
vf 4,4-'o/rjrs $4/ty j /vÿV CJ> A, £A **J 6ft 'ft 'ÿ& ? p *v>./ <$> Jÿ9

>' *7 cv cjj

<JT *i>'0T°**£'*>6** *oil
A %•■ML5 Zm cmr ■ Y/ W/WL KW> <r> o *y> +> :%?f!f ftvftftftftsT*'4*7K*/*?4- ;

k/? A: oJ6'l'ÿ%y /,?'>/,’ t-r, Ufr j£.J* 'o'1 /**/* ,P'mmmmwmm
if ->*/ 4 »*/ *.0*

?, / a A A 0

i'X 2&
Ifo%t&if/'i<4»S4-/A?.iS £ VJaAv

,*? &***<*>A ■

■o\V 4
■/>

, yj*>>§y/j£*$ <9/4 °.$*/*&<&
£yfc?4yt % <%%**y V;|?<? v Qa&i.&j-*. Q> AV* , <$* Q& '/j-J-X £>X 0 ®

f)„' fffXÿ Xb />tf-$ J°■*7A;r4v>v

AC*: A
** - c*ÿ JZ<$-*•'' <> vyy*y> yyyÿy 0oÿX rx..°ÿ A 7s g-A 3r«4 <7 -5" 0 fy.'e>f &J. j£ QA > y AT/ Qo° cW / ’%»■4 A'p/o

?<s-
"?

6? T'
4 os 4j£ =7 S7*/ o«’ «

niZ-SODM
I11Z-SQDH

,4 4VjV?>‘v'Kt7 -*
**o ,X A Ss A 7 -.u / .

A T A tv%*kx T ;°:
A <7ÿ

I11Z '4* A

G.P. Ridley

Starting
Machine Code

on the
SHARP

IllZ-SOBIf I11Z- R

mz-7101
copyright © G.P. Ridley

1984

The Author wishes to express his thanks to
Mike Shaw for his contributions to the text
and program examples in the book.

ALL RIGHTS RESERVED

No part of this publication may be reproduced by
any means without the prior permission of the
Author. The only exceptions are as provided for
by the Copyright (photocopying) Act or in order
to enter the software contained herein onto a
computer for the sole use of the owner of this
book.

First Published 1984

PUBLISHED BY:

S D.C. BRENNAN Eng.
14 North Western Avenue
Watford, Herts. WD2 6AE

Contents

1 BASIC LINKS 5
Screen Addressing Program 6
Block Move Program 12

2 THE C.P.U. 19
What's inside the Z80 chip 24
The Assembly Commands 38
Data Transfer Commands 40
Data Manipulation & Te£t Commands 50
Re-Routing Program Running 65
Input/Output Commands 70
System Controls 72

3 ASSEMBLING 73
Screen Messages 81
User Inputs 1 83
User Inputs 2 86
Saving Programs 89

4 ROM ROUTINES 92
Table Construction 92
Time Read Program 96
Loader Program 101
Adding Titles 104
Adding Colour 108
Memory Display Program 113

APPENDIX 124
Hex to Opcode Table 124
Instructions Table 137
ASCII Table 149
Display Code Table 150

INDEX 152

Introduction

This book has been written as an introduction to writing machine

code programs and routines on the Sharp range of micro computers,
MZ-80K, MZ-80A and the MZ-700 series.

Most newcomers to computing begin programming in Basic and for

many machine code remains a grey area which most see in program
listings as a series of numbers within DATA statements POKEd into

high memory locations and then called by the USR command, and are

left without a clue as to what is happening. One may have seen
program listings in magazines which contain these routines for one
model of the Sharp and often wished it could be converted to run on

another model. In fact with many of these routines the conversion

probabilities are high and there may be only one or two figures

which need altering, but one must know what the routine is

attempting to achieve in order to know which figures to alter.

Machine code, or assembly language, communicates directly with

the Z80 and is far quicker than the Basic language which needs to be
interpreted. This is one reason for a Basic program to contain a

machine code routine to achieve greater speed, or it could be used
to modify the Basic interpreter to do tasks it cannot normally do.

This book hopefully will make Assembly language clearer and more
understandable to the average user, one will not need a degree to
grasp what is going on and computer jargon, will be kept to minimum

levels.

Good Luck.

1

Basic links

The Basic language is generally the simplest way of writing

programs, it is easy to follow and debugging a faulty program is
usually made quite easy with the editing facilities for altering

lines in a program, so why use assembly language?

The main reason must be speed of execution, not purely based on
games programs such as space invaders or the like which would not he

worth playing if they were written in Basic, but more serious

applications which will be shown in the book. In order to grasp some
idea of the speed of a program written in assembler we will compare
the execution time with a similar program written in Basic.
Whichever Sharp micro you have, K, A or 700, load Basic and enter
this short program

10 PRINT "8"?
20 TI$="000000"
30 FORX = 0 TO 999
40 PRINTHB";
50 NEXT
60 PRINT TI$

Now enter 'RUN' followed by the Carriage Return key 'CR'

If one used the MZ-80A for that exercise the time taken to fill the
screen should have been 4 seconds. The MZ-700 should have completed

it in 2 seconds due to the faster operating speed of the Z80A chip

which it uses. The MZ-80K would have required 16 seconds as the
Basic Print command is far slower than it could be.

5

Let us alter the above program so that instead of printing one

character after another using the Basic PRINT statement we shall

print the characters directly to the screen area of memory using the

POKE command.

Add line 15:—
15 Z=53248

And alter line 40 to:-
40 POKEZ+X,2

Enter 'RUN' and 'CR'

This time the MZ-80K, as it was not using the Print command, took
almost 6 seconds along with the MZ-80A and the MZ-700 took 3

seconds.

Now if that program, although not the most interesting in the world

but quite effective as an example, is written in machine code and

called by the USR command from Basic the dramatic increase in speed

will be instantly obvious.

Program 1 Direct Screen Addressing from Basic

Assembly language instructions used:-
LD DE,nnnn LD HL,nnnn LD A,nn LD (DE),r

SBC HL,DE INC DE JR NZ,nn RET
These instructions are detailed in chapter 2.

When entering the following program one should be using the

standard Sharp Basic for your machine without modifications - i.e.

without a toolkit or basic modifier - as one may have code written

into the area of RAM we will use. The versions are:-
SP-5025 MZ-80K

SA-5510 MZ-80A

S-Basic MZ-700

6

Enter 'NEW' and 'CR' and input these program lines, the left hand
listing is for the MZ-80K and MZ-80A and the right hand for the MZ-
700 only:-

Enter 'RUN' and 'CR'
The screen will instantly display the 'READY' message and one could
be excused in thinking that not much has just happened. But happen
it has in that now a Machine Code routine has been placed high in
memory, starting at location 49152, which will print the entire
screen with the letter 'B' in a fraction of the time taken
previously using normal Basic PRINT or POKE statements.

Enter 'NEW1 and 'CR1 and this one line program
10 PRINT "g":USR(49152)

Enter 'RUN' and 'CR'
Its speed is amazingly fast. Note that in order to achieve the

similar result that the 700 routine took six additional bytes, this

and other differences between the relative micros will be discussed
later, although the main bulk of the numbers were the same proves
that with small alterations most routines listed in programs for a
particular Sharp can be converted to run on another Sharp.

As will be seen in the next chapter Assembly language is made up
of several registers which we load with addresses and values, you

can also check the codes in the Appendix. The previous listing for
the K and A in disassembled form would look like this:-

MZ-80K & MZ-80A

10 LIMIT 49151
20 FOR X= 49152 TO 49166
30 READ A:POKEX,A:NEXT
40 DATA 62,2,17,0,208,33,232,211

MZ-700

10 LIMIT 49151

20 FOR X= 49152 TO 49172

30 READ A:POKEX,A:NEXT
40 DATA 243,211,227,62,2,17,0,

208,33,232,211,18,19,237,82
32,247,211 ,225,251 ,201

18,19,237,82,32,247,201

7

1 cooo 3E 02 LD A,02
2 C002 1 1 00 DO LD DE,D000
3 C005 21 E8 D3 LD HL,D3E8
4 C008 12 LD (DE),A
5 C009 13 INC DE

6 C00A ED 52 SBC HL,DE
7 cooc 20 F7 JR NZ,C005
8 C00E C9 RET

In the K/A listing we POKEd the DATA into memory starting at address

49152 which if we convert to Hexadecimal gives us C000, use the
conversion chart in the Appendix if you aren't sure. The first two
items in the DATA line were 62,2 decimal. 62 converts to 3E hex

which means we want to load the A register with the value of the
next byte which in this case was 2 (line 1 above).

The next three bytes were 17,0,208 which convert to 11,00,DO hex. 11

signifies Load the register pair DE with the following two bytes in

reverse order, low address first, in this instance we want to load
DE with'the address of the top left corner of the screen (Video RAM)

which DOOOhex, therefore in reverse order the next two bytes will
be 00 DO (line 2).

These were followed by 33,232,211 which convert to 21,E8,D3. The 21

means Load register pair HL with the following two bytes in low byte

first, just as we did with DE above. The address we want to load
into HL is the bottom right hand location of the screen with 1 added
to it which is D3E8hex, which in reverse order becomes E8 D3 (line

3>. The screen has one thousand locations, 25 lines by 40 columns,

therefore if the first screen position is known to be DOOOhex (53248

dec) the bottom right will be 999 positions higher, D3E7 (54247

dec). The reason for adding 1 to this number will be explained

shortly.

The next number in the DATA line was 18 which converts to 12hex,

this means Load whatever value is in the A register into the
contents of the DE register. This line may sound complicated but it

8

is similar to the way we POKE the screen in Basic. On the first time
through this routine DE is set at D000, which is top left of the
screen, so loading it with the A register which contains 2 is simply
the same as POKE 53248,2 which displays the second character in the
Display code into that screen location (line 4).

We now want to add 1 to DE so that the next time we loop round it
will display the character in the A register in the next screen
position, which will be D001 (53249 dec). This is achieved by 19
dec, 13hex which instruction is simply INC DE, increment DE by 1
(line 5).

The following two bytes were 237,82 which convert to ED,52 hex. This
command is SBC HL,DE which means subtract DE from HL. The first time
round the loop DE contains D000 and HL D3E8 so the result will be
03E8. The second time round DE will contain D001 and HL D3E8, and
this time the result is 03E7, going down by 1 each time round and
slowly getting nearer to zero (line 6).

The next two bytes 32,247 convert to 20, F7 hex. 20hex is in the
relative jump family of instructions, which means the program will
jump, not to a directly specified address, but a certain amount of
memory locations in relation to its present address if a certain

condition is true. 20hex means JUMP if not zero, remember in the
previous line SBC HL,DE subtracted DE from HL, it also sets the zero
bit of the F register if after the subtraction the result is zero,
which is what will happen after the program has looped 1000 times.
Therefore before we actually get to that stage when the whole screen
will be full of 'B's it will not be zero so we want to loop back and
do it all again, so the command is JR NZ, jump back if not zero. The
jump is in relation to the program counter which will be at the next
instruction location C00E, and we want it to jump back to C005 which
is 9 bytes back. Start counting from 0 at COOE backwards, the first
byte will be FF at C00D:-

1 =FF C00D

2=FE C00C
3=FD C00B

9

4=FC COOA
5=FB CO(ÿ
6=FA C008
7=F9 C007
8=F8 CO06
9=F7 C005 so the line becomes 20 F7.

The reason we loaded the HL pair with D3E8, which is 1 after the
final screen location is that we increment DE before testing whether

to loop back or not, therefore after printing to the last square on
the screen in line 5 register pair DE will contain D3E7, line 5

increments DE so now it will be at D3E8 and then it has HL

subtracted from it and if the result is zero, which it will be after
printing to each screen location, the program will not jump back but

continue to line 8, the final line.

The final number in the DATA lines was 201 which converts to C9hex,
this command is RET for return, just as one would use after a GOSUB
routine in Basic. Remember that we went to this routine by the LJSR

command which is a Call instruction just like the Basic GOSUB and

when its task is completed we enter the RET command to return.

MZ-700 note
The 700 program, although similar, contained 6 additional bytes.

The first three 243,211,227 convert to F3,D3,E3. When using S-
Basic the Video Ram area is switched out to give the user more

free RAM for programs therefore before attempting to access the

V-RAM these three bytes must be entered to enable the V-RAM Area

to be used. The opcodes are:-
DI ;F3
OUT ($E3),A ;D3E3

and after the routine to directly address the V-RAM the other
three bytes are entered before the final one. 211,225,251

convert to D3,E1,FB and must always be entered after accessing

the V-RAM to return to normal.

OUT ($E1),A ;D3E1
El ;FB

10

Now that routine although it executed in a fraction of the time it

took using Basic was not quick to program, and a lot of thought

would go into producing a simple output such as that. It is also
more complicated translating decimal values back to hex and then
translating them into assembly language Mnemonics and operands. If
one is to explore assembly language in more depth it would be a wise

decision to invest in a Disassembler tape which will do most of the
dirty work for you and produce a printout such as we have just seen,
furthermore entering assembly language is made childs-play, well

almost, if one purchases one of the assembler packages which allows
one to enter opcodes and operands such as:- LD HL,D000 directly.

After entering the listing one selects the assemble option and the
assembler will then translate all the instructions into machine code
automatically and output a version known as Object code. This small
piece of jargon simply means assembled machine code ready to record
on tape for future loading. It is virtually impossible to write

machine code programs of any size without an assembler, it will pick

up any false statements just like Basic does with the Syntax errors
and it will allow one to run the programs and use breakpoints to

stop the running at certain points so that one may check on the
state of the registers etc. This is most important as the programs

run so fast it would be difficult to make these checks without the

facility. Furthermore one can add labels to any area in the program

and simply enter a line JUMP to label, one would not have to know

the exact address as the assembler would calculate its whereabouts

and move to that location. The relative jump we made in the last

program would also be calculated automatically, one could call it

LOOP, and simply enter a line JR NZ,LOOP. And the most important

asset is that lines can be added into the middle of a program, just

like Basic, one would find that very difficult even in the previous

program and that only contained 15 bytes.

In later examples of machine code we will use an Assembler, Editor

and Debugger called 'ZEN'. There are several types of Assemblers
one can use with the Sharps and most operate in a similar manner to
'ZEN1 and if you have a another type you should find the examples

easy to enter with an alternative Assembler.

11

Program 2 Block Move using Basic

New instructions used:-
LD BC,nnnn LDIR JR nn

There are four instructions which allow blocks of memory to be

copied into other areas of memory we are going to use one of them

here. At this stage one could be excused for not appreciating their

usefulness fully, but when one gets into writing complete machine

code programs ones attitude could alter. One example could be to

copy the complete screen area to another part of memory, and when

needed move it back to the display area immediately. One may have a

program which is menu driven in which options the user can make are

listed on screen. That complete screen display could be stored

somewhere in RAM and when needed a USR call will immediately

transpose that block of memory back to the screen in a flash. Once

again there are small additions to the 700 listing which is on the

right. Enter 'NEW' and 'CR'

MZ-80K & MZ-80A
10 LIMIT 45055
20 FOR X= 52992 TO 5301 1

30 READ A:POKEX,A:NEXT
40 DATA 33,0,208,17,0,176,24,6
50 DATA 33,0,176,17,0,208,1,232,

3,237,1 76,201

MZ-700
10 LIMIT 45055
20 FOR X= 52992 TO 53017

30 READ A:POKEX,A:NEXT
40 DATA 33,0,208,17,0,176,24,6
50 DATA 33,0,176,17,0,208,1,

232,3,243,21 1,227,237,1 76,
21 1 ,225,251 ,201

Now enter 'RUN' and 'CR'
Once again the 'READY' message or 'Ready' if you have an A or 700

was displayed almost .immediately, and we now have this block move

routine in memory.

One does not need to write a separate program to demonstrate this

program, providing there is a fair amount of text presently on the

screen, if there isn't put something on the screen, anything.

12

Enter in direct mode (without a line number) USR(52992) and 'CR'.
The 'Ready' will be displayed instantly and the total displayed area

has been copied into memory locations B000 to B3E7 hex. It has not
dissappeared off the screen it has been duplicated into the other
area. If one was running a program the screen could now be cleared
and the program continue until one needed to bring back the previous

display.

Now clear the screen by entering 'SHIFT' and 'CLR' and to prove the
point enter some characters onto the screen, it does not matter if

one gets 'Syntax error' printed just get something on the screen.

Enter in direct mode USR(53000) and 'CR'
The screen will instantly change back to the previous display which

was saved when we entered USR(52992)

One could save more than only one screen, providing they were moved
to separate areas of memory, each screen contains 1000 bytes so one
will need to adjust the program for different storage areas. Let us
look at the assembled listing, remember it started at 52992 dec
which is CF00 hex:-

MZ--80K & MZ--80A MZ-700

1 CF00 21 00 DO LD HL,D000 CF00 21 00 DO LD HL,D000
2 CFO3 11 00 B0 LD DE,B000 CFO3 11 00 B0 LD DE,B000
3 CF06 18 06 JR 06 CF06 1 8 06 JR 06
4 CF0‘8 21 00 B0 LD HL,B000 CFO8 21 00 B0 LD HL,B000
5 CFOB 1 1 00 DO LD DE,D000 CFOB 1 1 00 DO LD DE,D000
6 CFOE 01 E8 03 LD BC,03E8 CFOE 01 E8 03 LD BC,03E8
7 CF1 1 ED B0 LDIR CF1 1 F3 DI
8 CF13 C9 RET CF12 D3 E3 OUT ($E3),A
9 CF14 ED B0 LDIR

10 CF16 D3 E1 OUT ($E1),A

1 1 CF18 FB El

12 CF19 C9 RET

13

MZ-700 note
Once again as we are directly addressing the Video Ram area the

routine requires the memory configuration change as we did in
program 1, this technique is lightly touched upon on page 127 of
the 700 manual, but as one can see it is always the same three
codes used, 243,211,227 dec to start with which convert to F3,
D3, E3 hex, the operands can be seen listed, and 211,225,251 dec
to end with before the RET instruction which convert to D3, E1 ,
FB.

To copy the screen display to the storage area we first Load
register pair HL with the first location of the screen area D000.
Secondly we Load register DE with the first address in the area we
are transferring the screen contents to, in this case B000. As we
have two entry points, one for copying the screen into the storage
area and the other for bringing it back to the screen the only

differences are the addresses contained in HL and DE, the copying

routine remains the same so we can use that part for transfers in
both directions. The next instruction is a relative jump, JR, as we
used in program 1 only this time there are no conditions to be met
as before, the program simply jumps so many bytes in relation to the
program counter. As before the program counter is at the next
instruction (on the next line) so we count from there only this time

it is forwards and not back. In the listing the PC is at CF08 and we
want to skip to CFOE as the next two instructions simply load HL and
DE with the addresses for copying back to the screen, so we want to
miss them. Simply start counting from zero forwards

CF08=0

CF09=1

CF0A=2

CF0B=3
CF0C=4
CF0D=5
CF0E=6 so the line is JR 06.

14

Next BC gets Loaded with the amount of memory locations we wish to
transfer, in this case 1000 which converts to 03E8. Now comes the
clever bit, LDIR tranfers or copies the memory contents of whatever
is stored at the address of HL down to the memory address of DE.
Each time a transfer of one byte occurs so BC gets decremented and
HL and DE get incremented. This transfer continues until BC equals

zero.

The first location to get moved is the top left square of the
screen, at this stage the DE and HL registers increase by 1 and BC
decreases by 1 , so now HL is at D001 , DE is at B001 , and BC is 03E7
and the routine continues so that the next screen location to be
moved is the one to the right of the top left position, and
gradually the routine works its way down through the whole screen
area until HL=D3E7 (the bottom right position of the screen),
DE=B3E7 and BC=0. Afterwhich a return is made back to Basic.

To recall the stored screen we enter the routine at a slightly

higher address, at CF08 hex by USR(53000). This routine first loads
HL with the start address of where the memory contents are to be
copied from, B000. Then DE is Loaded with the start address of the
destination area, which is the start of Video Ram, D000. BC once
again is Loaded with the amount of memory locations to actually move
03E8. Then the move instruction is used again, if in a different

routine one wanted to transfer only 10 bytes instead of 1000 one
would load BC with 000A instead of 03E8.

Therefore at the start of this routine the contents of B000 are
copied into address D000 and BC=03E8. Then the contents of B001 go

into D001 (the second screen position from the top left) and BC

decrements to 03E7. This loop again continues until BC is down to
zero and HL=B3E7 and DE=D3E7 being the bottom right screen position,

job done. Once again Return takes one back to where one came from,
in the example on the previous page back to Ready, it could under
program control have returned and carried on with the program

currently running.

15

MZ-80K Note
When addressing the screen directly in this manner, or indeed
when any POKEing to the screen takes place, one will notice a
'snow' effect over parts of the screen. One simple method of
eliminating this is to temporarily switch off the screen and this
is how it's done. To copy the screen contents one entered
USR(52992). If this is altered, either in direct mode or within a
program line to:-
POKE 59555,0:USR(52992):POKE 59555,1
then the screen will blank out, although it is hardly noticeable,
and switch back on again after transferring so cutting out the
snow. The actual copying takes place while the screen is

disabled, but it is fast, try it.

MZ-80A Note
The screen map of the A is different so far as the top of the
screen is not always address D000 (53248 dec). After a clear
screen has been entered it is, but when the screen begins to
scroll so the top left corner address begins to change. If it
scrolled up 5 lines before one entered the copy screen routine
the top left would be D0C8 (53248+5*40=53448 dec) and therefore
the bottom left position would be D0C8+03E7 =D4AF (54447 dec).
The address of the start of Video Ram is stored at 1 1 7D hex, and
the more scrolling that takes place so the value held is altered.
A solution could have been to alter the first loading of HL to LD
HL,(1 17D) which would load the contents of 1 17D into HL, so
pointing to the top left address, but if the screen was scrolled
up to its highest this figure does not actually relate to the
start of 1000 bytes of V-RAM, the screen area goes up to D7FF and
then restarts at D000 which would not work correctly. The
solution is when storing a screen of information make sure that
screen was printed after a clear screen and that no scrolling has
taken place, one has only printed to a maximum of 25 lines.
Similarly when the screen is to brought back from storage ensure
that a clear screen is entered before entering USR(53000).

16

quiteNow we have the facility to store one screen in memory it
easy to modify the program to cater fox four screens that can be
brought back to the screen in a flash.

Simply LIST the program and using the cursor keys edit the following
lines.

MZ-80K and A
20 FOR X=53024 TO 53043
Line 40 change 176 to 180
Line 50 change the first 176 to 180 and RUN

MZ-700
20 FOR X=53024 TO 53049
Line 40 change 176 to 1 80

Line 50 change the first 176 to 180 and RUN

We now have a second routine for saving another screen in storage,
this is saved by USR(53024) and brought back to the display Ipy
USR(53032). The first program entered the routine at CF00 (52992
dec), this one is at CF20 (53024). In order to Complete the four
routines alter once again the same lines.

MZ-80K ana A

20 FOR X=53056 TO 53075

Line 40 change 180 to 184

Line 50 change the first 180 to 184 and RUN

20 FOR X=53088 TO 53107
Line 40 change 184 to 188
Line 50 change the first 184 to 188 and RUN

MZ-700

20 FOR X=53056 TO 53081
Line 40 change 180 to 184
Line 50 change the first 180 to 184 and RUN

17

20 FOR X=53088 TO 53113

Line 40 change 184 to 188

Line 50 change the first 184 to 188 and RUN

Now the four different screens can be stored and restored by

entering any of the following

USR(52992)
USR(53024)
□SR(53056)
USR(53088)

to bring back USR(53000)

" " " USR(53032)

" " " USR(53064)

" " " USR(53096)

If one stores four screens in memory and perhaps enters a page

number on each the following program will demonstrate how fast each

one can be brought back to the display. Enter 'NEW' and 'CR'.

10 PRINT "ENTER PAGE No."
20 GETA$:IFA$=""THEN20
30 IF(VAL(A$)<1)+(VAL(A$)>4)THEN20
40 PN=VAL(A$)

50 PL=PN*.32-32
60 PRINT-g";

70 USR(53000+PL)

80 G0T010

Notice that each routine is 32 bytes apart therefore after selecting

the page number line 50 will calculate the amount of bytes to add to

53000. If page 1 was selected then multiplying 1 by 32 and then

subtracting 32 would make the USR call 53000+0 making 53000, if it

was page 2 then multiplying by 32 would give 64 and then subtracting

32 would make the USR 53032 and so on.

MZ-80K.Note
Line 70 could be altered to eliminate the snow to:-
70 POKE59555,0:USR(53000+PL):POKE59555,1

18

2

The C.P.U.

In this Chapter, we're going to take a broad look at the way the
Z80 chip interprets the machine code numbers, the Z80 Registers and
the way they are generally used, and then at the different types of
Assembler instruction. You'll find a complete list of these mnemonic

instructions in the Appendices - listfed alphabetically an$
numerically by the first byte of their instruction code. There are
several books available which explain each Z80 instruction in
greater depth, rather like an encyclopaedia and almost as large, but
these are general references and do not show examples for specific
micros like the Sharp. However if one requires more detailed
information regarding the Z80 instruction set then the purchase
should prove worthwhile.

BASIC has about 200 instructions - if you count all the subtle
variations like 'IF-THEN GOSUB' and 'IF THEN PRINT'. Z80 machine
code has nearly 700 - but don't panic, many of them are simply
variations on a theme.

The difference, as you will have already appreciated, is that one
BASIC instruction calls up a host of machine code instructions
within the interpreter. Wher; you write in machine code you have to
generate those instructions yourself - although you can, of course,
call up useful routines resident in the monitor (as indeed some of
the demonstration programs in this book do).

19

It is possible to write programs without having, a full knowledge of
the entire instruction set - indeed many people do quite happily and
successfully, adding to their knowledge as they gain experience.

The same is true to some extent when programming in BASIC.

For example - how would you do a count of 1 to 1000 in BASIC?
Probably:-

10 FOR 1=1 TO 1000
20 NEXT
30 PRINT "ALL DONE"

Fine, but supposing you didn't know about FOR-NEXT loops? You'd
probably tackle it this way:-

10 A=0

20 A=A+1

30 IF A<1000 THEN 20
40 PRINT "ALL DONE"

But supposing you didn't know about IF-THEN constructions either.
You'd really have to put your thinking cap on:-

10 A=0
20 A=A+1

30 B=-1*(A<1000)-2*(A=1000)
40 ON B GOTO 20,50

50 PRINT "ALL DONE"

As you can see, the programs become longer - and take longer to run

- when the most suitable commands are not used. Knowing all the

commands at your disposal helps you to make your programs shorter
and/or faster running...and your life easier. Usually machine code
programs run fast enough even when written the 'long way round', but

20

when a very large number of repetitive actions are involved, such as
in a Chess Game program, even a few microseconds knocked out of a
loop can result in a considerable time saving when the program is

running.

Having said that, the programs in this book have been written to
demonstrate principles, and are not necessarily the fastest or
shortest way of achieving the desired result.

WHAT DO ALL THE NUMBERS MEAN?

Machine coding, as you know, is all about numbers. A number can
mean one of two things to the Z80 central processing unit in your
computer. It can mean an instruction or part of an instruction to
do something. Or it can mean a piece of information to be worked on
or used in some way. Fortunately, the Z80 knows exactly which of
these the number represents (in a correctly written program), and
acts accordingly.

*

Take an instruction to load Register A with the value '7' (we'll be
discussing the Registers in more detail later). In Assembly

language mnemonics this instruction is written LD A,7 . In machine

code language, the instruction is represented by the two hex numbers
'3E 07'. When the Z80 sees the first of these it says "3E means I

must load the next number along into Register A". It takes up the

7, puts it into Register A, then looks to the number after the 7 for

the next instruction. So it wouldn't be confused if it saw, for

example, the two hex numbers '3E 3E' - this time it would load 3E

hex (62 decimal) into its Register A, then look to the number after
the second 3E for its next instruction.

