Challenger I-P Memory Map (BASIC-1in-ROM

0009 -

00FF

0100 - O1FF

%0130
%01CO
0200 -
%0203
#0205
#0218
*021A
. #021C
*021E
#0220
0222 -
0300 en

AQ00O0 -

DoG0 -
DFCO

Fooo -

regg -
FCOO0 -
FDOO -
FEOQ -
FFoo -
“FFFA
*FFFC
*FFFE

0221

02FA
d of

BFFF

D3FF

Fool

FBET
FCEFF
FDFF

FEFF
ETYF

Page Zern
Stack
NMI Vector
IRQ Vector
BASIC Flags & Vectors
LOAD Flag
SAVE Flag
Input Vector
OQutput Vector
Control C Check Vector
Load Vector
Save Vector
Unused
BASIC Workspace

BASIC=-1in-ROM

Video RAM
Pclled Keyboard

ACTIA Serial Cassette Port

ROM
ROM - Floppy Bootstrap

Configuration)

ROM - Polled Keyboard Input Routine

ROM - 65V Monitor
ROM - BASIC Support
NMI Vector

Reset Vector

IRQ Vector

0028B,¢
000D
0CUE
OCOF
0010
0013=5A
0057
0061
0064
0065
0079,7A
0078, 7C
007D, 7E
007F, 80
0081 ,82
0085,86
0087,88
0089, 84
008F,90
0095,56
0097,98
00AA, AB
00AD, AE
00AE, AF
00D1=D7
00EQ~E6
00E8=FF
00FB
00FC
OOFE,FP
0130
01CO
0200
0201
0202
0203
0205
0206

0207-0E.

0212
0213-16

A000=-37
A038-65

AOB4=163 BASIC keywords in ASCIT:hi bit set
A164=86 Error messages with nul. delimiter

. BEALE

MEMORY LOCATIONS CONTAINING THINGS OF INTEREST

Address of USR routine -
Number of extra nulls to be inserted after carriage return
Number of characters since last carriage return

Terminal width (for auto CRLF) ‘

Terminal width for comma spaced columns

Input buffer :

String variable being processed flag (?)

?

CTRL O flag (hi bi* on = suppress printing)

sometimes contains $68 (77)

Pointer to initial null of BASIC program workspace

Pointer to beginning of BASIC variable storage space
Pointer to beginning of BASIC array storage space

Pointer to end of array space/beginning of free memory

Pointer to end of string uPauaftup of free memory
Pointer to top of memory allowed to be gaad by BASIC

Current line number
Sometimes next line number (7)

DATA pointer

This is where ADOB leaves address of the variable it found-
Address of variable to be assigned value by OUTVAR (AFC1)
Points to pointer of next BASIC line after LIST

The contents of this pair is printed in decimal by B962
Thig is where INVAR (AE05) leaves its argument

Clobbered by 0SI Extended Monitor disassembler;kills BASIC
Apparently unused page zerd space

Apparently unused (by BASIC) page zero space

RO monitor load flag

RO monitor contents of current memory.location

Address of current ROM monitor memory location

NMI routine)

132G routine (can be overwritten by stack being used by BASIC)
Current screen cursor is at D700 + (0200);initlalized to (FFEO)
Save character to be printed

Temp storage used by C3T driver

*OAL flag ($80=LOAD from tape)

SAVE flag (0= not SAVE mode)

Time delay for slowing down CRT driver

Variable execution block=-code for screen seroll=not reuseable
CTRL C flag (not O=ignore CTRL C)(reset by RUN)

Polled keyboard tempnrary storage and counter

table (in token order; add 1 to each &«

(real entry addresses)
as delimiter;in token orde:

BASIC initial word Jjump
BASIC non-initial word Jjumps

*Written by" message

00BC Works its way through a line of BASIC (or whatever C3

ooc2

ALTT
A925

AAC1

VERY USEFUL BASIC ROUTINES °

!] C4 points to)
and gets the next char each time it is’'called, It will ve pointing
to the end of your USR statement if you call it from the USR; you
can then use it to get stuff after X=USR(Y)=--and BASIC will never

be the wiser! BC leaves carry set if character is numeric.

Entry to the BC routine without incrementing C3,C4 before getting
the character. Thus it gets the current character.

Call this routine and then jump to A5C2 and you'll be RUNning
the current BASIC program--starting from machine Ianguage!

Call this from a USR statement and you will be doing an INPUT
statement==but BASIC will not echo the characters you type in-=-
including the CRLF at the end. This gives you a real BASIC INPUT
statement that doesn't screw up your nice graphics by scrolling
the ocreen one line! You must set loc 64 to $80 (set the CTRL O
flag) before this all works, Do an LSR $64 to clear the flag to
normal if you want BASIC print statements to work again.

Like AAAD but no type mismatch check.

