
1

Personal Computer

IIIZ - b'illHID

DISK BASIC MANUAL

SHARP

DISK BASIC
Manual

Introductory Note

This manual is based upon the DISK BASIC Interpreter MZ-2Z009, the system

software of the MZ-700 personal computer.

(1) The DISK BASIC interpreter MZ-2Z009 includes all commands of the

MZ-700 BASIC 1Z-013B. In other words, the DISK BASIC is an expansion of

the BASIC 1Z-013B.

(2) For the multi-purpose MZ-700 personal computer, the system software is

completely supported by a software pack (cassette tape, floppy disk, etc.) in

the file form.

This system software and the contents of this manual are subject to upgrading

changes for improvement, and for that reason the user is urged to particularly

note the file version number. Please understand that we cannot be responsible

for damage incurred during, or as a result of operation.

(3) All system software for the MZ-700 series personal computer is original

software of SHARP Corporation, and is covered by applicable copyrights. The

copying or reproduction of this software and/or this manual and its contents, in

whole or in part, and by whatever means and for whatever reason, is expressly

forbidden without the written permission by SHARP Corporation.

Introduction

We want to take this opportunity to thank you for purchasing the Sharp DISK BASIC

system software.

The manual provides a general explanation of the use and programming of the DISK

BASIC system software for the personal computer.

This system software is provided in the floppy disk format, and careful attention

should be given to the proper use and handling of the disk drive and the disks

themselves. Please refer to page 108 of this manual for information regarding the

proper handling of the floppy disks.

When the floppy disk is to be used, it is recommended that the disk, a copy which is

packed together with the original master disk (DISK BASIC), be used instead of the

master disk. This is for protection of the master disk in the event of some unexpected

trouble which might make the master disk useless. Please store the master disk in a

safe place.

Before using the DISK BASIC please carefully and completely read this manual in

order to assure its correct use.

• Difference between the CASSETTE TAPE BASIC and
DISK BASIC.

The following commands are extended and supplemented in the difference between

the CASSETIE TAPE BASIC and DISK BASIC.

Extension Page Supplement Page Supplement Page

RUN 36 DIR 35 XOR 65

LOAD 37 LOCK 40 N()T 65

SAVE 38 UNLOCK 41 OR 65

DELETE 39 RENAME 42 AND 65

MERGE 43 CHAIN 44

ROPEN # 46 SWAP 45

INPUT # 47 XOPEN # 50

WOPEN # 48 KILL # 54

PRINT# 49 DEFAULT 55

INPUT # () 51 EOF# 56

PRINT # () 52 LABEL 57

CLOSE # 53 WAIT 58

USR 62 SEARCH 59

INP@ 63 INIT 60

OUT@ 64

In addition to the above, there are the following differences:

CASSETIE TAPE BASIC DISK BASIC

If the space key is pressed, the LIST Once the space key is pressed, the LIST
display stops, and if it is not pressed, display stops, and, if it is pressed for a
the LIST display continues. second time, the LIST display con-

tinues.

Relative to the data file, the CASSET- Relative to the data file, the DISK
TE TAPE BASIC takes the format BASIC takes the format INPUT #n,
INPUTrr, etc. etc

If, for any reason, the program execu- If CONT is possible, Ready is dis-
tion is interrupted, Ready is always played.
displayed.

CAS·SETTE TAPE BASIC DISK BASIC

CONT is possible after execution of CONT is not possible after execution of
END statement. END statement.

IcrRLI + I]] has not effect. IcrRLI + I]] initialize the color and con-
sole, aaQ il!iIlIilW~iI PbS:;r 8~.

Neglects space between reserved words; Does not neglect space between re-
considers GO~TO~lO as GOTO~ 10. served words.

Does not consider GO~TO~lO as
GOTO~lO.

Compared to the CASSETI'E TAPE BASIC, the user area of DISK BASIC is
slightly reduced so there are some instances in which a program made in
CASSETTE TAPE BASIC cannot be read in (LOAD) and executed (RUN,
GOTO).
Because of extension, there are some instances that programs using BASIC
MONITOR with the USR function do not operate normally. The introduction of
file descriptor changes the error display partially .

• Notes concerning the control of the floppy disk
drive in MZ-700

• System composition

t:J-
Display CPU MZ-700

• Can be controlled also by MZ-700 by setting up the ROM explained on the next

page.

• Increase of floppy 'disk interface-ROM

• Floppy disk drive control ROM
If the DISK BASIC controls the floppy disk drive (MZ-1F02), connect the ROM chip

(see below) which is packed together with the DISK BASIC to the socket of the

floppy disk interface (MZ-IEOS: optional). If this ROM is not connected to the floppy

disk interface, the floppy disk drive cannot be controlled.

Note the following points when connecting the ROM to the interface:

• Take care not to drop, scratch or otherwise damage the ROM. Do not expose it to

a strong magnetic field.

• Take special care not to break or bend the pins of the ROM.

• Before pressing the ROM into the socket, be sure that its pins are correctly aligned

with the socket holes.

Be sure that the notches in the ROM and socket match each other before pressing

the ROM in.

Do not remove the seal attached to the ROM.

• Do not touch the pin of the ROM, because static electricity may destroy the ROM

contents.

Seal

N_-ctn

Contents
What the DISK BASIC is .. : 10

Section 1: DISK BASIC Outline ... 13

1.1 Starting the DISK BASIC ... 14

1.2 How to Copy the DISK BASIC ... 15

1.3 File Control ... 17

1.4 Sequential Access File Control .. 18

1.5 Random Access File Control ... 23

1.6 PROGRAM CHAIN (CHAIN) ... 26

1.7 PROGRAM SWAP (SWAP) .. 27

1.8 Reserved Words ... 28

1.9 List of File Input/Output Devices ... 31

1.10 Initial Settings .. 31

Section 2: DISK BASIC Expansion, New Commands and Statements 33

DIR .. 35

RUN ... 36

LOAD .. 37

SAVE ... 38

DELETE ... 39

LOCK ... 40

UNLOCK .. 41

RENAME ... 42

MERGE .. 43

CHAIN ... 44

SWAP ... 45

ROPEN # ... 46

INPUT # ... 47

WOPEN # ... 48

PRINT # ... 49

XOPEN # ... 50

INPUT # () .. 51

PRINT # () ... 52

CLOSE # .. 53

KILL # ... : ... 54

DEFAULT .. 55

EOF(#) .. 56

LABEL ... 57

WAIT ... 58

SEARCH .. 59

INIT .. 60

USR .. 62

INP@ ... 63

OUT@ .. 64

Logical Operation .. 65

Section 3: BASIC Monitor Functions ... 67

3.1 Editing Format ... 68

3.2 Printer Switch (P Command) ... 68

3.3 DUMP (D Command) ... 69

3.4 MEMORY SET (M Command) ... 69

3.5 FIND (F Command) .. 70

3.6 GOSUB (G Command) ... 70

3.7 TRANSFER (T Command) .. 70

3.8 SAVE (S Command) ... 70

3.9 LOAD (L Command) .. 71

3.10 VERIFY (V Command) ... 71

3.11 RETURN (R Command) ... 71

Section 4: Application Programs ... 73

Use of the File Converter .. 74

Section 5: DISK BASIC Summary .. 81

5.1 Summary of DISK BASIC Commands, Statements, Functions and

Operations .. 82

5.1.1 Commands .. 82

5.1.2 File control statements ... 84

5.1.3 BSD control statements .. 86

5.1.4 BRD control statements ... 87

5.1.5 Error processing statements .. 88

5.1.6 Substitution statements .. 89

5.1.7 Input/output and color control statements .. 89

5.1.8 Loop statements .. : .. 91

5.1.9 Branch statements ... 92

5.1.10 Definition statements ... 93

5.1.11 Comment statements and control statements 94

5.1.12 Music control statements .. 95

5.1.13 Machine language program control statements 96

5.1.14 Printer control statements ... 97

5.1.15 String control function ... 100

5.1.16 Tab function .. 101

5.1.17 Arithmetic operators ... 101

5.1.18 Comparison logic operators ... 101

5.1.19 Other symbols .. 102 • 5.2 Error Message List (DISK BASIC) ... 104

5.3 Memory Map.. 107

5.4 Use of the Floppy Disk .. 108

10

What the DISK BASIC is

The DISK BASIC has a strong file control function relative to the cassette base

. BASIC. For example, it makes the most of the features of a disk base which has

high-speed read-outlwrite-in capabilities, and, more than simply serving for data

storage, the file makes it possible to use the data area directly connected to the

computer system.

Moreover, because this DISK BASIC also includes the control functions related to the

RS-232C interface, it makes it possible to control various devices, by using the

MZ-SBI03 serial interface (optional).

Thus, it can be said that the DISK BASIC is a new system software which permits the

expansion of the software range of the personal computer.

By understanding this DISK BASIC and making full use of its many functions, the

user can create a higher level system.

• File
The computer can exchange data and programs between peripheral devices (floppy

disk, cassette recorder, printer, etc.). The units of these data and programs are called

files.

• File cl.ssificatlon

There are two types of files: data files and program files.

1

Data files These files store numbers, characters, etc. as data.

(
BASIC sequential access data files BSD)

Files
BASIC random access data files BRD

Program files These files store programs just as they are.

(
BASIC text programs BTX)

Machine language programs OBJ

Computer systems can be thought of as either of two fundamental types of systems:

logical internal systems composed of data-processing equipment and main memories,

and external filing systems composed of processed data and program banks.

11

• Data file control
There are two types of data files, depending upon the format of file access (the method

of data read-out and write-in). One is called the sequential access file and the other is

called the random access file.

With the sequential access file, the file data access is treated as one sequential block.

The file name is specified for one group of data, and such data are accessed in order

from the heading at the time of registration or read-out of the file.

For the random access file on the other hand, the filed data are accessed at random.

One random access file is composed of one data group designated by its own file

name. Each group of data is registered in the file in a parallel arrangement, and

write-in and read-out of each data group is possible by using the number (expression)

assigned to that data.

If, for example, a collection of certain data can be handled as a connected group (such

as, for example, data consisting of a series of decimal expressions used when producing

machine language programs by BASIC POKE command and elements of tables that

can be presented in order from the heading, etc.), collection of such data in a

sequential access file can be useful and effective. The registration of data in a random

access file, on the other hand, can be useful when it is necessary to not only consider

the group of overall data but to read-out and/or write-in each element (when it is

necessary, for example, to rewrite data or to search, arrange, delete, etc.).

12

• Program file control
The BASIC program file control commands CHAIN (page 44) and SWAP (page 45)

are for read-out of another program in the memory during the execution of one

program and moving the control to that program.

As shown in the figure below, CHAIN has the same function as the <goto

"filename">. (For detailed information, please refer to page 26.)

file "ABC" file "DEF"

10 PRINT "MZ-700" ,.- 10 PRINT "DISK BASIC"
20 20
, ,
, ,

100 CHAIN "DEF" - 100 END

CHAIN

SWAP has the same function as the <gosub "filename">. After execution of

movement from the currently executing program to a separate program, it is then

possible to return to the first program. (For detailed information, refer to page 27.)

file "GHI" file "JKL"

10 PRINT "MZ-700" ,--- 10 INPUT A, B
20

!
20 FOR A=B TO A*B

50 SWAP "JKL" f---

, IL- i

200 END 150 END

SWAP
In addition it is also possible to control the various files as utility programs files and

commands of the machine language program files.

Section 1

DISK BASIC OUTLINE

This section explains the features of the DISK BASIC and outlines the file

controls. First of all is an explanation of the DISK BASIC starting method.

Section 2 includes a syntax explanation of the new commands and statements

which the DISK BASIC has, and Section 5 includes a summary of all commands,

statements, functions and operations which it has.

14

1.1 Starting the DISK BASIC

To make the DISK BASIC run, first perform initial loading by the IPL (Initial

Program Loader). The initial loading is easily executed. With the floppy disk drive

connected to the computer, switch the power supply ON and then set the disk in which

the DISK BASIC is included to drive number 1 (FDl).

After making the setting, the DISK BASIC will start when the power supply of the

computer is switched ON and F is input.

The figure below shows that DISK BASIC is started, and the BASIC command level

condition is indicated by the flashing of the cursor.

Disk Basic

Co p y rig ht

nt er pr et er MZ- XXXXX VX. XX

(C) 1984 by SHARP Corp.

XXXXX bytes free

Note:

Ready

•
Please specify the default device as a cassette during write-in or read-in of a program

from a cassette tape, thus starting the DISK BASIC.

DEFAULT "CMT:"

(Refer to page 55.)

• Automatic execution of BASIC text AUTO RUN
The execution of AUTO RUN is included in the functions noted above. When the

DISK BASIC is loadeQ and the byte size which indicates the size of the text area is

displayed, the master disk is accessed once again. When the initial loading finished,

the DISK BASIC automatically executes the RUN" AUTO RUN n command, Le., the

program text with the "AUTO RUN" file name is read out from the same master disk,

and execution is from that heading. The program which defines the definable function

•

15 ,
key is registered by this file name on the supported master disk.

In addition, because the NEW command is at the end of this program, "READY" is

displayed after execution, and the text is erased before the cursor begins flashing.

(Here, try the execution of LOAD "AUTO RUN" and check the list.)

If you want to start a certain program after the start of the DISK BASIC, the file

name of that program should be saved on the master disk as "AUTO RUN."

1.2 How to Copy the Disk Basic

Start the DISK BASIC and prepare a new floppy disk for copying.

Execute the directory of DISK BASIC (DIR: refer to page 35) and "FDCOPY".

01 R "F 0 1 : " ICRI Perform the directory of floppy disk drive number

1. The screen becomes as follows when this com

mand is executed:

OIR "F01:"

01 RECTORY OF F01: XXKB FREE.

OBJ*"OISK BASIS Ul XXX)H(i:)e.\'\.;'t>~.

-IIIOBJ * "F OCOPY"

I iOBJ* "TRANS"

r--J BTX* "AUTO RUN"

I1 Ready
L_III

• Using the ill key, move the cursor to the position of the - sign and press the ~

key.

(RUN "FOCOPY")

When "FDCOPY" is executed, the screen becomes as follows.

