL> 5
5. RUN:=<PRES>=10.0)ANDCTEMPC=100.0>
6. AND<FUEL>=@.5)AND<01L>=4.2>;
7. WHILE RUN DO
8. BEGIN
9. WRITELN<"ALL COHDITIONS 0.K." >;

10. REflDLN<PRES,TEMP FUEL,01L)J
1 1. RUN:=<PRES>=10.0> ANDCTEMP<=100.0>
12. AND<FUEL>=0.5>AND<01L>=4.2)
13. END;
14. IF PRESC10.0 THEN
15. WRITELf-K"PRES L0W">;
16. IF TEMP>100.0 THEN
17. WRITELN<"TEMP HIGH">;
18. IF FUELC0.5 THEN
19. WRITELN<"CHECK FUEL"> 5
20. IF 0IL<4.2 THEN
21. WRITELNC"TOP UP OIL")
22.END.

[G <cR>|
? 12.2 ,81.0 ,9-3,

t
_l_i

l_

ALL CONDITIONS O K.
<
_

? 4

6.9- <cR7
—f-ENTRY or PR£S,T£MP,FU£L

OIL vaauES

-DISPLAY O-gTAIMED

AWAITING NEXT ENTRIES

51

4.5 REPETITION 2: THE REPEAT...UNTIL STATEMENT

The syntax diagram for the REPEAT...UNTIL
form of statement is given below. This
form is used, rather than WHILE...DO, when,
for example, we do not know how many
repetitions may be necessary and/or
until some condition is satisfied.

The REPEAT statement causes the statement(s)
grouped between REPEAT and UNTIL to be
repeatedly executed until the expression
immediately following UNTIL is TRUE. These
statements are obeyed at least once. They
must be sequenced correctly and contain
at least one statement which has an effect
on the terminating condition (the expression
after UNTIL) and which eventually will
cause looping to stop- otherwise the
repetition will continue forever.

Progiam examples.

This program lists your "outstanding" loan
each month until it is paid off. The REPEAT
statement is used to work out and display
the amount owing each month until LOAN<=0.0
is TRUE. Repetition is then discontinued
and the program ends by displaying the
total number of months required to pay
off the loan. Try running the program
by entering some values. Note the program
will run forever if your repayments are
insufficient. Can you correct the program
so this condition cannot occur?

52

0.5S PAYOFF YOUR LOAN
1.UAR LOAN,INTERESTRATE,REPAVMEHT:REAL?
2. MONTHNO:INTEGER"
3.BEGIN
4. MONTHNO:=1;
5. WRITER"ENTER LOAN REQUIRED")?
6. READLN(LOAN)?
7. URITEC"INTEREST RATE ?;")?
8. READLNC INTERESTRATE> ?
9. URITEC"AMOUNT OF REPAYMENT PER MONTH")?
10. READLNCREPAYMENT)?
11. URITELNC"MONTH DEBT")?
12. URITELNC" ")?
13. REPEAT
14. LOAN:=LOAN*C1.8+1NTERESTRATE.-'1288.8)
15. -REPAYMENT?
16. URITELNCMONTHNO:4,LOANs 18:2)?
17. MONTHNO:=MONTHNO+1 ?
18. UNTIL LOANC=8.8?
19. URITELNC" ")?
28. URITEC"LOAN IS PAID OFF IN ")?
21. URITELNCMONTHNO-1:3," MONTHS")
22.END.

The next example (shown at top of following
page) uses the REPEAT statement to read
letters typed in and count the total number
and numbers of respective vowels "until"
a full-stop is entered.
Note in running the program on the Sharp
a carriage return must be entered after
each letter.