Note that each single byte of information can have a value from 0 to
FF hex (0 to 255 decimal). Let us take a look at that in more
detail.

A byte consists of 8 bits, each bit being a binary 0 or 1. So the

21

binary number 11001001 can be represented thus:-

Bit No.-
Binary Value:

7 6 5 4 3 2 1 0

1 1 0 0 1 0 0 1

Wherever a '1' appears in the binary representation, raise 2 to the
potter of the corresponding Bit Number, add the results together, and
ycu have the decimal value of the Binary number. Thus, using the
above example:-

. • ■ .ÿ ; 12 0

2 to the power .6 = 64
2 to the power 3 = 8

2 to the power 0 = 1 (any no. to the power 0 1)

201

So the binary number 11001001 is 201 in decimal.

To convert a binary number to Hex, split the eight digits into two
groups of four (called ’nibbles'). Thus:-

Nibble 'bit' no.: 3210 3210
Binary value: 1100 1001

Left side: 2A3 = 8

2A2 = 4

12

Right side: 2A3 = 8

2A0 = 1

9

Remembering that decimal 12 = C in hex, the hex value of binary
11001001 is C9.

22

HOW THE Z80 HANDLES 2-BYTE NUMBERS

Many instructions to the Z80 tell it to operate not on one byte

- as in our 1LD A,7' - but on two bytes. For example, an Assembly

instruction might be 'LD HL,49AFH' (the 'H' at the end tells the
Assembler that 49AF is a hex number). Two-byte numbers increase the
decimal values that can be represented from 0-255 to 0-65536 (0-FFFF

hex) - which is absolutely vital for addressing or pointing to the

memory locations in your computer.

In the instruction LD HL,49AFH, we want the High byte, 49 (hex) to
go into the H Register, and the Low byte AF (hex) to go into the L
Register. The machine code instruction for loading H and L
Registers with 'direct' data is 21 hex. When the Z80 sees 21 hex as
an instruction, it takes the NEXT number and loads it into the L
Register. That's right - the L Register. Then it takes the
following number and loads it into the H Register. So the machine

code for LD HL,49AFH looks like this

21 AF 49 (hex)

Note how, in actual machine code, the order of the two information

bytes is reversed. Now you know why.

When using an Assembler, you don't have to worry about this point

- the Assembler .sorts it out for you. But if you are entering

machine code by hand, as was shown in chapter 1 , forget the order of

the two information bytes at your peril.

Needless to say, when loading any Register pair with data (we'll

discuss Register pairs later on), the Low byte always appears in the
machine code listing before the High byte. In Assembly language

remember, you write the number in the normal way, and let the
Assembler put things in the correct order.

23

7,80 CHIP

Logic-Uni

functions

decoded \

(on9 by’

include an Arithmetic-
..metical and logical

.rare data is passed in,

u , and a number of 8--bit

jisters. Just to confuse you,

can also be used as two-byte

The Progrcr r yy.

Let us look first at the Prog:: Counter (PC) two-byte Register.

This holds the address of the NEXT instruction. It is automatically

up-dated every time a new instruction is executed. However, the

address it holds can be changed by, for example, a CALL instruction

(like GOSUB in BASIC).

In this case, the address in the Program Counter is put aside - on

the STACK - and the address CALLed is put in the Program Counter in

its place When the CALLed routine is done it meets a RET (RETURN)

command, which takes the two -byte number ON THE TOP OF THE STACK and

puts it back into the Program Counter. Execution then continues

from that address. If you use the Stack (and you will use it), it

is important to remember that the next instruction address after a

RETurn is taken from the top of the STACK. Many a program has gone

wild because a number has been unwittingly left on the stack: on

the other hand, the fact that you know that the address of the next

(apparent) instruction is on the Stack can be useful when, for

example, transferring data to a subroutine.

A number of other instructions also affect the PC Register - jump

instructions (JP or JR) for example. But for most instructions, the

length of the instruction (including any information data elements)

is added to the PC by the chip's control system, so that it knows

where to look for the next instruction.

24

The Stack Pointer

Another two-byte Register, the Stack Pointer (SP), keeps track of
the top of the Stack - since many instructions enable you, as well
as the Z80, to use the Stack. The Stack area is within the RAM of
your computer - and an address is set up by the ROM Monitor routines
when you switch on. It is 10F0 hex on all three Sharp machines. (On
the MZ700 with S-BASIC loaded, it's at FEOO hex).

You can if you wish set up your own address for the Stack but you
must remember that the Stack runs BACKWARDS in memory, and it uses a
last-in, first-out system. Think of it as a pile of plates, you can
put plates on top or take them off the top, but you can't touch the
plates anywhere else in the pile.

The other point about the Stack is that it ALWAYS accepts or
delivers two-bytes of data. So, if we put 11A0H, 22B0H and 33C0H on
the Stack in that order, it will look like this:-

Address Contents
1 OEB CO
1 OEC 33
1 OED BO
1 OEE 22
1 OEF AO
10F0 1 1

The Stack Pointer in the Z80 will be pointing to the last (low) byte

of the 33C0H data. If another piece of two-byte data - say 4567H
is put on the Stack, the Stack Pointer is DECREASED by one

(decremented), the first (high) byte 45 hex is put into the address
now pointed to by the Stack Pointer (10EA), the Stack Pointer

address is DECREMENTED again, and then the low byte of the data, 67
hex, is put on the Stack (at 10E9).

When taking data off the Stack, the system works in reverse. In our
example, first the Low order byte (67 hex) is removed, the Stack

25

Pointer is INCREMENTED, the high order byte (45 hex) is removed and

the Stack Pointer INCREMENTED again. So now the Stack Pointer is

once again pointing to the low order byte of the 33C0 hex data.

The 8-Bit Registers

There are two sets of 8-bit Registers:-
A, F, B, C, D, E, H, L

and A',F',B',C',D*,E*,H',L*
(Notice the F and F1 Registers have been put next to the respective

A Registers - that's because they are usually associated with the A

Registers, and they have a function all of their own).

Only one set of these Registers can be used at a time. Why have two

sets? So that you can 'stop' in the middle of one operation, switch

to the alternate set, carry out an intermediate operation, then

switch back and continue with the original operation. There are
several ways of passing data between one set and the other.

Registers B and C, Registers D and E, and Registers H and L are also

used as Register pairs to hold two-byte data. In a few commands,

Registers A and F are also treated as a pair.

The A Register

The A Register is the Accumulator. It's where Almost All of

the Action takes place. It is like Grand Central Station and in any

program of consequence, it is kept extremely busy. Practically all

comparisons, single-byte adding and subtracting instructions, and

many special 'transfer' and 'load' instructions demand use of the A

Register. God bless its cotton socks.

The B and C Registers

Several commands use the B Register or the B and C Registers

together as a Byte Counter. (BC = Byte Counter - easy to remember).

26

Take for example the DJNZ Assembly command, which must always be
followed by a Label. This instruction says 'Decrement whatever
value is held in Register B by 1 , and if it is NOT zero as a result,
jump to the address denoted by the Label'. It's like a FOR-NEXT
loop in BASIC, with the number of repetitions required being held in

Register B. When B reaches zero, processing continues with the next
instruction. (Note the mnemonic DJNZ = Decrement and Jump on Non

Zero).

Similar commands (e.g. 'LDIR') use Registers B and C as a pair

permitting for example the transfer of large or small chunks of
data from one area in the computer to another extremely quickly.

The number of bytes to be transferred in this way is held in the
Register pair BC.

Apart from these special uses, these two Registers can be used
together or independently for your own requirements.

The D and E Registers

These too can be used independently, but are used together by some
Z80 instructions to define a Destination address. For example, the

Destination address of a block transfer of data (the 'LDIR' command

again) is taken from Register pair DE: you have to put the address
there, of course.

The H and L Registers

These Registers are used as a pair for quite a number of Z80

instructions. In the 'LDIR' command, for example, the start address

of data to be transferred is taken from the contents of HL Registers

- so don't forget to put it there. You'll find that there are quite

a few commands which allow you to use the HL Registers to 'point' to

data areas.

27

The F or ’Flag1 Register

This is a very important Register indeed. Unlike the other 8-bit

Registers, you cannot load data into it in the normal way. Its
purpose is to hold Flag results of any logic and arithmetic

operation undertaken, and for some other instructions, to 'flag* a

status. The important point is that some of the Flags can be

'tested' to provide, for example, conditional jumps, calls or

returns.

NOTE THAT WHILE MOST OF THE. INSTRUCTIONS AFFECT SOME OR ALL OF THE

FLAGS, FLAGS REMAIN IN A CURRENT STATE UNTIL AFFECTED BY A

SUBSEQUENT INSTRUCTION. This means the state of a Flag can be

tested several instructions after the instruction that affected it

but do be sure that the intermediate instructions do not affect

the Flag in question. This feature can help to reduce the amount of

coding needed. For example, all but two of the 'load' instructions

do not affect the Flags at all. So if one of two subroutines are to

be called, depending on the status of a particular Flag, and if both

subroutines require the same 'load1 at their start, then the 'load'
can be done before the conditional test is made.

Certain bits of the Flag Register are allocated to specific

functions, as follows:-

Bit Number: 7654321 0

Function: S Z - H - P/V N C

Testable: * * * *

The 'Testable' line indicates which of the Flags you can test in one

way or another using the instructions available. Now we'll look at

the functions of each one-bit flag.

28

The S or Sign Flag

This Flag 'repeats' the value of the most significant bit in the
result of an arithmetic or logic operation, including 'shifts'. When
a byte is transferred into the A Register, it 'repeats' the value of
the most significant bit of that byte.

In many instances, bit 7 (the most significant) is used to indicate

a particular condition. In 'two's complement' notation, for example

(a brief discussion of which is given later in this chapter), bit 7
represents the SIGN of the number. This means the binary numbers
are only 7 bits long, but represent from -128 to +128. In this
instance, Bit 7 is 'SET' (equal to a *1') if the number is NEGATIVE
and 'RESET' (equal to '0') if the number is POSITIVE. Bit 7 of a

data byte can also play a role when a program is 'communicating'
with input/output devices, such as a Printer. The S Flag enables
Bit 7 of such a byte to be tested.

A number of Assembly commands allow the S Flag to be tested, by

adding a 'P' (is it Positive?), or an 'M' (is it NEGATIVE?). The
command JP (Jump), for example, can be turned into a CONDITIONAL

jump by the addition of P - ' JP P,Label'. This tests the S Flag,

and if it IS positive (i.e., equal to zero) as a result of some
previous action, then the jump will occur. Otherwise processing

continues with the next instruction.

The Z or Zero Flag

This Flag is used to indicate whether or not the result of an
arithmetic operation is zero, or whether or not a 'comparison' test
succeeds.

When a result is Zero or a comparison test succeeds, the Z Flag is

set to a '1'. Otherwise, it is reset to a 'O'.

The Z Flag can be tested by adding 'Z' (is it Zero?) or 'NZ' (is it

Non-Zero?) to certain Assembly commands. For example, 'RET Z'
(RETurn on Zero) provides a conditional return from a subroutir>e: if

29

a previous operation has left the Z Flag set to '1 * , a RETurn will

be made. Otherwise processing will continue with the next

instruction. (As you can see, you don't have to worry too much about

the actual value of the Z Flag bit - the Z80 looks at it and acts
accordingly on your behalf).

The H or Half-Carry Flag

This Flag is used by the computer during Binary Coded Decimal
arithmetic operations, to indicate whether or not there's been a

carry from bit 3 to bit 4. It cannot be used in any conditional

tests.

The P/V~ or Parity Overflow Flag

This Flag has three functions. Some instructions set or reset it

according to whether the byte of a result has an even number of * 1 's
(Parity Even = Flag set to "1"), or an odd number (Parity Odd = Flag

reset to "0").

The second use of the P/V Flag is to indicate, during Binary Coded
Decimal operations, whether or not Bit 7 (the 'Sign' Bit) has been
affected by an overflow from Bit 6, thus accidentally changing the

sign of the result.

Finally, during block transfer instructions, such as 'LDIR', this
Flag is used to detect whether the counter has reached zero.

The Flag can be tested by adding 'PO' (is the Parity Odd?) or 'PE'
(is the Parity Even?) to commands used to transfer program
execution. For example, a CALL command can be turned into a

conditional CALL if the Parity Flag is indicating 'odd', by writing

'CALL PO,Label' instead of the unconditional command 'CALL Label'.

30

The N or Subtract Flag

This Flag is used by the Z80 during its own Binary Coded Decimal
calculations, and cannot be tested.

The C or Carry Flag

This Flag plays a dual role. First, it is used to indicate whether
or not an addition or subtraction has resulted in a 'borrow'. If a
borrow has occured, the Flag is set to "1". Otherwise it is reset
to "0". Since comparison commands (e.g. CP B - which compares the
contents of Register B with the contents of Register A) are achieved
by subtracting the selected Register from Register A (and discarding

the result), the Carry Flag can indicate whether the selected
Register has a value greater than that in Register A (which produces

a Carry), or has a value equal to or less than that in Register A
(which produces a No Carry). Very useful.

The second use of the Carry Flag is in many of the rotate and shift
instructions - which move data along the byte one way or the other

in a particular manner. For these instructions, the Carry Flag is

used as a 'ninth' Bit. For example, the RRA Assembly command
(Rotate Right the Accumulator - Register A), moves Bit 0 of Register

A into the Carry Flag, moves whatever was in the Carry Flag into Bit

7 of Register A, moves what was in Bit 7 to Bit 6 - and so on. Thus,
this particular command effectively rotates the information held by

the bits round one and includes the Carry Flag in the process.

With logical commands AND, OR, XOR, the Carry Flag is always set to
'O' (No Carry). AND A and OR A will leave Register A intact, since

the Register is being ANDed or ORed with itself, whilst XOR A not
only clears the Carry Flag but also clears Register A, as there can
be no 'exclusive' bits if it is being XORed with itself.

The Flag can be tested to produce conditional commands by the
addition of 'C' (Carry) or 'NC' (No Carry) to the command. Thus a
CALL command can be turned into a CALL if the Carry Flag is set, by

writing 'CALL C,Label' instead of 'CALL Label.

31

How the Commands affect the Flags

The following Table shows how the Flags are affected by various

types of Command. Commands not listed - e.g. 'PUSH' and most 'LD'
commands - do not affect the Flags at all. Please note that, where

unnecessary, the 'Register' element of the Command has not been
included in the Table: thus the OR command could be OR A, OR B, OR C

and so on - all having the same effect on the Flags. Only those
Flags that can be tested have been included

FLAGS

C Z P/V S

COMMAND
ADD A,ADC,SUB,SBC,
CP,NEG 7 7 ?V 7

AND,OR,XOR 0 7 ?P 7

INC,DEC - 7 ?V 7

ADD RR,CCF 7 - - -
RLA,RLCA,RRA,RRCA 7 - - -
RL,RLC,RR,RRC,
SLA,SRA,SRL,DAA 7 7 ?P 7
SCF 1 - - -
IN - 7 ?P 7

INI,IND,OUTI,OUTD - 7

INIR,INDR,OTIR,OTDR - 1

LDI,LDD - 7

LDIR,LDDR - 0

CPI,CPIR,CPD,CPDR - 7 7 7

LD A,I; LD A,R; - 7 IFF 7

BIT - 7

32

KEY:
? = Depends on the result of the operation.

?P = Depends on the Parity of result
?V = Depends on overflow in result
0 = Flag reset to zero

1 = Flag set to 1

= Flag unaffected: previous state retained

IFF= Contents of interrupt flip-flop

Where there are blanks, the Flags contain irrelevant information.

To summarise the conditional tests available for JumP, CALL,Jump

Relative and RETurn commands:
Z = If result is Zero, act.
NZ = If the result is Not Zero, act.
C = If there's a Carry, act.
NC = If there's No Carry, act.
PO = If Parity is Odd, act.
PE = If Parity is even, act.
P = If the Sign Flag is 'positive (S=0), act.
M = If the Sign Flag shows a minus (S=1), act.

The Index Registers IX and IY

We now come to two very valuable 16-bit Registers in the Z80, the
'Index' Registers. Unlike Registers A to F, there is no 'second
set' of Index Registers: their contents are accessible to both of

the A to F Register sets.

The 'load' instruction commands related to these Registers can
(indeed must, even if it's 0) include a displacement value. This

enables, for example, data tables to be very easily set up, using

the Register IX or IY to point to a 'base' address, and the

displacement to point to the particular place required in the table.

An example will help to explain this. Supposing we decide to have a

33

Table of information that contains a number of names, addresses and

telephone numbers. We allocate, say, 20 bytes to cover the name
data, 60 bytes to cover the address data, 12 bytes to cover the
telephone number data.

Our Table will then consist of a series of chunks, each 92 bytes

long (20+60+12). We know that the telephone data for any name
begins at the 80th byte from the start of the name. If we 'point'
the IX Register to the start of the name in the Table, we know that
the Telephone data will start at IX+80. This saves counting out the
bytes to get to the correct address. A typical program might look
like this:-

LD B,1 1

LD IX,NAME3
LD DE,BUFFER

GETTELlLD A,(IX+80)

LD (DE),A
INC IX
INC DE
DJNZ GETTEL

Next operation

The first instruction sets up Register B as a counter.

The second instruction loads up the IX Register with the 2-byte

address we require - that for NAME3.

The next instruction loads up Registers DE to point to a BUFFER

area, where we want to hold the Telephone number - possibly for

printing out.

We then come to the start of a little loop which will collect the
bytes of data from the Table. We collect one byte, then increment

the value in the IX Registers, increment the value in the DE

Registers (i.e move both to point to the next address along), then

collect another byte and so on until our 'counter', B reaches zero.

34

Note that LD A,(IX+80) means load Register A with the data byte to
be found at the address pointed to by IX+80. Similarly, LD (DE),A
means load the data byte in A into the address held in the Register
pair DE.

The IY Register can, of course, be used in a similar way. As well
as 'loads', the Index Registers can be used for ADD, INC, RLC, BIT
and SET commands - INC (IX+80), for example, means go to the address
pointed to by IX+80. and whatever byte is stored there, add one to
it.

How big can the displacement value be? Glad you asked - because the
displacement value is treated as a signed number. That means it can
be 7 bits long, with the Most Significant Bit representing the sign

of the value. So, to answer your question, the displacement value
can be anything from -128 to +127, 'O' being treated as a positive

value.

The I and R Registers

Two more 8-bit Registers exist in the Z80 which can be accessed by

commands. These are 'I', which stands for the Interrupt-Page
Register, and 'R', which is the Memory-Refresh Register.

The I Register is used in a special interrupt mode of operation to
which the Z80 can be set (by command), and it stores the high-byte
of an address that will be called in the event of an 'interrupt'
process. The low-byte is generated by the device generating the

'interrupt'.

Let us very briefly examine the concept of an interrupt. When you

write a program, providing all is well, it will run the way you want
it to, branching to subroutines and returning to the main program as

scheduled. However, some input/output devices demand attention even
while your program is running quite happily. The 'internal clock'
in your Sharp Computer is one of these 'devices'.

35

An interrupt signal is sent by the device to the Z80. It says 'Hang

on, I need attention'. Your 'main' program stops while the

interrupt request is attended to - it may be to update the am/pm

detail - and then control is passed back to the main program, to
continue where it left off.

The programmer can call on the interrupt process himself, and

indeed, you'll find an interrupt 'Vector' or Jump Address is

provided within the monitor routine of your Sharp.

There are three interrupt modes, called up by the commands IM 0, IM

1, and IM 2. In Interrupt Mode 0 - which is the mode your machine

is in when you switch on - the external device must provide the

instructions for what it wants the Z80 to do when it makes an

interrupt request.

In Interrupt Mode 1 (which is the mode your monitor places the Z80

within microseconds of you switching on), when an interrupt request

occurs an automatic jump is made by the Z80 to memory address 38

hex. The current location of any program running at the time is, of

course, temporarily stored so that after the interrupt routine is

complete, a return can be made to the original program. This

interrupt mode always calls, to address 38 hex. In Sharp machines,

this is in the ROM monitor - and it invokes a jump to address 1038

hex in the monitor's RAM work area. In Sharp machines, there is a

jump from this address to a time-keeping routine (the actual

location varies with each machine) which flips the stored a.m.

information to p.m. This particular interrupt is invoked every 12

hours of running time (pretty obvious, that), which means if you use

the jump at 1038 hex to go to a routine of your own, your routine

will also be called when the clock demands attention.-

The third mode operates in a similar manner, except that it starts

by going to one of 128 addresses (instead of one), as supplied by

the calling device in conjunction with the contents of the I

Register. Note that bit 0 of the address byte from the calling

device is always zero. The address pointed to, plus the next

36

r

address, provide the 2-byte address of the interrupt handling

routine, to which control is then passed.

In some programs it may be necessary to ensure that an interrupt v

does not occur during a specific process: a Dissable Interrupt

command (DI) lets you do this - but for heaven's sake remember to
Enable Interrupts (El) again when that part of your program is

complete. (MZ700 users may be familiar with this when calling the
Video Ram from a machine code program whilst BASIC is loaded).

Finally, the Refresh 1 R' Register: this is provided to refresh
dynamic memories automatically. You can use this as a kind of
'software clock', but since its values run only from 0 to 255

decimal, it's not exactly the most useful Register available.

37

X

THE ASSEMBLY COMMANDS

There are a number of ways to classify the many Assembly commands
you have at your disposal. We are going to use groupings which

tally to some degree with the Z80 instruction set as given at the
badk of your Sharp Owner's Manual. These groupings can be further
'herded' together under five headings to cover instructions which:

1. Transfer data from one place to another
2. Manipulate and test the data in some way
3. Re-.route program running sequence

4. Handle input/output devices
5. System controls

Before we go into the commands, it may be useful to spend a few
brief moments looking at the way a command is carried out by the
Z80.

Every instruction is executed in three phases. In Phase 1, the

instruction is fetched from the correct place in the program. The

Program Counter tells the Z80 where to look (we dealt with this

earlier). The first - perhaps only - byte of the instruction is

then placed in a Register the Z80 keeps all to itself (called,
believe it or not, the Instruction Register). In Phase 2, the
instruction is decoded by the Z80 - that is, it sets up the cycle of
operations for the third phase, which is to actually execute the

instruction.

Each phase operates within finite steps, called clock cycles or T-

States. The cycles themselves operate in 'machine cycles' - called
'M Cycles'. The shortest machine cycle lasts three clock cycles.

Now as each cycle means a discrete unit of time, the more cycles an

instruction needs for its fetching, decoding and execution, the

longer it takes to execute. Pretty obvious really.

38

The point of all this is, generally speaking the more bytes there
are to an instruction, the longer it takes to execute. However, the
'complexity' of the instruction also plays a part, so some
instructions take longer than others of the same byte length. For
example, the one-byte instruction to Decrement Register pair BC

- DEC BC - takes 1 machine cycle, 6 T-States, while DEC A, also a
one byte instruction, takes 1 machine cycle, 4 T-States. DEC A is

faster by 2 T-States - or one miserable microsecond if the clock is
'running' at 2 MHz. or even less at 3.5MHz on the 700.

For the newcomer to machine coding, this discussion on machine
cycles and T-States should be quite enough to cope with: it is

beyond the scope of this book to discuss the actual speed of every

instruction, since that becomes important only when one has gained
experience. As mentioned before, most machine code programs run
quite fast enough without any fine pruning.

The 'Brackets' Convention

Before we finally get down to the commands, there is one
'convention' you must be perfectly clear about - and that is the use
of 'brackets' within a command.

An address can be referred to in two ways. If we want the address
itself, it is written in the normal way - 1234H, for example. If we
wish to refer to the CONTENTS of the address, then the address is
placed in brackets.

Thus the command 'LD HL,1234H' means 'load Registers HL with the
address 1234 hex'. You will recall from an earlier discussion that
the Low byte goes into Register L (34 hex), and the High byte goes

into Register H (12 hex).

The command 'LD HL,(1234H)', on the other hand, means 'go to address

1234 hex, and whatever byte you find there, put it in Register L.
Then go to the next address - 1235 hex - and put the byte you find

✓

39

there into Register H'. (Look back a few pages to refresh your

memory on how the Z80 requires addresses to be stored). So if

addresses 1234H and 1 235H hold bytes 89 hex and 67 hex respectively,

then HL will be left holding the value 6789 hex after this command.

Similarly, take the command 'LD A,(HL)'. This means 'go to the

address pointed to by Registers HL, and put the byte you find there

into Register A'. If the HL Registers had been 'set up' to hold

1234H, then whatever byte is at that address (in our example above,

it was 89 hex) is loaded into Register A. If HL Registers had been

'set up' to hold 6789H, as in the second example above, then

whatever byte is at the address 6789H gets loaded into Register A.

Note that the command 'LD A,HL' cannot exist, since you will be

trying to load two bytes of data into a one-byte store. Even a
Sharp computer can't do that.

1. DATA TRANSFER COMMANDS

In this section, we will be looking at all the different ways you

can shift one or more bytes of data from one place in memory to

another - and that includes shifting data around the Registers

themselves. For convenience, it also includes the 'creation' of new
data - that is, loading a Register with a specific value rather than
a value to be found elsewhere in RAM. What we won't include in this

section are the commands which read or write to input or output

devices.

You may think this an obvious point to make, but we'll make it

nonetheless: data remains in an address or Register until it is

'overwritten'. Thus, if we say 'Load Register A from Register B (LD

A,B) then both Registers A and B will be holding the data that was

in B, and the data that was in A will be lost.

40

The 8-Bit Load Group

All 8-bit transfers are achieved by a straightforward load
instruction which takes the following format:-

LD destination,source

Thus a typical example might be LD B,D - which means load the
contents of Register D into Register B.

The following table shows the 8-bit load commands available:-

Source of the load

A B C D E H L (HL) (BC)(DE) (IX+d) (IY+d) (nn) n
Load Dest.

A xxxxxxx

B xxxxxxx
C xxxxxxx
D xxxxxxx

E xxxxxxx
H xxxxxxx
L xxxxxxx

(HL) xxxxxxx

(BC) x
(DE) x
(IX+d) xxxxxxx
(IY+d) xxxxxxx
(nn) x

The Registers down the left hand side represent the DESTINATIONS of
a load, and the Registers across the top represent the SOURCE of a

load, in the command format 'LD destination,source'. The x's denote

where a command is available.

X X X X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

x

x
x

41

So reading across the top line, you can have as valid commands: LD

A,A; LD A,B; LD A,C; and so on. Notice that no command is

available to load Register D from the address pointed to by Register

pair BC (i.e. there's *,no- LD D,(BE) command). Sad - but no problem.

* t

In the Table, 'nn' means a two-byte number, which could represent an

address. You'll notice that only Register A can be loaded from the

contents of a specific address (top line - LD A,(nn)). Also, at the

end of the Table, you'll see only Register A can be loaded into a
specified address. Let's discuss the ramifications of this.

If you want to load a specific address with -a data byte, you can

either do it by first placing the data byte in Register A (if it

isn't already th£*%0, then do a 'LD (nn),A' command (nn being the

required address). Or - take a look at the horizontal line for

'(HL)'. If HL is loaded with the desired* address - i.e. LD HL,nn

(we'll come to that command later on), then data from any of the

Registers A,B,C,D,E and yes, even H and L can be loaded into the

desired address - using the LD (HL), 'register' command.

If you study the Table, you'll see that the same applies 'in
reverse' - that is, you can load any of the Registers (including H

and L) from the address pointed to by the HL Registers (vertical

column (HL)). Thus, you can write LD C,(HL) - meaning load
Register C with the contents of the address pointed to by HL. Easy

isn't it, when you know how.

Now let's look at another aspect of this Table - that 'n' column on

the right hand side. As you've probably already guessed, 'n' stands

for a data byte - any value from 0 to FF hex or 255 decimal.
Notice, now, how you can load a specific byte of data into the

address pointed to by HL - the- LD (HL),n command.

r
Therefore to display letter Z in the top left corner of the screen:-

LD' HL,0D000H;the top left corner address

LD (HL),26 ;'26' = letter Z display code

•

.