16

FD For mat I Copy Ut i lit Y VX. xx
[Funct i on I

F For mat d i s k
C Copy d i s k

I Bo ot

[Co mma n d are a I

*-

Insert the floppy disk prepared into drive number 2. When "F" is pressed, the screen

becomes as follows and the drive number is asked, so specify number 2.

*F
Drive No.?2

OKI

Input the drive number. In this instance, the drive

number is 2. When the drive number is input, the

floppy disk in this drive is initialized. * _ Indicates the end of floppy disk initialization and

the waiting condition for the next command.

If there is SYSTEM software in the floppy disk inserted into the floppy disk drive, the

display is as follows and confirmation is asked.

This is Master-Disk

For ma t [Y I NI? N The meaning of display is as follows:

The floppy disk inserted into the 1>pecified drive

contains the SYSTEM software; is initialization

and erasure OK?

If it's OK, input Y; if it's not OK, input N.

17

*111.................................... If N is input, changes to the condition of awaiting

the next command, and, if Y is input, the floppy

disk is initialized and changes to the condition of

awaiting the next command.

If C is input, the screen becomes as follows:

* C Copies the entire floppy disk.

Source Drive NO.?1

............ Specifies the drive of the inserted source disk (original

disk) (drive number 1, in this instance).

De s t n a t ion D r i ve No.? 2

........... " Specifies the drive of the inserted destination disk

(new disk) (drive number 2, in this instance).

* III Indicates the end of the entire floppy disk copying and

awaiting the next command.

Then the copying of the DISK BASIC is finished. The DISK BASIC is started when

" ! " is input.

Note:

If the source drive and the destination drive are the same, refer to REFERENCE

(page 78).

1.3 File Control

There are, as mentioned in the "File" section, 3 types of files produced by the DISK

BASIC: the 2 types of data files, sequential access files (BSD) and random access files

(BRD), and the BASIC text (BTX) program files. The other type of file: the machine

language program files (OBJ), is a file which registers programs prepared in the

MONITOR mode, etc. on the floppy disk. This can be a program by itself or it can be

linked to a BASIC text as a BASIC machine language area. Thus, even though it can

be used with the DISK BASIC, it is not a file to prepare and to change its contents

with the DISK BASIC.

18

DISK BASIC

Sequential Access File }

data file

BASIC Text Files }

L .. __ --:---r-------. program file.
_ Machine Language

Program Files

As the various file control commands are explained, first the preparation method, the

use, and the features of the 2 types of data files will be explained, followed by an

explanation of the use of the CHAIN and SWAP commands of the program files.

1.4 Sequential Access File Control

Sequential access files are data files in which the registration or read-out of data is in

the sequential access format. The sequential access format is, as mentioned previously,

a format in which access to the data is in sequential order from the heading.

The method of making a data file on a cassette file has already been explained in the

BASIC manual for the MZ-IZ013B. Sequential access for the DISK BASIC is exactly

the same except that the file is made on the disk rather than a cassette. Naturally, the

access speed is much faster, and, because several new file control commands can be

used for disk access, the breadth of useful functions for file management is also

enlarged.

First, we will compare the composition of sequential access commands for DISK

BASIC and for CASSETTE BASE BASIC.

File registration (data write-in)

DISK BASIC CASSETTE BASE BASIC

File open command WOPEN #n, "fjJename" WOPEN "filename"
Data write-in command PRINT #n, data PRINTIT data
File close command CLOSE #n CLOSE
Cancel command KILL #n --

19
i

File call (data read-out)

DISK BASIC CASSETIE BASE BASIC

File open command ROPEN #n, "fjJename" ROPEN "fjJename"
Data read-out command INPUT #n, variable INPUTfT variable
File close command CLOSE #n CLOSE
File end detection IF EOF (#n) THEN --

As you can see, comparison of the various commands shows an almost I-to-l

relationship. Note, however, that DISK BASIC commands always include elements

#n. These numbers are called logical numbers, and must always be designated for

DISK BASIC file access.

For CASS~TIE BASE BASIC, file access for data write-in or read-out is limited to

one file. For DISK BASIC, however, contains several files in order to make the best

use of its random access feature at will, so that it is possible to simultaneously control

several (maximum 10) files. And, if a file is opened, optionally selected logical

numbers can be defined and thereafter used for designation of the pertinent file,

thereby eliminating the necessity of using the file name each time.

Example:

As a simple example, let's consider the registration of a person's name and address in

the sequential access file. Thus, all available addresses can be stored one after the

other in the file.

Take, for example, the following file:

filename = If ADDRESS LIST"

Name I
Address I
Name I
Address I
Name I
Address I

20

The reason that the space used for each name and each address is of various lengths is

because the data registered by sequential access are not usually of a fixed length; the

length varies according to the data. For the random access files, to be explained later,

all data are stored in boxes of a fixed length of 32 bytes. If, as in this example, data are

to be handled as one group, and, as for the addresses above, 32 bytes is not sufficient,

and the lengths are different, then the use of the sequential access file is convenient.

A program can be made as described below, by INPUT command, to substitute names

and addresses alternately in string variables, register each person's file individually,

prepare an ADDRESS LIST of a total of 50 people, and then read out the prepared

file and display on the screen the names and addresses of 10 persons at a time.

Write-in

1 0 0 WO PEN # 3 "F D 1 : ADD RES S LIS T" Designation of drive

number and file name

1 1 0 FOR I =1 TO 5 0

120 INPUT "name=" ;NA$

130 INPUT "address" = ;AD$

140 PRI NT #3, NA$, AD$ Write-intofloppydisk

150 NEXT I

160 CLOSE #3

Read-out

200 ROPE N #4, "FD1: ADDRESS LIST"

210 FOR I =1 TO 5 FOR J =1 TO 10

220 INPUT #4, NA$, AD$

230 PRI NT NA$: PRI NT AD$

240 NEXT J

250 PRI NT " PUSH SPACE KEY"

260 GET X$ F X$ " THEN 280

270 GO TO 260

280 NEXT I

290 PRI NT "END"

300 CLOSE #4

,

21
•

• To find the data end
What would happen if the data being read-out in order from the file surpass the

number of data registered? In this case, an error does not occur. And a zero or blank

is set in the read-out variable, but there is a special function EOF (#n) (page 56)

which can detect the data end. When there is a data read-out by an INPUT command,

EOF (#n) becomes a true condition when there is no data.

As a result, if the

IF EOF (#n) THEN

command is placed after the INPUT # command, then if EOF (#n) becomes "true",

i.e. if the end of the data is found, the command after THEN will be executed.

Here use the practice problems to become sufficiently accustomed to the use of the

BSD file.

Practice problems

Problem 1

Using the program example on the previous page, change the program assuming that

the number of people registered is unknown, read-out the file 10 persons at a time

until the end of the file is reached and display them.

Example solution

The following program might, for example, be considered.

300 ROPEN #5, " F D 1 ADDRESS LI ST"
3 1 0 FOR I =1 TO 1 0
320 INPUT #5, NA$, AD$
330 I F E OF (#5) THEN 400
350 NEXT
360 PRI NT " PUSH SPACE KEY"
370 GET X$: I F X$ THEN 310
380 GOTO 370
400 CLOSE #5
410 PRI NT " F I LE END" : END

22

Problem 2

Divide, and re-register, the BSD file "ADDRESS LIST" into two: a BSD file which

registers names only and a BSD file which registers addresses only.

Example solution

500 ROPEN #6, " F D 1 : ADDRESS LIST"

5 1 0 WOPEN #7, " F D1 : na me"

520 WOPEN #8, "F D1 : address"

530 INPUT #6, NA$, AD$

540 I F E OF (#6) THEN 600

550 PRI NT #7, NA$

560 PRI NT #8, AD$

570 GOTO 530

600 CLOSE #6, #7, #8

610 END

Problem 3

Register the string input by INPUT command in a BSD file. But to close the file, key

input "CLOSE" and to cancel it, key input "KILL".

Example solution

100 WOPEN #30, "FD1: DATA"

110 I NPUT "DATA = ";A$

120 IF A$="CLOSE" THEN CLOSE #30: END

130 IF A$="KI LL" THEN KI LL #30: END

140 PRINT #30,A$:GOTO 110

23
i

1.5 Random Access File Control

Random access files are data files in which the registration or read-out of data is in the

random access format. The randoll\ access format is the format in which the access is

done by specifying the array format.

In other words, compared to the sequential access format in which access must be

from the heading of the data, the random access format can be used for access to any

data in the file at random.

In order to access data in the random access file in a specified array, PRINT # (page

49) and INPUT # (page 47) are used, as described below, as expressions following

logical numbers.

PRINT #n (expression), data

INPUT #n (expression), variable

Designation of tay element

The expression is assigned by numbers or variables.

For example, the statement

INPUT #7 (21), A$

means a command to read-out, to string variable AS, the data registered as the 21st

element of the data collected as the random access file opened by logical number #7.

Note that random access files in which data such as this can be accessed have the

condition that all data must be register~d at a fixed length, Le., when numbers or

string variables are registered in the file, they must each be set within a "box" with a

limited length of 32 bytes.
expression ~ 32-byte fixed length

{

~ +. 12345678+ElO

Random access 3
file 4 ABCDEFGHI

- 5 I-Ac::B-=C _____ --t
6
:

+- Variable A=O. 12345678+ElO

+- String "ABCDEFGHI"
:.- String "ABC"

For numerical variables, even exponential expressions are always stored within the

32-byte length, but, because string variables can be as long as 249 bytes, a string which

exceeds 32 bytes cannot be registered in one data element of a random access file.

One other point which is different from sequential access files is that even though a file

24
11

may be once closed and in the registered.condition, that same file can be made larger.

The random access file "RND 1", for example, in which up to 20 expressions have

been registered, can be enlarged to a file with 30 "boxes" by registering data as 30 new

expressions. "RND I" "RND I"
1 1
2 Enlargement 2

a In addition, .
data are registered by -----1~
expression = 30.

3 possible 3
• •

20

30

Example:

Let's take an example in which, by using a random access file, a simple stock list file is

to be made. Each product is assigned a fixed number from 1 to 50, and the file will

have four items: product name, unit price, number in stock, total price (unit price x

number in stock) and comments.

In order to register the stock data for each product, first the product number is input,

and then the information to be registered for each item is input.

The program execution is ended, however, when "0" is input.

Registration of stock data

100 XOPEN #5, "STORELIST"

110 INPUT "product no.";K

120 IF K=O THEN 300

130 I NPUT "product name="; N$

140 INPUT "uni t pr ce="; P

150 INPUT "i nventory count

1 6 0 I N PUT " c 0 mme n t ="; C $

170 T =P* S

" S

180 PRINT #5(K*5-4),N$,P,S,T,C$

190 GOTO 110

300 CLOSE #5

310 END

25

The random access file prepared in that way would be as follows. If product no.

K=12, 5 data are registered in elements corresponding to array expressions 56 - 60.
Data position

a expression ~
KJl:5-4} 55 ___ 56
K=12 57

58
59
60
61

N$
p
S
T

C$

d ata

..... product name

..... unit price

..... inventory count

..... total amount

..... comment

BRD file
"STORE LIST"

In this way, then, data can be set in any specified array in the file. As a result, unlike

the sequential access file, in which data is overlaid in order from the heading, it is also

possible for there to be vacant addresses in the filed data.

And, because data can be accessed at will, it is also possible to easily rewrite data.

Use the practice problem to become accustomed to the use of the BRD file.

Problem

Let's read-out the random access file "STORE LIST" made here and read-out the

inventory data for a certain product.

The program execution is ended, however, when "0" is input.

Read out of inventory data

500 XOPEN #7, "STORE LI ST"

5 1 0

520

530

INPUT

INPUT

PRI NT

" pro d u c t no. ="; J : I F J =0 THE N 700

#7(J*5-4), N$, P, S, T, C$

" NO. "; J : PR I NT "p rod u c t n a me "; N$

540 PR I NT "u n i price ";P

550 PRI NT "i nventory count" S

560 PR I NT "t 0 t a I a mo u n t "; T

5 7 0 P R I N T "c 0 mme n t "; C $

580 GOTO 510

700 CLOSE #7

710 E NO

In this way then, even for many products, the inventory data can be quickly read-out

by inputting the product number.

26

1.6 Program Chain (CHAIN)

Next, following the data file control commands, will be an explanation of program file

controls. The commands explained here are CHAIN (page 44) and SWAP (page 45).

When these commands are used, the program is registered on the floppy disk in job

units and, while the program is being run, a separate program can be read-out and

control moved to it, i.e., a program can be connected (CHAIN) to a program

registered on the floppy disk, and can be read-out (SWAP) in the form of a sub

routine. The CHAIN command, which connects and links the programs, will be

explained first.

The form of a CHAIN command can be, for example, as follows:

700 CHAI N "F01: TeXT 2"

This statement means that the program currently within the text area is made NEW

(although the variable will be retained), the "TEXT 2" file registered on the floppy

disk in drive number 1 is to be overlaid (that is, to overlay text areas and be read out),

and control is moved to the heading of that text.

When this statement is executed, control will move away from the BASIC text now

running, newly read out the "TEXT 2" text, and control will move to that heading.

When the program CHAIN is executed, the variable, and the function defined by

DEF FN, will be transferred to the CHAIN destination program.

The CHAIN command function can be taken as <goto "filename"> .

. file "ABC" ~ file "DEF" -10 PRINT "SUNDAY" 10 INPUT A,S
, 2i PRINT A, B

:
100 CHAIN "DEF" r- 300 CHAIN "GHI"

When the CHAIN command is used, a large program (even a huge program which

exceeds the BASIC text area) can be divided and, as shown in the figure above, can be

connected. When one program is finished, the data are left as is, and the following

programs are chained one after another.

The CHAIN command can be considered indispensable if complicated and diversified

data must be processed.

27

1.7 Program Swap (SWAP)

Program files on the floppy disk are read-in to the memory, and control is moved to

this program, by SWAP command but, when this program is finished, the original

program (the program which did the SWAP command) can be reset. This movement is

exactly in the same way as the sub-routine in the program, and the reset to the original

program becomes a return to the next command, which did the SWAP command. As a

result, the SWAP command can be taken as <gosub "filename">.