The final example (lower half of following
page) simulates an acceptance test and
count procedure. Lengths are entered
in, tested to be within +1% of 100 and
the numbers accepted and rejected counted.
The process is terminated by entering
LENGTH as 0.0

53
0. WAR CH:CHAR 5
1. N? A ? E?I 0 .ÿ> U: INTEGER!
Z m BEGIN
j„ N:=8 ? A:=0 ? E:=0;I:=:0;0:=0;
4. REPEAT
CT
•-* ■ READ< CH>;
6. N:=N+1?
r ■ IF CH= -A -THEN A:=A+1 j
O » IF CH= -E -THEN E:=E+1;
9, IF CH= T "'THEN Is =1+1s10! IF CH= -'0 -THEN 0:=0+1;

11. IF CH= -’U 'THEN IJ:=U+1
12. UNTIL CH= -’.
13 URITELN("ETOTAL NO. OF CHARACTER
14. WRITELN("NO. OF As=" ? A:4>;
15. WRITELN("NO. OF Es="?E:4>;
16. WRITELN("NO. OF Is=" 1:4> .*
17. WRITELN("NO. OF Os=">0:4>;
18. WRITELN("NO. OF IJs=" ? U:4> *
19. END.

!l
? N:5);

0. *•: ACCEPTANCE COUNT PROCEDURE*;
l.UAR M, N: INTEGER;
2. LENGTH: REAL?
3. ACCEPT:BOOLEAN;
4.BEGIN
5.M: =0;N: =0;
6. REPEAT
7. WRITE("ENTER LENGTH
3. READLN<LENGTH);
9. ACCEPT:=(LENGTH>=99.0> AND(LENGTH<=101.0>;

10. IF ACCEPT THEN
11. BEGIN
12. M:=M+1;
13. WRITELHC " WITHIN SPEC" >
14. END
15. ELSE
16. BEGIN
17. N:=N+1?
IS. WRITELNC"REJECT")
19. END
20. UNTIL LENGTH<=0.8;
21.URITELN< "ENO. LENGTHS WITHIN SPEC. Ms 4>:
22.WRITELN< "NO. OUTSIDE SPEC.=",N-1:4>
23. END.

DO STATEMENT

54
4.6 REPETITION 3:THE FOR...TO...

When we wish to execute a statement or
compound statement for a given number
of times (the number not depending on
any statements within the loop) we use
the FOR...TO...DO form of statement ,the
syntax diagram for which is given below.

The variable identifier after FOR is known
as the control variable of the FOR statement.
The control variable can be INTEGER or
CHAR but must not be REAL.
The "start" and "end" values must be of the
same type as the control variable.
When the start value is less than the end
value TO applies, for the opposite situation
DOWNTO applies.
For example:

Q.UflR Ns INTEGER?
1.BEGIN
2. FOR Ns =12 DOWNTO 1
3. WRITE L H:3>
4.END.

DO

Qr <CR>] 4- "GO" COMMAND

12 11 10 9 8 7 6 5 4 3 2 1 DISPLAY

55

Program examples

This example uses FOR...TO...DO... state¬
ments to draw rectangles. Enter the values
of the sides required (A upto 22, B upto
21), the computer displays the rectangle.

8.UHR HDASH1,UDPlSH, HDASH2:CHPlR;
1. Pi? B? N: INTEGER'
2.BEGIN
3. HDfiSH1:= ;UDPlSH:=1 •";HDASH2:= *
4. REPlD Pi ? B) ‘
5. WRITE1; "G" >;
6. FOR Ns =1 TO Pi DO
7. WRITE<HDHSH1s 1>;
8. WRITELNC"S">;
9. FOR N:-l TO B DO

10. WRITELN<UDfiSH:1 ? UDPlSH:fl> ?
II. FOR Ns =1 TO Pi DO
12. WRITE(HDPSH2: 1)
13. END.

56
This program uses FOR loops to display
a bar chart.

0.*;'BAR CHART SHOWING SALES FIGURES*
1.UAR SALES1,SALES2,SALES3,SALES4,SALES5,H:INTEGER 5
2.BEGIN
3.WRITE("TYPE IN SALES1 TO NEAREST £100">5
4.RERDLNCSALES1>’
5.URITEC"SALES2=" > s READLN<SALES2> S
6.WRITEC,ISALES3="> J READLNCSALES3)5
7.WRITEC"SALES4="> ? READLNOSALES4)S
8.WRITE-:!"SALES5="> J READLNCSALES5)5
9.WRITELN-:;"E">‘
10.WRITELN-:;"SALES PER DPT. IN £100 UNITS")5
11.WRITELNC"v#***########*############*##*#");
12.WRITELNO' 5 10 15 20 25 30 35")5
13.WRITELNO'
14. FOR N:=1 TO SALES1 DO
15. WRITE("38"};WRITELN(" SALES1")s
16. WRITELNO' ");
17. FOR N:=1 TO SALES2 DO
18. WRITEC"®">;WRITELN<" SALES2" > ;
19. WRITELNO'
20. FOR H:=1 TO SALES3 DO
21. WRITE< WRITELNC" SALES3");
22. WRITELNC"
23. FOR Ns=1 TO SALES4 DO
24. WRITEC "::- ;WRITELNC" SALES4" > ;