42

MZ-700 Note
When directly addressing the Video Ram from S-Basic 700 users
will, of course, have to ensure that the Video Ram is enabled
first as was shown in chapter 1, programs 1 and 2. If S-Basic is
not resident i.e. one is running a machine code program which
does not use Basic, then V-Ram will not require enabling and the
above example will work without any extra instructions.

The observant will have noticed that the same thing can be done by
using (IX+d) or (IY+d) as the destination - for example LD
IX,0D000H; LD (IX+0),26. You could load a 'Z' into the second top
left screen address by changing the second command to LD (IX+1),26.
The 'IX+d' commands have more bytes of instruction code, and take
longer to process: they're more often used for sdata tables. You
cannot write LD (IX),26 by the way. Your Assembler won't like it

- it always looks for the displacement value, even if it's zero.

Yet another way could be to load the top left corner of the screen
with a 1 Z' - LD A,26 (or it can be written LD A,1AH); LD (0D000H),A.
You pay your money and you take your choice.

You may wonder, looking at the table, how you can load for example

the contents of Register D into an address pointed to by Register
pair BC - that is, how do you cope without a command LD (BC),D.
Well, good Register management, in the first place. But that isn't
always feasible. So you'll have to transfer the data in D to A
(having first 'saved' A somewhere, if you want to keep it), using LD
A, D; then simply use LD (BC),A.

Four commands missing from the Table which were discussed earlier
but will not be required for a while are:-

LD A,I
LD A,R

LD I,A

LD R,A

(load A from the Interrupt Register)

(load A from the Refresh Register)
(Load Interrupt Register from A)

(load Refresh Register from A)

43

The 1 6-bit Load group

The basic format for 16-bit (two-byte) data loads is essentially

the same as that for 8-bit loads, namely:-

LD destination, source

There are however some important exceptions, which we will come to

in a moment. Since we are talking about two-byte loads, either the

source or the destination must, of course, be a Register pair.

The following Table shows the commands available within the format

'LD destination,source -

Source of the load
BC DE HL SP IX IY nn (nn)

Load Dest.
BC X X

DE X X

HL X X

SP X X X X X

IX X X

IY X X

(nn) x x x x x x

Doesn't look a very busy Table, does it? It would appear that you

can't - as an example - directly load Register pair BC from the

contents of, say, Register DE. Appearances are correct: there is no

LD BC,DE command. But as we shall see, this isn't really a problem.

In the Table, 'nn' of course represents two bytes of data - which

could be an address, or simply a number for some arithmetical

operation - while '(nn)1 represents the CONTENTS of address 'nn'.

Probably the most important things to notice about this table are

the absence of the A Register in a pairing, and the fact that the

44

Stack Pointer Register, SP, can be loaded from the contents of
Register pair HL, or the two-byte Registers IX or IY, or with an
immediate address -'nn', or from the contents of a specific address

- '(nn)'. So there are several ways to set up the Stack Pointer

- or even to change it during a program (as long as you know what
you 1 re doing).

The reverse isn't true, however: as far as load - LD - commands are
concerned, the SP address can only.be loaded into '(nn)' - to save
its value.

Now, what about the other ways we have to transfer two bytes of
data, and what about the poor old A Register? What the Table could
have shown is an extra column and an extra row headed (SP) - that
is, for example, a LD (SP),BC command, or a LD BC,(SP) command.
These functions are possible - but they are not invoked by this type
of command.

Let's see what LD (SP),BC means. '(SP)' means the contents of the
address 'named' in the Stack Pointer Register. That's the top of
the Stack. So 'LD (SP),BC' means - 'put the contents of Register

pair BC onto the Stack'. Similarly, 'LD BC,(SP)' means - 'load
Register pair BC from the contents at the top of the Stack'. In
both instances, the address held in the Stack Pointer Register is
'updated' after the transfer of each byte (see the earlier
discussion on the Stack Pointer).

There is a command all of its own to put the contents of a Register

pair on the Stack, and another command to take two bytes off. The
commands are PUSH and POP, respectively.

These are the Register pairs and two-byte Registers you can PUSH and
POP:-

AF,BC,DE,HL,IX,IY

Thus, to store the contents of Register pair DE on the Stack, you

45

can write PUSH DE. And to get the data at the top of the Stack into

DE, you can write POP DE.

You noticed, didn't you - Register pair AF can be PUSHed and POPed
to and from the Stack. That's so you can conveniently put aside

what may be important data in both or either the A Register and the
Flag Register.

Now, what about that poser we set earlier - loading BC from DE, for
example. How do we do that? There are two ways. One, you can PUSH

DE, then POP BC - that puts DE's data on the Stack, then reads it

off into BC. Method two - use the two single-byte load commands, LD

B,D; LD C,E. Both methods work, both methods are exactly two
instruction bytes long, both methods are used quite extensively.

But, the PUSH and POP method makes the Z80 look 'beyond' itself and

into RAM area to execute the commands - whereas the LD
Register,Register method doesn't. So the LD Register,Register
method is faster (by 16 T-States, as it happens). If you want to

put the two byte data that's in one of the Index Registers I.X or IY

into a Register pair, then you have no option but to go via the

Stack. Notice, though, you do not specify the 'displacement' with

the Registers: it's PUSH IX, not PUSH IX+d.

There are some more commands that enable you to shift two bytes of

data from one place to another. They are called 'Exchanges'. Here

they are:-

EX (SP),HL
EX (SP),IX

EX (SP),IY
EX DE,HL
EX AF,AF'
EXX

An Exchange is different from a load, in that the contents of both

places designated are 'swapped'. Thus, the first three commands

swap the contents at the top of the Stack with the respective

46

Register named - HL,IX or IY. This makes possible some nice

progamming techniques.

For example, when a subroutine is called (through a CALL command)
the address of the next instruction after the CALL is put on the
Stack. That's the address that will be put back into the Program

Counter when a RETurn is made from the subroutine. But supposing we
choose to put after the CALL command not the next instruction, but
an item or items of data that we wish to pass into the subroutine.

In the subroutine, we do an EX (SP),HL command. So now what was in
HL is on the top of the Stack, and what was on the top of the Stack

the address of where our data is - is in HL. We can pick up the
data now by doing, for example, a 'LD A,(HL)' command. Now - and
this is important - we increment HL so that it points (or 'bumps')
over the information byte(s) to the address of the next instruction,

and then do another EX (SP),HL. The correct address for the next
instruction when we RETurn is now in the right place ready to be
picked up by the Program Counter, and we've passed data into the
subroutine for processing. That's by no means the only way to pass
data into a subroutine, but it is a useful way.

The EX DE,HL command is invaluable when doing arithmetical

operations, or when you want to exchange a DEstination address in DE

and a source address in HL.

The EXX command exchanges the contents of the three Register pairs

BC,DE and HL with their counterparts in the second Register set

- BC', DE' and HL'. But not, you'll notice, the AF Registers - they

have their own command EX AF,AF'. The information contained in the
second Register set is not worked on, merely 'held in abeyance', so
you have another way of temporarily holding onto data without

setting up storage addresses or using the Stack. However, you'll
find in some computers, the second set is used quite extensively to
handle interrupt routines and so on, so if you unwittingly wipe out
or leave 'strange' data in the second set, you could have some
peculiar things happening.

47

The Block Transfer Group

We now come to the commands which enable any number of data bytes

to be transferred from one place in RAM memory to another. These
commands and their functions are:-

LDI - Load (DE) from (HL)

Increment DE and HL

Decrement BC

LDIR - Load (DE) from (HL)

Increment DE and HL

Decrement BC
Repeat until BC = 0

LDD - Load (DE) from (HL)

Decrement DE and HL
Decrement BC

LDDR - Load (DE) from (HL)

Decrement DE and HL
Decrement BC
Repeat until BC = 0

All of these commands transfer the data byte found at the address
pointed to by the Register pair HL, to the address pointed to by the

Register pair DE. After each data transfer the value held in

Register pair BC is decremented. (Obviously, these three Register

pairs must therefore be 'primed' before the block transfer command
is invoked).

In the case of the LDI and LDIR commands, DE and HL are incremented

after each transfer, while for the LDD and LDDR commands they are
decremented after each transfer. Thus HL and DE are always left
pointing to the correct addresses for the next data byte transfer.

48

With the LDIR and LDDR commands, the transfer of data continues

until BC becomes zero, at which point processing continues with the

next command.

With the LDI and LDD commands, processing continues with the next

command after each transfer: this enables other actions to be taken

before the next transfer of data - though you must remember not to

'upset* the values in the DE,HL, or BC Registers (unless that is all
part of your cunning program). The LDI and LDD commands set the P/V
Flag to zero if they decrement BC to zero. The following program

will transfer only those data bytes that have their most significant

bit (Bit 7) 'set' - that is, equal to '1': the program assumes that

DE and HL have been set up with the Destination and Source 'start'
addresses, and that BC is set to count the maximum number of bytes

to be examined, and transferred if Bit 7 is equal to '1'.

NEXT.-LD A,(HL)
BIT 7,A

JR NZ,MOVE
INC HL

DEC BC

TESTrLD A,B
OR C

JR NZ,NEXT
JR DONE

MOVE:LDI

JP PE,NEXT

;Get 'next' byte

;Test top bit

;Byte wanted - shift it

;Byte unwanted - increment HL

; and decrement the counter BC

;Check if BC is zero
;by ORing B with C

;Do it again if BC not zero

;BC is zero - so finish

;Move the byte

;Do again if BC not zero

DONE:Your next command.

Instead of the 'JP PE,NEXT' command after the LDI, one could do a

relative jump back to the 'TEST' point - JR TEST - which checks if

BC has reached zero after being decremented. But we wanted to

demonstrate the use of the JP PE command. Note, incidentally, one

cannot do a Relative Jump (JR Label) when testing for parity. But
more about this, and the other commands 'BIT 7,A',INC and DEC later.

49

You may ask why do we need both LDIR and LDDR commands. It is so
that we never 'overwrite' data we want to shift.

Suppose for example we want to shift a data block of 1001H bytes
from 8000H to 8500H. If we use the LDIR command with HL pointing to
8000H and DE pointing to 8500H, the first byte will be transferred
from 8000 to 8500H - overwriting data within the block of 1001H
bytes we're going to transfer.

In this instance, we would use the LDDR command - and set the HL
Register to point to the END of the block we wish to shift (i.e.
9000H), and DE to the END of the destination area (i.e. 9500H). So
now, by the time DE has been decremented to 9000H, we've already
shifted the data from there, so it's o.k. to overwrite it.

2. DATA MANIPULATION & TEST COMMANDS

The 8-Bit Arithmetic and Logic Group

The simplest arithmetical operation that can be done on a single

byte is to add one to it (INC) or deduct one from it (DEC). These
operations can be performed on the following Registers and addresses
pointed to by Registers:-

A, B, C, D, E, H, L, (HL), (IX+d), (IY+d)

The Z, P/V and S Flags are affected as a result of the operation.

The rest of the operations in this section ALL operate on Register
A: the OTHER data byte source - even if that is Register A as well,
must be specified. The following sources can be used for the
'other' data byte:-

A, B, C, D, H, L, (HL), (IX+d), (IY+d), n

50

The 'n' of course represents a specific value.

The commands available are:-

ADD A; ADC A; SUB; SBC; AND; OR; XOR; CP

We will examine each command

ADD A (examples - ADD A,B; ADD A,(HL); ADD A,2)

Note the A Register must be specified. This command simply adds the

specified data byte to that in Register A. Thus ADD A,(HL) means add
the contents of the address pointed to by HL to the contents of the

A Register, leaving the result in the A Register. If the result
exceeds FF hex (255 decimal), the Carry Flag is set, and A holds the
result minus 256. Thus, with FF hex in Register A 'ADD A,2' would
result in A nolding '1', and the Carry Flag set to '1 1.

The Z, P/V and S Flags are also affected according to the result of

the ADD operation.

ADC A (examples - ADC A,B; ADC A,(HL); ADC A,2)

This is exactly the same as the ADD command, except that the
contents of the Carry Register before the operation commences are
also added to Register A. Thus if the Carry Flag is set and

Register A holds 21 hex, 'ADC A,2' results in A holding 24 hex, and,
because the operation did not require a 'carry', the Carry Flag

would be reset to zero.

SUB (examples - SUB B; SUB,(HL); SUB 2)

Note that Register A is not specified (unless one wants to SUB A,
i.e. subtract the contents of A from A). This command subtracts the
specified data from Register A, and leaves the result in Register A.
As with 'ADD', the Flags are affected according to the result.

51

SBC (examples - SBC B; SBC (HL); SBC 2)

Similar to the SUB command, except that the contents of the Carry
Flag are also subtracted from Register A.

AND (examples - AND A; AND (HL); AND OFH)
This performs a logic AND function between the A Register and the
specified data byte, leaving the result in Register A.

'ANDing' means 'compare the two bytes, bit by bit. If both bits are
a 1, then the corresponding bit of the result will be a '1'.
Otherwise it's 'O' '.

Thus, with 0A7H in Register A, 'AND OFH' produces

10100111 (A7 hex, 167 decimal)

00001111 (OF hex, 15 decimal)
Result = 00000111 (7)

This technique is often used to provide a 'mask' - that is, to
eliminate parts of a byte that are not wanted. The 'masking' data

- in the above example 'OFH' - covers that part of the data byte we
want to keep.

ANDing always resets the Carry Flag to zero. Thus AND A will reset
the Carry Flag to zero, and leave Register A as it was before the
operation: this command can therefore be used to clear the Carry
Flag without upsetting Register A.

OR (examples - OR A, OR (HL), OR 80H)

This performs a logic OR function on the A Register, leaving the
result in the A Register.

'ORing' means 'test the two data bytes, bit by bit. If either or
both bits are a '1', then the corresponding bit in the result will
be a '1'. Otherwise it's a 'O' '

52

Thus with 1B hex in Register A, OR 80H produces:-

00011011 (1BH, 27 decimal)

10000000 (80H, 128 decimal)

Result = 10011011 (9BH, 155 decimal)

This can be a useful way to add in bits to a byte: if A for example

holds a value between 0 and 9, OR 20H will leave in A the Sharp

display code for that number. OR 30H will leave in A the ASCII code
for that number.

OR always clears the Carry Flag, and affects the other Flags

according to the result. Thus, OR A leaves Register A unchanged, but
clears the Carry Flag.

XOR (examples - XOR A, XOR (HL), XOR 0FH)

This performs a logic XOR function on the A Register, leaving the

result in the A Register.

'XORing' means 'compare the two data bytes bit by bit. If one is a

'1' and the other is a 'O', then the corresponding bit of the result
will be set to a '1'. Otherwise it will be 'O' '. Thus if Register

A holds 14H, then XOR 17H produces:-

00010100 (1 4H, 20 decimal)

00010111 (17H, 23 decimal)

Result = 0000001 1 (3)

XOR always resets the Carry Flag, and affects the other Flags

according to the result. XOR A must always result in Register A
becoming zero - thus this is a useful command to clear Register A
and the Carry Flag to zero: the Zero Flag will be set to '1 '

- meaning the value of Register A is zero.

53

CP (examples - CP B, CP (HL), CP 9)

This subtracts the specified data byte from the value held in

Register A - AND DISCARDS THE RESULT: thus, only the Flags are

affected by the command.

If the Test byte is greater than that in Register A, then the Carry

Flag will be set.

If the test byte is the same as that in Register A, then the Zero

Flag will be set.

If the test byte is equal to or less than that in Register A, then

the Carry Flag is reset.

The Sign Flag and the P/V Flags will be set or reset according to

the value in Register A.

The 16-Bit Arithmetic & Logic Group

As with the 8-bit Group, the simplest commands in this Group are

INC and DEC. These commands can be used to increment or decrement

Register pairs

BC, DE, HL

and the 16-bit Registers:-

SP, IX, IY

Note however that, unlike the 8-bit INC and DEC, for the 16-bit

versions, the Flags are completely unaffected.

The following Table shows the ADD, ADC and SBC commands available

(indicated by the x's):-

54

This with

pair BC DE HL SP IX IY

ADD HL X X X X

ADD IX X X X X

ADD IY X X X X

ADC HL X X X X

SBC HL X X X X

Note that the SUB command is not available - the Carry Flag is

always involved on a subtract operation. If you don't want the

Carry Flag involved - in case it may be set to '1', use an OR A

command first to clear it.

The ADD, ADC and SBC functions are the same as those for the 8-bit

commands except, of course, here they are operating on 16-bits.

The 8-Bit Shifts and Rotates

These commands operate on a specified byte of information, shifting

or rotating its contents 'to the left' or 'to the right'.

The byte operated on can be in:-

A, B, C, D, E, H, L, (HL), (IX+d), (IY+d)

The commands available are as follows:-

RLC (Examples - RLC B; RLC (HL))

This moves the contents of bit 0 to bit 1 , bit 1- to bit 2 and so on.
Bit 7 is moved into the Carry Flag AND into bit 0. The data is thus

ROTATED Left, with the Carry Flag reflecting Bit 7. Note, for
Register A the command can be written RLC A or RLCA: RLCA is a

different command, requiring one less instruction byte.

55

RRC (examples - RRC B; RRC (HL))

This moves the contents of bit 7 to bit 6, bit 6 to bit 5 and so on.
The contents of bit 0 are moved into the Carry Flag AND bit 7. The

data is thus ROTATED Right, with the Carry Flag reflecting bit 0.

Note for Register A, the command can be written RRC A or RRCA: RRCA

is the shorter, faster version of the two.

RL (examples - RL B; RL (HL))

This moves the contents of bit 0 to bit 1, bit 1 to bit 2 and so on.
Bit 7 is moved into the Carry Flag, and the Carry Flag contents are

moved into bit 0. Thus nine bits are involved in a ROTATE Left.

Note that for the A Register this command can be written RLA instead

of RL A, RLA being a shorter, faster command.

RR (examples RR B; RR (HL))

This moves the contents of the Carry Flag into bit 7, bit 7 into bit

6 and so on. Bit 0 is moved into the Carry Flag. Thus nine bits

are involved in a ROTATE Right. For the A Register, the command can

be written RRA instead of RR A, RRA being the shorter and faster of

the two commands.

SLA (examples - SLA B; SLA (HL))

This moves bit 0 into bit 1, bit 1 into bit 2, and so on. Bit 7 is

moved into the Carry Flag. A 'O’ is placed in bit 0. Thus the data

is SHIFTED left.

SRA (examples - SRA B; SRA (HL))

This moves bit 7 into bit 6, bit 6 into bit 5 and so on. Bit 0 is

moved into the Carry Flag. Bit 7 is 'refilled* with its original

value (this is for 'signed' arithmetic' operations, to preserve the

sign bit 7). Thus the data is SHIFTED right, arithmetically.

56

SRL (examples - SRL B; SRL (HL))

This moves bit 7 to bit 6, bit 6 to bit 5 and so on. Bit 0 is moved

into the Carry Flag, and a 'O' is placed in bit 7. Thus the data is

SHIFTED right.

Decimal Arithmetic Rotates

We now come to two very special rotate functions, used when
handling Binary Coded Decimal Arithmetic. Both commands operate
between Register A, and the data byte in the address pointed to by

the Register pair HL (i.e. '(HL)*). They are:-

RLD

This command puts the bottom nibble (lower four bytes) of the A
Register into the bottom nibble of (HL), the bottom nibble of (HL)

into the top nibble of (HL), and the top nibble of (HL) into the
lower nibble of Register A. The nibbles are thus rotated. The top

nibble of Register A is unaffected by the operation.

RRD
This does the same as RLD, but in the other direction. Thus, the
bottom nibble of Register A is moved to the top nibble of (HL), the
top nibble of (HL) is moved to the bottom nibble of (HL) and the
bottom nibble of (HL) is moved to the bottom nibble of Register A.
The top nibble of Register A is unaffected by the operation.

57

BIT MANIPULATION

Quite often, one wants to test a specific bit in a data byte, to
see whether it's a 1 1' or a 'O'. Equally it can be very useful to
be able to set a specific bit to a '1 1 , or reset it to 'O'. The Z80

allows you to do this.

The three basic command words available are:-

BIT b,l: Test bit 'b' at location '1'
SET b,l: Set bit 1 b' at location '1' to a '1'
RES b,l: Reset bit 'b' at location '1' to a 'O'

The bit 'b' can, of course, be any bit from 0 to 7. (Remember that
bit 7 is the most significant, and bit 0 is the least significant).

The location '1' can be any of the following:-
A, B, C, D, E, H, L, (HL), (IX+d), (IY+d)

Thus there are three basic commands, each of which can operate on

one of eight bits in ten different locations - a total of 240

commands in all. Typical examples of the three basic commands are
now given.

BIT 3,B
This tests whether bit 3 of Register B is a 'O' or a '1'. If it is a

'O', the Zero Flag is set to a '1' so that a subsequent test for
Zero would succeed. Thus, in this program segment

BIT 3,B
JP Z,WASZERO

a Jump will be made to the program segment labelled 'WASZERO1 if BIT
3 of Register B is 'O'. Otherwise, processing continues with the
next command.

58

Note that whilst the Zero Flag is specifically set or reset by BIT
commands, the Sign Flag 'S' and the Parity/Overflow Flag 'P/v' may
or may not be affected - the information they contain is irrelevant
and untestable. The Carry Flag is unaffected by the operation - it
will contain a previously held value.

SET 7,(HL)

This command makes bit 7 of the data byte at the address pointed to
by the HL Register pair equal to a '1'.

RES 5,(IX+3)

This command operates on the data byte at the address pointed to by

the IX Register PLUS 3, resetting its bit 5 to a 'O'. Thus if the
IX Register holds '8000H', then the data byte at address '8003H'
will have its bit 5 turned into a 'O'.

These bit manipulation functions can prove invaluable in some types

of program. To give just one broad example, in an Adventure game
one data byte may be used to indicate the possible exits from a

given location - a 'O' meaning 'no exit', and a '1' meaning 'exit
possible'. Bit 7 could represent North, bit 6 East and so on, with

four bits 'left over' to represent say 'up', 'down' and two other
possible ways out. Checking whether or not an exit is possible is

then simply a matter of testing the appropriate bit: changing the
status of an exit is simply a matter of 'SETting or RESetting it.

59

SPECIAL A and F REGISTER MANIPULATIONS

There are five instructions which operate specifically on Register

A or on the Carry Flag in Register F. These are as follows:-

DAA
This is a very special command for use when performing Binary Coded

Decimal arithmetic (BCD). In BCD, a four-bit nibble is used to store

one decimal digit: thus one byte can store two decimal digits (this

is referred to as 'packed BCD'). The values '11* to '15' decimal

can all be represented within one nibble: however, for BCD we only

want one decimal digit per nibble > and so the binary representations

of '11' to '15' decimal are meaningless and not wanted.

Let us look at two examples. First, we will add '22' decimal to

'43' decimal. The program to do this in Binary Coded decimal could

be:-
LD A,22H;22H = 0010 0010 binary,'22' in BCD

ADD A,43H;43H = 0100 0011 binary,'43' in BCD

As you can see, adding the binary values would yield 0110 0101

- which in BCD is '65'. Just what we wanted, so there's no problem.

Now let us look at what happens if we add '26' decimal to '17'
decimal. Using the program segment as before, the binary

representation for this would be:-

0010 0110 (26H)

0001 0111 (17H)

and if we add these, we get

0011 1101 (3DH)

Here, the 'D' is meaningless as a decimal number. And that, patient

reader, is where the DAA command comes in. Added after the 'ADD A'
instruction in the program above, it Decimal Adjusts any result in

60

the A Register. Thus, in the first example, the 'DAA' command would
do nothing, for all is fine and dandy. But in the second example,
it would see that things have gone wrong with the lower nibble, sort
out exactly what had gone wrong (depending on whether we'd been
adding or subtracting), and adjust the result accordingly. In the
second example, it would leave Register A holding 0100 0011 - '43H'
or 43 in BCD - which is correct. In this specific instance it
achieves this result by adding a further 6 to the lower nibble, but
don't worry about that. Sufficient to know that it makes the
correct adjustment.

What you should know, however, is that to sort things out the DAA
command makes use of the Flags - so after a DAA command, all the
Flags are affected in some way.

CPL

This command 'complements' whatever value is held in the A Register:

that is, every 'O' becomes a '1', and every '1' becomes a 'O'-. Thus,
if the A Register held the binary value '00101100', after a CPL
command it would hold the binary value '11010011'.

This is called the 'one's complement' of the number, and is a way of
representing positive and negative values. For example, a '5' in
binary is represented by '00000101'. On the other hand '-5' can be
represented by the 'one's complement', namely -'11111010'. Notice
that bit 7 is now '1' - representing a minus value. (See also the
discussion on Flags).

The 'testable Flags are not affected.

NEG

In this command, the contents of Register A are subtracted from
zero, and the resulting value is stored back in Register A. This is
called the 'two's complement' of the number.

61

In two's complement representation, positive values are represented

just as in 'one's complement' - i.e. in the usual signed binary way,

with bit 7 showing the sign (0=positive,1 =negative). Negative

numbers however are represented as the 'one's complement' value PLUS

one. Thus the two's complement of '-5' is '11111011'.

Why go to all this bother? Two's complement makes signed arithmetic

easier for the computer to handle. Consider the sum '3 minus 5'.

00000011 (+3)

11111011 (-5)

Adding these (since we are representing the 'minus' as -5 in two's
complement), we get:-

11111110

Here, bit 7 tells us the answer is negative. Taking the two's
complement of 1111110, therefore, we get 00000010 (two's complement,

remember, is the one's complement of 1111110, which is 0000001, plus

1). Thus, the value is '2', and the Sign is negative. Answer, -2.

Just what the doctor ordered.

The Z80 command NEG, then, obtains the two's complement of a value

in Register A and leaves it in Register A, thus saving the bother of

doing a one's complement (CPL) and adding 1 (ADD A,1). This is a

very scant description of the principles behind one's and two's
complement arithmetic, but it should be enough to give the newcomer

to machine coding an idea of what it's all about.

Note that all the Flags may be affected by NEG command.

CCF

This command 'complements' the Carry Flag in the F Register. If the

Carry Flag is 'O', then CCF makes it a '1'. If the Carry Flag is

'1', CCF makes it 'O'.

62

SCF
This command makes the Carry Flag equal to a 1 1 1 (i.e. 'Set Carry
Flag').

There isn't a command to 'reset' the Carry Flag - that is, to clear
it. However, as mentioned before, AND A and OR A will do this,
without affecting anything else. XOR A clears the Carry Flag as
well, but also clears Register A - makes it 'O' - and consequently
also sets the Zero Flag and possibly affects the Sign Flag (which
reflects bit 7, remember). Observant readers might see that an
alternative way to clear the Carry Flag would be to set it first
(SCF), then complement it (CCF) - but this takes two bytes of
instruction code, whereas OR A takes one. So it's not much good as
an alternative. But well spotted anyway.

63

BLOCK COMPARISONS

The last 'manipulation and test' commands to be examined are the
'block comparisons'. In many respects these are similar to the
'block transfer' commands discussed earlier. They enable a whole

chunk of data to be 'searched' to find a byte that is the same as
that in Register A. Like the block transfer commands, they need you

to set up the Registers first: HL with the start address of the area

to be searched, BC with the number of bytes to be searched, and A
with the data byte we're looking for. The commands are:-

CPI Increment HL
Decrement BC

CPD Decrement HL
Decrement BC

CPIR Increment HL

Decrement BC

Continue until BC=0 or A=(HL)

CPDR Decrement HL
Decrement BC

Continue until BC=0 or A=(HL)

As with the block transfers, the CPI and CPD commands enable other
operations to be undertaken within the 'search loop'. When a match
is found, the Zero Flag is set. When BC reaches zero, the P/V Flag

becomes 0 (Reset).