In order for this operation to be made, the program which has the SWAP command is

temporarily shunted to the floppy disk during SWAP execution. Then the program

area is made NEW, and another program is read in. After the end of the other

program, the original program is read in. The usual form of the SWAP command is:

SWAP" FDn : filename"

This is a command to SWAP the sub-program designated by the "filename" registered

on the floppy disk in drive number n (n = 1 - 4), and the shunting of the program

prior to the read-in of the other program is done on the floppy disk in the drive set by

the default condition. Therefore, a floppy disk on which it is possible to temporarily

write-in the program text must be set in that drive. The SWAP level must not exceed

the 1 level.

In order to understand the SWAP command, let's take a simple example and follow

the movement of the program file.

Program now in text area

10 REM COMPOSER

2 0 M 1 $ ~. " A 7 B 6 + C 3 A 7 A 3 "

30 M2$="B+C+D+E 6A3"

4 0 M3 $ = " + F 6 A 3 +E 7 H

50 PR I NT "P L AY T HE CELL 0"

60 SWAP "FD2: PLAYER"

70 PRINT "VERY GOOD"

80 END

28

Program file "PLAYER"

10 REM CELLO PLAYER

20 MUSI C M1$, M2$, M3$

30 PRI NT"OK7"

40 E NO

On slave disk in drive number 2

First, "COMPOSER" is within text area and is executed.
Text area

~
Dr:ve File

Corn oser
2 "PLAYER" "PL:'{'y THE CELLO"

The text is first shunted to the disk in FDl taking DIR by the SWAP command of line

number 60, and the area is made NEW.

r----------,~r-l~lr(C~O-M-P-O~SE~R~)1
NEW I I 2 . "PLAYER" . 1--___ --'

Next, BTX "PLAYER" is overlaid and executed. The melody is played.

Text
"PLAYER"

At the end, the shunted COMPOSER is reset and says "VERY GOOD."
Reset

r-1-!-·C-~-M-PO--SE-R-.. -'r1r--r-I,,-p-LA-Y-E-R-.. ...,: I ~~~~e~OOD ..

1.8 Reserved Words

The DISK BASIC text is composed of reserved words, also called key-words, the

operand, separator and data. The DISK BASIC the reserved words, which are special

words to execute certain determined functions, and commands, statements and

functions are appropriate to these words.

Because the reserved words are certain words used in order to execute special

commands, the programmer cannot use them as names of variables, arrays, etc. Next

page shows a listing in alphabetical order of all of the DISK BASIC reserved words.

(The numbers to the right of the reserved words indicate the reference page.)

When there is a (MZ) notation, refer to the Personal Computer OWNER'S

MANUAL or to the DISK BASIC SUMMARY of this manual.

29

161 ABS MZ K] GET MZ

AND 65 GOSUB MZ

ASC MZ GOTO MZ

ATN MZ GPRINT MZ

AUTO MZ !HI HSET MZ

AXIS MZ rn IF MZ

!HI ByE· MZ INIT 60

~ CHAIN 44 INP@ 63

CHR$ MZ INPUT MZ

CIRCLE MZ INPUT # 47

CLOSE # MZ INPUT # () 51

CLR MZ INPUTrr MZ

CLS MZ INT MZ

COLOR MZ !KI KEY LIST MZ

CONSOLE MZ KILL # 54

CONT MZ [1J LABEL 57

COS MZ LEFT$ MZ

CURSOR MZ LEN MZ

~ DATA MZ LET MZ

DEFAULT 55 LIMIT MZ

DEFFN MZ LINE MZ

DEFKEY MZ LIST ~ MZ

DELETE 39 LIST/P MZ

DIM MZ LN MZ

DIR 35 LOAD 37

~ END MZ LOCK 40

EOF (#) 56 LOG MZ

ERL MZ M MERGE 43

ERN MZ MID$ MZ

ERROR MZ MODEGR MZ

EXP MZ MODE TL MZ

!El FOR MZ MODETN MZ

MODE TS MZ

30

MOVE MZ RLINE MZ

MUSIC MZ RMOVE MZ

1Nl NEW MZ RND MZ

NEXT MZ ROPEN # 46

NOT 65 RUN 36

IQ] ON MZ [S] SAVE 38

OR 65 SEARCH 59

OUT@ 64 SET MZ

~ PAGE MZ SGN MZ

PAl MZ SIN MZ

PCOLOR MZ SIZE MZ

PEEK MZ SKIP MZ

PHOME MZ SPC MZ

PLOT OFF MZ SQR MZ

PLOT ON MZ STOP MZ

POKE MZ STR$ MZ

PRINT MZ SWAP 45

PRINT # 49 TAB MZ

PRINT # () 52 TAN MZ

PRINT USING MZ TEMPO MZ

PRINT/P MZ TEST MZ

PRINTIT MZ THEN MZ

PRINT [€x, ~] MZ TI$ MZ

!RI RAD MZ I1JJ UNLOCK 41

READ MZ USR 62

REM MZ IYI VAL MZ

RENAME 42 VERIFY MZ

RENUM MZ ~ WOPEN # 48

RESET MZ WAIT 58

RESTORE MZ IXI XOPEN # 50

RESUME MZ XOR 65

RETURN MZ

RIGHT$ MZ

31
~----------------------~--------------------------~--~~

1.9 Table of File Input/Output Devices

Indicates the DISK BASIC descriptors

.'

Floppy disk Cassette tape RS232C

device name FDl: - FD4: CMT: RS1: - RS2:

CHAIN 0 O. x
CLOSE # 0 0 0
DEFAULT O· 0 0
DELETFlRENAME 0 x x
DIR 0 x x
INIT x x 0
INPUT # 0 0 0
KILL # 0 ~ • LOAD/SAVE 0 x
LOCKlUNLOCK 0 x x
MERGE 0 0 x
PRINT # 0 0 0
ROPEN # 0 0 0
RUN 0 0 x
SWAP 0 x x
WOPEN# 0 0 0
XOPEN # 0 x x

OPEN limit - Including RIW. 1 file only OPEN is possible for as many as 10 devices.

• Format of rde descriptor
Composed of "<Device Name> <Filename>", <Option>

1.10 Initial Settings

The default values of system variables, etc. are set as follows when the DISK BASIC is
started by the IPL:

• File descriptor
Initialization is set for the device which started the DISK BASIC.

• Keyboard related
1) Operation mode: normal

2) Lower case character input is at the normal mode shift position.

3) The defineable function key is set as follows by BTX "AUTO RUN."

32

DEF KE Y(1) =" RUN +CHR$(13)

DEF KE Y(2) =" II ST"

DEF KE Y(3) =" AUTO"

DEF KEY(4) ="RENUM"

DEF KE Y(5) =" 01 R"

DEF KE Y(6) ="CHR$("

DEF KE Y(7) ="DEFKEY("

DEF KE Y(8) ="CONT"

DEF KE Y(9) =" SAVE

DEF KEY(10) ="lOAD

• eRT display related
1) Character display mode: normal (background: black)

2) Character display digit count: 40 characters/line

3) Character display scrolling area: maximum (from line 0 to line 24)

• Internal clock
Starts at TI$="OOOOOO" initialization

• Music functions
1) Tempo default value: (moderate tempo, moderato)

2) Default value: (quarter note, J

• Other
1) Array variables: All undefined

2) BASIC text area upper limit: number $FFFF (i.e., LIMIT MAX condition)

•

Section 2

DISK BASIC EXPANSION,
NEW COMMANDS AND STATEMENTS

34

In this section each statement, function and system variable is explained. How to

describe is explained in FORMAT. This symbols have the following meanings:

< > : Indicates the general description, such as, variables and data. Describes the

most generic meaning.

Notes:

<variable> includes <array element>.

<variable> includes <numerical variables> and <character variable>.

<data> includes <variable> and <constant>.

[1 : Indicates that tlie part enclosed by [1 can be omitted.

[1 ... : Indicates that the part enclosed by [1 ... can be omitted or more than one

repetition is possible.

{AB} : Choose one, A or B.

35

DIR (directory)
Displays directory contents.

Format:

DIR [/P] [<device name>]

Note: Only FDn device name.

Abbreviated form:

DI.

Explanation:

• Displays information, i.e., directory contents, relative to files registered in each

device.

• When the <device name> is abbreviated, the device is considered to be designated

by DEFAULT statement.

• When JP is described, the contents of the directory are output to the printer.

• The devices designated by DIR are the same ones that have been explained in the

DEFAULT statement.

Examples:

D I R " F D 1 . " or DIR FD1

..... Outputs on the screen the directory of the file registered in the floppy disk (drive

number 1).

DIR/P "FD1:"orDIR/PFD1

..... Outputs to the printer the directory of the file registered in the floppy disk (drive

number 1).

Reference:

DEFAULT (page 55)

I

i
i,
II

11

!I
I
I'
i

36

I RUN (run)
Executes the I!rogrilm.

Format:

RU N " [<device name> :] <file name> " [{ ~:~~f]
Note: Only FDn or CMT device name.

Abbreviated form:

R.

Explanation:

• When a description of the <filename> follows the RUN command, BASIC is

initialized (same as NEW command), the BASIC program memorized as a file is

read out, and then the program from the heading is executed, continuing to the

floppy disk, etc.

• For RUN only, the program within the text area is executed.

• The specifying file is limited to the BTX or OBJ files.

• If option "A" is applied, BSD file is considered as ASCII format and is executed.

And if option "R" is applied, read-in is executed putting the memory in the same

condition as read-in from OBJ file IPL. This "R" option is necessary when using

the 9BJ program of MZ-80K series.

Example:

RUN "FD1:PROG"

..... Reads out and executes file named "PROG" on floppy disk.

37

LOAD (load)
Reads out the program file.

Format:

LOAD" [<device name> :] <filename> " [<,A>]

Note: Only FDn or CMT device name

Abbreviatied form:

LO.

Explanation:

• Reads out program from external memory device.

• Specifies the file to be read out depending upon the <device name> and

<filename> description.

• If the device specified by the DEFAULT statement is designated, the <device

name> can be omitted.

• If option "A" is applied, BSD file is considered as ASCII format and is read in.

After read-in, time is required for conversion.

• The filename must not be omitted, but from cassette tape a call out is possible

even when the file name is omitted.

Examples:

LOAD "FD1 MZ - 700"

..... The file named "MZ-700" is read out from the floppy disk (drive number 1).

LOAD "c MT : MZ - 700 "

..... The file named "MZ-700" is read out from the cassette tape. •

38

SAVE (save)
Registers the program as a file.

Format:

SAVE" [<device name> :] <filename> " [<,A>]

Note: Only FDn or CMT device name.

Abbreviated form:

SA.

Explanation:

• Registers the program as a file on the floppy disk, etc.

• If the device designated by the DEFAULT statement is specified, the <device

name> can be omitted.

• If option "A" is applied, the SAVE is as ASCiI format.

The file is saved as a BSD file, so take care not to assign a filename which would be

confused with the data file made by WOPEN # and PRINT # statements.

• The file type created by the SAVE command is a BTX or BSD file.

• The <file name> cannot be omitted.

Example:

SAVE "FD1:PROG"

..... Puts the file name "PROG" in the program on the floppy disk (drive number 1)

and registers it. The type of registered file becomes BTX.

39

DELETE (delete)

Deletes desianated file.

Format:

DELETE" [<device name> :] <filename> n

Note: Only FDn device name.

Abbreviated form:

D.

Explanation:

• When the device name is omitted, processing proceeds relative to device designated

by DEFAULT statement.

Example:

DELETE "FD1: SAMPLE"

..... Deletes "SAMPLE" file of floppy disk (drive number 1).

40

LOCK (lock)
Perform the protection (lock) of the file.

Format:

LOCK " [<device name> :] <filename> "

Note: Only FDn device name.

Abbreviated form:

LOC.

Explanation:

• If the file is locked, this file is fixed on the floppy disk and it will not accept any

change commands. For instance, DELETE and RENAME commands and data

write-in are prohibited. Put a lock on any file which you don't want to destroy or

change.

• The" * " mark is displayed before the file specs in the directory display on locked

files.

For example:

LOCK "SAMPLE"

If the command above is executed, the file is. locked and the directory display is as

follows:

* "SAMPLE"

L sign to indicate file locking.

• Locking can be cancelled by the UNLOCK statement.

Example:

LOCK "FD1:SAMPLE"

..... Locks the file named SAMPLE on file set in drive number 1.

41

UNLOCK (unlock)

Unlocks the specified locked file.

Format:

UNLOCK" [<device name> :] <filename>"

Note: Only FDn device name.

Explanation

• Unlocks the specified locked file.

Example:

UNLOCK "SAMPLE"

..... releases the lock of file named SAMPLE

42

I RENAME \rename)
Changes the filename.

Format:
- ,

RENAME • [< dev i ce Rue>:] • " <old filename> " , "<new filename> "

Note: Only FDn device name.

Abbreviated form:

RENA.

Explanation:

• The file name change specifies the current filename and the new filename, in that

order.

• The new file name becomes an error if a file of the same name exists in that device.

Example:

RENAME "F01: OLOPROG", "NEWPROG"

..... The filename "OLDPROG" in the floppy disk file is changed to "NEWPROG".

43

MERGE (merge)
A-,»rogram in the file is added to a program in the memory ..

Format:

MERGE [" [<device name> :] < filename > "] [<,A>]

Note: Only FDn or CMT device name.

Abbreviated form:

ME.

Explanation:

• Reads in the program in the file designated by the <device name>, adding it after

the progra~ currently in the memory.

• If the <device name> is omitted, the file of the device designated by the

DEFAULT statement will be read in.

• If line number of the program within the computer is the same as the line number

of the program read in from the file, the program from the file has priority, and the

former program will be deleted.

• If option "A" is applied, the BSD file is considered as ASCII format and is merged.

Examples:

Program in the memory "PROG" program on floppy disk

1 0 B =2 1 0 A=1

30 PRI NT B 20 PRI NT A

50 END 40 END

..... when these are merged by MERGE "FDl: PROG", the result is as follows.

1 0 A=1

20 PR I NT A

30 PR I NT B
40 END
50 END

44

CHAIN (chain)
Movement of execution from active program to program in file

Format:

CHAIN" [<device name> :] <filename> "

Note: Only FDn or CMT device name.

Abbreviated form:

CH.

Explanation:

• The execution of the program is moved from the currently active program to a

different program in the file.

• The CHAIN statement is also considered to be a file opening.