: 25. WRITELNC" “)?
26. FOR N:=1 TO SALES5 DO
27. WRITEC"*">;WRITELNC" SALES5")
28.END.___—-DISPLAY AFTER EMTE«lMG • 3A SI Z3 J1 ■ »4- J 3 30; 4-: 11; 5" < (>

57
CHAPTER 5

PROCEDURES AND FUNCTIONS
5.1 INTRODUCTION

In this chapter we introduce the use of
PROCEDURES and FUNCTIONS : how they are
declared, their basic structure and how
they are used in PASCAL programs.

A procedure is essentially a subroutine
designed to accomplish a given task and
once written may be "called" into action
wherever and whenever it is required in
the program.

A function is in many respects similar
in both construction and use to a proc¬
edure. However,whereas a procedure is
used to identify a particular set of
actions a user defined function is used
to perform a specific calcuation or sim¬
ilar task in an identical way as carried
out by the standard functions previously
considered in chapter 3, section 3.6

The use of PROCEDURES and FUNCTIONS have
three important advantages:

*** they avoid duplication in a program;
each procedure and function is written
only once but may be "called" (merely
by writing their identifier) as many times
as is required in the program;

*** larger and more complex programs are
easier to develope (sections of the sol-
tion can be developed and tested indivi¬
dually and then subsequently Incorporated
in the full program as procedures and
functions);

58

*** complex programs are much easier for
other user's to both read and understand.

5-2 SIMPLE PROCEDURES:
THEIR DECLARATION, STRUCTURE AND CALL

First let us consider the simple type of
procedure in which no formal parameter
list is used. The basic construction
for this type is shown in the syntax
diagram given below:

Every procedure must he allocated an
identifier (i.e. a name, in the same way
as for variables). This identifier follows
immediately after PROCEDURE.
The PROCEDURE IDENTIFIER is followed by
the VAR declaration for any variables to
be used "locally" within the procedure.
Then follows the body of the procedure:
the simple and/or compound statements
making up the execution part of the
procedure.
Procedures (and functions) are declared
immediately after the VAR declaration of
the full progam and followed by the
execution sections of the main program.
Thus the order of a program containing
one or more procedures or functions is:

59

A simple procedure is "invoked" or "called
into operation in the main program just by
writing its identifier. For example, if we
have a program containing a procedure
whose identifier is PRINTALINE, any
statement of the form:

PRINTALINE;
in the main program section will cause
the task contained in this procedure to
be carried out.

Program example.

The following program illustrates the
basic ideas of how simple procedures
are written, incorporated in the main
program and how they may be called.
Note the order of the program:
1. The variables of the main program

are first declared (only one N in
our example).

2. The procedures (MONEY and MILESTOKM
in our example) are then declared.

3. The VAR and PROCEDURE sections are
then followed by the main program
statements, which in our example
contain calls to procedures in lines
34 and 35.

60

The program can be used to convert 4. to
French francs or miles to kilometres.
Any number of other procedures could, of
course, be included.

0.CAR N:INTEGERS

6,
7
8,
9,
10,
11,
12,
13,
14,
T5;
16,
17,
18,
19,
20,
21,
2,
-T
*-> I

24

'-.THE FOLLOWING PROCEDURES:*;
;1.NONEV. 2.MILESTOKM.:

,•MORE FIRST DECLARED*;
PROCEDURE MONEY;
UflR F.- P:REAL;
BEGIN

VfiKtQLe DECLARATION FoR
MH/N -PROGRAM

-IpgMTiPie*

■ WAR 3>6ClAKAT«oN OF "LOCAL"
WAnmSLCS

WRITE("ENTER SUM IN £
REflDLN(P);
F:=10.63+P?
WRITEC "ESCnSSf" P:8:2,"=");
WRITELH(F:9:2," FRANCS">;
WRITE("AT THE CURRENT RATE")?
WRITEC" OF fl=FF10.63")