The CPIR and CPDR commands whiz through the block to be searched

until BC reaches zero, or a match is found.

When a match is found, of course, Register pair HL will be pointing

to the matching byte in the data block.

64

3. RE-ROUTING PROGRAM RUNNING SEQUENCE

We now come to the commands which let you change the 'batting
order' of your program instructions - the commands which emulate the
'GOTO's' and 'GOSUB'S' in BASIC, and of course 'RETURN'. In machine
coding, however, you have more scope.

Jumps and Relative Jumps

The BASIC 'GOTO' instruction can be emulated by a JumP (JP) or a

Relative Jump (JR). A straight Jump is like a straight GOTO. The
format is:-

JP Label or JP address

'Label' of course representing the label you have given at a
particular point in your Assembly Language program, or which has
been defined by an EQUate.

Jumps can also be conditional - that is, any of the Flags can be

tested, and the Jump made if the test succeeds. The format for this
is:-

JP cc,Label or JP cc,address

where cc represents any of the Flag conditions that can be tested
(e.g. NZ,Z,NC,C,PO,PE,P,M - see the section on 'Flags'). Thus a

typical instruction might be JP NZ,ENDGAME, which means 'if the Zero

flag is not set (non zero condition) as a result of a previous

operation - then continue processing from the address labelled
ENDGAME'.

Relative jumps need a little explaining. Their instruction codes

are shorter than straight jumps. The address they provide a jump to
is relative to the current address, and is given by a displacement

value: consequently the actual address doesn't figure in the

instruction code itself. If none of the addresses within the

65

routine itself are 'mentioned' directly, the routine can be located
anywhere in memory. It is thus called a 1 rellocatable' routine.

Many programmers write small subroutines (to do specific functions)

in a rellocatable form, so that they can add the routines to any

major program they are preparing. All they need then is the 'start'
point of the routine - which is done by a label.

The format for a relative jump is:-

JR Label or JR sc,Label

where 'sc' represents a conditional test. Unlike Jumps, which can
test any of the Flags, only the Zero and Carry Flags can be tested

for a conditional relative jump - i.e. Z, NZ, C or NC. So you

cannot write, for example 'JR M,LABEL'.

The relative jump can be made forwards or backwards. The

displacement value is in two's complement, and is added to the

Program Counter plus 2. If you work it out, you'll find that
relative jumps can be made to addresses within -126 and +129 bytes

of the address of the first byte of the 'JR' instruction:

fortunately, the Assembler calculates the displacement value for you

when generating the machine code.

Special Jumps

There are four more kinds of jump you can do in machine coding.

Three of these enable you to jump to an address specified in the
Registers. They are:-

JP (HL)

JP (IX)

JP (IY)

and they're extremely useful when using 'jump tables'. One could

for example have a data table of items, each item being three bytes

66

long. The first byte of each item would be the 'menu selector'.
The next two bytes would be the address (in the order Low byte, High

byte, remember) of the 'action' routine for that menu item. The

'menu selectors' through the table are searched (jumping over the

next two bytes of the item where no match is found) until a match is

found.

With HL pointing to the matching byte, it is then a simple matter
to: INC HL (so it points to the Low Byte of the action address); LD
E,(HL) - pick up the low byte in E; INC HL - point to the High byte

of the action address); LD D,(HL) - pick it up; EX DE,HL - put the
address into HL; JP (HL) - and go.

This procedure is just one of the many, many ways in which one can

pick up the address of a required routine. It's also a fairly crude

way, but it demonstrates a point.

The fourth kind of jump emulates to some extent the 'FOR-NEXT' loop

in BASIC. It is a type of Relative Jump, and has the format

DJNZ Label

For this instruction Register B is used as a counter, so you must
set it up with a value equal to the number of times you want the

operation done. At the beginning of the 'loop', you have a Label.
When the DJNZ command is met, Register B is decremented and, if it

is not zero as a result, a jump is made to the Label address. It is

a Relative Jump, so the Label address must be within -126 and +129

bytes of the DJNZ instruction's address (the Assembler calculates
the displacement for you).

You can jump out of the loop at any time - if a subsidiary test
succeeds, perhaps. Register B will then be holding the number of

operations left to do when the test succeeded - which may be useful

information.

67

Calls

A 'CALL' command is just like 'GOSUB' in BASIC. Like the JP jump
command, it can be unconditional:-

CALL Label or CALL address

or conditional:-
CALL cc,Label or CALL cc,address

the 'cc' representing one of the Flag tests, just as for the
conditional Jump command.

When a CALL command is met, the Program Counter address for the next
command is put on the Stack, ready for when a RETurn is made - we

discussed this when reviewing the Registers of the Z80. You must
therefore ensure that the Stack still has the RETurn address 'on
top' when the RETurn is made (it's utter disaster if you don't).

Restore

There is another kind of special Call command, called RST - which

stands for ReSTore. The format is:-

RST a

where 'a' stands for one of the following:-
00H, 08H, 1 0H, 18H, 20H, 28H, 30H or 38H.

When the RST command is encountered, the Program Counter address is

put on the Stack (just as in a CALL command), and a jump is made to
the specified address. The point about this instruction is that it

is only one byte long, and provides an extremely fast jump.

68

You'll notice though that all the addresses concerned lie within the
monitor (on Sharp machines). So, for example, RST 00H gives you a
cold start - like pressing 'reset'. Only two of the other addresses
are significant in Sharp monitors. One is 30H - which provides a
jump to the Music playing routines (the string to be played must be
in an area pointed to by Registers DE, and terminated by an ODH
byte). The other is 38H - the Interrupt routine vector. Any other
'RST' will throw your machine haywire - since you'll be calling the
'middle' of an instruction.

Returns

These RETurn control from a subroutine, just like 'RETURN' in

BASIC. The format is:-

RET or RET cc

where 'cc' is one of the Flag tests, as for the jump (JP) and CALL

commands.

There are two special Return commands. The first is RETI (return
from an interrupt), which must always be preceded by an El (Enable

Interrupt) command. The second is RETN, which provides a return
from a non-maskable interrupt, and resets the Z80's interrupt Flag

to the condition it held before the non-maskable interrupt was made.

69

4. INPUT/OUTPUT COMMANDS

There are a number of commands available for inputs from or
outputs to peripheral devices. In many ways most of these are like
the block transfer commands, in that they enable blocks of data to
be transmitted either automatically or within a 'loop' performing
other functions. These particular commands are:-

Input commands

INI
INIR
IND

INDR

Output commands

OUTI

OTIR

OUTD
OTDR

For the input commands, the peripheral device addressed by Register
C is 'read', and the information is loaded into the address pointed
to by Register pair HL. Then Register B is decremented, and
Register pair HL incremented (INI, INIR) or decremented (IND, INDR).

For the Output commands, the procedure is reversed - that is, the
contents of the address pointed to by HL is output to the peripheral
device addressed by Register C, B being decremented and HL
incremented or decremented after each transfer.

For the input or output commands ending with 'R', the procedure

continues apace until B = 0.

Four other input and output commands are available. These are:-

Input commands Output commands
IN A,(p) OUT (p),A
IN r,(C) OUT (C),r

IN A,(p) loads Register A with a byte of data read from the
peripheral Port 4 p'. Similarly, OUT (p),A outputs the data byte in A
to the port 1 p'.

70

IN r,(C) and OUT (C),r do the same kind of thing, except the port
device is addressed by the C Register, and the specified Register

'r' can be any of:-

A, B, C, D, E, H, L

MZ700 users will be familiar with the OUT (p),A command - which is
used for 'bank switching' the different RAM and ROM areas: OUT

(0E0H),A for example, switches in a block of RAM in place of the

Monitor ROM at addresses O-OFFFH. In this instance the data in
Register A is irrelevant.

71

5. SYSTEM CONTROLS

These commands are used for controlling the Z80 'system'

NOP
This means, quite simply, No Operation. That is, do nothing. Carry

on with the next command you find. It's useful when writing programs

in Assembly language, to provide a suitable spot for a 'Breakpoint'.
Since it takes time to 'execute', it can also be used to provide a

very short (a very, very short) delay - 2 usee on a 2MHz clock.

HALT
This shuts down the operation of the Z80 completely, until an

interrupt is received, or a 'reset' performed.

PI,El
These Disable or Enable the Interrupt procedures. Interrupts are

discussed in the section on the Z80 Registers.

IM 0,1 or 2

The IM commands set the Z80 in a particular Interrupt Mode. See the

discussion on Interrupts in the section on Z80 Registers.

NON Z80 COMMANDS (Pseudo Ops)

If using an Assembler, you'll find other commands are available

which are essential for writing in Assembly Language. These are
used by the Assembler to tell it what to do - reserve data space,
assemble at a specific address and so on. They do not 'translate'
into Z80 instruction codes, and will not normally appear in a
dissassembled listing. Please refer to the manual for your
Assembler for details of these commands.

72

3

Assembling

This chapter will deal with getting started on writing your own
machine code programs using an Assembler/editor program such as ZEN

which is widely available for the Sharp computers. Any differences
on entering programs between ZEN and other assemblers should be
minimal as the principles are the same. If you already know the
methods of entering lines into an assembler then some of this

chapter obviously could be skipped, as we will start from loading

the assembler and describe some of the errors which can too easily

be made by first time users. The first program we will enter simply

prints the alphabet along one screen line, which is not very

exciting, but it is nice and short and will demonstrate how lines

are entered.

The Monitor section of memory (addresses between 0000 and OFFF hex)

within the Sharp contains several routines for what are simply

termed as housekeeping jobs. These routines take care of tasks such
as printing a character on screen, printing a new line, accessing

the clock, reading a program from tape, verifying and saving of

programs etc., and obviously they are made full use of when running

any program, Basic or machine code, as it is far simpler to form a
message to be printed from within your program and then simply call
the monitor routine to get that message printed on the screen than
writing a routine in your program to do the same job.

The Monitors of the MZ-80A and MZ-700 are listed in their respective

manuals that are supplied with the machines, unfortunately the MZ-
80K manual does not list the Monitor at all but that will not affect
'K' owners too much as each time we access a monitor routine it will
be explained. A published Monitor listing of the MZ-80K should be

available through Sharp dealers

73

ZEN loads directly from the Monitor, so as soon as the MZ has been

switched on place the cassette in the computer and enter 'LOAD' (or

simply 'L' on the MZ-80A and 700) followed by the 'CR' key and load
the program normally. On completion the screen will display:-
ZEN >
Enter exactly, spaces included, all entries under the TO ENTER
column (NOT THE DISPLAYED COLUMN) followed by a carriage return at
the end of each line. There is an error in the program which has

been entered deliberately and we will alter it later. Remember any

calls or jumps to addresses between 0000H and OFFFH are to routines

within the monitor ROM section, and their functions will be shown.

TO

DISPLAYED ENTER

ZEN >
1
2
3

4
5

6

7
8

9

10
11

ZEN >

E
LOOP:EQU 1203H
START:CALL 0006H

LD A,"A"
NEXT:CALLO01 2H
INC A
CP "Z"+1
JR NZ,NEXT
CALL 06H

JP LOOP
END

At the end of a program one must enter 'END' on a separate line, and

to cease entering and move back to command level a full stop must be

entered on a separate line too.
Now we will analyse what we have entered.

Line 1 of the program was an equate line and this simply tells the

assembler that the symbol 'LOOP' equates to 1203H which is the

address we wish to jump to at the end of the program as one can see

74

in line 9 we have entered JP LOOP, we don't need to specify an
address to jump to as the assembler has noted which address LOOP
equals. One reason for these equates is that if we wished to alter
the address at some future stage we would not need to list the whole
program and alter each line which contained this address, all that
is required is to change the first line to the different address and
the assembler will do the work for us. This address is the warm
start entry point to the ZEN Assembler, when this short program
finishes running we need to tell the computer where to jump to and
the mainloop of ZEN seems to be as good a place at this stage, we
don't want the program running off wildly into memory. A colon must
be entered between the symbol and the letters EQU.

Line 2 contains a label 'START' this is where, when testing the
program, we will execute from. Any line can have a label, for in this
instance when testing we shall simply enter 'GSTART' which means
goto the label start. This line calls a monitor routine at address
0006H which simply moves the cursor to the next line on screen and
when that task is completed control returns to our program. This is
similar to a GOSUB in basic but in this case the subroutine is
already in ROM memory within the Monitor and all our program needs
to do is call it.

Line 3 loads the A register with the value of the letter 'A'. ZEN is
quite versatile in that it allows entries within quotes and it
simply converts this to the Hex equivalent value of the letter, in
fact this line would have the same meaning if we entered LD A,41H
which is how it would be assembled and loaded into memory by ZEN
anyway. 41Hex is the hexadecimal ASCII code for the letter 'A', or
we could have entered LD A,65 which is the decimal ASCII value of
the letter 'A' and so omitting the suffix H which signifies to ZEN
that the value is decimal and ZEN must convert it to Hex.

Line 4 contains the label NEXT as we will jump back here to continue
printing letters. It is followed after the colon by Call 0012H which
once again is a subroutine in ROM Monitor which prints the ASCII
value currently stored in register A, and returns to our program.

75

Line 5 increments register A so the first time round after printing

A on the screen we want it to increase its value by 1 , so it will

increase from 41H to 42H, the letter 'B'.

Line 6 compares the value of register A to see if it has reached Z +

1 , and if it hasn't line 7 tests and jumps back to NEXT to do it all

again. Once again it is easier to enter line 6 as "ZM+1 but when it

is assembled this will be automatically altered to the Hex value of

Z plus 1 making 5Bhex.

Line 7 is the relative jump and here one can see the advantage of
giving lines a label for one does not need to calculate the number
of bytes to jump back, as we did in chapter 1 , as the assembler does

it for us. Furthermore one could add extra lines between 4 and 7

which will obviously alter the amount of bytes to jump back over
without the need to adjust anything else as the assembler will
adjust the relative jump automatically.

Line 8 again makes a call to 0006H to print a newline. Note that

here we entered it as CALL 06H instead of 0006H, this was done to

show that although it is sensible to enter the complete address if

the address contains leading zeroes they do not have to be entered.
Another rule when entering addresses is if it was CALL FFOOH then

ZEN could confuse the address for a label as it does not begin with

a number, therefore if any address which commences with an
alphabetical character needs to be entered it MUST be preceeded with

a zero, in the hypothetical case of FFOOH the correct entry should
be CALL 0FF00H.

Line 9 puts us back under the control of ZEN when the program

finishes.

The next task is to find out if we have entered the program
correctly, some bright sparks may have noticed some errors already,

as one will get errors when entering and it is better to discover

some of the more common types of error messages at this early stage.

Enter 'A' and 'CR', this tells ZEN we wish to assemble the program.

76

The screen will prompt for an ’OPTION' which will determine if we
wish to assemble to a printer, by entering 'E' for external, or by

entering 'V' for video to print on screen the assembled version, or

if we enter the 'CR' key on its own it will be assembled internally

only stopping at a line which contains any errors, which is the
fastest option. So after the 'OPTION' prompt enter 'CR'.
The screen will display:-
ORG !

2 START:CALL 0006H

ZEN >
which simply means we did not enter the. origin of the program, which

is where in memory we want it to reside. This is obviously a major

omission as the assembler must know where to place the program.

Enter 'T' followed by 'CR' and the first line of the program will be

displayed. 'T' is the target line you wish to be displayed, entering

'T4' would display line 4, whereas just entering 'T' on ,its own
moves up to the first line.
Entering 'E', as we did to begin entering the program, will let us
enter extra program lines from the current line, which after
entering 'T' will be line 1 , and as we enter these extra lines all

the lines already in the program will simply shift up a line, the
existing line 1 will remain intact but will now become line 2 etc.
We should also enter a line to determine where we wish the program

to load into memory once it is assembled, this does not need to be

the same address as the ORG address, but to keep this program as
simple as we can we will load in the same place.

TO

DISPLAYED ENTER

ZEN > E
1 ORG 8000H
2 LOAD 8000H
3

ZEN >
Note the full stop to bring us back into command level

77

Entering *T* and 'CR' will display line 1:~

1 ORG 8000H

ZEN >
Now entering 'P13' and 'CR' will list the program from line 1

through to the end of the program which is always displayed as

’EOF'o If one entered 'P8' only the first 8 lines would be listed,

so if the whole program is to be listed ensure you enter 'P'
followed by a value equal to, or larger than, the last line number.

Notice that the existing lines in memory have been moved up 2 lines.

Once again enter 'A' and 'CR' followed by 'CR' in response to

'OPTION' prompt to see if our program is correct and will assemble.

If one entered the program as shown it should stop and display:-
HUH?

6 NEXT:CALL0012H
ZEN >
Faced with this error one must look at the line and discover the
mistake because the prompt 'HUH?' does not tell us much, only this

will happen many times when writing your own programs. The line

looks O.K. but the fault lies in the basic fact that we did not
enter a space between CALL and the address.
Enter 'N' and 'CR' and the line will be displayed with the cursor to

the right of the line of characters
6 NEXT:CALL0012H

Simply delete the characters from the right, DO NOT USE THE CURSOR

KEYS, until the cursor is over the first zero after CALL and enter a

space followed by 0012H and 'CR'.
The line should now look like this:-

6 NEXT:CALL 0012H
Entering 'A' followed by 'CR' twice should result in no error
message this time and the 'ZEN' prompt should be displayed almost

immediately on the next line, which tells us that it assembled O.K.

and is loaded into memory.

Enter 'GSTART' followed by 'CR' and the screen will display:-
BKPT >
this is asking us to enter a breakpoint in the program, for if one
is testing certain parts of a lengthy program it can be halted at a

78

particular point, either an absolute address in memory or a label
within the listing, and control will pass back to ZEN. This can be
very useful as machine code programs run so quickly that it is very
hard to keep track of them.
In this case we do not want to enter a breakpoint, so in response to
the 'BKPT' prompt enter the 'CR' key.

The display should appear

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ZEN >

Don't expect too much from your first machine code program, this was
only to demonstrate the principles in entering code, but now we have
lost all the bugs it seems a good time to assemble the program onto
the screen to see what has happened. Enter 'A' and 'CR' and this
time when prompted for 'OPTION' enter 'V' and 'CR' and the result
should be this2-

PAGE 1

1 ORG 8000H
2 LOAD 8000H
3 LOOP: EQU 1203H

4 8000 CD0600 START: CALL 0006H
5 8003 3E41 LD A,"A"
6 8005 CD1200 NEXT: CALL 001 2H
7 8008 3C INC A

8 8009 FE5B CP "Z"+1
9 800B 20F8 JR NZ,NEXT

1 0 800D CD0600 CALL 06H

1 1 8010 C3031 2 JP LOOP

12 END
ZEN >

In the above program, due to its simplicity, we did not document the

79

functions of any lines but in a longer program it will be essential
to describe certain parts of the programs. Comments can be included

in any line by simply adding a semi-colon followed by the comment.
To add a comment to line 3 enter 'T3' and 'CR' followed by 'N' and
'CR' and line 3 should be displayed with the cursor to the right of

the characters

3 LOOP:EQU 1203H

add the following:-
;JUMP ON COMPLETION and'CR'

This line when listed will now show the comments after the semi¬

colon which will remind one at a future date what the line was
achieving. Also a line may be entered with no operands just a semi¬

colon followed by the comments, these will be used on subsequent

listings for clarity. If one has a printer the assembled listing to

'E 1 for external will show these comment fields formatted to the
right of the paper, but they will not be displayed on screen when

assembling to the 'V' for video option due to the limitations of the
40 column screen.

ALTERATIONS and ADDITIONS

If one followed and understood the instructions and how they worked

try the following:-
Alter the program to print the alphabet from Z down to A.
Change line 5 to LD A,"Z"
line 7 to DEC A

line 8 to CP "A"-1
This will initially load register A with letter Z and instead of
incrementing in line 7 it will decrement, so the first time round
the value in register A will reduce to the letter Y and so on. Line

8 checks if has reached A-1 and if not loops back to print again.

80

SCREEN MESSAGES

One will eventually require messages and inputs to be printed on

screen, and as this, test program is short it is ideal for modifying

quite simply. The first working line of the program after the

equates, origin and load entries is line 4, so enter 'T4' and 'CR'
and line 4 will get displayed:-

4 START.-CALL 0006H

ZEN >
Entering 'E' and 'CR' will now enable one to add lines to the
program, and move the existing lines up in memory.

TO

DISPLAYED ENTER

4 NEWSTART:LD DE,MESSAGE1

5 CALL 0015H
6

ZEN >

These new instructions are thus:-
LD DE,MESSAGE1 loads register pair DE with the address in memory of

the start of a screen message which will have the label MESSAGE1
assigned to it. CALL 0015H is a monitor routine which prints, at the
cursors current position on screen, the message which starts at the
address stored in DE. Furthermore the message must end with the code
for carriage return which is ODhex.
The next job is to enter MESSAGE1 into our program. List the program
on screen to discover the last line number, as it is here we will
place the string of characters in our message. END should appear as
line 14, so enter 'T14' and 1 CR' followed by 'E' and 'CR 1

TO

DISPLAYED ENTER

14 MESSAGE1:DB"BUBSTTESTSMi",ODH
15

81

ZEN

Notice that ZEN allows cursor control characters to be accepted into

print strings also the string must be terminated, after the closing

quotes, by a comma and '0DH* to signify the end of string. Unlike

Basic ZEN only allows entries on one screen line, therefore if your
message needed to be longer finish the first line of the message by

adding the closing quotes and continue the message on the following

line making sure it commences with ’DB"' and only enter ',ODH * at
the end of message.

In order to run the program it must be assembled again, making sure
no bugs have crept in. When assembling to the screen it will be seen
that although long messages are not printed in full, the bytes

representing that message are entered into memory.

Running the program can be entered as 'G8000H' or 'GNEWSTART'. It
will be seen that the screen clears and 'TEST' gets printed on the
third line, and the alphabet gets printed, in reverse order, 3 lines

lower due to the cursor characters within the new print string.

Ensure your program lists as below, as we shall alter it further.

1 ORG 8000H
2 LOAD 800OH
3 LOOP:EQU 1203H;JUMP ON COMPLETION
4 NEWSTART:LD DE,MESSAGE1
5 CALL 0015H

6 START:CALL 0006H

7 LD A,"Z"
8 NEXT:CALL 0012H

9 DEC A
10 CP "A"-1
11 JR NZ,NEXT
12 CALL 06H
13 JP LOOP

14 MESSAGE1:DB"SUSSUTESTRSUBJ!",ODH
15 END

EOF

82

USER INPUTS 1

We will assume that we wish the user to input a number from 1 to 9

in order for the alphabet to be printed several times. A routine
exists within the monitor area that will stop the program and wait

for a key to be pressed before continuing and can be utilised quite

simply.

Alter line 14 by entering 'T14' and ’CR' followed by 'N' and 'CR* to
alter MESSAGE1. With the cursor to the right of the line delete back
to the Clear Screen symbol and alter the line to the following

14 MESSAGE1:DB"0!HOW MANY 1 to 9",0DH

Now the program will clear the screen and print the new message on
the top line.

We also need to change the program to accept an input from the
keyboard between 1 and 9. Enter 'T6’ and 'CR* followed by 'E1 and
'CR'.

TO

DISPLAYED ENTER

6 TIMES:CALL 09B3H

7 CALL OBCEH
8 CP 31 H

9 JR C,TIMES
10 CP 3AH
11 JR NC,TIMES
12 SUB 30H

1 3 LD B,A
14

ZEN >

Line 6 (labelled TIMES) now calls a routine within the monitor

(09B3H) which halts the program and waits for a key to be pressed.

83

The Display code of the key pressed is held in register A, but we
require the ASCII equivalent of the key pressed, so line 7 calls
another monitor routine at OBCE hex which converts the contents of
register A into ASCII code.

As we only require keys 1 to 9 to be accepted the contents of

register A must be checked, and line 8 checks that the key pressed

was equal to or greater than 31H, which is the ASCII code for the
number 1 (check with the ASCII code table). It simply subtracts

(temporarily) 31 H from the A register and if it contained a lower
ASCII code than 31H the carry flag will be set, hence line 9 is a

relative jump back to line 6, for the processor to wait for another
key to be pressed, if there was such a carry.

This then tests for a lower ASCII input and subsequently it must now

check for a higher key than 9. Line 10 compares for 3AH, which in

the ASCII table will be seen to equal the colon 1:' which is one
higher than 9. Line 11 is a relative jump back to line 6 if after
subtracting 3AH from register A the carry flag is not set then the
key pressed must have been equal to or higher than 3AH, which means

the key was higher in the ASCII table than 9 and we must jump back
and wait for another key. Assuming that a correct key was entered we
now know register A contains a number between 31 H and 39H and we
must convert this to between 1 and 9, and line 12 does exactly that

it subtracts 30H from register A leaving it with a value 1 to 9.

Line 1 3 loads register B with the contents of register A as B is to
be the counter for the amount of times we will print the alphabet.

One more line needs to be entered. Enter 'T21' and 'CR' then 'E' and

'CR'

TO

DISPLAYED ENTER

21 DJNZ START
22

ZEN >

84

This command was discussed in the 'Special jumps' section in chapter
2 and is a unique Z80 instruction for the B register which
decrements B and executes a relative jump back to wherever you

nominate, to carry out the instructions in the loop again until B
decreases to zero, similar to a FOR..NEXT loop in Basic. In our case
it jumps back to line 14 which is labelled START.

One will have to assemble the program before it is capable of being

run. If errors occur during assembly refer back to the specified

line and check it in this chapter. To run enter 'G8000H' or
'GNEWSTART' and 'CR' for BKPT.

The assembled listing:-

PAGE 1
1 ORG
2 LOAD
3 LOOP: EQU
4 8000 1 12C80 NEWSTART: LD
5 8003 CD1500 CALL
6 8006 CDB309 TIMES: CALL
7 8009 CDCE0B CALL
8 800C FE31 CP
9 800E 38F6 JR

10 8010 FE3A CP
1 1 8012 30F2 JR
1 2 8014 D630 SUB
13 8016 47 LD
14 8017 CD0600 START: CALL
15 801 A 3E5A LD
16 801C CD1200 NEXT: CALL
17 801F 3D DEC
18 8020 FE40 CP
19 8022 20F8 JR
20 8024 CD0600 CALL
21 8027 1 0EE DJNZ
22 8029 C30312 JP
23 802C 16484F57 MESSAGE1: DB
23 8030 204D414E
23 8034 592031 20
23 8038 96B72039
23 803C 0D
24 END

TEST
8000H
8000H
1 203H ;JUMP ON COMPLETION
DE,MESSAGE1
0015H
09B3H
OBCEH
31 H
C,TIMES
3AH
NC,TIMES
30H
B,A
0006H
A,"Z"
0012H
A
"A"-1
NZ,NEXT
06H
START
LOOP
"SHOW MANY 1 to 9'SODH

85

USER INPUTS 2

This section deals with user inputs of unspecified length, as

against single key inputs as in the last section. We will dispense

with the alphabet, I think we all agree it was becoming boring, and

enter a string from the keyboard to be printed a number of times.

Enter 'K* and ’CR1 to kill the existing program followed by 'E' and

'CR'.

TO

SPLAYED ENTER

1 ORG 8000H

2 LOAD 8000H

3 LOOP:EQU 1203H

4 PRTMES:EQU 0015H

5 BELL:EQU 003EH

6 NL:EQU 0006H

7 INPSTR:EQU 9000H

8 USER:EQU 0003H

9 WAITKY:EQU 09B3H

10 DACN:EQU OBCEH
1 1

12 LD DE,MESS1
13 CALL BELL
1 4 CALL PRTMES

15 CALL NL

16 LD DE,INPSTR
1 7 CALL USER

18 CALL NL
19 LD DE,MESS2
20 CALL PRTMES

21 TIMES:CALL WAITKY
22 CALL DACN
23 CP 31H

24 JR C,TIMES

25 CP 3AH

86

26 JR NC,TIMES
SUB 30H

LD B,A

AGAIN:CALL NL

LD DE,INPSTR
CALL PRTMES

CALL NL
DJNZ AGAIN
JP LOOP

MESS1:DB'TsiENTER A STRING",ODH
MESS2:DB"HOW MANY TIMES 1-9",0DH
END

27
28

29

30
31
32
33
34

35
36
37

38
ZEN

In this example more addresses have been included in the EQU

section, as on longer programs it will be far simpler to enter
instructions i.e. CALL BELL than entering CALL 003EH within the
program each time.