• Although the CHAIN statement has a function similar to the execution of the RUN

command in a program, the variables, arrays, etc. of the original program are

transferred to the new program without change when there is a chain.

Example:

1 0 A=l

20 8 =2

30 CHAI N "F D 1 PROG"

40 END

..... The program of the file named "PROG" on the floppy disk in the floppy disk

drive (drive number 1) is executed.

In this instance, the value of variables A and B don't change; A=1, B=2.

45

SWAP (swap)
Calls out a program in the file during execution of the program.

Format:

SWAP 11 [<device name> :] <filename> 11

Note: Only FDn device name.

Abbreviated form:

SW.

Explanation:

• Subroutine calls separate program in file from program being executed. Program in

program area is temporarily evacuated to vacant area in floppy disk, and called

program is read into text area. The original variable in the text area at this time is

transferred to the called program. (See page 27.)

• An error occurs if a write-protect seal is put on the default drive floppy disk.

Example:

1 0 A=1: B =2

20

30

,--.40

PR I NT 11 A = "; A, 11 ~!';~cf}·i:.,·. .,

SWAP 11 F D 2 : PRO G'" . j .. "" •

11 11 • 11 ./i~~ " "
PR I NT A = ,A, B.:=,. 1'~'~ii.~,,~'

50 END

10 A=A*10:B=B*10

20 END

(SWAP FD2 PROG)

..... When this program is executed, A = 1 and B = 1 are displayed on CRT screen

when line 20 is executed. At line 30, the SWAP command is executed and the

program file "PROG" in floppy disk drive 2 is executed. At end, automatically

returns to original program, A = 10 and B = 20 are displayed when line 40 is

executed, and program execution finishes.

46

ROPEN # (read open)

Opens the BSO file for read-out.

Format:
ROPEN # <logical number>, "[<device name>:] < filename> "

Note: Only FDn, CMT, or RSn device name.

Abbreviated form:

RO.#

Explanation:
• Opens the file so that filed data can be read out.

• The ROPEN # statement has an order for data read-out; it specifies the file to be

read out, specifying by <device name> and <filename>.

• When the <device name> is omitted, the device designated by the DEFAULT

statement is specified.

• When" RS J 1 \ :" is specified, input is specified to RS-232C.

\21
Examples:
10 ROPEN #1, "FD1:DATA"
..... The floppy disk's (drive number 1) BSD file "DATA" is read out.

1 0 ROPEN # 1 , • ftSl: • I

..... The input by INPUT commane is set to RS-232C.

1 0 ROPEN #2, "DATA"
20 FOR I =1 TO 99
30 I NP UT #2, A
40 PR I NT A
50 NEXT I
60 CLOSE #2
70 END

..... The file made by WOPEN # command is read out and data are displayed.

References:
INPUT # (page 47)
WOPEN # (page 48)
CLOSE # (page 53)
EOF(#) (page 56)

INPUT # (Input)
Reads out data from BSO file.

Format:

INPUT # <logical number>,<variable>,<variable>,

Abbreviated form:

1.#

Explanation:

47

• Reads out data in sequence from heading of file opened for read-out by ROPEN #

statement and is set to <variable>.

• <variable> may be array element.

• The file which reads out the data becomes the file set to <logical number> by

ROPEN # statement.

• In the same way as for READ - DATA statements, error is generated if data and

<variable> data type do not coincide.

• The end of the file data can be determined by the EOF function.

However, for FD device only.

Example:

1 0 ROPEN #2, "DATA"

20 I NP UT #2,A,B,C

30 PRI NT A,B,C

40 CLOSE #2

50 END

..... Reads out numerical data from BSD file opened for read-out by logical number 2,

and substitutes to numerical variables A, Band C.

References:

ROPEN # (page 46)

CLOSE # (page 53)

EOF (#) (page 56)

48

WOPEN # (write open)
Opens the files for write-in.

Format:
WOPEN # <logical number>, " [<device name> :] <filename> "

Note: Only FDn, CMT, or RSn device name.

Abbreviated form:

WO. #

Explanation:
• This is a statement to prepare for file write-in; it specifies the file's logical number

and name.
• If the <device name> is omitted, processing occurs relative to the device specified

by the DEFAULT statement.
• When RS is specified for the device' name, the filename can be omitted.

Examples:
1 0 WOP EN #1," F 01 : OAT A"
..... Opens the "DATA" file defined to logical number 1 for write-in.

1 0 WOP EN # 1, "R S 1 : "
..... Output by the PRINT # command is set in RS-232C.

1 0 WOPEN #2, "DATA"
20 FOR I =1 TO 99
30 PRI NT #2,
40 NEXT
50 CLOSE #2
60 END

..... 1 - 99 count is written into the file.

References:
PRINT # (page 49)
ROPEN # (page 46)
CLOSE # (page 53)
INPUT # (page 47)

49

PRINT # (print)
Writes data in BSD files.

Format:

PRINT # <logical number>, <data> [, <data>] ...

Abbreviated form:

R.#

Explanation:

• Writes data in order into files opened by the WOPEN # statement for write-in.

• Files into which data are to be written are to be correctly specified by the logical

number when opened.

• (Data) are numerical value data or character data.

Example:

1 0 WOPEN # 1 , " DATA"

20 PRI NT # 1 , 1 , 2, 3

30 CLOS #1

40 END

..... Numerical data 1, 2 and 3 are written in the file that has been opened to write in

logical number 1.

References:

WOPEN # (page 48)

CLOSE # (page 53)

50

XOPEN # (cross open)
Opens BRD file for read-out and

Format:

XOPEN # <logical number>," [<device name> :] <filename> "

Note: Only FDn device name.

Abbreviated form:

X.#

Explanation:

Opens the random access data file (BRD), and opens (cross opens) theread-out/write

in of the random access data. Newly registers BRD files, prepares for data read-out

from, and new data write-in to, the BRD file, and defines the logical number for file

access.

Examples:

10 XOPEN #1," FD1: DATA"

20 NPUT" pr oduct no. ="; K

30 F K=O THEN 110

40 NPUT "product name=";NS

50 NPUT "unit price=";P

60 INPUT "st ock amount ="S

70 I NPUT "comment ="; CS

80 T = P*S

90 PR I NT # 1 (K * 5 -4) , N$, P, S, T, C $

100 GOTO 20

1 1 0 CL OS E # 1

120 END

..... Cross opens (read-out, write-in) BRD files. The 5 items of input (product name,

unit price, amount in stock, total amount (T = total amount (P * S», and

comment are registered in the BRD file "DATA".

51

INPUT # ()(input)

Reads out data from BRD file.

Format:

INPUT # <logical number>, «data element number», <variable> [,<variable>, ...]

Abbreviated form:

1.#()

Explanation:

• The data of the position designated by the data element number are read from the

file cross-opened by the XOPEN # statement into the designated variable. It

makes no difference if the variable is an array variable.

• The file which reads out the data becomes the file set to <logical number> by the

XOPEN # statement.

• In the same way as for the READ - DATA statements, an error will be generated

if the data and the <variable> data type do not coincide.

• The end of the file data can be detemined by EOF function.

• The data element position is from 1 - n.

Example:

1 0 XOPEN #2, 11 F D 1 : DATA 11

20 Z =3

30 INPUT #2 (Z) , 1 0

40 I F E OF (#2) THEN 80

50 PRI NT S

60 Z =Z +5

70 GOTO 30

80 CLOSE #2

Data ele~::: :::::i::-=: 11121~ 41516171~191101111121~llt~~
..... When this program is executed, the data at positions CD, @ and @ data positions

indicated by Z in the figure are read in and displayed in order. When the data

end, the EOF # function becomes truth at line 40, and jumps to line 80.
Reference:

PRINT # () (page 52)

52

PRINT # () (print)
Writes in data to BRD files.

Format:

PRINT # <logical number>, «data element number», <data> [, <data>, ...]

Abbreviated form:

P.#()

Explanation:

Writes in contents specified by variable or numerical value to data position specified

by data element number from file cross opened by XOPEN # statement. Variable may

be array variable.

The file which writes in the data becomes the file specified to (logical number) by the

XOPEN # statement.

The data are numerical data or character data.

The possible write-in data length is 32 bytes and the data element position is from 1 -

n.

Example:

10 XOPEN #4, "FD1:DATA"

20 FOR Z=3 TO 13 STEP 5

30 PRINT #4 (Z),O

40 NEXT Z

50 CLOSE #4

Data ele~:~: ::!:~:= 11121~ 41516171~191101111121~1141 ~~~
..... When this program is executed, data "0" are written in at the G), @ and <ID data

position indicated by Z, as shown in the figure.

Reference:

INPUT # () (page 51)

53

CLOSE # (close)
Closes the file.

Format:
CLOSE [# <logical number>]

Abbreviated form:
CLO.#

Explanation:
• Closes the data file opened by the logical number; returns this number to the

non-define a condition.
• CLOSE relative to XOPEN #

Closes the BRD file opened for read-outlwrite-in and returns all logical numbers
used to the non-defined condition.

• CLOSE relative to WOPEN #
Registers formally the BSD file opened for write-in; and returns the logical number
used to the non-defined condition.

• CLOSE relative to ROPEN #
Closes the BSD file opened for data read-out; and returns the logical number used
to the non-defined condition.

• When logical number not specified, closes all currently open files, and returns all
logical numbers to non-defined condition.

• When do not specify logical number, closes all currently open files; logical numbers
are returned to non-defined condition.

Examples:
10 CLOSE#1
..... Closes logical number #1 file.

20 CLOSE
..... Closes all files.

References:
XOPEN # (page 50)
WOPEN # (page 48)
ROPEN # (page 46)

54

I KILL # (kill)
Stops file registration.

Format:

KILL [# <logical number>]

Abbreviated form:

KI.#

Explanation:

• Stops registration of the file opened to <logical number>. In other words, the file

making is prepared by the XOPEN # or WOPEN # statement, or stops, during

registration, the formal registration of the file thereafter executing the PRINT #

() or PRINT #.

• If the <logical number> is not designated, the formal registration of the file

currently being made is stopped and, in addition;all files already opened are closed

and all <logical numbers> are returned to the non-defined condition.

• Because the KILL command can be used as a direct execution command, this

command can be executed directly prior to exchange of the cassette tape, floppy

disk. In order to thereby protect the contents of all files by closing them.

Examples:

200 KI LL #3

..... Kills the file opened by the logical number 3.

300 KI LL

..... Kills all files opened.

Reference:

XOPEN # (page 50)

WOPEN # (page 48)

55

DEFAULT (default)
Sets device names.

Format:

DEFAULT" <device name>: "

Note: Only FDn, CMT, or RSn device name.

Abbreviated form:

OEF.

Explanation:

• Defines available device name if <device name> is omitted by command

statement.

• The device name reading DISK BASIC is defined in FDl.

• Device names are as follows.

F On :

C MT :

R S{; \:

Examples:

floppy disk (n = 1 - 4)

cassette tape

RS-232C interface (n = 1 - 2)

DEFAULT "CMT:"

..... Considered to be cassette tape if <device name> is omitted in each command.

DE F AUL T "F 02: "

..... Considered to be floppy disk (drive 2) if (device name) is omitted in each

command.

56

EOF (#) (end of file)
Function to locate end of data file data.

Format:

EOF (# <logical number»

Abbreviated form:

EO.(#

Explanation:

• The function used to determine the end of the data for file read-out.

• When read-out continues after the end of data in the data file, there is no error

generation, and 0 or null (" ") is provided as the data value.

• Error is generated, however, when data are read out from CMT.

• This function is used in combination with the IF statement and placed after each

INPUT statement.

Example

10 ROPEN #3," DATA"

20 I NPUT#3,A

30 IF EOF(#3) THEN END

40 PR I NT A

50 GOTO 20

..... With this program data are read-out in sequence from the "DATA" file and are

displayed on the screen. And, if the read-out data are out of file, this process

should be end.

57

LABEL (label)
Sets the label.

Format:

LABEL" <label name> "

<label name> : character line to 249 characters

Abbreviated form:

LA.

Explanation:

• It is possible to set a label which expresses the branch destination of the GOTO

statement, GOSUB, etc. In this way, the program can be made easier to see and

easier to understand.

Example:

1 0 PRI NT "SAMPLE"
20 GOSUB "ABC"
30 PRI NT "END"
40 END
100 LABEL "ABC"
1 1 0 PRI NT "LABEL SAMPLE"
120 RE'TURN

..... The line number 20 GOSUB statement branch destination is set to the "ABC"

label on line number 100. As a result, the subroutine after the line number 100 is

called out by the GOSUB statement.

58

WAIT (wait)
Interrupts the program execution for a definite time.

Format:

WAIT <numerical data>

Abbreviated form:

W.

Explanation:

• Interrupts the program execution for the time period specified by (numerical data).

The unit is 111000 second.

Example:

1 0 WAI T 100

..... Interrupts the program execution for 0.1 (100/1000) second.

59

SEARCH (search)

Searches the character data through the text.

Format:

SEARCH [IP) <character data>

Abbreviated form:

SE.

Explanation:

• Searches for and finds the character data specified in the <character data> through

the program text and displays it on the screen.

• When the space key is pressed during execution, the display stops temporarily;

when the key is pressed once again, the execution is started again.

• The execution is stopped by ISHIFTI + IBREAKI .

• Uflfler ease aRa lewsr esse llilulilfs eaRRet be disclimindled withIn <character

~-T-tnts, "see" aRe" c).BC" anI ~gRsiQ@F@a te 88 the sl'lft'le ehalaetel el'lta.

• If double quotation marks are used, CHRS (34) is used as the <character data>.

• When IP is specified, data are printed by the printer, not displayed on the screen.

Example:

SEARCH "ABC"

..... Searches for and finds, in the program text, the line including the character data

"ABC", and displays it on the screen.

SEARCH "PRI NT"+CHR$(34) +"A"+CHR$(34)

..... Searches for and finds the line including the character data PRINT" A".

60

INIT (Initialize)
Sets the RS mode.

Format:

INIT"RS{~ } <monitoring code>, <initialization setting code>(,<end code>] "

Explanation:

• Sets the mode of RS-232C

<Monitoring code>

7 6 5

lID
<Initialization setting code>

5 4 3 2 o

DCD reception monitoring
DCD transmission monitoring
CTS transmission monitoring
Not used. Usually O.
RTS OFF transmission enable.
All character transmission out monitoring.