One you've been waiting for. This gets a 16 bit argument from
the current BASIC line position (yes, like right after the ")"

of your USR statement!), evaluating whatever expressions it finds,
and leaves it where a.call.to AEO5 will find it and put 1¢ in
AE,AF! (Use ACO1 to find a comma and then call AAAD again to get
another value!) -

ABF5-ACOC This series of routines (actually of entry points tﬁ one routi

ADOB

B3AE

B962

uses the BC routine to check for various delimiters, If you disassem
the ROM here, it demonstrates a classic use of the 2C opcode as a
combination NOP and immediate load, depending on where you jump in,
ABFB checks for ")":; ABFE for "("; ACO1_ for ","; ACO3 for whatever
character you leave in A when you call it, ABF5 checks for “(%,
calls AAC1 to get a value, then checks for *)*. (Thoughts of a

BASIC Etat?ment X=USR(Y)(Z) should be jumping into your head

about now,

This routine uses the BC routine to find the name of the variable
that's next in the BASIC line, and puts the address of the variable
in locs 95,96. It also leaves the address in A, Y, If you store

A in 97 and Y in 98, you can call OUIVAR (AFGlS to store whatever
16 bit value you put in A and Y into that BASIC variable. '

This is like AAC1, but gives an error if the value is greater
than 25510. (Used by the POKE routine to keep you from putting a

too-big number in memory.) .
Prints the decimal value of whatever 16 bit number is in AD,AE

at the current cursor location on the screen, with normal BASIC
checks for line length (does auto CRLF if line 1s too long) ete.

MISCELLANEOUS BASIC ROM ROUTINES

These notes do not claim to be complete or even error-free,
They are only my hastily scribbled comments on those routines I
happened to come across in my looking at BASIC, .

0000 Warmstart (4C 74 A2) ABE3 Qutput*"?® .
0003 Messapge printer (ABC3) ABE5 Output char in A; update OE; check
00Al Genl purp JMP instr; put’ T st e
target addr in A2,6A3 A925 Input routine less clear CTRL 0
OUBC Get mext char in BASIC line - A9k6 Output "7 *;jump to A357
00C2 Get current char in B line AAC1 Like AAAD w no TH err check
A1Al Look back thru stack 777 AAAD Get 16 bit arg from BASIC line;
A212 Check for OM and steok Goua TH S48 Snpse A8 ARG AR;
i *ont error . 0 mamarda i Cheieoto 2007
A24E Error: caller sets X-re ABDS 16 bit complement using AEO0S5/AFC1
to error code ABF5 Checks for *(*, “alta _
A27h Warmstart entry AAC1 ,checks for ")
A357 Input and fill buffer; ABFB SN err Af next char not *)*
pub DLl &t end ABFE SN err Af next char not *(®
ApoS. nput iow JUAR ACOL SN err if next char not ¥,
A309 Tomgla CIRL'O Tlag ACO3 SN err ifnext not what's in A
Al32 Find BASIC line whose # is
in 11,12; put addr of ptr ACOC SN err printer
of that line in AA,AB : ADOB Get var name from BASIC line; put
AN77 PglnﬁnEB.cua;u Egﬂi;r:::t s addr of var in 95,96 ﬂﬂ;hﬁ1r _
str array ptrs;re Expeots var name in 93,94; finds
§§?§E;§:1%:§§?6F§; gggl in ifg? of var and put 1 95,96 ad
AS1 Clear stack;Oin 8C and 61 -2 ﬂvﬂ,ﬂ“ 13 910 sgmed vle
ASC2 Top of maln BASIC exec loop AEBS BS error
ASFC Entry to BASIC execute loop AEBB FC error
AS5FF Do line of BASIC AFC1 OUTVAR 0 in 5F;(A)in AE: (Y) in AF;

then to 7

A629 Jmp FFF1 for CTRL C
BOAE Msg printer (ABC3)

A636 CTRL C entry point

A67B Set null count at DO (?7) . B3AE Put © bit arg from line in AE,AF
A77F Cet dec # from buffer; B3F3 (BA,BB) to C3,Ch

put value in 11,12 | . B4DO Arith to normalize FP arg??
AB66 Put null at end of buffer; B887 Check for +,~,8,#,.,B... long!

CRLF;nulls

B95A Prints ourrent line #
ABSC CRLF w/ nulls from OD
: B962 Prints contents of AD,AE (as dec)

ABC3 Msg printer; A,Y point to : BDI1 Colds : 2

msg, which ends w/ null gt
= BEE4 UART input routine
ABEO Output (S1883 chip at FBOX)

BEF3) UART output routine
BEFE UART initialization

BFO7 ACIA input (6850 chi b i
at FCOX~like c:z-ur}p :

BF1§ ACIA cutput routine
BF22 ACIA initialization e

ROM BASIC NOTES

Here 1s what we lmow so far of the structure éf OSI ROM BASIC
Version 1.0 rev 3.2,

A good place to start exploring is the warmstart entry at A274,
(All addresses are hex unless otherwise noted.) BASIC can also be
warmstarted by a jump to loc 0000--where the system puts 4C/74/A2
at coldstart. At this point, BASIC is looking at the keyboard,
walting for immediate mode commands or BASIC instructions with line
numbers to be entered.