Line 7 denotes the area in which the input string will be stored
when entered from the keyboard, 900OH.

Line 8 USER (0003H) is the monitor input routine which accepts input

from the keyboard, the program continues after the string has been
terminated by entering the 'CR' key.

Line 9 WAITKY is the routine used in the last program at 09B3H which

waits for a single key input.

Line 10 is the label given to the routine which converts Display

code to ASCII in register A.

The remainder of the program is similar to the previous one with the
addition of line 30 which loads DE with our string which is stored

at 9000H, afterwhich it is printed with CALL PRTMES (0015H)

87

Entering 'A' and 'CR' followed by 'V' and 'CR' should produce the

assembled listing as below. To run the program enter G8000H and 'CR'
for the 'BKPT' prompt, afterwhich the screen will clear and the

'ENTER A STRING' message will be printed. After one has entered a

string of characters the 'HOW MANY TIMES 1-9' message will be shown

and on entering a value between 1 and 9 the string will be printed

with a clear line between each.

PAGE 1 INPUT STRING

1 ORG 8000H
2 LOAD 8000H
3 LOOP: EQU 1 203H
4 PRTMES: EQU 0015H
5 BELL: EQU 003EH
6 NL: EQU 0006H
7 INPSTR: EQU 9000H
8 USER: EQU 0003H
9 WAITKY: EQU 09B3H
10
11
1 2

DACN: EQU 0BCEH

8000 1 13D80
/

LD DE,MESS1
13 8003 CD3E00 CALL BELL
14 8006 CD1500 CALL PRTMES
15 8009 CD0600 CALL NL
16 800C 110090 LD DE,INPSTR
17 800F CD0300 CALL USER
18 8012 CD0600 CALL NL
19 8015 1 14D80 LD DE,MESS2
20 8018 CD1500 CALL PRTMES
21 801 B CDB309 TIMES: CALL WAITKY
22 801E CDCE0B CALL DACN
23 8021 FE31 CP 31 H
24 8023 38F6 JR C,TIMES
25 8025 FE3A CP 3AH
26 8027 30F2 JR NC,TIMES
27 8029 D630 SUB 30H
28 802B 47 LD B,A
29 802C CD0600 AGAIN: CALL NL
30 802F 110090 LD DE,INPSTR
31 8032 CD1500 CALL PRTMES
32 8.035 CD0600 CALL NL
33 8038 10F2 DJNZ AGAIN
34 803A C30312 JP LOOP
35 803D 16454E54 MESS1: DB "SENTER A
35 8041 45522041
35 8045 20535452
35 8049 494E470D
36 804D 484F5720 MESS2: DB "HOW MANY
36 8051 4D414E59
36 8055 2054494D
36 8059 45532031
36 805D 2D390D
37 END

ODH

88

SAVING PROGRAMS

Although one probably won't need to save this program on tape it is

a good idea to use this small program to practise getting it right,

it is not so straightforward as saving a basic program, so making

mistakes now will be less costly than when your own machine code
masterpiece is at stake.

There are 2 methods of saving machine code programs. The first is to
save the source file. Source files (or programs) are made up of the
pure text whigh has been entered from the keyboard. One will require

this option for saving unfinished programs, which obviously cannot
be assembled in that state, for future loading using ZEN which would
be achieved by entering 'R' and 'CR' after the ZEN prompt. Entering

'H' and 'CR' will now display the start and end of the source file
and the top of memory. At this stage the last program should
display:-

3000 31C9 CFFF

Although in some earlier versions of ZEN written for the MZ-80K this

could be:-

2500 26C9 CFFF

as these took up less memory and the user file started lower in RAM
at 2500H

If one enters 'Q3000H' (Q2500 on the early version) and 'CR' the
text entered will be shown in memory byte by byte. To save a source
file enter 'W' and 'CR' and one will be prompted for a file name,
afterwhich it will be saved on tape as normal.

The second method is for saving the object file. Object files are
the assembled program, and what gets saved i& the pure machine code
file, without comments, ready to run. In our program it could be
saved and then run directly from the Monitor, without Basic or ZEN,
by simply loading although one would need to alter the EQU LOOP from
1203H to the mainloop address of the ROM Monitor being used.

89

To test that one is conversant in saving an object file carry out
the following:-

Alter what should be line 3 by entering 1 T3' and 'CR' and it should
get displayed. Now enter 'N' and 'CR' and alter the address

following the EQU from 1203H to one of the following depending on
your machine:-
MZ-80K alter 1203H to 0082H

MZ-80A alter 1203H to 0095H

MZ-700 alter 1203H to OOADH

One will need to assemble these programs once again but if' the.above
entry is correct that will take no time at all only this time

assemble to the screen by entering 'v' and 'CR1 as we MUST know the
end address of the file. Line 36 shows the last few bytes in the

program, and one can see this last line starts with address 805DH
and contains 3 bytes making the last byte 805FH.

Place a fresh tape in the computer and enter 'WO* which stands for
write object. One will be prompted for the START address so enter
'8000H' and 'CR', it is important to enter the suffix 'H' otherwise

ZEN will believe it is a decimal number which it is not.

Next prompt is for the STOP address so enter '805FH' and 'CR' which

is the last byte of the program.

The next prompt is for the EXEC address which is where the program

should run from. In this case we want to run from the same address
as it loaded from so enter once again '8000H' and 'CR'. EXEC is

added because a program does not always execute from its start

address in memory. It may be that a program is written and then has
some screen graphics titles added to the end of it but which one
wants to run first, so the execution address could well be different

to that of the loading one.

This is followed by the LOAD prompt for the address at which it

90

should load into, and again enter '8000H'.

The final prompt is for a file name, we could simply call this
'TEST' and all that remains is to press the 'PLAY and RECORD' keys.

Once the file has been saved switch off the computer, wait a few
seconds, (never switch off and on quickly) and turn it back on and
load the test program which, after a few seconds, will automatically
run, if you saved it correctly, and when finished will jump into the
Monitor mainloop and display the '*' symbol.

Monitor Routines used in this chapter

0003H User input from keyboard

0006H Newline
0012H Print character stored in the A register

0015H Print message starting at address pointed to by DE

003EH Sound bell
0082H Mainloop MZ-80K

0095H Mainloop MZ-80A
00ADH Mainloop MZ-700
09B3H Wait for key input and store display code value in A reg

OBCEH Convert display code to ASCII in A reg

91

4

ROM Routines

This chapter demonstrates some of the routines which are provided in
the Monitor section of memory.

TABLE CONSTRUCTION

The following program uses the keyboard input to produce notes
within the range Low A to High D, which gives it some appeal, but
its main purpose is to demonstrate one method of accessing tables.

The keys which will produce sounds are as follows
234 67 9 0-
QWERTYUIOP

The Sharp requires the storage of 2 bytes in the ratio storage

address at 11A1H and 11A2H to produce sound, and this 2 byte value

is divided into 2Mhz to determine the frequency of the note to be
played.

The generated note therefore:- freq.(hz) = 2 Mhz/ratio

I am not a musician so for any technical information on this

subject may I suggest one obtains a manual on the 74LS221 chip. The

dividing ratios and resulting frequencies are listed overleaf for
the musically minded, but for this program all we are interested in
is the dividing ratio column which must be entered in the table
within the program to produce a recognisable note in relation to
whatever key is pressed. We are only entering notes from Low A to
High D, but with referring to the dividing ratio table one could
modify the program to play other notes.

92

Dividing ratioScale Frequency (Hz)

Low F

F #
G

G #

A

A #

B

Middle C
C #

D

D #

E
F

F#

G
G#

A

A #
B

High C

C #

D

D #

E
F
F #

G

175 2CA4

186 2A00

1*97 27A8

208 2582

222 * 2331
233 21 87
245 1FE3
261 1DEE

277 1C34

294 1A92

31 1 191E
329 17BF
350 1652

373 14F1
394 13D4
417 1 2BC

444 1 1 98

466 10C3

490 0FF1
522 0EF7

553 0E20

590 0D3D

621 0C94
658 OBDF
699 0B2D

745 0A7C

788 09EA

In the listing overleaf line 13 checks if the key entered is 'L'
which will quit the program and return to ZEN. Line 18 checks for

the end of table marker which is OFOH which will signify that the
key pressed was not in the table so no action should be taken.

New Monitor Routines

0044H Sounds note according to stored bytes at 11A1/11A2H

0047H Stops sound

93

PAGE 1

1 ORG 8000H

2 LOAD 8000H
3 LOOP: EQU 1 203H

4 GETKY: EQU 001BH
5 MSTA: EQU 0044H ;START MUSIC

6 MSTP: EQU 0047H ;STOP MUSIC

7 NOTE: EQU 1 1A1H ;NOTE STORAGE

8 r

9 8000 CD4700 START: CALL MSTP

10 8003 CD1B00 GET: CALL GETKY

1 1 8006 B7 OR A

12 8007 28F7 JR Z,START
13 8009 FE4C CP "L" ;RETURN TO ZEN
14 800B CA0312 JP ZfLOOP

15 800E 47 LD B,A ;KEY INTO REG B

16 80OF 212B80 LD HL,TABLE

17 801 2 7E COMPR: LD A,(HL)

18 8013 FEFO CP 0F0H ;END OF TABLE?

19 8015 28EC JR Z,GET ;YES. INVALID KEY

20 8017 23 INC HL
21 8018 B8 CP B ?COMPARE KEY

22 8019 2804 JR Z,FOUND
23 801B 23 INC HL ;NOT FOUND. JUMP

24 801C 23 INC HL ;TO NEXT IN TABLE

25 801D 18F3 JR COMPR

26 801F 5E FOUND: LD E,(HL)
27 8020 23 INC HL
28 8021 56 LD D,(HL)
29 8022 ED53A1 1 1 LD (NOTE),DE
30 8026 CD4400 CALL MSTA

31 8029 1 8D8 JR GET

32 r

33 . ;SCALE TABLE
34 802B 51 TABLE: DB "Q"
35 802C 3123 DW 2331H

36 802E 32 DB "2"

94

PAGE 2

37 802F 8721 DW 2187H
38 8031 57 DB "W"
39 8032 E31F DW 1FE3H
40 8034 33 DB ii 2 ••
41 8035 EE1D DW 1 DEEH
42 8037 45 DB "E"
43 8038 341C DW 1C34H
44 803A 34 DB II4 II

45 803B 921 A DW 1 A92H
46 803D 52 DB llRlI
47 803E 1 El9 DW 1 91EH
48 8040 54 DB iiipii

49 8041 BF17 DW 17BFH
50 8043 36 DB "6"
51 8044 5216 DW 1652H
52 8046 59 DB IIY"
53 8047 F1 14 DW 14F1H
54 8049 37 DB II -j II

55 804A D413 DW 13D4H

56 804C 55 DB "U"
57 804D BC12 DW 1 2BCH
58 804F 49 DB ii jII

59 8050 981 1 DW 1 198H

60 8052 39 DB II 9 II

61 8053 C310 DW 10C3H
62 8055 4F DB "0" ;ALPHA 0 KEY
63 8056 F1 OF DW 0FF1H
64 8058 30 DB "0" ;NUMERIC 0 KEY
65 8059 F70E DW 0EF7H

66 805B 50 DB upu

67 805C 200E DW 0E20H

68 805E 2D DB II II ;MINUS KEY
69 805F 3D0D DW 0D3DH

70 8061 FO DB OFOH ;END OF TABLE MARK
71 END

95

TIME READ

This program displays a real-time digital clock in large

characters. On running the program the cursor will flash while it

waits for the hours and minutes to be entered in four digits i.e.

1 254.

Descriptions of the program are being suppressed this time, although

the listing contains some comments, in an effort to let the reader

discover what is going on. If entered correctly one will find that

altering the odd command here and there produces interesting

results.

For instance line 59 can be altered from 10 to 16 to display the

seconds in hex. Hours and minutes are made up of a series of blobs,

the display code of which is in line 99, and can be changed. In fact

several good machine code techniques can be gained from this

program, but enter it correctly first and get it running before

making alterations. To quit the program press SHIFT/BREAK which will

return to ZEN mainloop at 1203H. This can be altered to the Monitor

mainloop as was shown in chapter 3. One point which has not been

covered is in lines 57/58 where the cursor, used for displaying the

seconds, is positioned by entering the X/Y co-ordinates into HL and

storing this at DSPXY (1 171H) which in this case is 0513H - line 5,

column 19 (13H) - as this is where the current cursor position is

always stored.

New Monitor Routines used in this program:-
001EH Shift/Break key check
0033H Time set. Enter with DE=time in seconds as 4 digit hex number

003BH Time read. Exit with DE "
03C3H Prints ASCII contents of reg A

03F9H Converts ASCII contents of reg A to Hex

0DA6H Checks vertical blanking on screen

ODDCH Controls screen display depending on reg A (see respective

manuals)

96

This source listing is derived from the object machine code program
'WEE BEN' and is included by kind permission of Knights T.V. and
Computers of Aberdeen.

1 ORG 4600H

2 LOAD 4600H
3 NL: EQU 0006H
4 USER: EQU 0003H
5 BUFF: EQU 9000H

6 TIMST: EQU 0033H

7 TIMRD: EQU 003BH
8 DSPXY: EQU 1 171H

9 ' VBLNK: EQU 0DA6H

10 HEX: EQU 03F9H

1 1 PRTHX: EQU 03C3H

12 BREAK: EQU 001EH

13 LOOP: EQU 1 203H

14 DPCT: EQU 0DDCH

15 t

16 t

17 4600 CD0600 START: CALL NL

18 4603 1 10090 LD DE,BUFF ;STORE TIME INPUT
19 4606 CD0300 CALL USER ;INPUT TIME

20 4609 210000 LD HL,OOOOH
21 460C 01A08C LD BC,8CA0H ;36,000(10 HRS/SECS)
22 460F CDB346 CALL CONVHX ;CONVERT TO HEX

23 461 2 01 1 00E LD BC,0E1OH ;3,600(1 HR/SECS)

24 46T5 CDB346 CALL CONVHX

25 4618 015802 LD BC,0258H ;600(10 MINS/SECS)
26 461 B CDB346 CALL CONVHX

27 461 E 013C00 LD BC,003CH ;60(1 MIN/SECS)
28 4621 CDB346 CALL CONVHX

29 4624 EB EX DE,HL ;TIME IN SECONDS=DE
30 4625 CD3300 CALL TIMST ;SET TIME
31 4628 3EC6 LD A,0C6H ;CLEAR SCREEN CHAR.
32 462A CDDC0D CALL DPCT ;DO IT

33 462D 3E4A LD A,4AH ;CHAR TO SPLIT HR.MINS
34 462F 32F4D1 LD (0D1F4H),A ;DISPLAY 1st DOT
35 4632 326CD2 LD (0D26CH),A ;DISPLAY 2nd DOT
36 4635 CD1E00 TIME: CALL BREAK ;WANT TO STOP?

97

PAGE 2

37 4638 CA031 2 JP Z,LOOP ;YES, BACK TO ZEN
38 463B CD3B00 CALL TIMRD ;DE=TIME IN SECONDS
39 463E 210F0E LD HL,OEOFH ;3,599(1 HOUR-1 SEC
40 4641 ED52 SBC HL,DE ;ACTUAL SECS-59
41 4643 3805 JR C,PRTTIM ;INCREASE MINUTES

42 4645 21C0A8 LD HL,0A8C0H ,*43,200(12 HRS/SECS)
43 4648 1 9 ADD HL,DE
44 4649 EB EX DE,HL
45 464A 01A08C PRTTIM: LD BC,8CA0H
•46 464D 2195D1 LD HL,0D195H ;SCRN POSN HRS(TENS)
47 4650 CD8446 CALL DISPLAY
48 4653 01 1 OOE LD BC,0E1OH
49 4656 219DD1 LD HL,0D19DH ;SCRN POSN HRS(UNITS)
50 4659 CD8446 CALL DISPLAY
51 465C 015802 LD BC,0258H
52 465F 21A7D1 LD HL,0D1A7H ;SCRN POSN MINS(TENS)
53 4662 CD8446 CALL DISPLAY

54 4665 013C00 LD BC,003CH
55 4668 21AFD1 LD HL,0D1AFH ;SCRN POSN MINS(UNITS

56 466B CD8446 CALL DISPLAY
57 466E 211305 LD HL,0513H ;X/Y POSN OF SECONDS
58 4671 227111 LD (DSPXY),HL ;POSITION CURSOR

59 4674 010A00 LD BC,10
60 4677 CDC446 CALL COUNT
61 467A 07 RLCA

62 467B 07 RLCA

63 467C 07 RLCA

64 467D 07 RLCA
65 467E 83 ADD A,E
66 467F CDC303 CALL PRTHX ;PRINT SECONDS
67 4682 1 8B1 JR TIME

68 4684 CDC446 DISPLAY: CALL COUNT
69 4687 D5 PUSH DE

70 4688 1 1D246 LD DE,NUMBER
71 468B 47 LD B,A
72 468C 07 RLCA

98

PAGE 3

73 468D 07 RLCA

74 468E 80 ADD A,B
75 468F 83 ADD A,E

76 4690 5F LD E,A

77 4691 0E05 LD C,05H ;5 COLUMNS WIDE

78 4693 E5 COLPRT: PUSH HL
79 4694 1 A LD A,(DE)

80 4695 D5 PUSH DE

81 4696 112800 LD DE.,40 ;LINE WIDTH

82 4699 0608 LD B,08H ;LINES TO PRINT
83 469B CDA60D CALL VBLNK
84 469E 07 BLANK: RLCA

85 469F 380E JR C,BLOB ;GET DISPLAY CHARACTER

86 46A1 3600 LD (HL),00H
87 46A3 19 NXTLN: ADD HL,DE ;MOVE DOWN 1 LINE

88 46A4 1 0F8 DJNZ BLANK
89 46A6 D1 POP DE

90 46A7 E1 POP HL
91 46A8 13 INC DE

92 46A9 23 INC HL

93 46AA 0D DEC C ;NEXT ROW

94 46AB 20E6 JR NZ,COLPRT
95 46AD D1 POP DE

96 46AE C9 RET

97 46AF 3647 BLOB: LD (HL),47H ;DISP CODE OF BLOB

98 46B1 1 8F0 JR NXTLN
99 46B3 1 A CONVHX: LD A,(DE)

100 46B4 13 INC DE

101 46B5 CDF903 CALL HEX

102 46B8 FEOO CP 00H

103 46BA C8 RET Z
104 46BB D5 PUSH DE

105 46BC 50 LD D,B
106 46BD 59 LD E,C
107 46BE 47 LD B,A
108 46BF 19 CNHEX1: ADD HL,DE

99

PAGE 4

1 09 46C0 1 OFD DJNZ CNHEX1

1 10 46C2 D1 POP DE

1 1 1 46C3 C9 RET

1 1 2 46C4 E5 COUNT: PUSH HL

113 46C5 EB EX DE,HL
114 46C6 AF XOR A

115 46C7 ED42 COUNT1: SBC HL,BC
116 46C9 3803 JR C,CTEND

1 1 7 46CB 3C INC A
1 18 46CC 18F9 JR COUNT1

119 46CE 09 CTEND: ADD HL,BC
120 46CF D1 POP DE

121 46D0 EB EX DE,HL
122 46D1 C9 RET
1 23 i

124 46D2 7E818181 NUMBER: DB 7EH,81H,81H,81H,7EH i 0

124 46D6 7E
125 46D7 21 41FF01 DB 21H,41H,0FFH,01H,01 H i 1

125 46DB 01
126 46DC 43858991 DB 43H,85H,89H,91H,61H i 2

126 46E0 61

127 46E1 468191 91 DB 46H,81H,91H,91H,6EH / 3

1 27 46E5 6E
128 46E6 1C2444FF DB 1CH,24H,44H,0FFH,04H / 4
128 46EA 04
129 46EB F2919191 DB 0F2H,91H,91H,91 H,8EH / 5
129 46EF 8E

130 46F0 7E919191 DB 7EH,91H,91H,91H,4EH r 6

130 46F4 4E
1 31 46F5 C0808F90 DB OCOH,80H,8FH,90H,OEOH/ 7
131 46F9 EO
132 46FA 6E919191 DB 6EH,91H,91H,91H,6EH r 8
132 46FE 6E

133 46FF 72898989 DB 72H,89H,89H,89H,7EH r 9
133 4703 7E
134 END

100

LOADER PROGRAM

When loading a machine code program one may have seen a different
screen message displayed than the usual one or, as is becoming more
popular, the complete display could alter to a graphics title while

the program appears to be still loading.

The answer lies in the fact that two programs have been loaded, the
second automatically. The first short program contains the titles
and a loading routine for the second larger program. When the first
program has loaded it executes immediately so printing the titles on
screen and enters a loading routine for the second. Execution is so
fast that the tape stops for a minimal time and starts again almost
without being noticed. Only one 'Loading program name' message
appears on screen as the loading routine jumps into the middle of
the Monitor loading routines so missing the loading message. These
routines are different for the 3 Sharps and are mentioned in the
listing.

The loader program begins with the screen title message, in the
example it will display 'NOW LOADING MAIN PROGRAM', but this can be
expanded upon as will be explained later. It continues by loading 9
bytes into a free area at the top of the Monitor area, at 11F5H,
which actually control the loading of the second program, afterwhich
it jumps to that routine to commence the loading.

Debugging and testing this loader program could cause problems if
one allows it to execute line 23 (JP 11F5H), therefore a label (STP)
has been added 'in order that when the BKPT option is displayed

entering STP will stop the program after the titles and before it

jumps to the loading routine.
ZEN : GSTART

BKPT:STP

This will enable one to thoroughly test out the titles and graphics

before saving.

101

Although the ORG is set at 8000H, which is ideal for testing, before

saving the object file it could be altered to 1 200H and assembled

again for loading at the lower address. This also means that the

second program could be set to ORG 1200H before saving and the

loader program will be overwritten and dissappear from memory as the

main program loads in.
To test if the loader operates correctly it would be wise to enter

and save the program as it is listed first. And without rewinding

the tape enter a second program such as the short inputs program

from the earlier chapter. Please alter the various EQU addresses for

your Sharp model.

First save the source program for future alterations then save the

object version by altering the ORG to 1200H and re-assemble. Do not
alter the LOAD address as this would overwrite ZEN and crash out.

It must be remembered that although now it has been assembled from

1200H to 1243H at present it resides in memory from 8000H to 8043H,

and it is this area of memory which must be saved on tape, with

larger programs this can cause calculation problems. Now complete

the enter the following where prompted

ZEN>WO
START>800OH

STOP>8043H
EXEC>120OH
LOAD>120OH
Once saved it should be verified by entering 'VO' and 'CR', and if

it verifies OK then do not rewind the tape as it will be used from

that position to save the object file of the main program. One

should now enter 'K' to kill the file, the same as NEW in Basic, and

enter or load in a small source program, previously recorded and

fully tested, alter the ORG address to 1200H if one wishes, assemble

and save the object file onto the same tape as the loader program

has been saved.
One should now possess an object tape which will load directly from

Monitor and after a few seconds should display the message 'NOW
LOADING MAIN PROGRAM' on the fifth line of the screen whilst loading

the main program.

102

ORG 8000H

LOAD 8000H
3 NL: EQU 0006H
4 PRTMES: EQU 0015H
5 RDHDR: EQU 04D8H

6 ;MZ-80A ALTER ABOVE TO 04CFH
7 ERROR: EQU 0107H
8 ;MZ-80A ALTER ERROR TO 00CFH

9 ;MZ-80K ALTER ERROR TO 01A4H
10 LOAD: EQU 0121H
1 1 ;MZ-80A ALTER LOAD TO 00E9H
1 2 ;MZ-80K ALTER LOAD TO 00F4H
13 7
14 8000 112080 START: LD DE,MESS1
15 8003 CD1500 CALL PRTMES
16 8006 CD0600 CALL NL
17 7
18 8009 1 1F51 1 LDSHFT: LD DE,11F5H ;Loader
19 800C 211780 LD HL,LOADER ;shifter
20 8OOF 010900 LD BC,9 ;routine
21 8012 EDBO LDIR
22 7
23 8014 C3F51 1 STP: JP 1 1F5H
24 7
25 8017 CDD804 LOADER: CALL RDHDR
26 801 A DA0701 JP C,ERROR
27 801D C32101 JP LOAD
28 /

29 ;INITIAL SCREEN DISPLAY
30 ;WHILE MAIN PROG. LOADS
31 8020 16111111 MESS1: DB lifHKIiaffi"
31 8024 11111313 '

31 8028 131313
32 802B 4E4F5720 DB "NOW LOADING "
32 802F 4C4F4144
32 8033 494E4720
33 8037 4D41494E DB "MAIN "
33 803B 20
34 803C 50524F47 DB "PROGRAM",0DH
34 8040 52414D0D

35 END 103

ADDING TITLES

If one required the title to cover the whole screen one solution

would be to store the display code of each screen location in the

loader program and use the LDIR instruction. This takes careful

planing as each of the 1000 bytes which make up one complete screen
would require entering individually although execution time is still

remarkably fast. 700 owners could also specify individual colours

for the whole screen area too.
To give an example we have only stored 3 screen lines of characters

for displaying in the title and will use the previously saved (I

hope) source loader program as a kernel from which to expand. Find

the line with START as its label, it should have been 14, make it

the current line and enter 'Z3' and 'CR' which will delete 3 lines.

Now enter 1 E1 and 'CR' and begin entering

DISPLAYED

1 4

15
1 6
1 7
18

19

20

ZEN >

TO

ENTER

START:LD A,16H

CALL 0012H

LD DE,0D00OH
LD HL,MESS1

LD BC,120
LDIR

Initially we load the ASCII for the Clear screen character (16H)

into register A and CALL 0012H which will print the contents of A,

and clear the screen. Although this is not strictly necessary on the

MZ-80K and 700, as the top left position of screen is always the

same location in RAM on these models, it is a must for the MZ-80A as

the screen does move about after scrolling and this guarantees that

the top left corner is DOOOH, also it will assist by clearing the

screen when testing the additions under ZEN before saving the

finished product. Next the top of screen (VRAM) is loaded into

104

register pair DE. HL points to the address where the characters to
be displayed are stored at the end of our program, and BC is used as
byte counter and contains the amount of characters we wish to
transfer to the VRAM area, in this example 3 lines of 40 characters,
120 bytes. This has been entered as a decimal for clarity, as it is
not suffixed by 'H', but could have been entered as LD BC,78H
instead. The LDIR instruction simply transfers the contents of HL
into the address of DE and increments both registers and decrements
BC until BC equals zero.
We must now add the 120 bytes which make up the display.

After these additional lines MESS1 should have moved up to line 34
in the program, find it and make it the current line. Wipe out the

remainder of the previous message by entering 'Z10' and 'CR' which
should delete up to EOF and enter 1 E' and 'CR' and enter these
lines:-

TO

DISPLAYED ENTER

34 DISPL:DB 4BH,78H,78H,78H,78HI
35 DB 78H,78H,78H,78H,78H,78H; I

36 DB 78H,78H,78H,78H,78H,78H; N

37 DB 78H,78H,78H,78H,78H,78H; E

38 DB 78H,78H,78H,78H,78H,78H
39 DB 78H,78H,78H,78H,78H,78H; NO

40 DB 78H,78H,78H,78H,4CH; 1

41 DB 79H,0,0,0,0,0,0,0,0; L
42 DB 0,0,19H,0FH,07H,12H; I
43 DB 0,1 OH,1 2H,0FH,07H,12H; N

44 DB 01 H,0DH,0,0EH,01H,0DH,05H r

45 DB 0,0,0,0,0,0,0,0,0,0,0,79H r

46 DB 6FH,78H,78H,78H,78H,78H;
47 DB 78H,78H,78H,78H,78H,78H?
48 DB 78H,78H,78H,78H,78H,78H;
49 DB 78H,78H,78H,78H,78H,78H;

50 DB 78H,78H,78H,78H,78H,78H
51 DB 78H,78H,78H,78H,78H,78H;

L

E

2
L

I
N
E

NO.