1..-___ p. 01 - odd parity

1
00 - non parity

anty 10 - non parity
11 - even parity

. 01 - 1 stop bit

1
00 - not used

L _______ Stop bIt 10 _ 1 + 112 stop bit

Not used. Usually 0

'-- Transmission/reception character length

{
0 -,~ bitslCHR
1 ~'bitslCHR

<ending code>
Values from 0 - 255 ($00 - $FF)

11 - 2 stop bits

61

<breference>
To exchange information between two MZ-700s, prepare a cable provided with the

following connections:

Signal name Pin number Pin number Signal name

TXD 2

~--
2 TXD

RXD 3 -- -- 3 RXD

RTS 4

~
4 RTS

ers 5 5 crs
DTR 6 7~ 6 DTR

DCD 7 7 DCD

Ground 1,8 1,8 Ground

• Both are used in the terminal mode. (Refer to RS-232C user's manual.)

• The following are programs to transmit/receive numbers from 0 to 9, the contents

of A$, when exchanging information between two MZ-700s.

<Reception side> <transmission side>

1 0 I NI T "RS1 :$00,$8C" 1 0 I NI T "RS1:$00, $8C"

20 ROPEN #1 , " R S 1 : DATA" 20 A$ "0123456789"

30 INPUT #1 , A$ 30 \l\K)PEN #1 , "RS 1 : "

40 PRI NT A$ 40 PRI NT #1, A$

50 CLOSE #1 50 CLOSE #2

60 END 60 END

.. \

62

USR (user)

Calls out and executes in BASIC the machine language program.

Format:

USR «address> , <input character variable> , <output character variable)

<address> : numerical data or 4-digit hexadecimal number

Abbreviated form:

U.

Explanation:

• Calls out and executes the machine language program during BASIC program

execution. This is the same as the branch command and CALL <address> to the

machine language subroutine. Consequently, when there is a return command in a

machine language program, control moves to the next statement following the

executed statement.

• At the point in time when the machine language program is called out, the value

following the <input character variable> is set in the register.

DE register: heading address of memory area of <input character variable>

B register: length of <input character variable>

IX register: address if error-processing routine is announced

• At the point in time of return from the machine language program, the value of the

data indicated by the subsequent register becomes the <output character

variable>.

DE register: heading address of memory area of <output character variable>

B register: length of <output character variable>

• If error-processing is necessary in a machine language program, the following

process occurs.

(1) An error-processing routine is established by the ON ERROR GOTO

statement in the BASIC program.

(2) An error code is substituted in the A register, and is jumped to the address

indicated by the IX register.

63

INP@ (input)

Inputs data at 110 ports to variables.

Format:

INP@ <port number>, <variable>

Abbreviated form:

I.@

Explanation:

• Inputs 8-bit data from <port number> input port and sets to <variable> the value

(0 - 255) converted to a decimal number .

• From 0 to 127 ($00 - $7F in hexadecimal), the <port number> can be determined

freely. From 128 to 255 ($FO - $80 in hexadecimal), the use is exclusively as ports

for external devices.

Example:

1 0 FOR I =0 TO 20

20 C =1 +32

30 GOSUB "SUB"

40 NEXT

50 END

60 LABEL "SUB"

70 I NP@ $FE, A

80 I F NOT (A AND $OD) =0 THEN 70

90 OUT@ $FF,C

100 OUT@ $FE, $80

1 1 0 I NP@ $FE, A

120 I F NOT (A AND $ 0 D) =1 THE N 1 1 0

130 OUT@ FE, 0

140 RETURN

Reference:

OUT@ (page 64)

64

IOUT@(OUT)
Outputs data to 1/0 ports.

Format:
OUT @ <port number>, <numerical data>

Abbreviated form:
OU.@

Explanation:
• Converts <numerical data> values (0 - 255) to binary numbers and outputs to the

<port number> output port.
• From 0 to 127 ($00 - $7F in hexadecimal), the <port number> can be determined

freely. From 128 to 255 ($FO - $80 in hexadecimal), tne use is exclusively as ports
for external devices.

• For control of peripheral devices, etc., data are output to 110 ports. Thus, if there
is a mistake of the <port number>, etc. by this OUT@ command, there is the
possibility that such a mistake will cause abnormal operation of the peripheral
equipment, etc., so care must be taken in that regard.

Example:
1 0 FOR 1 =0 TO 20
20 C =1 +32
30 GOSUB "SUB"
40 NEXT 1
50
60
70
80
90
100
1 1 0

120
1 30
140

END
LABEL "SUB"
1 NP@ $FE, A
1 F NOT (A AND $ 0 D) =0
OUT@ $FF,C

OUT@ $FE, $80
1 NP@ $FE, A
1 F NOT (A AND $ 0 D) =1
OUT@ $ F,E, 0
RE T UR N

Reference:
INP@ (page 63)

THE N 70

THEN 110

65

• Logical operation

Logical operation

The task of giving YES or ON results, by judgment, are not few in computers. Here

let us consider some logical expressions used to judge some conditions. The logical

operators NOT, AND, OR and XOR are used in logical expressions.

CD X AND Y (logical product = and)
AND means X moreover Y

XY X and Y

1 1 1

1 0 0

0 1 0

0 0 0

® NOT X (negation = not)
Means that it is not X

NOT X

o

® X OR Y (logical addition = inclusive or)
OR means either X or Y

XY XORY

1 1 1

1 0 1

0 1 1

0 0 0

@ X XOR Y (Exclusive logical addition =
exclusive or)
Means X and Y are not equal

XY XXORY

1 1 0

1 0 1

0 1 1

0 0 0

The logical operation is usually used in IF - THEN - ELSE command, explained

before. For instance, it is used as follows:

• IF -30<X AND Y>20 THEN 120 ELSE 100

(The meaning above is: if the X value is -30<X moreover Y>29 go to line number

120, if not jump to line 100)

• IF -30<X OR Y>20 THEN 10 ELSE 100

(The meaning above is: if the X value is -30<X or Y>20 to to line number 120, if

not jump to line 100).

Section 3

BASIC MONITOR FUNCTIONS

68

In order to make the input of machine language programs easier, the DISK BASIC

has a monitor section following the IOCS section. As the stack work area, $FFOO -

$FFFF (hexadecimal) are used.

This monitor, in the same way as the BASIC, has a built-in screen editor, and, by

using the editing format described below, any address of the main memory 64K bytes

can be rewritten.

3.1 EDITING FORMAT

: Address = dataL-JdataL-Jdata

: (Colon)

..... a symbol which indicates an editable line

Address

..... designated by a four digit hexadecimal; main memory address, including

heading data (0000 - FFFF)

= (equal mark)

..... a separator used to distinguish address and data

Data

..... designated by two digit hexadecimal or semi-colon + character; 8-bit data or

specified character ASCII code is written into specified memory address; as a

rule, a space is used for data intervals.

3.2 PRINTER SWITCH (P Command)

Directs D and F commands to printer or screen. When in monitor, becomes screen

mode. The mode reverses each time this command is executed. If a printer is not

connected, ERR? appears and a command is awaited, so check the printer or execute

the P command to return to the screen mode.

69

3.3 DUMP CD Command}

* D <heading address[< final address> J>

Displays the memory contents. When the final address is omitted, 128 bytes from the

heading address are displayed. When the heading address is omitted, 128 bytes from

the subsequent address are displayed. Dumping is by the following format.

: HHHH=HH'-JHH'-JHH HH HH HH HH HH I ABCDE. G.
t ~--------------~v---------------~ ~

Heading address 8-byte hexadecimal data 8-byte character data

If the memory content is changed, move the cursor to the data to be changed, make

the correction, and then input ICRI.

Note:

The final 8-byte characters are displayed by data ASCII code, and the control

code is indicated by a " ... (period). The display is stopped only by the IBREAKI key

by I SHIFT I + IBREAKI there is a return to a~aiting a command.

3.4 MEMORY SET CM Command}

* IM [heading addressJ

Rewrites the memory content. When the heading address is omitted, rewrite is from

the current pointer. To get out of this mode, press ISHIFTI + IBREAKI.

Because the address and data are displayed and the cursor superimposes over the

data, designate the data by the editing format and press ICRI. The designated data

and address will be added and continue to the next line.

70

3.5 FIND (F Command)

* F <heading address>L.J<final address>L.J<data>L.J[<data ... >]

Searches from the heading address to the final address for continuous data of the

number specified by the data, and, if found, outputs that address and data at the dump

mode. Stopped by ISHIFrI + IBREAKI.

3.6 GOSUB (G Command)

* G <call address>

Sub-routine calls the designated call address. Stack pointer is at FFFE (hexadecimal).

3.7 TRANSFER (T Command)

* T <heading address>L.J<final address>~transfer heading address>

Transfers data between designated addresses from the transfer heading address.

3.8 SAVE (S Command)

*5 <heading address>L.J<final address>L.J<execution heading address>:

[<devica name> : filename]

Records data between designated addresses to the designated device name. The

"execution heading address" is the execution heading address when loaded from IPL.

Specify the file name in the same way as for DISK BASIC (after a colon" : ").

71

3.9 LOAD (L Command)

* L <load heading address> [<device name> : fllaname)

Loads the designated file from the designated device name. When the heading address

is specified, loading is from that address; if not specified, loading of information is

done exactly as it was saved. If filename is not specified, the first file found is loaded.

When there is BREAK or if check sum error appears, ERR? is displayed, and returns

to awaiting command; if no error appears, returns to awaiting command.

3.10 VERIFY (V Command)

* V <fllename>

Reads designated file from cassette and compares with main memory. Used to check

whether correctly saved; if not correct, ERR? is displayed.

3.11 RETURN (R Command)

Returns monitor to called system. If from BYE command of DISK BASIC, returns to

DISK BASIC by this command. SP (stack pointer) and HL register are stored, so next

command after BYE is executed.

If SP is called from a system such as $FFOO - $FFFF, or if there is no return address in

the stack, return is not possible by this command; call that system's hot start by the G

command.

Section 4

APPLICATION PROGRAMS

74

Use of the File Converter

• The file converter is registered on the DISK BASIC floppy disk by the "TRANS"

file name. To execute this, press the following keys (RUN: refer to page 36)

RUN "TRANS" ICRI

The specification items which appear on the initial screen are specified in order from

the top. Choose the right item number from the menu area specification contents and

make the key input. The specification item and the initial screen become as follows.

Specification
items

Specification contents
(menu display area)

F i le Convert Ut i lit Y VX. XX

[Source)
'.,

Syst em :

De v ice :

Fi I e Mode : .
F i le Na me :

[De s t i net i on)

Syst em : MZ- 700 BASI C

De v ice :

Fi le Mo de :

Fi le Na me :

*System Me n u

1 . MZ - 7 0 0 .a.Mi I-e' BCHic
2. MZ- 80 K ~ Ba...s; c

3. MZ- 80 K ~C "",. f" «. C

4. MZ- 80 K F DOS

75

• Explanation of contents and specification method of menu area display

* System menu

• Specify the source system (the destination system is fixed in the MZ-7(0). The

source program specification inputs: Which MZ series machine was the program

made for? For instance, if the program file converter is for the MZ-SOK, and

moreover if it is made by double precision the DISK BASIC (W-PREC), key

input "3".

• Moreover, the objects are the following systems

MZ-700 Basic
\

CASSETE TAPE BASIC

DISK BASIC

MZ-SOKBasic {= ~p.60\s

MZ-SOK

{
FDOS

MZ-80K FODS
S~~foI Pft8@JftAm

Display contents

Menu display area

*fSyst em Menu)

1 . MZ - 7 0 0 B a sic

2. MZ - 8 0 K Ba sic

3. MZ - 80 K W- Pr e c

4. MZ- 80K FDOS

76

* Device menu
• Specifies the device name (source device, destination device) to perform

conversion.

Display contents

* File mode

Menu display area

{Devi ce menu]

1 . F D 1 :

2. F D2:

3. F D3!

4. F D4:

5. CMT ~

• Displays the file mode conversion possibilities specified in the system menu and

device. However, the destination file mode is made automatically possible file

mode from the specification of source file mode.

Display contents

Menu display area

{F i I e MOde]

1. OBJ
· ... ,t·,

2. BTX

3. BSD

4. BRD .~' : r

* File name

• Inputs the file name of file to be conterted (maximum 16 characters). To display

the disk directory from this condition, key input ICTRLI + ~.

77

Display contents

Menu display area

* F i I e n a me J i n put ?
Co~~rol -A ==> £:):r.cz.c..~or1

Display mode

Example of display when I CTRL I + IIii is key input and device ''1'' (FD) is specified.

refe, ~o pc;..'11L J '-i

File Convert Ut lity

01 RECTORY OF FD:

OBJ "DATAl"

f Funct i on and, 1 Any key.

"t Next ~age" ..I. Anv, .k.;8)1'

Error •• ssale

COlYert alain, [Y/N] ?

* Related to the message

Funct i on and, 1 Any key. Returns to the file name input waiting

condition when key input (any key) is

performed.

Ne x t p age, 1 An y key. Display when one screen is not enough to

display the directory. The display of the

Err 0 r -, 1 All Y

f"\ Q..>). ~ Q..

eO,..\I cz.r~ . .. ~ "
V/N.

"v·

2

~

remaining directory is performed when

once again a key is input. IH"

Indicate;;hat ,beca~se of so~~
error ,directory display is not ~
possible ~n

I

When key i npu t I S made once

a,ain ,a.aitin, source syste.

input ;.hen -H- key i.put ,DISK
•. BASIC is started. --------------- ~,.,. '.'.:

SeJ I

78

Reference:

If, for file conversion, the source drive and destination drive are the same, the

following display is added.

Display:

1~1"""t source, 1. Any key a:!Il

or

~Q • .\' [I<.~t dest i nat ion, 1. An y key a:!Il J

Explanation:

The above display occurs if the input of the destination file has ended. First, there will

be a display meaning "insert the source disk", and then, after the source disk is

inserted into the disk drive, press a key (any key). When the key input occurs, the

content of the source disk file is read into the memory of the MZ-700. When this

read-in is finished, there will be a display meaning "insert the destination disk". Take

out the source disk and insert the destination disk into the floppy disk drive in its

place. After insertion is completed, press a key (any key). When the key input occurs,

the data in the memory of the MZ-700 will be written into the destination disk.