See the warmstart flowchart., BASIC first clears the CTRL ©
flag (LSR {64 clears the flag--the hi bit of loc 64) to allow
printing, invokes the message printer (loc 0003 ig a jump to. the .
printer at A8C3) by the standard convention of pointing A,Y (lo,hi)
at the message (ASCII in RAM or ROM=--with last character of a nulle=~
that delimiter tells the rpinter routine to return) and prints
"OK erlf*. (The OK 1s stored at A192,3) Now the "fill the input
buffer® routine is called. This routine (at A357) inputs (through
FFEB, from either keyboard or ACIA, depending of the load flag loe
0203, bit 7) characters, keeps a count of them, stores them in
the imnput buffer at loc 13-5A, handles "backspace®, @, CTRL 0, and
when it sees a CR, calls A866 to put & null instead of a CR in the
buffer, and print a CRLF with extra nulls from OD, (Nulls are put
in the output stream after CRLF if needed for a slow device by puttin,
the number of nulls desided in loc 0D,) There is -also a flowchart
for A357, a main system routine,

There exlsts a vital routine callable at 00BC (tha code for which
i8 copled at coldstart from BCEE-BD0O5 in RBROM) that puts the pext
character in the current line being worked on in the accumulator,
(The gurrent character may be had in A by calling 00C2 instead of BC,
The BC routine also sets the carry flag if the character being passed
is numeric, for the information of the calling program., The address
of the current character ig in loc C3,84--the address portion of
an LDA instruction., Everybody uses BC to find out what's up next,
C3,C4 is constantly be changed by the users of the chfnutina, in
addition to being incremented by BC each time it is called.

MISCELLANEOUS NOTES ON BASIC

Try answering "A" to C/W/M?--A for author.

All final quotation marks are optional unless ambiguity would result,
For example, PRINT *JIM works fine, but INPUT "NAME ; A$ does not,.

If you want to embed commas in a line you are typing in response to
an INPUT statement, begin the line with quotation marks. This will
also let you enter a line with leading blanks, The same thing also
lets you put commas:or.leading blanks in DATA statements. The closing
quotes are, of course, optional (unless ambiguity would result).

A colon after any response you type to an INPUT statement ends what
the INPUT sees, but lets you make remarks on the screen. For example,
if inresponse to INPUT Mngm: type JIM:WILLIAMS <RETR the screen will
show what you typed, but will contain only “JIM",

Although it is not documented, the statement OR X GOSUB nn,mm,pp,...
works just fine--just the same as an ON X GOTO, but calling subroutines,

Recovery from coldstart is possible if you answer "MEMORY SIZE?" with

a number instead of <RET>. (Once you hit RETURN, BASIC fills the memory
with test bytes until it doesn't get them back to see how much memory
there i3, That means your program is completely and irrevocably
overwritten.) The easiest way is to go into the ROM monitor hefore

you coldstart and find and copy the contents of locations 007B,7C and
0301,02, Then coldstart, entering your memory size (l.e. 4096 for a 4K
machine, etc.) and after BASIC comes up, go back to the monitor and
replace 7B,7C (the end of program/beginning of variables pointer) and
0301,02 (the pointer from the first BASIC statement to the second, which
will be set to zeros by coldstarting--though the rest of the program

is still there). If you have a.ready coldstarted, look for the first
zero byte after loc 0305, and put an address one higher'than that zero.
in 0301,02 {(low order byte first: the contents of 0302 will be 03
always, unless you have hand-manufactured a very unusual. BASIC program,)
The program will now list, but will wipe itself out if you try to run
it, (Variables will overwrite the beginning of the program.) List the
program, immediately use the moritor to find the contents of 00AA,AB,
and put those contents into 007E,7C. Everything should then be back to
normal, (In fact, immediately after listing any line, locations AA,AB
will contain the address of the pointer of the next BASIC statement=-
or gf the ?eginning of variable space if the last line of the program

is listed. e _

Long BASIC lines produce auto carriage return/line feeds when listed.
When saving on tape, this causes the last part of the line to be lost.
By setting the "TERMINAL WIDTH" to longer than any BASIC line with a
POKE 15,255, the damaging carriage return will be avoided,

If you have some program in the machine, but want to look at a program
on a tape without writing over the program already there, the following
*VIEW® program will be useful. It is absolutely relocatable, 80 may

be put anywhere in memory: it reads tapes and writes only on the screen,
20,07,BF,20,E%,FF,D0,F8,P0,F6, Starting address is first byte.

This won't work on 1P's; the ACIA is in the wrong place.

¥

HOW TO READ A LINE OF MICROSOFT

We are going to be talking about a lot of numbers in the
next few paragraphs. It would probably be easier to visualize
1f you had the numbers in front of you on your system. If you

have an 051 system, I would suggest that you turn it on and
enter this program:

10 B=D 1AL zmE"
20 FORX=769108301?PEEK(X) s sNEXT

How run the program before we go any further.

If you have run the program, you are now looking at the
entire text and variable table for a small program. O0SI

+1CR0SOFT reserves the first three pages of memory for house-
keeping duties so the text actually begins at location 769 - the

“irst location that you displayed. The first line of the program
could be coded:

16 3 10 0 66 171 48 58 65 36 171 34 0

7he first two bytes, 16 3, are the location of the next line of
program. The next two bytes are the number of the current line
{10 0) and the end of the line is marked by a 0. (0°'s are
often used as markers in MICROSOFT as they occur infrequently
in text storage.)