105

52 DB 78H,78H,78H,78H,4CH; 3

53 END
54

ZEN >

The label MESS1 has been altered to DISPL as it is no longer a

message in the true sense of the word. We are not loading DE with a

message and calling the print message monitor routine as we did

before. All these bytes are in Display code, which must be used when

direct screen addressing takes place, and they do not need to end

with the carriage return code (ODH) as the end is pointed to by the

size of register BC. If we had loaded BC with only 40 then it would

have only transferred the first 40 bytes to the screen, although the

complete block contained 120 bytes, one could have displayed only

the final 40 bytes by loading HL with the starting address of the

start of the third block of 40 bytes.

If one assembles this program and corrects any incorrect lines, it

can be tested by entering 'GSTART' and for the BKPT prompt enter

'STP' as we did before.
'YOUR PROGRAM NAME' should have been displayed in the centre of line

2 with a surround. Obviously it can be altered at will, but after

each item change remember to keep assembling and testing, as we have

just done, and if it grows in size add the amount of bytes to BC in

line 18, else they will not get displayed.

Altering the position of this display is straightforward as all that

needs altering is the starting address which is held in register DE

in line 16. At present it is loaded with the top left position

(D000H) but can simply be moved down screen by adding 28H for each

line. Suppose one wanted it displayed starting 8 lines down.

8x40=320, convert this to Hex, 140H, and add to D000H, which would
become D140H. Alter line 16 by entering 'T161 and 'CR' followed by

'N' and 'CR' and using the delete key erase back and alter the

address from ODOOOH to 0D140H. Assemble again and test.

For displaying the same character in several successive locations,

say complete rows of 40 characters, and to save time in entering

each byte individually an alternative method can be employed.

106

At present the program begins the display 8 lines from the top, 9

including the top line, we could simply fill this area with the
following additions. Make the target line 16 and enter 'E' and
'CR':-

TO

DISPLAYED ENTER

16 LD D,44H
17 LD HL,0D000H
18 LD BC,OAOH
19 CALL DISRTN
20 LD D,46H
21 LD BC,OAOH
22 CALL DISRTN
23

ZEN >

Line 16 loaded the display code for the diamond character into

register D. Line 17 loaded HL with the top of VRAM (D000H) and line

18 loaded the byte counter (registers BC) with AOH which equals 160,
4 lines of 40 characters. Notice HL was only loaded with D000H once

in line 17 as the subroutine (DISRTN) will increment HL and when it

returns from DISRTN it will point to the start of line 5 of the
screen (D0A0H) already. Line 20 loads the display code of the club
character into D and line 21 loads up BC with the same amount of
characters to display, 4 lines, and DISRTN is called yet again.

Now to add the subroutine DISRTN. If all is going well the last line

of the program should be 60, make this the target and enter 'E' and
'CR'.

TO

DISPLAYED ENTER

60 DISRTN:LD A,B
61 OR C
62 RET Z

107

63 LD (HL),D
64 INC HL

65 DEC BC

66 JR DISRTN

67

ZEN >

First time round register B=0 and C=A0H. Testing for zero is carried

out by loading B into A, and C is tested for being equal to zero by

OR C which sets the zero flag if C=0. A return to the program is

made only when C has reduced to zero. The contents of D, the
character to display, is loaded into the address pointed to by HL
and HL then gets incremented whilst BC is decremented and a relative

jump takes us back to test again for C being equal to zero.
If one lists the program it will be seen that line 23 LD DE,0D140H
is not necessary as at this point HL contains 0D140H and this line

could be altered to EX DE,HL which exchanges the register contents,
so this would effectively do the same job. Assemble the program as
usual, making sure that after all these additions that the last line

is still END, otherwise it will not assemble, and test as before

entering 'GSTART' and 'STP' for the BKPT prompt. Once this is done
one can experiment with the titles before actually recording the
object file on tape.

ADDING COLOUR

This last subroutine could be used for block colouring of the screen

on the MZ-700, but for individual bytes one would need to use the

first method of entering byte by byte and use the LDIR instruction

making sure HL contained the VRAM address plus 800H, which is where

the colour codes for each byte of the screen area are stored, top

left is D800H. Block colouring will also refer to this address.
After the clear screen routine in lines 14 and 15, labelled START,
is where the block colours can be added. Firstly we colour the first

4 lines of the screen, which display the diamond symbol. V7e will set
the foreground colour to red and background to white. Therefore the

108

value assigned to register D will be 27H, 2 is red and 7 white.
Registers HL will point to the start of the colour RAM area (D800H),
then BC will be loaded with AOH again, being the number of bytes to
colour. This will be repeated with the next 4 lines being the club
characters only the colour will be red on white (20H), and then the
colour of the 3 lines of the original display will be altered to
62H, yellow on red, but this time BC should be equal to 3 lines,
40x3=120, 78H. Enter * T16' and 'CR' followed by 'E' and 'CR'

TO

DISPLAYED ENTER

16 LD D,27H
17 LD HL,0D800H
18 LD BC,0A0H
19 CALL DISRTN
20 LD D,20H
21 LD BC,0A0H
22 CALL DISRTN
23 LD D,62H
24 LD BC,78H
25 CALL DISRTN

26

ZEN >
With careful planning and testing one should be capable of

constructing a good title page for display while the main program is
loading. Assemble the finished version to screen to obtain the
address of the last byte in the program and save as we did in the
last section, alter the ORG address if you wish but remember to save
the file from where it is loaded (8000H) and add the size to the

STOP address.
The assembled listing is printed overleaf.

MZ-80K & A note
The assembled listing includes the colour sections of this program,

as these will not be required they have been suffixed with the

letter X and may be omitted, as their inclusion will have no effect.

109

PAGE 1 LOADER+TITLES

1 ORG 8000H
2 LOAD 8000H
3 NL: EQU 0006H
4 PRTMES: EQU 0015H
5 RDHDR: EQU 04D8H
6 ;MZ-80A ALTER ABOVE TO 04CFH
7 ERROR: EQU 0107H
8 ;MZ-80A ALTER ERROR TO 00CFH
9 ;MZ-80K ALTER ERROR TO 01A4H

10 LOAD: EQU 01 21 H
1 1 ;MZ-80A ALTER LOAD TO 00E9H
1 2 ;MZ-8QK ALTER LOAD TO 00F4H
13 r

14 8000 3E1 6 START: LD A ,1 6H
15 8002 CD1 200 CALL 001 2H
16 8005 1 627 LD D, 27H ?x
1 7 8007 2100D8 LD HL, 0D800H ?x
18 800A 01A000 LD BC, 0A0H ?X
1 9 800D CDCB80 CALL DISRTN ?X
20 8010 1 620 LD D, 20H ?X
21 8012 01A000 LD BC , OAOH ?X
22 8015 CDCB80 CALL DISRTN ?X
23 801 8 1 662 LD D,62H ;x
24 801 A 017800 LD BC, 078H ?X
25 801 D CDCB80 CALL DISRTN ?X
26 8020 1 644 LD D , 44H
27 8022 2100D0 LD HL , 0D000H
28 8025 01A000 LD BC, OAOH
29 8028 CDCB80 CALL DISRTN

30 802B 1 646 LD D,46H
31 802D 01 AOOO LD BC, OAOH

32 8030 CDCB80 CALL DISRTN

33 8033 EB EX DE , HL

34 8034 215380 LD HL ,DISPL

35 8037 01 7800 LD BC, 1 20
36 803A EDBO LDIR

110

PAGE 2 LOADER+TITLES

37 }

38 803C 1 1F51 1 LDSHFT: LD DE,1 1 F5H ;Loader
39 803F 214A80 LD HL,LOADER ;shifter
40 8042 010900 LD BC,9 ;routine
41 8045 EDBO LDIR

42 r

43 8047 C3F51 1 STP: JP 11F5H
44 r

45 804A CDD804 LOADER: CALL RDHDR
46 804D DAO701 JP C,ERROR
47 8050 C321 01 JP LOAD

48 r

49 ;INITIAL SCREEN DISPLAY

50 ;WHILE MAIN PROG. LOADS
51 8053 4B787878 DISPL: DB 4BH,78H,78H,78H,78H 7 L

51 8057 78

52 8058 78787878 DB 78H,78H,78H,78H,78H,78H ; I
52 805C 7878

53 805E 78787878 DB 78H,78H,78H,78H,78H,78H ; N

53 8062 7878
54 8064 78787878 DB 78H,78H,78H,78H,78H,78H ? E

54 8068 7878

55 806A 78787878 DB 78H,78H,78H,78H,78H,78H

55 806E 7878

56 8070 78787878 DB 78H,78H,78H,78H,78H,78H ; NO.

56 8074 7878

57 8076 78787878 DB 78H,78H,78H,78H,4CH ; 1

57 807A 4C
58 807B 79000000 DB 79H,0,0,0,0,0,0,0,0 ; L

58 807F 00000000

58 8083 00

59 8084 0000190F DB 0,0,19H,0FH,15H,1 2H ? i

59 8088 1 51 2

60 808A 00101 20F DB 0,1 OH,1 2H,0FH,07H,1 2H ; N

60 808E 0712

61 8090 01 ODOOOE DB 01H,ODH,0,OEH,01 H,ODH,05H; E

111

PAGE 3 LOADER+TITLES

61 8094 010D05

62 8097 00000000 DB 0,0,0,0,0,0,0,0,0,0,0,79K7 2

62 809B 00000000

62 809F 00000079
63 80A3 6F787878 DB 6FH,78H,78H,78H,78H,78H i L

63 80A7 7878

64 80A9 78787878 DB 78H,78H,78H,78H,78H,78H J I

64 80AD 7878

65 80AF 73787878 DB 78H,78H,78H,78H,78H,78H 7 N

65 80B3 7878

66 80B5 78787878 DB 78H,78H,78H,78H,78H,78H 7 E

66 80B9 7878
67 80BB 78787878 DB 78H,78H,78H,78H,78H,78H

67 80BF 7878

68 80C1 78787878 DB 78H,78H,78H,78H,78H,78H 7 NO

68 80C5 7878

69 80C7 7878786E DB 78H,78H,78H,6EH / 3

70 80CB 78 DISRTN: LD A,B

71 80CC B1 OR C

72 80CD C8 RET Z

73 80CE 72 LD (HL),D

74 80CF 23 INC KL

75 80D0 OB DEC BC

76 80D1 18F8 JR DISRTN

77 END

112

MEMORY DISPLAY

As was stated earlier a disassembler is essential for unravelling

machine code, and there are some excellent commercial programs

available. However if one doesn't yet possess such a utility the

following program, although not as comprehensive, will assist in

displaying memory contents. Space limits the extent of this memory

dump program, but entered correctly it should set one well on the

way to increased knowledge of what it is all about.

The program will display memory contents from a given start address
to an end address displaying the code for each instruction on

separate lines. Unlike commercial disassemblers it will not
unfortunately list the operands too. For example if the first eight

bytes of a given memory location 809C were:- 21 4D 81 18 21 04 13 1A

the program would display as:-
809C 214D81
809F 1821

80A1 04

80A2 13

80A3 1 A

which will ease disassembly.

The other feature is a memory dump display where rows of eight bytes

have their contents displayed followed by the ASCII characters for
each byte, which obviously simplifies finding screen messages

embedded in the code. The program is not made much longer for this

memory dump as most subroutines are common to both options, and it

is realised that 700 owners have this facility already, but the

mini-disassembler should still prove useful.

The display can be halted and restarted by pressing the Space bar
and terminated whilst halted by pressing the 'CR' key. Note line 58

tests for code 66H, which is the value in A register for the 'CR'
key after calling GETKY at 001BH and not 0DH as one might expect.

Most of the equates have been used previously DSPXY (1 171 H) is used

to store the cursor co-ordinates as in the previous program.

113

For testing under ZEN the MNLOOP equate should be altered to 1203H,

and once tested to save the object file one should alter this back

to the MNLOOP address for your respective machine as shoewn in

chapter 3. The load address has been set to C000H which is safely

high up in memory to allow most programs to load beneath it, but it

obviously can be moved and saved elsewhere.

To save the object file in order to subsequently load it from
Monitor, without ZEN being resident, carry out the following:-
WO

START 0C000H
STOP 0C248H
EXEC 0C000H
LOAD OCOOOH
NAME MEMORY DUMP

New Monitor Routines used:-

096CH Prints display code of reg A

0BB9H Converts ASCII code of reg A to display code.

114

PAGE 1

1 ORG 0C000H

2 LOAD 0C000H
3 ADCN: EQU 0BB9H
4 DACN: EQU OBCEH
5 GETKY: EQU 001BH

6 WAITKY: EQU 09B3H

7 PRINT: EQU 0012H
8 PRTMES: EQU 0015H

9 DSPXY: EQU 1 1 71 H
10 PRNT3: EQU 096CH.

1 1 ;0N MZ-8OK ALTER ABOVE TO 0970H

12 NL: EQU 0006H
13 SPACE: EQU 000CH
1 4 BELL: EQU 003EH
15 MNLOOP: EQU OOADH
1 6 ;ON MZ-8OK ALTER ABOVE TO 0082H

17 ;ON MZ-80A ALTER TO 0095H

18 r

19 }

20 cooo 3E16 START: LD A,16H ;CLEAR SCREEN

21 C002 CD1200 CALL PRINT
22 C005 CD0600 ENTKEY: CALL NL
23 C008 1 1 04C2 LD DE,MESS1 ;INPUT MESSAGE

24 COOB CD1500 CALL PRTMES

25 COOE 3E3E LD A,3EH ;CHEVRON CHARACTER

26 C010 CD1200 CALL PRINT
27 C013 CDB309 CALL WAITKY ;WAIT FOR INPUT

28 C016 CDCEOB CALL DACN ;CONVERT TO ASCII CODE

29 C019 FE21 CP 21 H ;EXIT PROGRAM CHAR.
30 C01 B CAADOO JP Z,MNLOOP
31 C01 E FE44 CP 44H ;DISASSEMBLE CHAR.

32 C020 2809 JR Z,INPADD
33 C022 FE4D CP 4DH ;MEMORY DUMP CHAR.
34 C024 2805 JR Z,INPADD ;INPUT ADDRESSES
35 C026 CD3E00 WRONG: CALL BELL ;IF OTHER KEY

36 C029 1 8DA JR ENTKEY ;PRESSED, GO BACK

115

PAGE 2

37 C02B 32DFC0 INPADD: LD

38 C02E CD1200 CALL
39 C031 CD0600 CALL

40 C034 1 1 37C2 LD

41 C037 CD1500 CALL

42 C03A CD81C1 CALL

43 C03D 28E7 JR

44 C03F EB EX
45 C040 D5 PUSH

46 C041 1 143C2 LD

47 C044 CD1500 CALL

48 C047 D1 POP

49 CO48 CD81C1 CALL

50 C04B 28D9 JR

51 C04D CD1B00 SPCDWN: CALL

52 C050 FE20 CP

53 C052 201 1 JR

54 C054 CD1B00 SPCDWN2: CALL

55 C057 B7 OR

56 C058 20FA JR

57 C05A CD1B00 QUIT: CALL

58 C05D FE66 CP

59 C05F 28C5 JR

60 C061 FE20 CP

61 C063 20F5 JR

62 CO65 CD7BC1 DISASS: CALL

63 C068 38BC JR

64 C06A CD0600 CALL

65 C06D 3ADFC0 LD

66 C070 FE4D CP

67 C072 286C JR

68 C074 ED5377C1 LD

69 C078 2279C1 LD
70 C07B EB EX
71 C07C CDDCC1 CALL

72 C07F 0601 LD

(FLAG)r A ;M OR D IN FLAG

PRINT
NL
DE,MESSÿ ;START ADDRESS MESSGE

PRTMES

PSG4C ;INPUT START ADD.
Z,WRONG ;IF CR KEY GO BACK

DE,HL ;START ADD. IN DE
DE ;SAVE DE ON STACK

DE,MESS3 ;END ADDRESS MESSAGE
PRTMES

DE ;BRING BACK START ADD.

PSG4C ;INPUT END ADDRESS

Z,WRONG ;BAD INPUT, GO BACK

GETKY

20H ;IS SPACE KEY DOWN

NZ,DISASS ;NO CARRY ON

GETKY ;SPACE DOWN,WAIT

A

NZ,SPCDWN2 ;NO KEY DOWN, GO BACK

GETKY

66H ;IS IT CR

Z,WRONG ;YES GO BACK

20H

NZ,QUIT ,-WRONG KEY, CHECK AGAIN

COMPR ;COMP STRT & END

C,WRONG ;END HIGHER THAN STRT

NL
A,(FLAG)

"M" ;IS IT MEM DUMP

Z,MEMDUMP ;YES GOTO MEMDUMP
(STADD),DE
(ENDADD),HL
DE,HL ;START IN HL
HEX4

B,01 H ;SET BYTE COUNTER TO 1

116

PAGE 3
73 C081 1 170C1 LD DE,JRDJT ;DE POINTS TO JR TABLE

74 C084 CD2AC1 CALL CHKJR ;CHECK DE

75 C087 2841 JR Z,LIST4 ;ITS IN JR TABLE

76 C089 79 LD A,C ;NOT FOUND CHECK IF IN

77 C08A EB EX DE,HL ;THE DD,ED,FD GROUP

78 C08B FEDD CP ODDH

79 C08D 2829 JR Z,LIST2
80 C08F FEED CP OEDH
81 C091 2809 JR Z,LIST1
82 C093 FEFD CP OFDH
83 C095 2821 JR Z,LIST2

84 C097 2146C1 LD HL,TB8080 ;NOT FOUND, CHECK 8080

85 C09A 1 821 JR LIST3

86 C09C 04 LIST1: INC B

87 C09D 13 INC DE

88 C09E 1 A LD A,(DE)
89 C09F FE46 CP 46H

90 C0A1 2812 JR Z,LIST1 A
91 C0A3 FE56 CP 56H

92 C0A5 280E JR Z,LIST1A
93 C0A7 FE5E CP 5EH

94 C0A9 280A JR Z,LIST1 A
95 COAB FE72 CP 72H

96 COAD 2806 JR Z,LIST1 A
97 COAF FE73 CP 73H

98 C0B1 2007 JR NZ,LIST2A ;IF INSTRUCTION STARTS

99 C0B3 0604 LD B/4 ;WITH DD,ED,FD ADD 1

100 C0B5 B7 LIST1A: OR A ;TO BYTE COUNTER AND
1 01 C0B6 1 81 3 JR LIST5 ;SET ADDR OF NEXT BYTE
1 02 C0B8 04 LIST2: INC B ;POSITION WHICH IS

1 03 C0B9 1 3 INC DE ;SIGNIFICANT TO OP CODE

1 04 COBA 215BC1 LIST2A: LD HL,Z80TB
1 05 COBD CD36C1 LIST3: CALL CHKZ80

1 06 COCO FEFO CP OFOH
1 07 C0C2 2807 JR Z,LIST5 ;IF NOT FOUND DO NOT

1 08 C0C4 79 LD A,C ;ALTER BYTE COUNTER

117

PAGE 4
109 C0C5 FE05 CP 05H ;IF IN FIRST HALF OF

110 C0C7 3801 JR C,LIST4 ;TABLE B=B+1

1 1 1 C0C9 04 INC B ;ELSE B=B+2

1 1 2 COCA 04 LIST4: INC B

1 1 3 COCB CDOCOO LIST5: CALL SPACE ;PRINT SPACE &
1 1 4 COCE ED5B77C1 LD DE,(STADD) ;CODE OF INSTRUCTION

115 C0D2 1 A LIST6: LD A,(DE)

116 C0D3 CDE5C1 CALL HEX2

1 1 7 C0D6 13 INC DE

1 18 C0D7 10F9 DJNZ LIST6

119 C0D9 2A79C1 LD HL,(ENDADD)

120 CODC C34DC0 JP SPCDWN

121 r

122 t

123 FLAG: DS 1 ;M 7 D

124 /

125 COEO EB MEMDUMP: EX DE,HL ;START ADD IN HL
126 C0E1 CD0600 MEM1: CALL NL

127 C0E4 CDDCC1 CALL HEX4

128 C0E7 0608 LD B,8 ;DISPLAY 8 BYTES

129 C0E9 0E17 LD C,1 7H ;ASClI START AT COL 23

130 COEB 7E MEM2: LD A,(HL) ;PUT BYTE INTO A

1 31 COEC F5 PUSH AF ;SAVE IT

132 COED CD21C1 CALL PTSP2H ;PRINT SPACE & BYTE

133 COFO CD7BC1 CALL COMPR
134 C0F3 CA26C0 JP Z,WRONG

135 C0F6 23 INC HL
136 C0F7 3A71 1 1 LD A,(DSPXY) ;CURSOR POSITION

137 COFA 81 ADD A,C ;ADD 23 TO CURS. POSN.
138 COFB 3271 1 1 LD (DSPXY),A ;NEW CURSOR POS.
139 COFE F1 POP AF ;BRING BACK BYTE

1 40 COFF FE20 CP 20H ;IF IT IS MORE THAN 19H

1 41 C101 3002 JR NC,CONV ;THEN CONVERT TO DISPL

1 42 C103 3E2E LD A,2EH ;LESS THAN 20 ALTER TO

143 C105 CDB90B CONV: CALL ADCN ;CONV ASCII TO DISPL

1 44 C108 CD6C09 CALL PRNT3 ;PRINT DISPLAY CODE

118

PAGE 5
145 C10B 3A71 1 1 LD A, (DSPXY)

146 C1 0E OC INC C
147 C1 OF 91 SUB C
1 48 C1 1 0 32711 1 LD (DSPXY) , A

149 C1 1 3 OD DEC C
150 C1 1 4 OD DEC C

151 Cl 1 5 OD DEC C
152 Cl 1 6 E5 PUSH HL
153 C1 1 7 ED52 SBC HL,DE
1 54 C1 1 9 E1 POP HL
155 C1 1 A CA26C0 JP Z ,WRONG
1 56 C1 1 D 1 OCC DJNZ MEM2
157 C11F 1 8C0 JR MEM1
1 58 /

159 ;PRINT SPACE + 2HEX
160 /

161 C1 21 F5 PTSP2H: PUSH AF

162 C122 CD0C00 CALL SPACE
163 C1 25 F1 POP AF
164 C1 26 CDE5C1 CALL HEX2
1 65 C1 29 C9 RET
166 t

1 67 i

1 68 ;JUMP RELATIVE CHECK
1 69 /

1 70 C1 2A 4E CHKJR: LD C, (HL)

171 C1 2B 1 B DEC DE
1 72 C1 2C 13 CHKJR1 : INC DE
1 73 C1 2D 1 A LD A, (DE)

1 74 C1 2E B9 CP C
1 75 C1 2F C8 RET Z
1 76 C1 30 FEFO CP OFOH
1 77 C1 32 20F8 JR NZ , CHKJR1
1 78 C134 B7 OR A

1 79 C1 35 C9 RET
1 80 /

;END YET?

; YES FINISH

; END OF TABLE?
; NO GO AGAIN

119

6PAGE
181
182
1 83
1 84
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
21 0
21 1

21 2
21 3
21 4
21 5
216

8080/Z80 CHECK

C136 0E00
i

CHKZ80: LD C, 00H
C138 2B DEC HL

C139 23 CHKZ801 : INC HL

C1 3A OC INC C

C1 3B 7E LD A, (HL)

C1 3C FEFO CP OFOH

C1 3E C8 RET Z

C13F 1A LD A, (DE)

C140 AE XOR (HL)

C1 41 23 INC HL

C142 A6 AND (HL)

C143 20F4 JR NZ ,CHKZ80 1
C1 45 C9

/

RET

8080 TABLE

C146 06
/

TB8080: DB 06H
C147 C7 DB 0C7H
C148 C6 DB 0C6H
C1 49 C7 DB 0C7H

C1 4A DB DB ODBH
C1 4B F7 DB 0F7H
C1 4C CB DB OCBH
C1 4D FF DB OFFH
C1 4E 01 DB 01 H

C14F CF DB OCFH
C150 22 DB 22H
C151 E7 DB 0E7H
C152 C2 DB 0C2H
C153 C7 DB 0C7H
C154 C4 DB 0C4H
C155 C7 DB 0C7H

120

PAGE 7
217 C156 C3 DB 0C3H
218 C157 FF DB OFFH
219 C158 CD DB OCDH
220 C159 FF DB OFFH
221 C15A F0 DB OFOH
222 7
223 7
224 ; Z80 TABLE
225 7
226 C15B 46 Z80TB: DB 46H
227 C15C C7 DB 0C7H
228 C1 5D 70 DB 70H
229 C15E F8 DB 0F8H
230 C15F 86 DB 86H
231 C1 60 C7 DB 0C7H
232 C161 34 DB 34H
233 C162 FE DB OFEH
234 C163 36 DB 36H
235 C164 FF DB OFFH
236 C165 21 DB 21 H
237 C1 66 FF DB OFFH
238 C167 2A DB 2AH -
239 C168 FF DB OFFH
240 C1 69 22 DB 22H
241 C1 6A FF DB OFFH
242 C1 6B CB DB OCBH
243 C16C FF DB OFFH
244 C1 6D 43 DB 43H
245 C1 6E C7 DB 0C7H
246 C16F FO DB OFOH
247 /

248 /

249 ; Z80 JR & DJNZ TABLE

250 7
251 C1 70 1 0 JRDJT: DB 1 OH
252 C1 71 18 DB 18H

121

PAGE 8
253 C172 20 DB 20H

254 C173 28 DB 28H

255 C1 74 30 DB 30H
256 C1 75 38 DB 38H

257 C176 F0 DB OFOH

258 r

259 7
260 STADD: DS 2

261 ENDADD: DS 2
262 7
263 7
264 ;COMPARE DE ,HL
265 7
266 C1 7B 7C COMPR: LD A,H

267 C1 7C 92 SUB D

268 C17D CO RET NZ

269 C1 7E 7D LD A,L
270 C1 7F 93 SUB E

271 C1 80 C9 RET

272 /

273 ; PRINT SPACE + GET 4 CHARS.