Display when conversion finishes

:1:". • Thf following display will be shown after the conversion finishes.
i/ ,..-,----
;: : I

**E.d of o b * *
j.. '~., .. ~ . B're a ,

, ..
Convert ".in [Y/N] 'iJ:

,:---
Explanation:

The "END OF JOB" message means that the conversion has finished. "BREAK"

means that there was an interruption I SHIFT I + IBREAKI during the job.

"ERROR xx" means that there was an error during the job.

79

After the end of either message display, there will be a display meaning "will

conversion be made again? or will conversion be ended?". If conversion will be made

again, input "Y", if the end, input "N". When "Y" is input, there will be a return to

the initial screen used for convert execution, and, when "N" is input, there will be a

return to the monitor condition.

. ,
•• 4

Section 5

DISK BASIC SUMMARY

82

5.1 Summary of DISK BASIC Commands, Statements,
Functions and Operations

5.1.1 Commands

DIR

DIRIP

LOAD

DIR

DIR FD1

DIR

Displays floppy disk directory.

Information indicated at directory display is as follows:

Registered filemode, registration condition (locked or

not) and filename

Note:

For the directory display on the CRT screen, there is a

stop when one screen amount is displayed, and the cursor

appears. To continue the directory display the ~ key

can be pushed, or it is possible to move to another

command.

Displays the directory of the floppy disk in floppy disk

drive number 1. When the DIR command is executed, the

system memorizes that drive number, and thereafter the

drive number can be omitted to designate direct execution

commands and file access commands for that same floppy

disk drive.

Displays the directory of the floppy disk in the floppy disk

drive that was executed by the most recent DIR com

mand.

DIR/P" FD1" Prints floppy directory on line printer.

LOAD" FD1 : DAY" Reads out BASIC texqaofX) with "DAY" fife name in

floppy disk.

LOAD "FD2:SUN". Consider BSD file "SUN" file name in floppy disk drive

A number 2 as ASCII format and read it out.

LIMIT $DOOO: LOAD For read-out of machine language program file (OBJ)

"B" linked to a BASIC text, it is necessary to separate the

machine language area and the BASIC area by the LIMIT

command. Refer to the command used for linking with

the machine language program.

SAVE

RUN

MERGE

VERIFY

AUTO

LIST

LISTIP

83

SAVE" FDl : DAY" Names the BASIC text currently in the text area "DAY"

and writes in to floppy disk. One file with filename

"DAY" and file mode BTX is registered.

SAVE "CMT:E"

RUN

RUN 1000

RUN "FD1:F"

RUN "FD3:G"

MERGE

Names the BASIC text currently in the text area "E" and

writes in to the cassette tape.

Executes the program from the heading of the BASIC

text currently in the text area.

Note:

At the RUN command, all variables become 0 or null

immediately prior to program execution.

Executes program from statement number 1000.

Reads out BASIC program file "F" from floppy disk, and

executes program from the program heading.

Reads out program text "G" from volume number 7 of

the floppy disk in drive number 3, and then executes

program from the designated execution address. In this

instance, the system is not controlled by BASIC.

Adds the program in the file to the program.

MERGE "FDl :PR Merges program currently in the memory and "PROG"

OG 11 file in the floppy disk.

VERIFY"H"

AUTO

AUTO 200.20

LIST

LlST-50D

LlST/P

Compares program text currently in BASIC text area and

content of cassette tape file specified by file name "H".

Automatically generates line numbers 10, 20, 30 '" during

text making.

Automatically generates 200, 220, 240 ... in steps of 20,

from statement number 200.

AUTO command is released by pressing I SHIFT I + hREAKI

keys.

Displays all lists of BASIC text currently in text area.

Displays list up to statement number 500.

Display list goes to printer. (TEXT MODE)

84

RENUM

SEARCH

NEW

CONT

BYE

KEY LIST

RENUM

RENUM 100

SEARCH n ABC 11

NEW

CONT

BYE

KEY LIST

Changes statement number of the program.

Renumbers all statements beginning with first statement

number 100, and in steps of 10.

Searches for and finds lines including "ABC" character

data in program text, and displays on screen.

Erases BASIC text currently in text area and clears

variable area. Machine language area specified by LIMIT

command is not cleared.

Continues program execution. In other words, restarts

execution from point of interruption by I SHIFf I + I BREAK I

keys or STOP statement during program. CONT com

mand becomes invalid when, during a program break, the

BASIC text is edited.

Moves system control from DISK BASIC to monitor.

(The return from monitor to DISK BASIC can be made

by monitor <;ommand "R".)

, Lists, on the CRT display, the definition condition of the

definable function keys.

5.1.2 File Control Statements

LOCK

UNLOCK

LOCK n FD2:ABC n Locks file "ABC".in floppy disk drive number 2.

UNLOCK n ABC"

Locked files cannot be changed or deleted. In the

directory display, locked files are denoted by the *
symbol.

Unlocks "ABC" file in active drive.

100 UNLOCK "FD1: Executes the program unlocking of "A" file in floppy disk

A" drive number 1.

RENAME

DELETE

CHAIN

SWAP

85

RENAME· FD1 :A.B • Changes file name of file "A" in floppy disk drive number

1 to filename "B".

DELETE HA" Deletes file "A" from disk in default drive.

CHAIN "FD1 :TEXT Chains program execution to BASIC text "TEXT B" in

BH floppy disk. In other words, "TEXT B" is read out to

BASIC text area, and program execution contin'ues from

that heading.

The original program in the text area at this time is made

NEW, and the content of the variable and user function is

transferred to the chained text. It can be understood that

the function of the CHAIN statement is as a GOTO

"filename".

SWAP" FD2:TEXT Swaps program execution to BASIC text "TEXT S-R" in

S-R " floppy disk drive number 2.

In other words, the text in execution is once shunted to the

floppy disk in the default drive, then "TEXT S-R" is read

out to the BASIC text area, and program execution

continues from that heading.

When the swapped program is finished, the original text is

then read out, and the program execution continues from

the next statement after the SWAP statement. When each

program execution is linked, the content of the variable and

user function is transferred. The SWAP level must not

exceed 1. In other words, SWAP instructions cannot be

made within a swapped text.

In can be understood that the function of the SWAP

statement is as the GOSUB "filename".

86

5.1.3 BSD (BASIC Sequential Access, Data File) Control Statements

Note: For file descriptors FD and CMT

WOPEN # WOPEN #3 "FD2:S Opens the file for write-in so that one BASIC sequential

PRINT #

CLOSE #

KILL #

ROPEN #

INPUT #

EO DATA 1" access file (BSD) can be made. In other words, it defines

the filename of the BSD being made as "SEQ DATAl",

and opens, as logical number 3, a file in floppy disk drive

number 2.

PRINT #3. A. AS Writes in, in order, the content of variable A and string

variable AS on BSD; a file opened in logical number 3 by

the WOPEN # statement.

File close is executed by the CLOSE # statement, and

BSD is formally registered as one BSD.

CLOSE #3 Closes the BSD, the file opened in logical number 3 by

(Corresponding to the WOPEN # statement.

WOPEN#)

KILL #3

By closing the file, one BSD with the file name specified

by the WOPEN # statement is made on the specified

floppy disk, and the logical number (3 in this instance)

becomes undefined once more.

Kills the BSD, the file opened in logical number 3 by the

WOPEN # statement. In other words, it cancels or erases

the BSD, and the logical number (3 in this instance)

becomes undefined once more.

ROPEN #4. n FD2: SE Opens the file for read-out of the data in the BASIC

o DATA2· sequential access data file (BSD). In other words, it

opens, as logical number 4, the BSD file "SEQ DATA2"

in volume number 7 of the floppy disk in floppy disk drive

number 2.

INPUT #4. A(1). BS Reads out sequential data from the BSD, a file opened in

logical number 4 by the ROPEN # statement, and

substitutes numerical data in array variable A(1) and

string in string variable B$.

Read-in data are sequentia,lIy accessed from the BSD

heading data.

87

CLOSE # CLOSE #4 Closes the BSD; the file opened in logical number 4 by

(Corresponding to the ROPEN # statement.

ROPEN #) Logical number 4 becomes undefined once more.

5.1.4 BRD (BASIC Random Access, Data File) Control Statements

Note: For file descriptor FD only.

XOPEN # XOPEN #5 "FD3:D Opens (cross opens) for data write-inlread-out to the

PRINT #()

INPUT #()

CLOSE #

ATA R1 n BASIC random access file (BRD).

In other words, cross opens BRD file "DATA RI" on the

floppy disk in drive number 3 to logical number 5, or, if

the file does not yet exist, cross opens so that the BRD

file "DATA RI" can be newly made on that floppy disk.

PRINT #5(11). R(11) Writes in the content of a one-dimensional numerical

array variable R(l1) to element 11 of the BRD file

opened in logical number 5 by the XOPEN # statement.

PRINT #5(20). AR$. Writes in string variables AR$ and AS$ to, respectively,

AS$ elements 20 and 21 of the same BRD as above. Because

all elements in the BRD are a fixed length of 32 bytes,

any part of the string length which exceeds 32 bytes will

be invalid.

INPUT #5(21). R$ Reads out (substitutes), to string variable R$, the data in

element 21 of the BRD file opened to logical number 5 by

the XOPEN # statement.

INPUT #5(11). A(11). Reads out the data in elements 11 and 12 of the BRD, as

A$(12) described above, to the one-dimensional numerical array

variable A(11) and one-dimensional string array variable

A$(12) respectively.

CLOSE #5

CLOSE

Closes the BRD file opened to logical number 5 by the

XOPEN # statement.

Closes all files opened by WOPEN, ROPEN or XOPEN.

88

KILL #

IFEOF (#)

KILL #5

KILL

Kills the BRD opened in logical number 5 by the XOPEN

statement.

Kills all files opened by WOPEN, ROPEN or XOPEN.

IF EOF (#5) THEN If the file end occurs during execution of the INPUT #

700 statement relative to BSD, or during execution of the

INPUT # () statement relative to BRD, this is a branch

statement that commands to jump to the processing

routine in statement number 700.

5.1.5 Error Processing Statements

ON ERROR GO ON ERROR GOTO If an error occurs during program execution, this is a

TO 1000 sentence saying to jump to statement number 1000.

IF ERN IF ERN = 44 THEN If the error number is 44, this is a command to jump to

1050 statement number 1050.

IF ERL IF ERL = 350 THEN A command to jump to statement number 1090 if the

RESUME

1090 error statement number is 350.

IF (ERN = 53) * (ER A command to finish the program if the error number is

L = 700) THEN END 53 and the error statement number is 700.

650 RESUME

For the DISK BASIC, if an error occurs during the

program, the error number and error statement number

will be set, respectively, to variables ERN and ERL.

Transfers control once again to the command generating

the error.

700 RESUME Transfers control to the command following the command

~ NEXT generating the error.

750 RESUME 400 Transfers control to statement number 400.

800 RESUME 0 Transfers control to the program heading.

89

5.1.1 Substitution Statements

LET LET A=X+3 Substitutes sum results of numerical variable X and

numerical data 3 to numerical variable A. LET can be

omitted.

5.1.7 Input/Output and Color Control Statements

COLOR

PRINT

10 CaLOR .•. 2

20 CaLOR 3.2.7

Changes all screen background color to red.

Changes the color of characters at coordinates (3,2) to

white.

30 CaLOR 4.204.2 Makes the color of characters at coordinates (4,2) green,

10 PRINT A

?A$

100 PRINT [6.5] " AB

C"

110 PRINT [A] "DE

F"

120 PRINT [704] "G

HI"

200 PRINT

and the background color red.

Displays the content of numerical variable A on the CRT

display.

Displays the content of string variable A$ on the CRT

display.

Writes the "ABC" string in yellow on a light blue

background.

Writes the "DEF" string in yellow on a green back-

ground.

Writes the "OHI" string in white on a green background.

New line if PRINT only.

PRINT USING PRINT USING" ## A designation which lines up decimal point positions by a

INl'UT

#.##";A

10 INPUT A

20 INPUT A$

fixed decimal point display.

Inputs values relative to variable A from the keyboard.

Inputs strings relative to string variable A$ from the

keyboard.

30 INPUT "VALUE?" Before input from the keyboard, the question string data

;D VALUE? is displayed. The semi-colon is used to separate

the string from the variable.

90

SET

RESET

GET

40 INPUT X, XS, y, Numerical variables and string variables can be combined

YS by using the comma (,) to separate them, but it is

necessary to match the type of variable at the time of

input.

SET 30,15

RESET 30,15

10 GET N

20 GET KS

Illuminates the position of coordinates (30,15).

Er!Ules the position of coordinates (30,15).

Inputs one numerical character from the keyboard relative

to numerical variable N. If the key is not pressed at that

time, 0 is input.

Inputs one string from the keyboard relative to string

variable KS. If the key is not pressed at that time, AS

becomes vacant.

READ - DATA 10 READ A,B,C

1010 DATA 25,

-0.5,500

Numerical data 25, -0.5 and 500 are substituted to,

respectively, numerical variables A, B and C by execution

of the READ-DATA statements at the left.

RESTORE

10 READ HS, H, SS, The first data of the DATA statement, i.e., string data

S "HEART", is substituted for the first variable of the

30 DATA "HEART", 3READ statement, i.e., for the string variable HS. Next,

35 DATA" SPADE ", numerical data 3 is substituted for the second variable H,

1 1 and read-in continues one after the other.

10 READ A,B,C In the example at the left, 3, 6 and 9 are respectively

20 RESTORE substituted for variables A, Band C by the READ

30 READ D,E statement in statement number 10, but, because the

100 DATA 3,6,9, RESTORE statement occurs next, the values next substi-

12, 15 tuted for variables D and E by statement number 30's

READ are, respectively, 3 and 6, not 12 and 15.

700 RESTORE 200 Moves the data read-out pointer in the READ-DATA

statement to the heading of the DATA statement in

statement number 200.

91

5.1.8 Loop statements

FOR- TO

NEXT

10 FOR A == 1 TO The statement number 10 is a command to change

10 variable A and substitute for values from 1 to 10; the

20 PRINT A

30 NEXT A

value of the first A becomes 1. Because the value of A is

displayed on the eRT screen by statement number 20, the

numeral 1 is displayed. Next, the value of A becomes 2 by

statement number 30, and this loop is repeated. The loop

is repeated in this way until the value of A becomes 10.