- "All of tha commands, what MICROSOFT calle "reserved words",
are encoded in MICROSOFT codes. The arithemitic operators (,=,
%,/,and)} are also considered commands and encoded. The 171's
appearing in the line are " " statements. (I have included a

list of the MICROSOFT codes with this data sheet.)

MICROSOFT us:a ASCII to store print !tltl!lntlr remarks,
variable names, and, strangely enough, all numbers that appear
in the text. All line numbers in GOTO statements, all arithmetic
values, all variable values, and all values in IF statemente are
rtored in ASCII. HMiscellaneous characters :uch ag brackets and
* marks are nnrmally stored in ASCII.

The only thing that does not seem to haia-n hard and fast
rule are REM and DATA statements. Those two commande may be

found either in ASCII or code and seem to work as well either way.

“here does not appear to be any discernable pattﬂrn to the
‘choice of method of storages

The ASCII representation of numbers is significant. It
explains why #tatements using variable names normally execute
faster than etatements using the numerical values for the uparltinn'
“AZIC has to convert the ASCII numbers to BCD for storage and
to HEX for arithemetic operations before they can be used. Variable
vhlues are already processed and ready in a table and can be |
looked up faster than thev can be converted.

Here, the BC routine is being used to work through the ASCII
in the input buffer as it is being tokenlzed. C3,C4 is set to
point at the input buffer. If the first character in the buffer
1 numeric, the buffer must contain a numbered line of BASIC source,
so we go to A295 to do the "+okenize and store in BASIC workspace,
upd: Ling necessery pointers” job on the input buffer. If the first
character is not numeric, we call A3A6 to tokénize the line in the
buffer and put it back in the buffer. Then we jump to A5F6, the
main entry to the execute BASIC statements loop.

When a program is BUN {from the beginning), A5F6, in executing
the immediate mode command RUN, jumps to the RUN routine at A477,

. which does the following: 1)points C3,Ch to the contents of 79,7A
{the beginning of BASIC workspace)(0301]; 2)resets the string pointer
at 81,82 to the top of memory as recorded in 85,86; 3) resets the
array pointer to the end of the BASIC progranm (also known as the
veginning of BASIC single variable apaze) as kept in 7B,7C. (Ehis
pointer at 78,7C 1s congtently uddated during BASIC editing and

o program entry,); &) the 6502 stack pointer 1= regset to (01)FC;
5) a 00 is stored in locs 8C and 61 (why?); 6) a 368 is stored in
~loe 65 (why?). Returning from AL77, we jump to A5C2, the top of
the ®do the next line of BASIC" loop. See the "Main BASIC execution
loop" flowchart,
In the main BASIC 1nup, at A5C2, we first do a CTBL C check,
and stop, printing "BREAK IN LINE"contents of 87,88) before refurning
to warmstart Af we find CTRL C, If not, we check to see if the mext
character in whatever line we're wnrking on is a null {(the begimming
of another BASIC line). If it isn't, it had at least better be a
®e® +o indicate multiple statements per line, or we (0 to the
rvntat error printer, and back to warmstart. If we have & null,
the hi byte of the pointer after 1t will contain a 00 if we are at
the end of the program, so 1f we find that, we stop, Otherwise,
1:1g on +o the next line of BASIC, first storéng the number of this
new line in 87,88, and then incrementing ¢3,C4 past the pointer and
Tine number. The next sequential instruction in ROM id ASFC, and
we continue executing BASIC statemeﬁts.

ASFC igs the main entry point to the "run the BASIC prugram'lnup.
See its flowchart, It calls BC and checks for a null--and exits
to warmstart if it finds that trivial ease, Otherwise it calls ASFF
to do the dirty work of executing & BASIC statement before looping

ASFF calls BC and checks to see if the first character is
greater than $80, If not, it is not a token, so we must be doing
a LET statement with an implied LET. In this case, we go to A7R9,
- which calls ADOB, a very important subroutine that finds the name
of the vatiable the LET will assign into, finds its address in
variable storage space, puts that address in 95,96, and also returns
with the address in A,Y. A7B9 then checks for an "=V (everybndy,
of course, using BC to find the next character) (iAf no *=", then
syhtax error), calls important routine AAC1, the "evaluate an expressic
routine (with no checking for TM error) and somehow stores the -
output value of AAC1 into the address ADOB left. Done with the -
atatement, we return to A5F@, which loops back to the top at As5C2,
(There will be a short quiz on these addresses at the end of the periol