274 r

275 C181 F5 PSG4C: PUSH AF

276 C1 82 CD0C00 CALL SPACE

277 C185 F1 POP AF

278 C1 86 CD91 C1 GET4C: CALL GET2C

279 C189 C8 RET Z

280 C1 8A 67 LD H ,A

281 C1 8B CD91C1 CALL GET2C
282 C1 8E C8 RET Z

283 C1 8F 6F LD L , A

284 C1 90 C9 RET

285 r

286 } GET 2 CHARACTERS

287 r

288 C1 91 CDA4C1 GET2C: CALL GET1C

; START ADD STORED
;END ADDR STORED

122

PAGE 9
289 C1 94 C8 RET Z

290 C1 95 07 RLCA

291 C196 07 RLCA

292 C197 07 RLCA

293 C198 07 RLCA

294 C199 C5 PUSH BC

295 C1 9A 47 LD B, A

296 C19B CDA4C1 CALL GET1C
297 C19E 2802 JR Z ,GET2CA
298 C1 AO BO OR B

299 C1 A1 04 INC B
300 C1 A2 C1 GET2CA POP BC

301 C1A3 C9 RET
302 /

303 ;GET 1 CHARACTER
304 I
305 C1 A4 CDD5C1 GET1C: CALL GET

306 C1A7 FEOD CP ODH
307 C1 A9 C8 RET Z

308 C1 AA FE66 CP 66H
309 C1 AC C8 RET Z
31 0 C1 AD F5 PUSH AF

31 1 C1 AE FE30 CP 30H
312 C1 BO 381 D JR C,GT3
313 C1 B2 FE3A CP 3AH
314 C1B4 3008 JR NC,GT1
315 C1B6 CD1 200 CALL PRINT

316 C1B9 F1 POP AF

317 C1BA D630 SUB 30H
31 8 C1 BC 1 80E JR GT2
319 C1 BE FE41 GT1: CP 41 H
320 C1C0 380D JR C ,GT3
321 C1C2 FE47 CP 47H
322 C1C4 3009 JR NC,GT3

323 C1C6 CD1 200 CALL PRINT
324 C1C9 F1 POP AF

123

PAGE 1 0
325 C1 CA D637 SUB 37H
326 C1CC FEFO GT2: CP OFOH
327 C1 CE C9 RET

328 C1CF F1 GT3: POP AF

329 C1 DO CD3E00 CALL BELL

330 C1D3 1 8CF JR GET1C
331 7
332 ;WAIT FOR KEY

333 7
334 C1D5 CDB309 GET: CALL WAITKY

335 C1D8 CDCEOB CALL DACN

336 C1 DB C9 RET
337 7
338 7
339 C1 DC 7C HEX4: LD A, H

340 C1 DD CDE5C1 CALL HEX2
341 C1 EO 7D LD A, L

342 C1 E1 CDE5C1 CALL HEX2
343 C1E4 C9 RET
344 7
345 /

346 C1E5 F5 HEX2: PUSH AF

347 C1E6 OF RRCA

348 C1E7 OF RRCA

349 C1E8 OF RRCA

350 C1E9 OF RRCA

351 C1EA E60F AND OFH
352 C1EC CDF6C1 CALL HEX1
353 C1EF F1 POP AF
354 C1F0 E60F AND OFH
355 C1F2 CDF6C1 CALL HEX1
356 C1F5 C9 RET

357 7
358 7
359 C1F6 FEOA HEX1 : CP OAH
360 C1F8 3006 JR NC,HXT1

124

PAGE 1 1
361 C1FA C630
362 C1FC CD1 200 HXTO:
363 C1FF C9
364 C200 C637 HXT1 :
365 C202 1 8F8
366 C204 45B09692 MESS1:
366 C208 9D20
367 C20A 284429A6
367 C20E A4A1 A4A4
367 C21 2 92B39AB8
367 C21 6 9220
368 C21 8 B79D2028
368 C21C 4D2992B3
368 C220 B79DBD20
368 C224 9CA5B39E
369 C228 20202028
369 C22C 21 29204D
369 C230 B7B0A696
369 C23 4 B79D0D
370 C237 535441 52 MESS2:
370 C23B 54204144
370 C23F 44523D0D
371 C24 3 20454E44 MESS3:
371 C247 3D0D
372

ADD A,30H
CALL PRINT

RET
ADD A , 37H
JR HXTO
DB "EO "

DB " (D) isassemble "

DB "or (M)emory dump"

DB " ({) Monitor", ODH

DB "START ADDR=" , ODH

DB " END= " , ODH

END

125

Appendix

HEX to OPCODE Conversion Table

This table is to assist when one knows the Hex value and wishes to
know the opcode and the amount of bytes it should be followed by.

When one attempts to convert decimal values in Basic DATA statements
to Opcodes and Operands be sure to start with the first byte in the

routine, else one could get false information.
Taking the second program in this book as an example the first byte

has the decimal value of 33, convert this to hex and one will see it

is 21hex. Now look in the table below to find what 21 signifies. It

is LD HL with the next two bytes signified by aa bb, therefore in

program two the following two bytes 0,208 will be the value, in

reverse order, to load into HL. These convert to 00, DO hex, so the

first three bytes of program two convert to LD HL,D000. Now continue

with the fourth value in the DATA line which is 17 which converts to
11hex. On checking below one will see it signifies LD DE,aabb and
must have the next two bytes loaded into DE and so on. If one began

converting at the wrong place, say at the third byte, and tried to
convert 208 to hex (DO) and then looked in the table below it equals
on its own RET NC which would be totally wrong, therefore it is

essential to start at the beginning.

In the table nn equals a one byte value in the range OOh to FFh (0

to 255 dec) and bb aa two bytes in the same range.

00 NOP OC INC C

01 bb aa LD BC,aabb 0D DEC C

02 LD (BC),A 0E nn LD C,nn
03 INC BC OF RRCA
04 INC B 10 nn DJNZ nn

05 DEC B 11 bb aa LD DE,aabb
06 nn LD B,nn 1 2 LD (DE),A

07 RLCA 13 INC DE
08 EX AF,AF' 14 INC D

09 ADD HL,BC 15 DEC D

0A LD A,(BC) 16 nn LD D,nn
0B DEC BC 1 7 RLA

126

1 8 nn JR nn 3D DEC A

19 ADD HL,DE 3E nn LD A,nn
1 A LD A,(DE) 3F CCF
1 B DEC DE 40 LD B,B
1C INC E 41 LD B,C
1 D DEC E 42 LD B,D
1 E nn LD E,nn 43 LD B,E
1F RRA 44 LD B,H
20 nn JR NZ,nn 45 LD B,Ln

21 bb aa LD HL,aabb 46 LD B,(HL)
22 bb aa LD (aabb),HL 47 LD B,A
23 INC HL 48 LD C,B
24 INC H 49 LD C,C
25 DEC H 4A LD C,D
26 nn LD H,nn 4B LD C,E
27 DAA 4C LD C,H
28 nn JR Z,nn 4D LD C,L
29 ADD HL,HL 4E LD C,(HL)

2A bb aa LD HL,(nn) 4F LD C,A
2B DEC HL 50 LD D,B
2C INC L 51 LD D,C

2D DEC L 52 LD D,D
2E nn LD :L,nn 53 LD D,E
2F CPL 54 LD D,H
30 nn JR lMC,nn 55 LD D,L
31 bb aa LD ;SP,aabb 56 LD D,(HL)

32 bb aa LD (aabb),A 57 LD D,A
33 INC SP 58 LD E,B
34 INC (HL) 59 LD E,C
35 DEC (HL) 5A LD E,D
36 nn LD (HL),nn 5B LD E,E
37 SCF 5C LD E,H
38 nn JR 'C,nn 5D LD E,L
39 ADD HL,SP 5E LD E,(HL)

3A bb aa LD .A,(aabb) 5F LD E,A
3B DEC SP 60 LD H,B
3C INC A 61 LD H,C

127

62 LD H,D 85 ADD A,L

63 LD H,E 86 ADD A,(HL)

64 LD H,H 87 ADD A,A

65 LD H,L 88 ADC A,B

66 LD H,(HL) 89 ADC A,C

67 LD H,A 8A ADC A,D

68 LD L,B 8B ADC A,E

69 LD L,C 8C ADC A fH

6A LD L,D 8D ADC A,L

6B LD L,E 8E ADC A,(HL)

6C LD L,H 8F ADC A,A

6D LD L,L 90 SUB B

6E LD L,(HL) 91 SUB C

6F LD L,A 92 SUB D

70 LD (HL),B 93 SUB E

71 LD (HL),C 94 SUB H

72 LD (HL),D 95 SUB L

73 LD (HL),E 96 SUB (HL)

74 LD (HL),H 97 SUB A

75 LD (HL),L 98 SBC A,B

76 HALT 99 SBC A,C

77 LD (HL),A 9A SBC A,D

78 LD A,B 9B SBC A,E

79 LD A,C 9C SBC A,H

7A LD A,D 9D SBC A,L

7B LD A,E 9E SBC A,(HL)

7C LD A,H 9F SBC A,A

7D LD A,L AO AND B

7E LD A,(HL) A1 AND C

7F LD A,A A2 AND D

80 ADD A,B A3 AND E

81 ADD A,C A4 AND H

82 ADD A,D A5 AND L

83 ADD A,E A6 AND (HL)

84 ADD A,H A7 AND A

128

A8 XOR B CB 00 RLC B

A9 XOR C CB 01 RLC C

AA XOR D CB 02 RLC D

AB XOR E CB 03 RLC E

AC XOR H CB 04 RLC H

AD XOR L CB 05 RLC L

AE XOR (HL) CB 06 RLC (H

AF XOR A CB 07 RLC A

BO OR B CB 08 RRC B
B1 OR C CB 09 RRC C
B2 OR D CB 0A RRC D

B3 OR E CB 0B RRC E
B4 OR H CB OC RRC H

B5 OR L CB 0D RRC L
B6 OR (HL) CB 0E RRC (H:

B7 OR A CB OF RRC A

B8 CP B CB 10 RL B

B9 CP C CB 1 1 RL C

BA CP D CB 12 RL D

BB CP E CB 13 RL E

BC CP H CB 14 RL H

BD CP L CB 15 RL L

BE CP (HL) CB 16 RL (HL

BF CP A CB 17 RL A

CO RET NZ CB 18 RR B

C1 POP BC CB 19 RR C

C2 bb aa JP NZ,aabb CB 1 A RR D

C3 bb aa JP aabb CB 1 B RR E

C4 bb aa CALL NZ ,aabb CB 1C RR H

C5 PUSH BC CB 1 D RR L

C6 nn ADD A,nn CB 1 E RR (HL

C7 RST 00 CB 1 F RR A

C8 RET Z CB 20 SLA B

C9 RET CB 21 SLA C

CA bb aa JP Zfaabb CB 22 SLA D

129

CB 23 SLA E CB 46 BIT 0,(HL
CB 24 SLA H CB 47 BIT 0,A
CB 25 SLA L CB 48 BIT 1 ,B
CB 26 SLA (HL) CB 49 BIT 1 ,C
CB 27 SLA A CB 4A BIT 1 ,D
CB 28 SRA B CB 4B BIT 1 ,E
CB 29 SRA C CB 4C BIT 1 ,H
CB 2A SRA D CB 4D BIT 1 ,L
CB 2B SRA E CB 4E BIT 1,(HL
CB 2C SRA H CB 4F BIT 1 ,A
CB 2D SRA L CB 50 BIT 2 r B

CB 2E SRA (HL) CB 51 BIT 2 r C
CB 2F SRA A CB 52 BIT 2,D
CB 30 SLI B CB 53 BIT 2,E
CB 31 SLI C CB 54 BIT 2,H
CB. 32 SLI D CB 55 BIT 2tL

CB 33 SLI E CB 56 BIT 2,(HL
CB 34 SLI H CB 57 BIT 2,A

CB 35 SLI L CB 58 BIT 3,B
CB 36 SLI (HL) CB 59 BIT 3,C

CB 37 SLI A CB 5A BIT 3/D

CB 38 SRL B CB 5B BIT 3,E

CB 39 SRL C CB 5C BIT 3 rH
CB 3A SRL D CB 5D BIT 3 rL
CB 3B SRL E CB 5E BIT 3,(HL

CB 3C SRL H CB 5F BIT 3,A

CB 3D SRL L CB 60 BIT 4 f B

CB 3E SRL (HL) CB 61 BIT 4rC
CB 3F SRL A CB 62 BIT 4,D
CB 40 BIT 0,B CB 63 BIT 4/E

CB 41 BIT 0,C CB 64 BIT 4,H
CB 42 BIT 0,D CB 65 BIT 4,L
CB 43 BIT 0,E CB 66 BIT 4,(HL
CB 44 BIT 0,H CB 67 BIT 4,A
CB 45 BIT 0,L CB 68 BIT 5,B

130

69

6A

6B

6C
6D

6E

6F

70
71

72
73
74

75
76

77
78
79
7A
7B
7C

7D
7E

IF
80

81

82

83

84

85

86

87
88
89

8A

8B

BIT 5 tC CB 8C RES 1 ,H
BIT 5 rD CB 8D RES 1 ,L
BIT 5 /E CB 8E RES 1 ,(HL)
BIT 5,H CB 8F RES 1 ,A
BIT 5,L CB 90 RES 2,B
BIT 5,(HL) CB 91 RES 2,C

BIT 5,A CB 92 RES 2,D
BIT 6,B CB 93 RES 2,E

BIT 6,C CB 94 RES 2,H
BIT 6,D CB 95 RES 2,L
BIT 6,E CB 96 RES 2,(HL)
BIT 6,H CB 97 RES 2,A

BIT 6,L CB 98 RES 3,B

BIT 6/(HL) CB 99 RES 3,C
BIT 6,A CB 9A RES 3/D

BIT 7,B CB 9B RES 3,E
BIT 7,C CB 9C RES 3,H
BIT 7,D CB 9D RES 3/L

BIT 7,E CB 9E RES 3,(HL)

BIT 7,H CB 9F RES 3,A

BIT 7,L CB AO RES 4,B
BIT 7,(HL) CB A1 RES 4,C

BIT 7,A CB A2 RES 4,D

RES 0,B CB A3 RES 4tE
RES o O CB A4 RES 4 tH
RES 0,D CB A5 RES 4,L
RES 0,E CB A6 RES 4,(HL)

RES 0,H CB A7 RES 4,A
RES 0,L CB A8 RES 5,B

RES 0,(HL) CB A9 RES 5,C
RES 0,A CB AA RES 5 tD
RES 1 ,B CB AB RES 5fE
RES 1 ,C CB AC RES 5,H
RES 1 ,D CB AD RES 5/L
RES 1 ,E CB AE RES 5,(HL)

131

CB AF RES 5,A CB D2 SET 2,D
CB BO RES 6,B CB D3 SET 2,E
CB B1 RES 6 , C CB D4 SET 2,H

CB B2 RES 6, D CB D5 SET 2,L
CB B3 RES 6,E CB D6 SET 2 , (HL)

CB B4 RES 6 ,H CB D7 SET 2, A

CB B5 RES 6 ,L CB D8 SET 3,B
CB B6 RES 6, (HL) CB D9 SET 3,C
CB B7 RES 6, A CB DA SET 3,D
CB B8 RES 7 t B CB DB SET 3 / E

CB B9 RES 7 t C CB DC SET 3 ,H
CB BA RES 7 r D CB DD SET 3,L
CB BB RES 7,E CB DE SET 3, (HL)

CB BC RES 7 / H CB DF SET 3 f A

CB BD RES 7/L CB EO SET 4,B
CB BE RES 1 , (HL) CB E1 SET 4 / C

CB BF RES 7 /A CB E2 SET 4 t D

CB CO SET 0,B CB E3 SET 4 r E
CB C1 SET 0,C CB E4 SET 4 r H
CB C2 SET 0 , D CB E5 SET 4,L
CB C3 SET 0 ,E CB E6 SET 4 , (HL)

CB C4 SET 0 ,H CB E7 SET 4, A

CB C5 SET 0 ,L CB E8 SET 5,B
CB C6 SET 0,(HL) CB E9 SET 5,C
CB Cl SET 0 ,A CB EA SET 5 , D
CB n CD SET 1 , B CB EB SET 5 t E

CB C9 SET 1 ,C CB EC SET 5 t H

CB CA SET 1 ,D CB ED SET 5,L
CB CB SET 1 , E CB EE SET 5, (HL)

CB CC SET 1 ,H CB EF SET 5, A

CB CD SET 1 ,L CB FO SET 6 , B

CB CE SET 1 / (HL) CB F1 SET 6 ,C

CB CF SET 1 ,A CB F2 SET 6 , D

CB DO SET 2 , B CB F3 SET 6 , E

CB D1 SET 2,C CB F4 SET 6 , H

132

CB F5

CB F6

CB F7
CB F8

CB F9

CB FA
CB FB
CB FC
CB FD
CB FE
CB FF
CC bb aa
CD bb aa
CE nn
CF

DO
D1
D2 bb aa
D3 nn
D4 bb aa

D5
D6 nn
D7
D8

D9

DA bb aa

DB nn
DC bb aa

DD 09
DD 19
DD 21 bb aa

DD 22 bb aa
DD 23
DD 29

DD 2A bb aa

SET 6,L

SET 6,(HL)

SET 6,A

SET 7,B
SET 7,C
SET 7,D
SET 7,E
SET 7,H
SET 7,L
SET 7,(HL)
SET 7,A
CALL Z,aabb
CALL aabb
ADC A,nn
RST 08

RET NC

POP DE

JP NC,aabb
OUT (nn),A
CALL NC,aabb
PUSH DE

SUB nn

RST 10

RET C

EXX
JP C,aabb
IN A,(nn)
CALL C,nn
ADD IX,BC
ADD IX,DE
LD IX,aabb
LD (aabb),IX

INC IX
ADD IX,IX
LD IX,(aabb)

DD 2B

DD 34 nn
DD 35 nn
DD 36 nn n1

DD 39

DD 46 nn
DD 4E nn
DD 56 nn
DD 5E nn
DD 66 nn
DD 6E nn
DD 70 nn
DD 71 nn
DD 72 nn
DD 73 nn
DD 74 nn
DD 75 nn
DD 77 nn
DD 7E nn
DD 86 nn
DD 8E nn
DD 96 nn
DD 9E nn
DD A6 nn
DD AE nn
DD B6 nn
DD BE nn
DD CB nn 06
DD CB nn 0E

DD CB nn 16

DD CB nn 1 E
DD CB nn 26

DD CB nn 2E
DD CB nn 36
DD CB nn 3E

DEC IX

INC (IX+nn)
DEC (IX+nn)

LD (IX+nn),n1
ADD IX,SP
LD B,(IX+nn)

LD C,(IX+nn)

LD D,(IX+nn)
LD E,(IX+nn)

LD H,(IX+nn)

LD L,(IX+nn)

LD (IX+nn),B
LD (IX+nn),C
LD (IX+nn),D
LD (IX+nn),E
LD (IX+nn),H
LD (IX+nn),L
LD (IX+nn),A
LD A,(IX+nn)

ADD A,(IX+nn)

ADC A,(IX+nn)

SUB (IX+nn)

SBC A,(IX+nn)

AND (IX+nn)

XOR (IX+nn)

OR (IX+nn)
CP (IX+nn)
RLC (IX+nn)

RRC (IX+nn)

RL (IX+nn)

RR (IX+nn)

SLA (IX+nn)
SRA (IX+nn)

SLI (IX+nn)

SRL (IX+nn)

133

DD CB nn 46 BIT o,(IX+nn) E4 bb aa CALL PO,aabb

DD CB nn 4E BIT 1 ,(IX+nn) E5 PUSH HL

DD CB nn 56 BIT 2,(IX+nn) E6 nn AND nn

DD CB nn 5E BIT 3 /(IX+nn) E7 RST 20

DD CB nn 66 BIT 4,(IX+nn) E8 RET PE

DD CB nn 6E BIT 5,(IX+nn) E9 JP (HL)

DD CB nn 76 BIT 6,(IX+nn) EA bb aa JP PE,aabb

DD CB nn 7E BIT 7,(IX+nn) EB EX DE,HL

DD CB nn 86 RES 0,(IX+nn) EC bb aa CALL PE,aabb

DD CB nn 8E RES 1 ,(IX+nn) ED 40 IN B,(C)

DD CB nn 96 RES 2,(IX+nn) ED 41 OUT (C),B
DD CB nn 9E RES 3,(IX+nn) ED 42 SBC HL,BC
DD CB nn A6 RES 4 /(IX+nn) ED 43 bb aa LD (aabb),BC

DD CB nn AE RES 5,(IX+nn) ED 44 NEG

DD CB nn B6 RES 6,(IX+nn) ED 45 RETN

DD CB nn BE RES 7,(IX+nn) ED 46 IM 0

DD CB nn C6 SET o,(IX+nn) ED 47 LD I,A

DD CB nn CE SET 1 ,(IX+nn) ED 48 IN C,(C)

DD CB nn D6 SET 2,(IX+nn) ED 49 OUT (C),C

DD CB nn DE SET 3,(IX+nn) ED 4A ADC HL,BC
DD CB nn E6 SET 4,(IX+nn) ED 4B bb aa LD BC,(aabb)

DD CB nn EE SET 5,(IX+nn) ED 4D RETI

DD CB nn F6 SET 6,(IX+nn) ED 4F LD R,A

DD CB nn FE SET 7,(IX+nn) ED 50 IN D,(C)

DD E1 POP IX ED 51 OUT (C),D

DD E3 EX I:SP),ix ED 53 bb aa LD (aabb),DE

DD E5 PUSH IX ED 56 IM 1

DD E9 JP I:ix) ED 57 LD A,I

DD F9 LD SP,IX ED 58 IN E,(C)

DE nn SBC A,nn ED 59 OUT (C),E

DF RST 18 ED 5A ADC HL,DE

EO RET PO ED 5B bb aa LD DE,(aabb)

E1 POP HL ED 5E IM 2

E2 bb aa JP PO,aabb ED 5F LD A,R

E3 EX (SP)/HL ED 60 IN H,(C)

134

ED 61 OUT (C),H F3 DI
ED 62 SBC HL,HL F4 bb aa CALL P,aabb
ED 67 RRD F5 PUSH AF
ED 68 IN L,(C) F6 nn OR nn
ED 69 OUT (C),L F7 RST1 30

ED 6A ADC HL,HL F8 RET1 M

ED 6F RLD F9 LD SP,HL
ED 70 IN F,(C) FA bb aa JP M,aabb
ED 72 SBC HL,SP FB El

ED 73 bb aa LD (aabb),SP FC bb aa CALL M,aabb
ED 78 IN A,(C) FD 09 ADD IY,BC
ED 79 OUT (C),A FD 19 ADD IY,DE
ED 7A ADC HL,SP FD 21 bb aa LD IY,aabb
ED 7B bb aa LD SP,(aabb) FD 22 bb aa LD (aabb),IY
ED AO LDI FD 23 INC IY
ED A1 CPI FD 29 ADD IY,IY,
ED A2 INI FD 2A bb aa LD IY,(aabb)
ED A3 OUTI FD 2B DEC IY
ED A8 LDD FD 34 nn INC (IY+nn)
ED A9 CPD FD 35 nn DEC (IY+nn)

ED AA IND FD 36 nn n1 LD (IY+nn),n1
ED AB OUTD FD 39 ADD IY,SP
ED BO LDIR FD 46 nn LD B,(IY+nn)
ED B1 CPIR FD 4E nn LD C,(IY+nn)

ED B2 INIR FD 56 nn LD D,(IY+nn)

ED B3 OTIR FD 5E nn LD E,(IY+nn)
ED B8 LDDR FD 66 nn LD H,(IY+nn)

ED B9 CPDR FD 6E nn LD L,(IY+nn)

ED BA INDR FD 70 nn LD (IY+nn),B
ED BB OTDR FD 71 nn LD (IY+nn),C
EE nn XOR nn FD 72 nn LD (IY+nn),D
EF RST 28 FD 73 nn LD (IY+nn),E
FO RET P FD 74 nn LD (IY+nn),H
F1 POP AF FD 75 nn LD (IY+nn),L
F2 bb aa JP P,aabb FD 77 nn LD (IY+nn),A

135

FD 7E nn LD i (IY+nn) FD CB nn D6 SET 2,(IY+nn)

FD 86 nn ADD A,(IY+nn) FD CB nn DE SET 3,(IY+nn)

FD 8E nn ADC A,(IY+nn) FD CB nn E6 SET 4,(IY+nn)

FD 96 nn SUB (IY+nn) FD CB nn EE SET 5,(IY+nn)

FD 9E nn SBC A,(IY+nn) FD CB nn F6 SET 6,(IY+nn)

FD A6 nn AND (IY+nn) FD CB nn FE SET 7,(IY+nn)

FD AE nn XOR (IY+nn) FD E1 POP IY

FD B6 nn OR (IY+nn) FD E3 EX (SP),IY

FD BE nn CP '(IY+nn) FD E5 PUSH IY

FD CB nn 06 RLC (IY+nn) FD E9 JP (IY)

FD CB nn 0E RRC (IY+nn) FD F9 LD :SP,IY
FD CB nn 16 RL I(IY+nn) FE nn CP nn

FD CB nn 1 E RR i(IY+nn) FF RST 38

FD CB nn .26 SLA (IY+nn)

FD CB nn 2E SRA (IY+nn)

FD CB nn 36 SLI (IY+nn)

FD CB nn 3E SRL (IY+nn)

FD CB nn 46 BIT 0,(IY+nn)

FD CB nn 4E BIT 1 ,(IY+nn)
FD CB nn 56 BIT 2,(IY+nn)

FD CB nn 5E BIT 3,(IY+nn)
FD CB nn 66 BIT 4,(IY+nn)
FD CB nn 6E BIT 5,(IY+nn)
FD CB nn 76 BIT 6,(IY+nn)
FD CB nn 7E BIT 7,(IY+nn)

FD CB nn 86 RES 0,(IY+nn)
FD CB nn 8E RES 1 ,(IY+nn)
FD CB nn 96 RES 2,(IY+nn)
FD CB nn 9E RES 3,(IY+nn)
FD CB nn A6 RES 4,(IY+nn)

FD CB nn AE RES 5,(IY+nn)
FD CB nn B6 RES 6,(IY+nn)
FD CB nn BE RES 7,(IY+nn)
FD CB nn C6 SET 0,(IY+nn)

FD CB nn CE SET 1 ,(IY+nn)

136

Instruction set in Alphabetical order

8E ADC A,(HL) DD 39 ADD IX,SP
DD 8E nn ADC A,(IX+nn) FD 09 ADD IY,BC
FD 8E nn ADC A,(IY+nn) FD 19 ADD IY,DE
8F ADC A,A FD 29 ADD IY,IY
88 ADC A,B FD 39 ADD IY,SP
89 ADC A,C
8A ADC A,D A6 AND (HL)
8B ADC A,E DD A6 nn AND (IX+nn)
8C ADC A,H FD A6 nn AND (IY+nn)
8D ADC A,L A7 AND A
CE nn ADC A,nn AO AND B
ED 4A ADC HL,BC A1 AND C
ED 5A ADC HL,DE A2 AND D
ED 6A ADC HL,HL A3 AND E
ED 7A ADC HL,SP A4 AND H

A5 AND L
86 ADD A,(HL) E6 nn AND nn
DD 86 nn ADD A,(IX+nn)
FD 86 nn ADD A,(IY+nn) CB 46 BIT 0,(HL)
87 ADD A,A DD CB nn 46 BIT 0,(IX+nn)
80 ADD A,B FD CB nn 46 BIT 0,(IY+nn)
81 ADD A,C CB 47 BIT 0,A
82 ADD A,D CB 40 BIT 0,B
83 ADD A,E CB 41 BIT 0,C
84 ADD A,H CB 42 BIT 0,D
85 ADD A,L CB 43 BIT 0,E
C6 nn ADD A,nn CB 44 BIT 0,H
09 ADD HL,BC CB 45 BIT 0,L
19 ADD HL,DE
29 ADD HL,HL CB 4E BIT 1 ,(HL)
39 ADD HL,SP DD CB nn 4E BIT 1,(IX+nn)
DD 09 ADD IX,BC FD CB nn 4E BIT 1 ,(IY+nrt)
DD 19 ADD IX,DE CB 4F BIT 1 ,A
DD 29 ADD IX,IX CB 48 BIT 1,B

137

CB 49 BIT 1 ,c CB 61 BIT 4,C

CB 4A BIT 1 f D CB 62 BIT 4 / D

CB 4B BIT 1 ,E CB 63 BIT 4,E
CB 4C BIT 1 ,H CB 64 BIT 4,H
CB 4D BIT 1 ,L CB 65 BIT 4 f L

CB 56 BIT 2 , (HL) CB 6E BIT 5, (HL)

DD CB nn 56 BIT 2 , (IX+nn) DD CB nn 6E BIT 5, (IX+nn)

FD CB nn 56 BIT 2, (IY+nn) FD CB nn 6E BIT 5, (IY+nn)