END?
_

PfiOCEPuRE
s MONEY

EXECUTABLE
STATEMENTS
(BODY OF

PKCCEJIUXE)

PROCEDURE MILESTOKM;
UAR M.- KM:REAL;

BEGIN
WRITE("ENTER DISTANCE IN MILES
READLN(M)?
KM:=1.6093:+:M;
WRITEC"EBBBB",M:8:2," MILES">;
KM:=1.6@93=+:M;
WRITECKM:8:2? " K ILOMETRES">;

END;

PKOCEDuffE
MILESTOKM

5.BEGIN
26. WRITELNC"EIF VOU WISH TO");
27. WRITELNC"1.CONCERT £ TO FRENCH FRANCS")?
28. WRITELN("*****ENTER 1*****" >;
29. WRITELNC" ")?
30. WRITELNC"2.CONCERT MILES TO KM.")?
31. WRITELN C"****ENTER 2+++=+=" > ?
32. READLNCN);
33. WRITELNC"E");
34. IF N=1 THEN MONEY -«
35. ELSE MILESTOKM«-CALL MPMSME
36.END. MiLesroKM

CALL FoR. THOCEDIXKE
MorJET"

MAIN

PitoGKAM

61

53 PROCEDURES WITH VALUE PARAMETERS

We can greatly increase the versatility of
procedures by employing "value" parameter
variables. Different values to these par¬
ameters may be given each time the procedure
is called.
The value parameter variables are declaered
by including a "formal" parameter list
immediately after the procedure identifier
in the manner shown in the syntax diagram
below.

As an example of the use of value parameters
let us consider the drawing of a bar chart
using procedure calls to generate the bars
of the specified length and also to provide
a simple form of labelling.
We make use of two value parameter variables:

A to specify length; M to label the bar.
The procedure could then be written as
follows:

PROCEDURE BAR(A,M:INTEGER);
VAR N : INTEGER;
BEGIN
FOR N:= 1 TO A DO
WRITE(" ");
WRITE("QUANTITY",M:2);
WRITELN(" ");
END ; _

62

This procedure may then be called any¬
where in the main program by assigning
values to the value parameter variables
in the following way:

BAR(18,5);
4 ---v&Lue f>artncter M *5 Bie 5

l-- vbXixA pe-fcxiricber A *$ H)t u&Xut I0

Such a call would cause a bar of length
18 units followed by it's Tabel QUANTITY 5
to be displayed.
The following example illustates a complete
program which displays a bar chart of sales
figures plus corresponding labels.
The main program first requests us to enter
in the sales figures (see READLN statement
in line 10). It then calls procedure BAR
(see lines 12,13 and 14) to effect the
display of each SALES bar plus label;
the A value parameter being assigned the
the corresponding SALES1.2 or 3 value and
M the label value 1,2 or 3.

0.UOR SOLES1,S0L.ES2.SOLES3:INTEGER
1 - PROCEDURE BOR <0. M:IMTESFR > ?

I'OR N:INTEGER;
BEGIN

4. FOR M:—1nr WRITER
£m URITELIK
7. URITELN-::
o

a END;
9,BEGINis! REODLNCSOL
ii. WRITELM <"-
!2 BOR(SOLES1

BOR(SOLES2
BOR S0LES3Ii]END.

5---19-----1 =

63

[G <c*> I*—
?20,12,18 <CK>

t_I_1_

-"GO" COMMAS TO RUN 'PROGRAM

Vfltues OF SALES1,2,Z SH7ERE-J*

D/SPLAT

OF

BAR
CHART

Further program examples

This program converts (x,y) coordinates
to polar coordinates (r,0) using the
procedure POLAR(X,Y).