(At the point when the loop ends, the value 11 is entered

to A.)

10 FOR B == 2 TO A command to change variable B and substitute for values

8 STEP 3 from 2 to 8 in steps of 3 (statement number 10). It is also

20 PRINT B ~ble to make the STEP value negative and make the

30 NEXT variable smaller each time.

An example of an overlay of the FOR - NEXT loops

10 FOR A=1 TO 3 (variables A and B). Note that B loop is placed inside A

20 FOR 8 S 1. 0 TO 30J '"I> loop. Nesting of loops (doubling tripling ...) is possible
30 PRINT A, 8 ff ' ,
40 NEXT 8 but the inner loop must be enclosed within the outer loop.
50 NEXT A

60 NEXT B, A FOR - NEXT nesting must not e~ed 15 levels.
70 NEXT A, B

t It is possible, by the previous double loop, to group
Becomes error.

statement numbers 40 and 50, as in statement number 60

at the left, into one NEXT statement. For an operand

such as shown in statement number 70, however, an error

occurs.

92

5.1.9 Branch Statements

GOTO

GOSUB -

RETURN

IF - THEN

IF - GOTO

IF - GOSUB

ON- GOTO

ON

GOSUB

100 GOTO 200

100 GOSUB 700

800 RETURN

Jumps to statement number 200 (= movement of program

execution).

Branches to statement number 700 subroutine (calling of

subroutine). Ends subroutine execution by RETURN

statement, and returns to statement following GOSUB

command in the main program.

10 IF A>20 THEN Jumps to statement number 200 if variable A is larger

200 than 20. Executes next statement if A is 20 or less.

50 IF B<3 THEN B Substitutes B + 3 for variable B if variable B is less than

=B+3

100 IF A>=B GO

TO 10

3. Executes next statement if B is 3 or greater.

Jumps to statement number 10 if variable A is equal to or

greater than variable B. Executes next statement if A is

less than B.

30 IF A=B * 2 GO Branches to statement number 90 subroutine if value of

SUB 90 variable A is equal to twice the value of B. If not,

executes next statement.

(If there is a multi-statement following a conditional

statement, the ON statement is executed when the

condition is not reached, but the IF statement moves the

execution to the next statement number if the condition is

not reached, and the multi-statement is ignored.)

50 ON A GOTO 70, Jumps to statement number 70 if variable A is 1, to

80. 90 statement number 80 if it is 2, and to statement number 90

if it is 3. The next statement is executed if A is 0 or 4 or

more. The INT function is included in ON, so jumps to

statement number 80 if A is 2.7, in the same way as 2.

90 ON A GOSUB

700. 800

Branches to statement number 700 subroutine if variable

A is 1, and to statement number 800 if it is 2. The next

statement is executed if A is 0 or 3 or more.

93

5.1.10 Definition Statements

DIM

DEFAULT

DEFFN

10 DIM A(20)

20 DIM B(79,79)

30 DIM C1$(10)

40 DIM K$(7,5)

DEFAULT" FD1 "

For one-dimensional numerical array variable A(), 21

array variables become available, from A(O) to A(20).

For two-dimensional numerical array variable 8(),6400

array variables become available, from 8(0, 0) to 8(79,

79).

For one-dimensional string array variable C1$(), 11

array variables become available, from C1$(0) to C1$(10).

For two-dimensional string array variable K$(), 48

array variables become available, from K$(O, 0) to K$(7,

5).

Considered to be floppy disk drive number 1 if device

names are omitted by commands.

100 DEF FNA(X) = Statement number 100 defines X2 -x to FNA(X),

x t 2 - X statement number 110 defines 10gJOX + 1 to FN8(X), and

110 DEF FNB(X) = statement number 120 defines 108e Y to FNZ(Y).

LOG(X) + 1

120 DEF FNZ(Y)

= LN(Y)

Each function is limited to 1 variable.

94

DEF KEY

INIT

LABEL

15 DEF KEY(1) = "L The DEF KEY statement of statement number 15 defines

1ST" -+- CHRS(13) the function LIST IQY to

25 DEF KEY(2) =" L function key number 1, and statement number 25 defines

OAD:RUN" + the function LOAD:RUN IQY.
CHRS (13)

INIT" RS1:"

210 LABEL "SUB"

220

Sets the RS-232C mode.

Defines subroutine name beginning from statement num

ber 210 as "SUB".

5.1.11 Comment Statements and Control Statements

REM 200 REM JOB-1 REM is a comment statement; ignored when program is

executed.

STOP

END

CLR

CLS

CURSOR

850 STOP

2000 END

300 CLR

Stops program execution and awaits command. If CONT

command given here, program continues.

Indicates end of program. Executes program end.

All numerical variables and character variables become 0

or vacant (null); all array variables return to undeter

mined condition. All DEF FN statements also become

invalid.

10 CLS Erases the secreen in the scroll range.

50 CURSOR 25. 15 Specifies the position by numerals or variables: from 0 -

60 PRINT" ABC" 39 from the left end in the X axis direction, and 0 - 24

from the top end in the Y axis direction. For the example

at the left, string "ABC" is displayed from the 26th cursor

position from the left end of the screen and the 16th

cursor position from the top end.

CONSOLE

SIZE

TI$

10 CONSOLE 0, 25, The scroll range covers the whole screen.

0, 40

95

20 CONSOLE 5, 15 Specifies the scroll range from the 5th line to the lOth
line.

30 CONSOLE 0, 25, Specifies the scroll range from the 5th line to the 30th

5,30 line.

40 CONSOLE 0, 10, Specifies the scroll range to a 10x 10 range.

0, 10

50 CONSOLE 2, 20, Specifies the scroll range to the scroll range shown in the

2, 35 figure below. (0,0) 7 (39,0)
2 --'lfT-r-J"7-ri~

(39,24)

? SIZE Displays the unused size (in bytes) of the BASIC text

area.

100 TI$ = "222030" Sets the internal clock to 10:20:30 PM. Time data are

expressed as a 6-digit figure within quotation marks.

5.1.12 Music Control Statements

MUSIC

TEMPO

300 TEMPO 7 Tempo 7 (fastest speed) is specified by statement number

310 MUSIC" DE# 300. By statement number 310, re mi iJ:I~1 la (mid-

FGA" range) are played at tempo 7. U there is no TEMPO

statement, the music is played at the tempo of the default

value.

300 M1$ = "C3EG In this example, the melody is substituted to the 3 string

+ C" variables and the MUSIC command is executed. When

310 M2$ = "BGD the staff notation is used, the notes below are played.

- G" Note that, because there is no TEMPO statement, the

320 M3$ = "C8R5" playing is at the default value tempo.

330 MUSIC M1$,M

2$,M3$

96

5.1.13 Machine Language Program Control Statements

INP@ INP@ $E8,A Substitutes data at port number $E8 for variable A.

OUT@ OUT@ $E8,A Outputs variable A to port number $E8.

LIMIT

POKE

PEEK

USR

100 LIMIT 49151

100 LIMIT A

Limits the area used by the BASIC program to the 49151

address (BFFF with hexadecimal notation).

Limits the area used by the BASIC program to the

address of variable A.

100 LIMIT $BFFF Limits the area used by the BASIC program to the

300 LI M IT MAX

address BFFF in hexadecimal notation. A hexadecimal

notation is indicated by an "$" mark before the notation.

Returns the area used by the BASIC program to the

maximum memory.

120 POKE 49450, 175 Sets data 175 (decimal notation) to the decimal notation

address 49450.

130 POKE AD, DA Sets the value (0 - 255) indicated by variable DA to the

address specified by variable AD.

150 A = PEEK (494 Changes the data at decimal notation address 49450 to a

50) decimal number, and substitutes for variable A.

160 B = PEEK(C) Changes data entered at the decimal notation address

specified by variable C to a decimal notation, and

substitutes for variable B.

500 USR(49152)

550 USR (AD)

570 USR($COOO)

Moves program control to decimal address 49152. This

control movement has the same function as the machine

language CALL command. As a result, when the RET

command (201 at decimal notation) is in the machine

language program, returns to the BASIC program.

Calls the decimal address specified by variable AD.

Calls the hexadecimal address COOO.

97

5.1.14 Printer Control Statements

AXIS

CIRCLE

GPRINT

HSET

LINE

MODE

MOVE

Valid in GRAPH mode.

30 AXIS O. -10. 48 Adds a scale of 48 graduations in increments of 10 to the

Y-coordinate axis from the current pen position.

50 AXIS 1. 10. 48 Adds a scale of 48 graduations in increments of 10 to the

X-coordinate axis from the current pen position.

Valid in GRAPH mode

50 CIRCLE O. O. 240. Draws a circle (radius 240) from coordinates (0,0).

0.360. O. 2

Valid in GRAPH mode.

30 GPRINT (2.2). " A • Prints the character A upside down at the size of the 26

digit mode of the TEXT mode.

Specifies the current pen position' to a new starting point.

(Valid in GRAPH mode.)

Valid in GRAPH mode.

10 LlNE% 1.240. O. Coordinates (240,0), (240,-240), (0,-240) and (0,0) are

240. -240. O. connected by a solid line from the current pen position.

-240.0.0

MODE TN Returns from the graphic mode to the text mode (4O

characters per line).

MODE TL Returns from the graphic mode to the text mode (26

characters per line).

MODE TS Returns from the graphic mode to the text mode (80

characters per line).

MODE GR Switches from the text mode to the graph mode (in order

to draw graphs and figures).

Valid in GRAPH mode.

10 MOVE 150. 100 Moves the pen upward from the current pen position to

coordinates (150, 100).

98

RMOVE Valid in GRAPH mode.

20 RMOVE -240. Moves the pen upward relatively from the current pen

240 position by -240 (X direction) and 240 (Y direction).

PAGE Valid in TEXT mode.

PCOLOR

PHOME

PLOT

PRINTIP

PRINTIP

USING

KLINE

SKIP

TEST

10 PAGE 30

10 PCOlOR 1

20 PR INT/P "ABC"

PLOT ON

PLOT OFF

10 PRINT/P A.AS

Specifies 30 lines per page.

Valid in both TEXT and GRAPH mode

Prints "ABC" to the plotter printer in blue.

Moves the pen upward from the current pen position and

returns to the starting point. (Valid in GRAPH mode)

Enables use of color plotter printer as substitution for the

display. (Valid in TEXT mode.)

Cancels above function.

Valid in TEXT mode

Outputs string variable A$ content after the numerical

variable A content to printer.

20 PRINT/P ~I • For form feed of printer.

Outputs format specified data to screen. Format specifica

tion is written after the word USING. ()

PRINT/P USING "# Numerical variable A contents are output to printer

";A within 4 digits, justified right.

Valid in GRAPH mode.

70 RLlNE% 1. 240. Connects specified positions, relatively from current pen

O. -120. -SO. position (240,0), (-120, -SO) and (-120080) by solid line.

-12. SO

10 SKIP 10

20 SKIP -10

Valid in TEXT mode.

Advances the paper 10 lines.

Rewinds 10 lines.

Checks color specification and ink amount and dryness.

(Valid in TEXT mode)

LN

RND

100 A = LN (X)

99

Regarding the value of '9ariable X, gets natural logarithm

IO!!e X and substitutes for variable A. X must be a positive

value.

110 A = LOG (X)/L In order to obtain logy X when the logarithm base is Y, it

OG(Y) can be obtained by statement number 110 or statement

120 A = LN (X)/LN number 120.

(Y)

100 A=RND (1)

110 B=RND (10)

When there is a positive integral number in parentheses,

such as in statement number 100 or 110, generates a

random number using values from 0.00000001 to

0.99999999 sequentially each time the RND function is

used. (This has no relationship to the positive integral

number in parentheses.)

200 A=RND (0) When there is a 0 or negative integral number in

210 B=RND (-3) parentheses, such as in statement number 200 or 210,

initialization of random number generation occurs, a

specific number is always generated, and the same value is

substituted for A and for B.

100

5.1.15 String Control Functions

LEFfS

MIDS

RIGHTS

SPC

CHRS

ASC

STRS

VAL

LEN

10 A$ = LEFT$ (X$, Substitutes string variable XS (from beginning to Nth

N) character) for string variable AS. It doesn't matter

whether N is a constant, variable or numerical formula.

20 B$ = MID$ (X$,

M. N)

30 C$ = RIGHT$ (X

$, N)

40 D$ = SPC (N)

60 F$ = CHR$ (A)

70 A = ASC (X$)

80 N$ = STR$ (I)

90 I = VAL (N$)

100 LX = LEN (X$)

110 LS = LEN (X$

+ Y$)

Substitutes string variable XS (from Mth character to N

character) for string variable SS.

Substitutes string variable X$ (from end to N character)

for string variable CS.

Substitutes N number of spaces for string variable D$.

Converse to the ASC function, substitutes ASCII code

characters which are equivalent to the value of real

number A for string variable F$. It doesn't matter

whether A is a constant, variable or numerical formula.

Substitutes the value of the ASCII code of the first

character of st~ng variable X$ for variable A.

Converse to the V AL variable, substitutes the numerical

variable I as if it were a string for string variable N$.

Substitutes the numerical string of string variable N$ as if

it were a number for variable I.

Substitutes the character length (character number) of

string variable X$ for variable LX.

Substitutes the sum of the character length of string

variables X$ and Y$ for variable LS.

101

5.1.16 Tab Function

TAB 10 PRINT TAB (X);A Displays the value of variable A at the X + 1 character

position counting from the left edge of the screen.

5.1.17 Arithmetic Operations

The calculation priority is of white figures on dark background at left side, but the calculation of

figures in parentheses () has even higher priority.

t 10 A = X t Y Substitutes the X t Y calculation result for variable A.

*

+

(power)

10 A = -B

(minus sign)

10A=X*Y

(multiplication)

10A = XIY

(division)

10 A = X + Y

(addition)

10 A = X - Y

(subtraction)

(Note, however, that an error occurs if Y is not an

integral number when X is a negative number at X t Y.)

0- 8 is a subtraction; note that the "-" of -8 is a minus

sign.

Substitutes the multiplication result of X and Y for

variable A.

Substitutes the division result of X and Y for variable A.

Substitutes the addition result of X and Y for variable A.