If ASFF finds a token at the bheginning of the line, it first
verifies that it is an fnitial word token (i.e., less.than $9C) then
does an ASL, TAY to multiply the token value by 2 to get an offest
for the initial wordt jump table at A000., (Note on tokens: Tokens
are Tunctionally divided into initial words like FOR, RUN,POKE, and
other non-initial words like THEN,H,SQH. There is a subroutine to
handle each initial word, and the addresses of those routines are
stored in a table at A00QO, two bytes per routine, since it take two
bytee for an address, The addresses are stored in the order of
the token numbers; that is, the first address is for token 80, the
next address (A002,A003) is for token 81, eto. ' Initial tokens go
up through 9B, - For non-initial tokens, some (like SQR) are complex
enough %o require their own subroutines, while others (like =) do
not. Tokens 9C through AC require no subroutines; AD through C3 do.
The first 28ptokens (the initial word ones) take 28%2 bytes in the
table, so the non initial tokens get the addresses starting after
the first 56 bytes of the table, namely at A038. (The 28 and 56 are
decimal,) Ignoring the hi »it of an initial token and multiplying
it by 2 gives the address in the table of the routine for that
token,) (If you think that's hard to follow, it's even rougher to
infer from a disassembled dumpof the ROMs!) Anyway, AS5FF now has
the address of the subroutine that will do the operation of the
BASIC keyword that started the line, It pushes this address onto
the stack, calls BC (for the convenience of the next routine) and _
an RTS does the actual Jump to the needed routine. Again: the
address of the routine to do the desired BASIC operation for an
inntial word is pushed onto the stack--like the return address 1is

for a JSR--and then an RTS makes the processor jump there. This all -
happens around A60D, (Small detail:ASFF JMP's to BC; subroutine BC's
RTS is what actually pops the address off the stack and "returns®
there.) (Another detail: Since the PC 1is incremented by one after
popping the return address from the stack, the addresses in the
initial word part of the jump table are all 1_15:52 than the routines?

actual entry addresses.)

The other, non-initial tokens ave ﬂealt'uith.iithin.tha initial
word routines. The routines to service the non-initial tokens that
are complex enough to need them are called by the old ASL,TAY trick,
(The ASL is at A027; the TAY at AC55) That offset in the Y-register
is added to an invented base address of 9FDE to £ind the routina's
address in the jump table,(9FDE + 2%#{AD with hi bit ignored)=A038,
the address of the jump for the routine for token AD.)(Phew!)

This Jjump is not a stack trick: so the addresses in thaljump tcble
for non=-initial tokens are correct as they stand, (They don't have
to have 1 added to gﬂt the real aﬂﬁrasﬂ.} The 9FDE+Y stuff is

around ACS6.

Program to look at binary representations ‘of numbers in memory

10 INPUT M

20 P=PEEK(123)+256*PEEK(124)

30 P=P+2

40 FOR J=0 TO 3

50 N=PEEK(P+J)

60 GOSUB 200

70 PRINT * *;

80 NEXT

90 PRINT

100 GOTO 1D

200 FOR I=0 TO 7

210 B=N AND 2A(7-I)

220 IF B THEN PRINT "1%;:GOTO 240
230 PRINT "O%;
240 NEXT

250 RETURN |

(Yes, lines 210 and 220 are correct.)
- The program waits ‘for you to input a number, then prints the
binary representation of it, and then waits for another mmber,

Arrays are stored in assorted len.gth bldcks from (7D,7E) to
(7F,80) as follows: _

arrays name this blook subscripts subseript to_last subSC« s ...,ﬂ 1,0...,0

. D

numeric variable length of mmber of gige of last ai:e of next C lement

string variasble length of number of size of last next-to-last
arrays name this block subscripts subseript eubseript ,,, elmt nlunnt.

I . o . o s oy ﬁ;ﬂ-... ljuilqu

 this bit set

To find an array element, Basic starts at (7D,7E) and looks at the
name, then skips to the name in the nex$y blook (that's why we have
that 3rd byte) ete until a match is found, then skips 4 bytes per

element until it finds the element it wants. (If it's a string, |
we have the lengih and location of the string. not the mtual nt-ri.ng.'
This table is over at (7P, an).

‘Strings are actually stored starting at the top of memory
(as indicated by (85,86)). Modifying the contents of 85 and 86
(or having answered a number less than the actual memory size %o
*MEMORY SIZE?".at coldstart)will keep the strings from wiping out
any other programs or data you may want to tuck safely away in the
top of RAM, BASIC uses this space at the top of the memory with
no regard for saving space or reusing space unless it runs out of
space, It keeps a pointer to the next (working from top to bottom)
free space in #61,82), putting any strings it needs (array or not)
there and updating the pointer until it runs out of room. (I.e.,
(81,82)=(7F,80)) To keep from creaming the array tables (the first
thing it would run into), BASIC calls a *"garbage collection' routine
that tries to shuffle the strings around to the top of the memory '
and reclaim unused space, Unfortunately, there seems to be a bug
in the garbage collection routine that makes it hang up if it has
to try to relocate string arrays, Unless you try to do some fancy
spring array manipulations in big loops, you probably wom't run
into trouble., The FRE(x) routine at AFAD calls the garbage collector
before finding out how much room is left between (81,82) and
(7F,80)~-1in case you wnat to go bug hunting, '

" NUMERIC VARIABLE REPRESENTATION

The floating point value of a numerio variable 48 stored in |
ity four bytes in nomalived bin&r? axpnnantiul (polentifie)

nototion: :

ign and most sig

'c?:pnnent sign it

100000011 ,00100000 00000000
exponent Rﬂnh&narr point
This would be read as:

least sig Dbit
0000000

. 3 | :

The last three bytes contain the number, to 24 bits' accuracy, _
The first byte is the power of 2--if you like, the number of places
to move the binary point. (The binary point is like the decimal
point, except to itsright we have the %'s column, 3's colum,
1/8's column, etc--instead of 1/10's, 1/100's, etec.)