0.5S TO CONVERT CATESIAN x,y TO POLAR *•;
l.UAR X ? V:REAL;
2.PROCEDURE POLAR < X,V:REAL > 5
3.UAR R, ANGLE:REAL?
4.BEGIN
5. R s =SQRT< X*X+V*V >;
S. ANGLE:=ARCTAN < V--X >*188.0x3.1415927;
7, IF <X<8.8> THEN
3. ANGLE:= 188.8+ANGLE;
9. WR ITELN < "R=",R:6:2," THETA=",ANGLE:6:2>
18.END;
11. BEGIN
12, WR ITELN <"ENTER UALLIES OF x,v">;
13. WRITE<"x= " >;READLN < X >;
14. WR ITE <"y= “ > ;READLN < V);
15. POLAR <X? V>
to. END.

64

This program may be used to plot a graph
using the procedure PLOTAPOINT(A,B). The
value parameters are assigned at each call
the values of the x,y coordinates entered
in via the keyboard and procedure
PLOTAPOINT(A,B) displays the point
(x,y) by

0.*;' To P1ot a •?raph .*;
I.UPR X? V> PJ M:.INTEGER;
2.PROCEDURE PLOTflPOINTCP,B:INTEGER >;
3.:-: LOCPTING POSITION OF POINT*;
4.UPR N:INTEGER?
5.BEGIN
6.WRITE<"ED">?
7. FOR N:=8 TO P DO
8. URITEC" ">?
9. FOR N:=0 TO B DO
10. URITEC"B" > 5
11. WRITER'S*")
12.END?
13.*; BEGINNING OF MOIN PROGPM*;
14.BEGIN
15.URITELNC"E11 >;
16.URITELNC"ENTER NO. OF POINTS TO BE PLOTTED"> 5
17.REODLNCM);
18.URITELNCENTER x,y CORDINOTES OF EfiCH POINT":';
19.URITELNC"E">;
20.URITEC" ----5----10---15---20---25---30—-3=1" •> ;
21.URITELNCD")?
22.URiTEC"ACCANSSBASNBIGSSNNNNAISSSNNNACJO" ?;
23. FOR P:=l TO M DO
24. BEGIN
25. URITEC"0">;
26. REfiDCX,V>;
27. PLOTflPOINTCX,V)
28. END
29.END.

65

5.4 FUNCTIONS: DECLARATION AND USE

A function rather than a procedure is used
when, for example, the results of a calcul¬
ation or expression may be required more
than once in a program. A simple way of
distinguishing between the two is to think
of a procedure as producing some effect
whilst a function gives some value.

We have already met many of the standard
functions (e.g. SIN(X), TRUNC(X), ORD(X)...)
in chapter 3. We now consider how we can
declare our own "user defined" functions,
the syntax diagram for which is shown below.
Note this is very similar to that of a
procedure except that the result type
must also be included.

Program examples

PASCAL provides no direct means of computing
powers. This program provides such a function
P(X,Y) which may be used to calculate Xr
The base X can take any REAL value greater
than zero and the exponent or power Y is
also REAL but may be positive or negative.
The example given in the program calculates

C = 3.02+ 2.08

u

0.URR 0,8,0:REAL;
1. Rower funct ion
2.FUNC'TION PCX,V:REAL>:REAL;
3.BEGIN
4. P:=ENP(V+LNOO>
5.END;
6,BEGIN
7. A:=2.0*B:=S.0;
3. C:=P(3.0,0 +Pt,2.0,B)"
9. WRITELN(C:6:2>
18.END.

FttMCTIort
TO CALCULATE
w Y

This example applies the cosine rule:

Z = X + Y -2XYcos(0)
Enter in two lengths and the angle included
by the lengths. The function A(X,Y,ANGLE)
calculates the third side.

0.URR B?C?ANGLE:REAL;
1. Function applyin-3 cosine rule X
“l FUNCTIOH ACX,V,ANGLE:REAL>:REAL;z. URR Z,THETA:REAL;
4. BEGIN
CT THETA:=ANGLE*3.14159/130.0;l'. Zi =H*X+V:+:V-2.0*X*V*COS(THETA >;
■?m A:=SQRT(2.)

END;
9 BEGIN
10. WRITE("ENTER LENGTH B ">;
ll. READLN(B>;
i2 WRITE("ENTER LENGTH C ");
1 Tx ■ READLNCO;
14. WRITE("ENTER ANGLE "):
15. READLN(ANGLE);
16. WRITE("LENGTH A=",A(B,C:,ANGLE>:8:2>
17« END.