Substitutes the subtraction result of X and Y for variable

A.

5.1.18 Comparison Logic Operators

>

10 IF A = X THEN

20 IF A$ = "XYZ"

If variables A and X are equal, executes commands from

THEN onward.

If string variable AS content is string XYZ, executes

THEN commands from THEN onward.

10 IF A>X THEN ... If variable A is greater than X, executes commands from

THEN onward.

102

<

<> or ><

>=or=<

<=or=<

*
+

10 IF A<X THEN." If variable A is smaller than X, executes commands from

THEN onward.

10 IF A<>F THEN ... If variable A and X are not equal, executes commands

from THEN onward.

10 IF A>=X THEN

10 IF A<=X THEN

40 IF (A>X) * (8)

If variable A is greater than or equal to X, executes

commands from THEN onward.

If variable A is smaller than or equal to X, executes

commands from THEN onward.

If variable A is greater than X and variable B is greater

Y) THEN than Y, executes commands from THEN onward.

50 IF (A>X) + (8) If variable A is greater than X or variable B is greater

Y) THEN than Y, executes commands from THEN onward.

5.1.19 Other Symbols

?

•

200 ? "A+B= "; A Can be used instead of PRINT. Consequently, statement

+ B number 200 and 210 are the same.

210 PRINT "A+B

="; A+B

220 A=X:B=X t 2: A symbol to express punctuation of the command state-

lA.B ment; used in multiple commands. There are 3 command

statements used in the statement number 220 multiple

command.

230 PRINT "AB"; "C Executes PRINT continuously. As a result line number

0"; "EF" 230, "ABCDEF" is displayed on the screen continuously,

with no space.

240 INPUT "X="; X Displays "X =" on screen; awaits data key input of string

$ variable XS.

250 PRINT" AB n,"C Executes PRINT with tabulation. For statement number

0", "E" 250, first AB is displayed on the screen, then CD is

displayed in the position 10 characters to the right of A,

and then E is displayed in the position 10 characters to the

right of C.

" "

$

300 DIM A(20), as J.n,exal1pleUsedin punctU!ltionof,avariable,:.

(3,6)

320 AS = "DISK BA " "indicates a string content

SIC"

330 BS = "MZ-7oo·

340 CS = • ABC· + Indicates a string variable.

CHRS(3)

500 LIMIT SBFFF Indicates hexadecimal number.

103

550 S '" SIN The approximate value of pi (3.1415927) is expressed by

(X*nl180) l't.

104

5.2 Error Message List (DISK BASIC)

Error dis-
Statement Content play number

1 Syntax error Error in syntax

2 Overflow error Numerical data outside the range, operation
result overflows.

3 Illegal data error Illegal number or variable used.

4 Type mismatch error The data type and variable type do not match.

5 String length error String length exceeds 255

6 Memory capacity error Insufficient memory capacity

7 Array def. error Attempt to define same array variables larger
than before using the undefined array variables.

8 LINE length error Length of one line exceeds the limit.

10 GOSUB nesting error GOSUB statement nesting over

11 FOR - NEXT nesting error FOR-NEXT statement nesting over 15

12 DEF FN nesting error Function definition (by DEF FN statement)
nesting over 6

13 NEXT error NEXT statement without FOR statement

14 RETURN error RETURN statement without GOSUB statement

15 Un def. function error Use of undefined function

16 Un def.~. error Attempt to refer to an undefined statement
number

17 Can't~ c.o ... ~ e-rrOr Continuation of program impossible by CONT
statement ..

18 Memory protection ruror Request for write-in in BASIC interpreter ,
control area •

19 • Instruction error Use of direct command and statement mixed

20 Can't resume error RESUME can't be executed

105

Error dis- Statement Content
play number

21 Resume error Attempt to use RESUME although no error

24 Read error Use of READ statement withOl(t corresponding
DATA statement

25 SWAP JMoeI error Swap level exceeds 1

28 System id error Trying to access file other than DISK BASIC.

29 Framing error Framing error

30 Overrum error Overrum error

31 Parity error Pari ty error

40 File not found (Lrt'or Reference non-existent file

41 Disk drive hardware error Floppy disk drive hardware error
Rlr«-",-c:L .. Q.)(. i:.. ~

42 s--file error Attempt to register already existing file name

43 Already open error Opening of file already open

44 ~ not open error Referencing (or CLOSE or KILL) unopen file

46 Write protect.file o-rr 0 r Write-in prohibited file

50 DMk not ready Q,fr() r Floppy disk off as system

51 Too many files ~('r()r Attempt to register beyond maximum number 63

Sl D, l. \.c. W\: ... _ \.-, \.. fhrl) f"
of files

53 No file space O/rof" Insufficient space on floppy disk

54 11 ,Iiitl; unformat e.rror Non-initialized floppy disk

-
55 aSB !lIds 11 ~!tll 0'1 Data size to 1 BSD file exceeds 64K bytes

;roD l0nDt : e errOr
58 Dev, name error Error in device name description .
59 Can't execute error Trying to execute device that cannot be executed.

60 Illegal file name error Filename error

106

Error dis-
Statement Content

play number

61 Illegal file mode error File mode error

63 Out of file error Out of file (file data read-in)

64 Logical number error Non-regulation logical number

65 LPT: not ready Printer not connected

68 Dev. mode error Error in device mode

69 Unprintable error Non-defined error message

70 Check sum error Check sum error (tape read-in error)

5.3 Memory Map

FFOO
FFFF

Monitor + 10CS

BASIC

interpreter

Text

I/O work area

Variable area

String data buffer

Temporary String Area

t
Free area •

Stack

Calculation work area

Free area for user

Work area for IPL

..

..

..

Start address when NEW
command is executed

107

~ Text end code "00 00"

~ I/O work end code "00"

.. Variable end code "00"

LIMIT -'&HlOO

Address specified by LIMIT

108

5.4 Use of the Floppy Disk

For information regarding the method used for setting the floppy disk and the method

of floppy disk drive operation, please refer to the Operation Manual for model

MZ-IF02.

It should be remembered that a master disk should be handled and used very carefully.

Moreover, because Sharp optional floppy disks are not initialized, please initialize them

by a utility program before use.

Notes regarding the use of floppy disks are not initialized; please initialize them by a

utility program before use.

Notes regarding the use of floppy disks

• If fingerprints get on the floppy disk through the head window, read-out and

write-in will become impossible. Take the utmost care not to allow the surface of

the floppy disk to become marked, stained, dirtied or defaced in any way!

• Storage temperature conditions (around the floppy disk): 4°C - 53°C (39°F

127°F)

The jacket will become deformed if the temperature exceeds 53°C (127°F). Please

take care not to expose the floppy disk to direct sunlight for a long time and not to

place it in an environment where the temperature is apt to exceed 53°C (127°F).

When the floppy disk is used, please use it within the temperature range prescribed

on the protection sleeve. Moreover, because the environmental conditions of the

place of use differ from those of the place of storage, it is suggested that, before

use, the floppy disk be placed for a short time in conditions corresponding to those

of the place of use.
J

• When inserting the floppy disk into the floppy disk drive, insert it straight, gently,

and all the way until it stop~. Then move the front door lever to the horizontal

position. Rough handling will damage the floppy disk.

• Do not bend or fold the floppy disk, If the jacket becomes deformed, read-out and

write-in will become impossible.

...

109

• Write information on the index label before attaching it to the jacket. If something

must be written on a label which is already attached, use a felt marking pen or

similar soft-tip instrument; do not use a pencil or ball-point pen.

• Smoking, eating or drinking in the vicinaty of the floppy disk drive or floppy disks

should be discouraged, or should be done only if great care is taken that ashes,

food particles or liquids do not get into the floppy disk drive or on the floppy disks.

Notes regarding the storage of noppy disks

• Absolutely avoid placement or storage near sources of magnetism. Data on disks

can be erased by magnetized rings, necklaces, etc., so the wearing of any item

which might possibly be magnetized should be carefully avoided when floppy disks

are handled. Note also that it is also dangerous to bring floppy disks near other

equipment or devices which generate or emit magnetism. Note, for example, that

computer CRT displays, cassette recorders and household television sets all

generate magnetism, so floppy disks should always be kept away from these and

similar equipment.

• Be sure to store the floppy disk in its protective sleeve when it is not being used.

The habit should be formed to immediately insert the floppy disk in the sleeve

when it is removed from the floppy disk drive. By following this practice, the

majority of handling errors and accidents can be prevented. Special care should be

taken regarding the master disk: place it in the floppy disk drive only when it is to

be used, and when it is not being used it should be immediately and carefully stored

in a safe place.

The protective sleeve is made of a special material in order to prevent damage by

static electricity and moisture, so be sure to always store the floppy disk only in this

sleeve.

• For storage, insert the floppy disk in its protective sleeve and then place it in the

storage box. The box should be placed so that the disks inside stand vertically.

Avoid any storage conditions in which the disk is not standing vertically straight or

in which it is bent or apt to become bent.

110

A storage box for the master disk is not included. To store it, use a box which is

applicable, keeping in mind the conditions stated above .

• Avoid holding floppy disks with pager clips, spring clips or any other similar

instrument.

• Never place any heavy item on top of a floppy disk. Also do not carelessly place

them on a desk top, etc. Be sure to always return all floppy disks to their prescribed

place for storage immediately after use.

SHARP CORPORATION
OSAKA, JAPAN

Printed In Japan
Gedruckt In Japan
Imprlme' au Japon
Stampato In Glapporf"

4C

	Sharp MZ-700 Disk Basic Manual
	Introductory Note
	Introcuction
	Difference between Cassette and Disk Basic
	Notes Concerning the Control of the Floppy Disk Drive
	Increase of Floppydisk Interface ROM
	Floppydisk Drive Control ROM
	Contents
	What the Disk Basic is
	File
	File Classification

	Data File Control
	Program File Control

	1: Disk Basic Outline
	1.1: Starting Disk Basic
	Automatic Execution of Basic Text AUTO RUN

	1.2: How to Copy the Disk Basic
	1.3: File Control
	1.4: Sequential Access File Control
	To Find the Data End

	1.5 Random Access File Control
	1.6 Program Chain (CHAIN)
	1.7 Program Swap (SWAP)
	1.8 Reserved Words
	1.9: Table of File Input/Output Devices
	1.10 Initial Settings

	2: Disk Basic Expansion, New Commands and Statements
	DIR (directory)
	RUN (run)
	LOAD (load)
	SAVE (save)
	DELETE (delete)
	LOCK (lock)
	UNLOCK (unlock)
	RENAME (rename)
	MERGE (merge)
	CHAIN (chain)
	SWAP (swap)
	ROPEN # (read open)
	INPUT # (input)
	WOPEN # (write open)
	PRINT # (print)
	XOPEN # (cross open)
	INPUT # () (input)
	PRINT # () (print)
	CLOSE # (close)
	KILL # (kill)
	DEFAULT (default)
	EOF (#) (end of file)
	LABEL (label)
	WAIT (wait)
	SEARCH (search)
	INIT (initialize)
	USR (user)
	INP@ (input)
	OUT@ (out)
	Logical Operation

	3: Basic Monitor Functions
	3.1: Editing Format
	3.2: Printer Switch (P Command)
	3.3: Dump (D Command)
	3.4: Memory Set (M Command)
	3.5: Find (F Command)
	3.6: Gosub (G Command
	3.7: Transfer (T Command)
	3.8: Save (S Command)
	3.9: Load (L Command)
	3.10: Verify (V Command)
	3.11: Return (R Command)

	4: Application Programs
	Use of File Converter
	Explanation of Contents

	5: Disk Basic Summary
	5.1: Summary of Disk Basic
	5.1.1: Commands
	DIR
	DIR/P
	LOAD
	SAVE
	RUN
	MERGE
	VERIFY
	AUTO
	LIST
	LIST/P
	RENUM
	SEARCH
	NEW
	CONT
	BYE
	KEY LIST

	5.1.2: File Control Statements
	LOCK
	UNLOCK
	RENAME
	DELETE
	CHAIN
	SWAP

	5.1.3: Sequential Access Control Statements
	WOPEN #
	PRINT #
	CLOSE #
	KILL #
	ROPEN #
	INPUT #
	CLOSE #

	5.1.4: Random Access Control Statements
	XOPEN
	PRINT #()
	INPUT # ()
	CLOSE #
	KILL #
	EOF (#)

	5.1.5: Error Processing Statements
	ON ERROR GOTO
	ERN
	ERL
	RESUME

	5.1.6: Substitution Statements
	LET

	5.1.7: Input/Output and Color Control Statements
	COLOR
	PRINT
	PRINT USING
	INPUT
	SET
	RESET
	GET
	READ - DATA
	RESTORE

	5.1.8: Loop Statements
	FOR - TO - NEXT

	5.1.9: Branch Staements
	GOTO
	GOSUB - RETURN
	IF - THEN
	IF - GOTO
	IF - GOSUB
	ON - GOTO
	ON- GOSUB

	5.1.10: Definition Statements
	DIM
	DEFAULT
	DEF FN
	DEF KEY
	INIT
	LABEL

	5.1.11: Comment and Control Statements
	REM
	STOP
	END
	CLR
	CLS
	CURSOR
	CONSOLE
	SIZE
	TI$

	5.1.12: Music Control Statements
	MUSIC
	TEMPO

	5.1.13: Machine Language Program Control Statements
	INP@
	OUT@
	LIMIT
	POKE
	PEEK
	USR

	5.1.14: Printer Control Statements
	AXIS
	CIRCLE
	GPRINT
	HSET
	LINE
	MODE
	MOVE
	RMOVE
	PAGE
	PCOLOR
	PHOME
	PLOT
	PRINT/P
	PRINT/P USING
	RLINE
	SKIP
	TEST
	LN
	RND

	5.1.15: String Control Functions
	LEFT$
	MID$
	RIGHT$
	SPC
	CHR$
	ASC
	STR$
	VAL
	LEN

	5.1.16 Tab Function
	TAB

	5.1.17:Arithmetic Operations
	^ - * / + -

	5.1.18: Comparison Logic Operators
	= > < <> >= <= * +

	5.1.19: Other Symbols
	? : ; , " $ pi

	5.2: Error Message List (Disk Basic)
	5.3: Memory Map
	5.4 Use of the Floppy Disk