The most significant bit of the value (bit 7 of byte 2) is always
interpreted as having the value 1, (If it were 0, we could shift
the number to the left (birary point to the right) until i¥ was

1, increasing the exponent by as many places as we moved.) Since
this is understood, we can use that actual bit in memory as the

 sign bit, (1 1s negative) Negative numbers are not represented

00000000

in 2's complement form, The exponent, however, is, Some examples:
5 10000011% 00100000 00000000 00000000
1 10000001 00000000 00000000 00000000 :
2 10000010 00000000 00000000 00000000
3 10000010 01000000 - 00000000 00000000
4 10000011 00000000 00000000 00000000
7 10000011 01100000 00000000 00000000
15 10000100 01110000 00000000 00000000
-5 10000011 10100000 00000000 00000000
(3/8).37501111111 01000000 00000000 00000000
0 00000000 00000000

00000000

If you want to explore this further, there follows a short
basic program to read the binary representation of a number
from memory. It looks at the 2md thru 4th bytes after (7B,7C).
Killing line 30 lets you look at the 1ariah1a name (and thu first
two bytes of the value). '

If)you also replace 7B,7C, programs are editable and can run happily.
NOTE: Either avoid programs with lots of variables that can wipe out other programs,
or hlso update 85,86 to indicate that the top of memory is just below the next program
up. The hard one to fix is 7B,7C. It points to variable workspace--so BASIC POKE
statements using variables can't fix it: the variables are lost between the first

undhsecﬂnd POKEs |

BASIC VARIABLE STORAGE
BASIC also needs space to store variables. There are stored
in memory above the program--numeric variables, preceeded by thepr
nsmes from the end of the program going up, and string variables
from the top of memory golng down--their names being kept in a
table along with where in memory the strings actually lime, Two
data areas(with name tables) are kept--one for arrays (string and

numeric), the other for single variables (string or not) end functions. Since only 7
bits are needed for each character of the veriable name, the highest bits are used

to show what type of variable is stored. A 1 in the second character indicates a
strinz. A 1l in the first character indicates a function. {In DEF FNAB(X).) Both first
bits high indicates a string function (FNABS), although the system does not support them.

Single variables are stored immediately following the program,
starting at the address pointéd at by 7B,7C on page zero. (The
abbreviation (7B,7C) is used to indicate the contents of 7B,7C.
Thus, the sibgle variables start at {?B,?ﬂ}.} Each variable is
stored in n{fi:ud length) six byte block in this area:

function loa of first loec of

function name . char af'ter = durmy vardable -
(ASCII) in DEF stmt -
thia bit set if funetion
numeric variable
-+ variable name floating point value
| (ASCII)
- string variable location o
variable ' name length of string . 00
' (ASCII)

(o Al e
this bit is set to
indicate a string
“~ o find & variable, BASIC searches the names, starting at (7B,7C),
skipping to the next name 6 bytes later'til a match is found.(If
a string is being searched for, the actual’ string is not here, but

at the address contained in the 4th and 5th bytes,) The search
ends if a match is not found by the end of the ‘area, (7D,7E).

TOKENS AND BASIC STOHAGE

Your BASIO programs are stored, line by line, in a partially

pre-digested form starting(normally) at memory location 0301. All

BASIC keywords (FOR, GOTO, END, =, CHR$, eto.) are stored ‘as one-byte
"tokens". Tokens always have the highest bit on (i1.e., they are |
always greater than 12813.} Other parts of your BASIC' statements

(1ike AA and 123 in LET AA=123) are stored as the ASCII characters

you typed in. The line number 1is gtored as a two~byte straight

binary number, (That does not explain why the highest allowed line
number is 63999 instead of '65535!) In addition to these, each stored
1ine of BASIC source contains a two byte pointer contalning the

" addpess of the next stored BASIC line. (This lets BASIC search

rapidly for a given line number.) The format of BASIC statement
gstorage is always like this: : |

null pointer to 1line # BASIC code; tokens and ASCII null of
next line S e next line

{TE;t information alone is enough to let you write a BASIC program

renunbering program.) |
The "normally starting at 0301" can provide interesting possiblilit