67

CHAPTER 6

ARRAYS

6.1 INTRODUCTION

The use of arrays in programs makes it
very much easier for us to handle and
process larger volumes of related inform¬
ation.
We can then give, for example, an assoc¬
iated group of variables a collective
name - the array identifier - rather than
a series of individual identifiers. We
can also easily refer to any of the ind-
vidual variables by the array identifier
plus subscript(s) to identify the part¬
icular element. This saves a great amount
of "writing" space and is especially use¬
ful when reading in, processing and writ¬
ing out large volumes of information.

6-2 ARRAY DECLARATION

The syntax diagram for declaring an array
is given below:

~(VAR)" meurtFiER -(r)— AR*AY
VOSITIVE

iNTe<se*

68

Examples of array declaration

1. One-dimensional arrays

VAR XLIST:ARRAY[10] OF CHAR;

This delares a primary or one-dimensional
array whose identifier is XLIST and which
comprises 11 CHAR vaiables:
XLIST[0], XLIST[1], XLISTf 3]....XLIST[10]
2. Two dimensional arrays

VAR XYTABLE:ARRAY[9,6] OF INTEGER;

This declares XYTABLE as a two-dimensional
array of 10 x 7 = 70 INTEGER variables:

XYTABLE[0,0] XYTABLE[0,1]....XYTABLE[0,6]
XYTABLE[1,0] XYTABLE[1,1]

XYTABLE[1,6]

••• ••• •••
••• ••• •••

XYTABLE[9,0] ... XYTABLE[9,6]

3. Three-dimensional arrays

VAR XYZBL0CK:ARRAY[12,10 ,5] OF REAL;

declares XYZBLOCK as a three-dimensional
array of 13 x 11 x 6 REAL variables

4. Declaration of similar size and type

When the size and variable type of more
than one array are identical, they may

be declared as shown in the following
example:

VAR XTYPE,YTPE,ZTYPE:ARRAY[32] OF REAL;

69

6-3 EXAMPLES OF PROGRAMS USING ARRAYS

1. Two arrays NOITEMS and PRICE are decl¬
ared in this program. When running the
program we systematically enter in the
number and price of each item, 10 pairs
in all (see lines 4 and 5). The program
then displays the data we have fed in.

0,UHR NOITEMS:ARRAV C9]OF I NTESER ?
1. PRICE:RRRfiV C9]OF PERL?
2. H:INTEGER?
3.BEGIN
4. FOR N:=0 TO 9 DO
5. RERDLN<NOITEMSCN],PRICECN3 > ?
f., FOP N:=0 To 9 DO
7. URITELN(NOITEMSCN3:4,PRICECN3:8:2)
8.END.

2. A modification is made to the last
program to not only list the number
and price but also to display sub-
and total prices.

0•URR NOITEMS,PRICE:RRRfiV[93OF REAL?
t. N:INTEGER;S:REAL?
2.BEGIN
3.S:=0.0?
4, FOR N:=0 TO 9 DO
5, RERDLN < NOITEMS[N3,PRICEC N 3)?
6.URI TEL.N(" NO. PRICE SUB-TOTAL"> ?
7. FOR N:=0 TO 9 DO
8. BEGIN
9. URITELN<NOITEMSCN3:4,PRICECN3:8:2,

t.0. NOITEMSTN3*PRICECN3 = 12:2> ?
1 1. S:=3+NOITEMSCN3+PRICECN3
12. END?
13.UR ITELN<" "ÿ:>?
14.URITELNC"TOTRL= ",Ss 13=2 ■'

15.END.

70

ISL G <Cf?> *- "GO" COMMAND

NO. PRICE SUB-TOTAL
12 34.78 417.36
21 56.08 1176.00
9 5.13 46. 17
43 64.8a 2794.14
45 99.08 4050.00
"*T 76.60 1761.80
66 a O f 57.42
12 87.45 1849.40
34 4.43 150.62
132 .05 6.60

TOTAL= 11509.51

EXAMPLE

OF

RESULTS

/DISPLAYED

(mjtir Jeed.«wj
in NO. ITEMS
a.xA FRICE
cn-Cormo-tton..