CB 57 BIT 2,A CB 6F BIT 5,A

CB 50 BIT 2 , B CB 68 BIT 5,B
CB 51 BIT 2,C CB 69 BIT 5 f C

CB 52 BIT 2 , D CB 6A BIT 5,D

CB 53 BIT 2 ,E CB 6B BIT 5,E

CB 54 BIT 2 ,H CB 6C BIT 5 ,H

CB- 55 BIT 2 , L CB 6D BIT 5rL

CB 5E BIT 3 / (HL) CB 76 BIT 6 , (HL)

DD CB nn 5E BIT 3, (IX+nn) DD CB nn 76 BIT 6 , (IX+nn)

FD CB nn 5E BIT 3, (IY+nn) FD CB nn 76 BIT 6, (IY+nn)

CB 5F BIT 3,A CB 77 BIT 6 ,A

CB 58 BIT 3,B CB 70 BIT 6 ,B

CB 59 BIT 3,C CB 71 BIT 6 ,C

CB 5A BIT 3 r D CB 72 BIT 6 ,D

CB 5B BIT 3,E CB 73 BIT 6 , E

CB 5C BIT 3 r H CB 74 BIT 6 ,H

CB 5D BIT 3,L CB 75 BIT 6 fit

CB 66 BIT 4 / (HL) CB 7E BIT 7 , (HL)

DD CB nn 66 BIT 4 , (IX+nn) DD CB nn 7E BIT 7 , (IX+nn)

FD CB nn 66 BIT 4 , (IY+nn) FD CB nn 7E BIT 7, (IY+nn)

CB 67 BIT 4 f A CB 7F BIT 7,A

CB 60 BIT 4 r B CB 78 BIT 7,B

138

CPLCB 79 BIT 7,C
CB 7A BIT 7,D
CB 7B BIT 7,E
CB 1C BIT 7,H
CB ID BIT 7,L

DC bb aa CALL C,aabb
FC bb aa CALL M,aabb
D4 bb aa CALL NC,aabb
CD bb aa CALL aabb
C4 bb aa CALL NZ,aabb
F4 bb aa CALL P,aabb
EC bb aa CALL PE,aabb
E4 bb aa CALL PO,aabb
CC bb aa CALL Z,aabb

3F CCF

BE CP (HL)

DD BE nn CP (IX+nn)

FD BE nn CP (IY+nn)

BF CP A

B8 CP B

B9 CP C

BA CP D

BB CP E
BC CP H

BD CP L

FE nn CP nn

ED A9 CPD
ED B9 CPDR
ED A1 CPI

ED B1 CPIR

2F

27 DAA

35

DD 35 nn
FD 35 nn
3D

05

OB
OD
15
1B
1 D
25
2B

DD 2B
FD 2B
2D
3B

DEC (HL)

DEC (IX+nn)

DEC (IY+nn)

DEC A
DEC B

DEC BC

DEC C

DEC D
DEC DE
DEC E
DEC H
DEC HL

DEC IX
DEC IY

DEC L
DEC SP

F3 DI

10 nn DJNZ nn

FB El

E3

DD E3

FD E3
08

EB
D9

EX (SP),HL
EX (SP),IX
EX (SP),IY

EX AF,AF'
EX DE,HL
EXX

76 HALT

139

ED 46 IM 0 E9 JP (HL)

ED 56 IM 1 DD E9 JP (IX)

ED 5E IM 2 FD E9 JP (IY)

DA bb aa JP Cfaabb
ED 78 IN A,(C) FA bb aa JP M,aabb

DB nn IN A,(nn) D2 bb aa JP NC,aabb

ED 40 IN B,(C) C3 bb aa JP aabb

ED 48 IN C,(C) C2 bb aa JP NZ,aabb

ED 50 IN D,(C) F2 bb aa JP P,aabb

ED 58 IN E,(C) EA bb aa JP PE,aabb

ED 70 IN F,(C) E2 bb aa JP PO,aabb

ED 60 IN H,(C) CA bb aa JP Z,aabb

ED 68 IN L,(C)
38 nn JR C,nn

34 INC (HL) 18 nn JR nn

DD 34 nn INC (IX+nn) 30 nn JR NC,nn

FD 34 nn INC (IY+nn) 20 nn JR NZ,nn
3C INC A 28 nn JR Z,nn
04 INC B

03 INC BC 02 LD (BC),A

OC INC C 12 LD (DE)f A

14 INC D 77 LD (HL),A

13 INC DE 70 LD (HL),B

1C INC E 71 LD (HL),C

24 INC H 72 LD (HL),D

23 INC HL 73 LD (HL),E
DD 23 INC IX 74 LD (HL),H

FD 23 INC IY 75 LD (HL),L

2C INC L 36 nn LD (HL),nn

33 INC SP
DD 77 nn LD (IX+nn),A

ED AA IND DD 70 nn LD (IX+nn),B
ED BA INDR DD 71 nn LD (IX+nn),C

ED A2 INI DD 72 nn LD (IX+nn),D
ED B2 INIR DD 73 nn LD (IX+nn),E

140

DD 74 nn LD (IX+nn),H ID LD A,L

DD 75 nn LD (IX+nn),L 3E nn LD A,nn

DD 36 nn n1 LD (IX+nn),n1 ED 5F LD A,R

FD 77 nn LD (IY+nn),A 46 LD B,(HL)

FD 70 nn LD (IY+nn),B DD 46 nn LD B,(IX+nn)

FD 71 nn LD (IY+nn),C FD 46 nn LD B,(IY+nn)

FD 72 nn LD (IY+nn),D 47 LD B,A

FD 73 nn LD (IY+nn),E 40 LD B,B
FD 74 nn LD (IY+nn),H 41 LD B,C
FD 75 nn LD (IY+nn),L 42 LD B,D
FD 36 nn n1 LD (IY+nn),n1 43 LD B,E

44 LD B,H
32 bb aa LD (aabb),A 45 LD B,L
ED 43 bb aa LD (aabb),BC 06 nn LD B,nn
ED 53 bb aa LD (aabb),DE
22 bb aa LD (aabb),HL ED 4B bb aa LD BC,,(aabb)
DD 22 bb aa LD (aabb),IX 01 bb aa LD BCfaabb
FD 22 bb aa LD (aabb),IY
ED 73 bb aa LD (aabb),SP 4E LD C,(HL)

DD 4E nn LD C,(IX+nn)

OA LD A,(BC) FD 4E nn LD C,(IY+nn)

1 A LD A,(DE) 4F LD C,A
7E LD A,(HL) 48 LD C,B

DD 7E nn LD A,(IX+nn) 49 LD C,C

FD 7E nn LD A,(IY+nn) 4A LD C,D
3A bb aa LD A,(aabb) 4B LD C,E

7F LD A,A 4C LD C,H

78 LD A,B 4D LD C,L

79 LD A,C OE nn LD C,nn
7A LD A,D
7B LD A,E 56 LD D,(HL)

7C LD A,H DD 56 nn LD D,(IX+nn)

ED 57 LD A,I FD 56 nn LD D,(IY+nn)

141

57 LD D,A 2A bb aa LD HL,(aabb)

50 LD D,B 21 bb aa LD HL,aabb

51 LD O o
52 LD D,D ED 47 LD I,A

53 LD D,E
LD D,L DD 21 bb aa LD IX,aabb

16 nn LD D,nn
FD 2A bb aa LD IY,(aabb)

ED 5B bb aa LD DE,(aabb) FD 21 bb aa LD IY,aabb

1 1 bb aa LD DE,aabb
6E LD L,(HL)

5E LD E,(HL) DD 6E nn LD L,(IX+nn)

DD 5E nn LD E,(IX+nn) FD 6E nn LD L,(IY+nn)

FD 5E nn LD E,(IY+nn) 6F LD L,A

5F LD E,A 68 LD L,B

58 LD E,B 69 LD L,C

59 LD E,C 6A LD L,D

5A LD E,D 6B LD L,E

5B LD E,E 6C LD L,H

5C LD E,H 6D LD L,L

5D LD E,L 2E nn LD L,nn

1 E nn LD E,nn
ED 4F LD R,A

66 LD H,(HL)

DD 66 nn LD H,(IX+nn) ED 7B bb aa LD SP,(aabb)

FD 66 nn LD H,(IY+nn) F9 LD SP,HL
67 LD H,A DD F9 LD SP,IX

60 LD H,B FD F9 LD SP,IY
61 LD H,C 31 bb aa LD SP,aabb

62 LD H,D
63 LD H,E ED A8 LDD

64 LD H,H ED B8 LDDR

65 LD H,L ED AO LDI

26 nn LD H,nn ED BO LDIR

142

ED 44 NEG DD E1 POP IX
FD E1 POP IY

00 NOP

F5 PUSH AF
B6 OR (HL) C5 PUSH BC
DD B6 nn OR (IX+nn) D5 PUSH DE
FD B6 nn OR (IY+nn) E5 PUSH HL
B7 OR A DD E5 PUSH IX
BO OR B FD E5 PUSH IY
B1 OR C
B2 OR D CB 86 RES 0,(HL)
B3 OR E DD CB nn 86 RES 0,(IX+nn)
B4 OR H FD CB nn 86 RES 0,(IX+nn)
B5 OR L CB 87 RES 0,A
F6 nn OR nn CB 80 RES 0,B

CB 81 RES Uo
ED BB OTDR CB 82 RES 0,D
ED B3 OTIR CB 83 RES 0,E

CB 84 RES 0,H
ED 79 OUT (C),A CB 85 RES 0,L
ED 41 OUT (C),B
ED 49 OUT (C),C CB 8E RES 1 r(HL)

ED 51 OUT (C),D DD CB nn 8E RES 1 ,(IX+nn)
ED 59 OUT (C),E FD CB nn 8E RES 1 ,(IY+nn)
ED 61 OUT (C),H CB 8F RES 1 ,A
ED 69 OUT (C),L CB 88 RES 1 ,B
D3 nn OUT (nn),A CB 89 RES 1 ,c

CB 8A RES 1 ,D

ED AB OUTD CB 8B RES 1 ,E
ED A3 OUTI CB 8C RES 1 ,H

CB 8D RES 1 ,L
F1 POP AF

C1 POP BC CB 96 RES 2,(HL)
D1 POP DE DD CB nn 96 RES 2,(IX+nn)
E1 POP HL FD CB nn 96 RES 2,(IY+nn)

143

CB 97 RES 2,A CB A9 RES 5,C

CB 90 RES 2,B CB AA RES 5,D

CB 91 RES 2,C CB AB RES 5/E
CB 92 RES 2,D CB AC RES 5/H
CB 93 RES 2,E CB AD RES 5,L
CB 94 RES 2/H

CB 95 RES 2,L CB B6 RES 6,(HL)

DD CB nn B6 RES 6,(IX+nn

CB 9E RES 3,(HL) FD CB nn B6 RES 6,(IY+nn

DD CB nn 9E RES 3,(IX+nn) CB B7 RES 6/A

FD CB nn 9E RES 3,(IY+nn) CB BO RES 6,B

CB 9F RES 3 / A CB B1 RES 6,C

CB 98 RES 3 tB CB B2 RES 6,D

CB 99 RES 3 tC CB B3 RES 6,E
CB 9A RES 3/D CB B4 RES 6,H
CB 9B RES 3/E CB B5 RES 6 /L
CB 9C RES 3,H

CB 9D RES 3,L CB BE RES 7/(HL)

DD CB nn BE RES 7,(IX+nn
CB A6 RES 4,(HL) FD CB nn BE RES 7/(IY+nn

DD CB nn A6 RES 4,(IX+nn) CB BF RES 7/A

FD CB nn A6 RES 4,(IY+nn) CB B8 RES 7,B

CB A7 RES 4/A CB B9 RES 7,C

CB AO RES 4,B CB BA RES 7,D

CB A1 RES 4,C CB BB RES 7/E

CB A2 RES 4/D CB BC RES 7,H

CB A3 RES 4/E CB BD RES 7/L

CB A4 RES 4/H
CB A5 RES 4,L C9 RET

D8 RET C

CB AE RES 5,(HL) F8 RET M

DD CB nn AE RES 5,(IX+nn) DO RET NC

FD CB nn AE RES 5,(IY+nn) CO RET NZ

CB AF RES 5/A FO RET P

CB A8 RES 5,B E8 RET PE

144

EO RET PO DD CB nn 1E RR (IX+nn)

C8 RET Z FD CB nn 1 E RR (IY+nn)

CB 1 F RR A

ED 4D RETI CB 18 RR B
ED 45 RETN CB 19 RR C

CB 1 A RR D
CB 1 6 RL (HL) CB 1 B RR E
DD CB nn 16 RL (IX+nn) CB 1 C RR H
FD CB nn 1 6 RL (IY+nn) CB 1 D RR L
CB 17 RL A

CB 1 0 RL B 1 F RRA
CB 1 1 RL C

CB 12 RL D CB OE RRC (HL)

CB 13 RL E DD CB nn 0E RRC (IX+nn)

CB 1 4 RL H FD CB nn 0E RRC (IY+nn)

CB 15 RL L CB OF RRC A

CB 08 RRC B
1 7 RLA CB 09 RRC C

CB 0A RRC D

CB 06 RLC (HL) CB OB RRC E
DD CB nn 06 RLC (IX+nn) CB OC RRC H
FD CB nn 06 RLC (IY+nn) CB 0D RRC L

CB 07 RLC A

CB 00 RLC B OF RRCA
CB 01 RLC C

CB 02 RLC D ED 67 RRD
CB 03 RLC E
CB 04 RLC H C7 RST 0
CB 05 RLC L CF RST 8h

D7 RST 1 Oh
07 RLCA DF RST 1 8h

E7 RST 20h
ED 6F RLD EF RST 28h

F7 RST 30h
CB 1 E RR (HL) FF RST 38h

145

9E SBC A,(HL) CB C9 SET 1 ,C

DD 9E nn SBC A,(IX+nn) CB CA SET 1 ,D

FD 9E nn SBC A,(IY+nn) CB CB SET 1 ,E

9F SBC A,A CB CC SET 1 ,H

98 SBC A,B CB CD SET 1 ,L

99 SBC A,C

9A SBC A,D CB D6 SET 2,(HL)

9B SBC A,E DD CB nn D6 SET 2,(IX+nn)

9C SBC A,H FD CB nn D6 SET 2,(IY+nn)

9D SBC A,L CB D7 SET 2,A

DE nn SBC A,nn CB DO SET 2/B
CB D1 SET 2,C

ED 42 SBC HL,BC CB D2 SET 2,D
ED 52 SBC HL,DE CB D3 SET 2,E

ED 62 SBC HL,HL CB D4 SET 2,H

ED 72 SBC HL,SP CB D5 SET 2/L

37 SCF CB DE SET 3,(HL)

DD CB nn DE SET 3,(IX+nn)

CB C6 SET 0/(HL) FD CB nn DE SET 3,(IY+nn)

DD CB nn C6 SET 0,(IX+nn) CB DF SET 3,A

FD CB nn C6 SET 0,(IY+nn) CB D8 SET 3,B

CB C7 SET 0,A CB D9 SET 3,C

CB CO SET 0,B CB DA SET 3 /D

CB C1 SET 0,C CB DB SET 3,E

CB C2 SET 0,D CB DC SET 3,H

CB C3 SET 0,E CB DD SET 3/L

CB C4 SET 0,H

CB C5 SET 0,L CB E6 SET 4,(HL)

DD CB nn E6 SET 4,(IX+nn)

CB CE SET 1 ,(HL) FD CB nn E6 SET 4,(IY+nn)

DD CB nn CE SET 1 f(IX+nn) CB E7 SET 4,A

FD CB nn CE SET 1 ,(IY+nn) CB EO SET 4 rB

CB CF SET 1 ,A CB E1 SET 4 tC

CB C8 SET 1 ,B CB E2 SET 4 rD

146

CB E3 SET 4,E CB 26 SLA (HL)
CB E4 SET 4,H DD CB nn 26 SLA (IX+nn)
CB E5 SET 4,L FD CB nn 26 SLA (IY+nn)

CB 27 SLA A
CB EE SET 5,(HL) CB 20 SLA B

DD CB nn EE SET 5,(IX+nn) CB 21 SLA C
FD CB nn EE SET 5,(IY+nn) CB 22 SLA D
CB EF SET 5,A CB 23 SLA E
CB E8 SET 5 /B CB 24 SLA H
CB E9 SET 5,C CB 25 SLA L
CB EA SET 5/D

CB EB SET 5,E CB 36 SLI (HL)

CB EC SET 5,H DD CB nn 36 SLI (IX+nn)
CB ED SET 5,L FD CB nn 36 SLI (IY+nn)

CB 37 SLI A
CB F6 SET 6,(HL) CB 30 SLI B
DD CB nn F6 SET 6,(IX+nn) CB 31 SLI C

FD CB nn F6 SET 6,(IY+nn) CB 32 SLI D

CB F7 SET 6,A CB 33 SLI E
CB FO SET 6,B CB 34 SLI H
CB F1 SET 6,C CB 35 SLI L
CB F2 SET 6,D
CB F3 SET 6,E CB 2E SRA (HL)
CB F4 SET 6,H DD CB nn 2E SRA (IX+nn)
CB F5 SET 6fL FD CB nn 2E SRA (IY+nn)

CB 2F SRA A
CB FE SET 7,(HL) CB 28 SRA B

DD CB nn FE SET 7,(IX+nn) CB 29 SRA C

FD CB nn FE SET 7,(IY+nn) CB 2A SRA D
CB FF SET 7,A CB 2B SRA E
CB F8 SET 7,B CB 2C SRA H
CB F9 SET 7 tC CB 2D SRA L
CB FA SET 7fD
CB FB SET 7jrE CB 3E SRL (HL)

CB FC SET 7/H DD CB nn 3E SRL (IX+nn)
CB FD SET 7/L FD CB nn 3E SRL (IY+nn)

147

SUB HCB 3F SRL A

CB 38 SRL B

CB 39 SRL C
CB 3A SRL D

CB 3B SRL E

CB 3C SRL H

CB 3D SRL L

96 SUB (HL)

DD 96 nn SUB (IX+nn)

FD 96 nn SUB (IY+nn)

97 SUB A

90 SUB B

91 SUB C

92 SUB D

93 SUB E

94
95 SUB L

D6 nn SUB nn

AE

DD AE nn
FD AE nn
AF

A8
A9
AA

AB

AC

AD
EE nn

XOR (HL)

XOR (IX+nn)

XOR (IY+nn)

XOR A

XOR B

XOR C

XOR D
XOR E

XOR H

XOR L

XOR nn

148

ASCII
MSD 0 1 2 3 4 5 6 7 8 9 A B c D E F

LSD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 0 0 0 0 [spj l@l LP m |SPJ <n> 0 n 0aBn
1 000 1 □m HIED 0[0 fflB □aa ffl s:
2 00 10 □ m IBlF X En0B u aB□
3 00 1 1 □ # 0ICl [SI 0H0 @ BnBD BH
4 0 100 □ LSJ 4J LDJ mm a□SB□□D0D
5 0 10 1 GO l% 51[El□s0□m 00□B□ A
6 0 110 l&J I6J F N] T H□Bm Q □B X
7 0 111 mm Ka W 6 snm g 0 □n on o]
8 10 0 0 EEle IXI e s 0m m■Ha ffl
9 100 1 cs m fflHsE□0BBru □
A 10 10 E \J\ 0a□□EBB□□□ ffl
B 10 11 w0 IKJ 0 tw; 0 0IxJ m□□ IEI
C 1100 0snH K □B M□□□□
D 110 1 CR BgH□J B□□BEBaBs
E 1110 0Bea RlTj 0□0mHa LR 0 a
F 1111 0mDl ffl □0m□□%□m

The above table is for the MZ-80K. Any differences are shown:-
MZ-80A/MZ-700 80 8B 90 93 94 BE COm □ □ □ m m m

149

DISPLAY
MSD 0 1 2 3 4 5 6 7 8 9 \ B C D E F

LSD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 0000 SP PJ IQ]□ ISPJ ffl IZSn (IE 2□ [±J S□0
1 000 1 IA) Q so□ 4 0 ffl□00130□ 08□0
2 00 1 0 B E m□3 0 □00(1IQ□E□s
3 00 11 a l£J SI□■ S #!□005!ÿB0Ss
4 0 100 IDJ mmB fflu\nB0022DBB30
5 0 10 1 (El y0 fflHmE00£3Q CB 0O 0
6 0 110 F (VJ n* E 0m 9Q HE0
7 0 111 |G|mmD m IXl mS0@ [03Q fflH M- ■■I

■ I
8 1000 y (XI0B !o] Iffl (B00E3□HB HM L-J
9 100 1 mm0□mE)im LLJ El!3□ X 0E0
A 10 10 fjimBH□ ffl +!HmmEQ 0E I ■!I ■

B 10 11 ya ss *E|k[lalkAY I 0BEl
C 1100 |L|aE□□aH□ I Rc)| ¥ m itB
D 110 1 HaH□ fcj HK□ n iJ ffl □ 0
E 1110 INI OBn□a EC Elu0n / © a El
F 1111 lo H y □EHn□ 0 K\ c)] <D> i©! H [i¥]

■■

The above table is for the MZ-80K. Any differences are shown:-

MZ-80A/MZ-700

ffl
80 A4 A5 BC BE BF E5

m □ a m 0 Q s

150

(MZ-80A)

(only)

HEX DEC
*256

DEC H D
*256

D H D

*256
D H D

*256
D H D

*256

D

00 00000 0 34 13312 52 68 26624 104 9C 39936 156 DO 53248 208
01 00256 1 35 13568 53 69 26880 105 9D 40192 157 D1 53504 209
02 00512 2 36 13824 54 6A 27136. 106 9E 40448 158 D2 53760 210
03 00768 3 37 14080 55 6B 27392 107 9F 40704 159 D3 54016 211
04 01024 4 38 14336 56 6C 27648 108 A0 40960 160 D4 54272 212
05 01280 5 39 14592 57 6D 27904 109 Al 41216 161 D5 54528 213
06 01536 6 3A 14848 58 6E 28160 110 A2 41472 162 D6 54784 214
07 01792 7 3B 15104 59 6F 28416 111 A3 41728 163 D7 55040 215
08 02048 8 3C 15360 60 70 28672 112 A4 41984 164 D8 55296 216
09 02304 9 3D 15616 61 71 28928 113 A5 42240 165 D9 55552 217
0A 02560 10 3E 15872 62 72 29184 114 A6 42496 166 DA 55808 218
0B 02816 11 3F 16128 63 73 29440 115 A7 42752 167 DB 56064 21$
OC 03072 12 40 16384 64 74 29696 116 A8 43008 168 DC 56320 220
0D 03328 13 41 16640 65 75 29952 117 A9 43264 169 DD 56576 221
0E 03584 14 42 16896 66 76 30208 118 AA 43520 170 DE 56832 222
OF 03840 15 43 17152 67 77 30464 119 AB 43776 171 DF 57088 223
10 04096 16 44 17408 68 78 30720 120 AC 44032 172 E0 57344 224
11 04352 17 45 17664 69 79 30976 121 AD 44288 173 El 57600 225
12 04608 18 46 17920 70 7A 31232 122 AE 44544 174 E2 57856 226
13 04864 19 47 18176 71 7B 31488 123 AF 44800 175 E3 58112 227
14 05120 20 48 18432 72 7C 31744 124 B0 45056 176 E4 58368 228
15 05376 21 49 18688 73 7D 32000 125 B1 45312 177 E5 58624 229
16 05632 22 4 A 18944 74 7E 32256 126 B2 45568 178 E6 58880 230
17 05888 23 4B 19200 75 7F 32512 127 B3 45824 179 E7 59136 231
18 06144 24 4C 19456 76 80 32768 128 B4 46080 180 E8 59392 232
19 06400 25 4D 19712 77 81 33024 129 B5 46336 181 E9 59648 233
1A 06656 26 4E 19968 78 82 33280 130 B6 46592 182 EA 59904 234
IB 06912 27 4F 20224 79 83 33536 131 B7 46848 183 EB 60160 235
1C 07168 28 50 20480 80 84 33792 132 B8 47104 184 EC 60416 236
ID 07424 29 51 20736 81 85 34048 133 B9 47360 185 ED 60672 237
IE 07680 30 52 20992 82 86 34304 134 BA 47616 186 EE 60928 238
IF 07936 31 53 21248 83 87 34560 135 BB 47872 187 EF 61184 239
20 08192 32 54 21504 84 88 34816 136 BC 48128 188 F0 61440 240
21 08448 33 55 21760 85 89 35072 137 BD 48384 189 FI 61696 241
22 08704 34 56 22016 86 8A 35328 138 BE 48640 190 F2 61952 242
23 08960 35 57 22272 87 8B 35584 139 BF 48896 191 F3 62208 243
24 09216 36 58 22528 88 8C 35840 140 CO 49152 192 F4 62464 244
25 09472 37 59 22784 89 8D 36096 141 Cl 49408 193 F5 62720 245
26 09728 38 5A 23040 90 8E 36352 142 C2 49664 194 F6 62976 246
27 09984 39 5B 23296 91 8F 36608 143 C3 49920 195 F7 63232 247
28 10240 40 5C 23552 92 90 36864 144 C4 50176 196 F8 63488 248
29 10496 41 5D 23808 93 91 37120 145 C 5 50432 197 F9 63744 249
2A 10752 42 5E 24064 94 92 37376 146 C6 50688 198 FA 64000 250
2B 11008 43 5F 24320 95 93 37632 147 C7 50944 199 FB 64256 251
2C 11264 44 60 24576 96 94 37888 148 C8 51200 200 FC 64512 252
2D 11520 45 61 24832 97 95 38144 149 C9 51456 201 FD 64768 253
2E 11776 46 62 25088 98 96 38400 150 CA 51712 202 FE 65024 254
2F 12032 47 63 25344 99 97 38656 151 CB 51968 203 FF 65280 255
30 12288 48 64 25600 100 98 38912 152 CC 52224 204
31 12544 49 65 25856 101 99 39168 153 CD 52480 205
32 12800 50 66 26112 102 9A 39424 154 CE 52736 206
33 13056 51 67 26368 103 9B 39680 155 CF 52992 2 07

In each row the first column is the Hex code.
The second row is the Decimal equivalent multiplied by 256 for
calculating the M.S.B.
The third row is for use with the L.S.B.

151

Index
A & F reg manipulation 60 NEG 61
ADD A/ADC A 51 Non Z80 instructions 72
Adding colour 1 08 NOP 72
Adding titles 104
AND 52 OR 52
A Register 26 OUT 70
Assembling 73
Assembly commands 38 Parity overflow flag 30
ASCII table 149 Program counter 24

B & C Registers 26 Re-routing programs 65
Basic Links 5 RES 59
BIT 58 Restore 68
Bit manipulation 58 Returns 69
Block comparisons 64 RL 56
Block move program 1 2 RLC 55
Block transfer group 48 RLD 57
Brackets convention 39 RR/RRC 56

RRD 57
Calls 68
Carry flag 31 Saving programs 89
CCF 62 SBC 52
CP 54 SCF 63
CPI/CPD/CPIR/CPDR 64 Screen messages 81
CPL 61 SET 59
C.P.U. 19 Sign flag 29

SLA/SRA 56
D & E Registers 27 SRL 57
DAA 60 Stack pointer 25
Data manipulation 50 SUB 51
Data transfer 40 Subtract flag 31
Decimal arith. rotates 57 System controls 72
Direct screen addr. 6
Display code table 150 Table construction 92
DJNZ 67 Time read program 96

Flag Register 28 User inputs 1 83
Flag table 32 User inputs 2 86

H & L Registers 27 XOR 53
Half carry flag 30
Halt 72 Z80 Instruction table 137
Hex to opcode table 126 ZEN 73

Zero flag 29
I & R Registers 35
IN 70 8 bit arithmetic group 50
Index registers 33 8 bit load group 41
INI/INIR/IND/INDR 70 8 bit registers 26
Input/Output commands 70 8 bit shift/rotate 55
Jumps 65

1 6 bit arithmetic group 54
Loader program 101 16 bit load group 44

Memory display program 113

152

*

*'

%