- wBASIC workspace'"--the area in memory where your program and variables

are stored--begins at whatever address is contained in locations
0079,0074, (Machine addresses arenormally stored lo byte, hi byte,
Thias, when the coldstart routine initializes these locations, it puts
01 in 0079 and 03 in 007A.) Now, if you change this (with your
trusty ROM monitor or with POKE gtatements), you can make BASIC

store your programsanywhere you choose. In fact, you could have

one program stored starting at 0301, another at 0901, and another...
all using the same line numbers, if you want! BASIC will find only
one at a time for running and listing=--the one whose beginning is
ocontained in 79,7A. Note: the byte immediately before the first

line must be the initial null. Normally, the system puts a permanent
0 in loc 0300, and the first byte of the first pointer goes in 301,
You must put the initial null in (at 0900 in the example above) or
nothing works., After you change 79,7A and put in that initial zero,
type NEW to reset some other pointers. Unfortunately, if you put

one program one place, reset 79,7A and put another somewhere else,
trying to edit the first one will blow up the second’ program and

not work in the first. You can, however switch back and forth ifr

all you do is run and list *the programs. (A-ThttTe—Tanoy—work-with

2

One sipnificant fact shows that more than one persen worked
. ¥ICROSOFT who 414 not *e!) the other guy what he was dolng.:
‘he convention for storins .2 string function varles. Names of
a by ng VHrithaa Btore the 4 after the name and some siring funce
Liors store the 3 in tha tex:t. Other string functlone such as
.mI* atur& only on the one byte commianc and assume the presence
P vhe %, Look for it either way in the text if you are looking
“ar a ntrlng variable. Erackete show the same inconsistency.
Some functione which require operators.store both brackets, but
&thﬂr store only the secend bracket, ")v, and assume the.presence
vre Tirst, That doesn't mean that you can leave them out when
_yﬂn tyoe ‘in the text, just that yhu enn't find tham if you look
“% the stored rndn. - J & .

. That actually ends the line uf KICROSOFY, but while we are

AL it, we might as well look at the atuff that follows. The first
thine 18 the variamble tables. The variables are stored in the -
nrder that they are found in the text. {For fast access,
Initialize the most used variadle firgt.) Each variable takes
aix bytes., Rerular variables start with two bytes for the name
{even if 1t is & one byte name), followed by three bytes of

vacked ZCD giving the six digit value and anﬂing with a ﬂ which

mirks- the end cf the tnhli nntry |

. String variiblut nrt itarﬂd - lnrt ur ~ in the same table.
;v.e4r entries are slsb six. bytyﬁr-” * 71hlwﬂifflrihﬂl! start in
the seeond ASCil- chnrmntnr of the mtring same. plus 128 to show
*hnt i1 is a string entry. The next b . 'gtore the address of -
re¢ last place that it sppeared °n the ti:t- The end .8 mnrknd

"i"'r"l

If you luak at th; ln prugrnn. rnu will nutic- thlt the
*irgs thing following thl gﬂ# - 48 66 . 0. The
AR rapruen‘mﬂuﬂ of tﬁi miﬁ mt "E" If it were a
two letter name, the second iwtan*-uui#-uuntnin the second
sraracter of the name. The next three bytes contain the six
Aigit value of "B* in packed 2(D; which is & besr to read. The
lagt zaro marks the end of the table entry. The next entry .

Mgk 12P 1 13 3) containe the informption on A$» The two byte
name 18 >oded with ASCI for the leiter and the ASCIY 128
for the next letter to show that it s & string. The n ‘byte -

‘s the léngth of the utring -and tht naxt two by:es {;3 JJ are the
-memnry location where the fire: taxt reference is fourd. The 0
marks the end of the table. - Theé iast entry in the tnbla is for
veriabtle X which shows the turren* ‘value of 831 IBE » 138 ?8 128

D'i

I1f there were aﬁhnnriptnd v:ra!bliu, they would follow the
reFular variahle table (to look mt a subscripted variable table,.
chdwre line 12 to 10 A(Z)=1rA(2)=31 and change B30 irn line 20 to
50+ _ The tatie begins with a variable name, the length of the-
’tailﬂ "and ther the actumi’ untrieﬁa.-“hi~!rltlm marks of{ four
-spaces for pus™ entry - one for the marker number and ‘three for

*he 8ix dirpits of the vtritbla values It sets aside: sniough - i!lﬁl

PAGE o

G000
O0FB
DOFC

PAGE 1

HANDY LOCATIONS. IN ROM BASIC

JUMP TO WARM START (4C/74/A2)
CASSETTE/KEYBOARD FLAG
DATA TEMPORARY HOLD FOR MONITOR

0100-0141 STACK

0130
01co

PAGE 2
0200
0203
0204
0206
0212
0218
0214
021C
021E
0220

NML VECTOR., NMI INTERRUPT CAUSES A JUMP TO THIS LOCATION
IRQ VECTOR

CURSOR POSITION

LOAD FLAG

SAVE FLAG

CRT SIMULATOR BAUD RATE-VARIES FROM ' O=FAST to FF=SLOW BAUD RATE
CONTROL C FLAG

INPUT VECTOR (C1P only)
OUTPUT VECTOR

CONTROL C CHECK VECTOR

LOAD VECTOR

SAVE VECTOR

0222-022FA *¥UNUSED** A NICE PLACE TO PUT USR ROUTINES

PAGE 3

and up tc end of RAM is BASIC work space.