3. This program gives a simple example of the
use of two-dimensional arrays. MARKS is the
identifier for a 3x3 array. In lines 3,4,5
we read in data, e.g. student's marks. Lines
6-15 provide a tabular display of this data.

3.UAR MARKS:ARRA V[2,2]OF REAL 5
1. ROW,COLUMN:IHTEGER;
2.BEGIN
3. FOR RIJW:= 1 Tu 2 DO
4. FOR COLUMN:=1 TO 2 DO
5. READLN < MARKS[ROW,COLUMN]);
6. FOR ROW:=1 TO 2 DO
7. BEGIN
8. WRITELNC" ">?
3. WRITELNC ")5
19. WRITE<R0U:3>;
11. FOR COLUMN:=1 TO 2 DO
12» WR I TE < MARKS C ROW,COLUMN]:6)
13. END;
14.WRITELNC ");
15.WR ITELN <" ">
16.END.

71
4. The program below is essentially a modification
of the last program using procedures INREAD and
OUTWRITE to enter and display the marks of 6
students for 4 subjects followed by procedure
AVSTUDMARK to display the average mark
for each student in his/her subjects.

0.VAR MARKS:ARRAY[6,4]OF REAL;
1. ROW,COLUMN:INTEG'ER 5
2.PROCEDURE INREAD;
3.BEGIN
4. FOR ROW:=1 TO 6 DO
5. FOR COLUMN:=1 TO 4 DO
6. READLN<MARKSCROW,COLUMN]);
7.END;
8.PROCEDURE OUTWRITE;
5.BEGIN

10. FOR R0W:=1 TO 6 DO
11. BEGIN
12. WRITELNC" ");

14. WRITELNC"
15. WRITE(ROW:3);
16. FOR COLUMN:=1 TO 4 DO
17. WRITECMARKSCROW,COLUMN]:6>
18. END;
19.WRITELNC1
20.WRITELNC ">
21.END;
22.PROCEDURE AUSTUDMARK;
23.OAR SUM:REAL;
24.BEGIN
25. WR ITELN< "AVERAGE STUDENT'S MARKS:" >;
4*6' « FuR RuW:=1 TU 6> DO
27. BEGIN
28. SUM:=0.6;
29. FOR COLUMN:=1 TO 4 DO
30. SUM:=SUM+MARKSCROW,COLUMN];
31. WRITELN<ROW:3,(SUM--4.0>:6:1 >
32. END
33.END;
34.BEGIN
35.INREAD;
36.OUTWRITE;
37.AUSTUDMARK
38.END.

72
On running the program we first enter in
the subject marks for each student.
These are then displayed in tabular form
followed by a list of their average, e.g

1 34

98

65

67

l** o

80

12

65
1

K»
i

4 67 41 32

4 89 76 55 07

cr -y 5 i*‘O

t> 0 7b 52 12

fiUERAGE STUDENT "S MARK
1 47.2

3 36." 0
4 76.7
5 29.5
6 35.0

INDEX
73

Arithmetic operators
for REAL 29-30
for INTEGER 31-32

Arrays 67-72
Array declaration 67-68
Assignment statements 15

B

BOOLEAN
operators.expressions 35-38
values 18

C

CASE statements 46-48
CHAR varibles, values 13,17
Clear (display) 8
Comparison operators 33
Compound statements 26-27
Control statements 43
Corrections 8

D

Delete command 6

E

Editing programs 1-9
Expressions

REAL 29-31
INTEGER 31-32
BOOLEAN 35-38

Execution command 4

F

FOR statements 54-56
Formatting 20-23
Functions

standard 36
mathematical 39-40
character 41-42
user defined 65-66

74

fc •

I

G

GO command 4

I

Identifier 13
IF statemen ts 44-46
K

KILL command 6

L

Loading (interpreter) 1
Loading (programs) 7
LIST command 4-5

P

PASCAL program struct. 28
Procedures 57-64

declaration 58,61

R

READ,READLN 23-25
REPEAT..UNTIL statem. 51-53
Repetition 48

S

SAVE command 8
Structure (of program) 28

V

Values 16-18
Variables 12-13
VAR declaration 14

W

WRITE, WRITELN 18-20
WHILE..DO statement 48-50

I
1

!