AOOO-BFFF BASIC IN ROM
DOQO-D3BF VIDEQ REFRESH MEMORY

DF0OO

POLLED KEYBOARD

FOO00-F001 CASSETTE PORT ACIA (C1P)
F800-FFFF MONITOR EPROM

FCOO0
FDOO
FFOO

USEFUL

A274
RD11
BF2D
FDOO
FCBL
FEQO
FEOO
FE93
FF&9

FFBA

FFoB
FFOO

FLOPPY BOOTSTRAP
KEYBOARD INPUT ROUTINE (SEE "INPUTTING WITHOUT SCROLLS")
BASIC I/0 SUPPORT

SUBROUTINES IN ROM

BASIC warm start *NOTE-FOR DISK BASIC WARM START IS 051A%
BASIC cold start

CRT simulator-prints character in Accumulator to screen offset by value in 0200
Input character from keyboard result in A and in 0213 :
Output character in A to cassette

Entry to Monitor-

Entry to Monitor -bypass stack initiaslization.

Converts ASCII hex to binary-result in A.-80 if bad value

BASIC output 1o cassette routine-outputs one character to port and screen,
outputs 10 nulls if character is a carriage return.

BASIC iInput routine

Control C routine

Rzset entry point

SEMI FAST SCREEN CLEAR (WITHOUT THE USR FUNCTION)

I hate to be bothered with the USR screen clear. I can't remember it off
hend and I hate to take time to look it up. Besides, it takes too much
memory. This one is fast-1t clears the screen in 1eaa than 2.16 seconds-
and easier to remember

C2/4/8 C1P N
100FORX=1T029: ? : NEXT 100FORX=1T0297 ? ; NEXT
110FORX=55168T055295: POKEX, 32: NEXT 110FORX=54174T054275 (54307 on some

monitors): POKEX, 32 : NEXT

- mmm S ——————— e 1S S e —

PRINT AT STATEMENT
OS5I has a great BASIC but the lack of a PRINT AT command makes it
difficult to print scores and names and similar items where you want them
on the sereen. You ususlly end up with a long series of POKE statements and
you have to divide the score up into individual digits to do even that. There
is a simple sclution. Add this subroutine to your program-
5PP@FORY=1TOLEN(D$): POKED+Y, ASC(MID$(D$,Y,1)): NEXT: RETURN

To POKE up any name, word, or even sentence on the sereen simply set the

name equal to D$ and make D=equal the starting address on the screen. i.e.
300D3="WINNER 1IS":D=54248:GOSUB522
Scores should be done just & little differently. You start at the second

digit because the BASIC thinks the sign is the first digit in the siring and
can get you over one space from where you planned. You may also want to blank
the digit after the string to allow for the possibility that the score may
decrease (say from three to two digits). To use i1 you set the score equal to
D$ and the final product looks like this-

30@D3$=STR$(SCORE): D=54@,@: GOSUBS22¢
5@@@FORY=2TOLEN(D$): POKED+Y, ASC{ MIDS(D$,Y,1)): NEXT
S@1PPOKED+Y, 32: RETURN

SOME POKES YOU SHOULD KNOW

To aid in reading you maey want to set the line length down to 32 on a C2
or to 23 on a Cl, Unfortunately, if you set them down when you start up the
system you will be unable to make tapes. Fortunately. the line length is
stored in location 15. You can reset line length by executing
1@@POKE15, 32 (or any other number down to as little as one) and then reset
with 2@@POKELl5,72 to record the program.

If you find it annoying to: reserve space for user programs when you fire
up the system (I always forget to do it when I am using the rapid screen
clear) you can set the memory space by POKEing the high order digit (in HEX)
into location 134 and the low order digit into 133. For instance, the line
1PPPOKEL 34,14 will reserve space for the screen clear without reseting the
system.

You can even make self starting BASIC programs if you are willing to do a
few additional moments work when you make the tape. The flag for LOAD is in
location 515, A 1 POKEd into that location turns off the load mode. Therefor,
to make a self start tape-as soon as the program finishes reading out to the
tape and while the system is still in SAVE mode, type in POKE515, 1:RUN

That command will record on the tape and start the program asutomatically when
it finishes loading.

SAVE can be turned off in a similar manner by POKEing a O into location 517

EASY KEY DETECTION
If you are doing a one player game, you can detect the control keys

without either POKEing the keyboard or turning off the CONTROL C scan. The
values for the shifts, rept, control, and esc keys are recorded continuously .:
in location 5718¢. i.e. If you push the right shift, a 3 always appears in
571@8. To see how it works try this program
1OPRINTPEEK(57128): GOTO1#

Then push the control keys one at a time. It is simple, fast, and allows
you to keep the CONTROL C funetion to break the program. .

COVER ART BY TULLIO PRONI

	BASIC-in-ROM Memory Map
	Memory Locations Containing Things of Interest
	Useful BASIC Routines
	Miscellaneous BASIC ROM Routines
	ROM BASIC Notes
	Miscellaneous Notes on BASIC
	How to Read a Line of Microsoft
	Program to look at Binary Representations of Numbers
	Arrays
	Numeric Variables Representation
	BASIC Bariable Storage
	Tokens and BASIC Storage
	Handy Locations in ROM BASIC
	Useful Subroutines in ROM
	Semi Fast Screen Clear
	PRINT AT Statement
	Some POKEs You Should Know
	Easy Key Detection

