
•

I

OHIO SCIENTIFIC

6500 ASSEMBLER/EDITOR

USER'S MANUAL

Copyright 1978, OHIO SCIENTIFIC, INC.

•

I

•

6500 Assembler/Editor

Use r' s Manual

Table of Contents

Introduction

Elements of the Assembly Language

Labels
Constants
Expressions

Assembler Statements

Comment Statements
Instruction Statements
Directive Statements

Assembly Commands

Full Assembly Listing
Errors - Only Listing
Object Tape Listing
Assembly to Memory

Assembly Errors

Editor Operation

Initializing
Entering
Resequencing
Deleting
Printing

Assembler/Editor Statistics

Appendices

A. OS - 65D V3.0 Vers i on

B. Word Processor WP - 1B Version

C. C2P - lP Cassette Version

1

1

4

10

12

16

18

20

•

Introduction

The OSI 6500 Assembler/Editor provides assembly language progranming

capability that is fully format compatible with the standard MOS Technology

assembly language. Therefore, all existing standard 6500 programs can be

directly assembled without changes and the OSI Assembler is compatible wi th

all existing MOS Technology 6500 documentation. The Assembler is easy to

use and provides your choice of a full assembly listing, an errors-only

14sting, an object tape listing or an assembly of machine code directly to

memory. The Editor provides easy-to-use, line-oriented file entry and

editing with conmands for selective source file printout, deletion of lines,

re-numbering of lines and unlimited insertions between existing lines.

The 6500 Assembler/Editor is offered in a number of different versions

for various system configurations. Refer to the appropriate appendix for

information relevant to your particular version.

This manual thoroughly explains the operation and usage of the Assembler/

Editor and provides a sunmary of the MOS Technology 6500 assembly language.

For a detailed explanation of 6500 assembly language progranming, the reader

is referred to one of the available texts on the subject such as the MOS

Technology Progranming Manual or "How to Program Microcomputers 11 by Will i am

Barden.

Elements of the Assembly Language

The following elements of the assembly language are first defined.

Labels

Labels are used in assembly language programs to identify program points -

specific locations in a program where an instruction sequence begins, a constant

is located, or a variable is to be stored that needs to be referenced elsewhere

in the program. The use of a label at a program point provides the means to

refer to the program point mnemonically, or by name, rather than by the machine

,

I

•1

I

I
I

•1
I

I

I
I

•

I

address of the location. The use of a label also permits the Assembler to

automatically update all references to a program point when its machine

address changes due to changes in the program. A label may also be used

synonomously for a numerical value which is not a program point. Such a

label is often called a symbol.

A label consists of one to six characters from the set:

A-Z
0-9

$

The first character in a label must be a letter. The reserved names A, X,

Y, Sand P may not be used as labels.

There is one predefined label, 11 *11
, which refers to the current value

of the location counter throughout an assembly.

Examples: START *

• TEN.l

TABLE

Constants

LABEL:

A$B

•

Constants are used in assembly language programs for numerical values

and character strings.

Although numerical constants are generally expressed internally in the

computer in binary, the Assembler permits them to be expressed in binary,

octal, hexidecimal or decimal. The absence of a prefix symbol indicates a

decimal value. The other number bases are indicated by the prefixes:

% for bi nary

@ for octal

$ for hexidecimal

-2-

Numerical constants are always unsigned, positive numbers. They are limited

in magnitude to 255 (decimal) if they are to be represented by a single byte •

or to 65535 if a double byte (or word).

Examples: 1000

%101101

@16400

$FACE

Character string constants are represented internally in the American

Standard Code for Information Interchange (ASCII). The Assembler accepts

/character string constants as any sequence of printing ASCII characters pre­

ceeded by and followed by a single quote mark (an apostrophe). If an apos­

trophe is to be included within the string, two successive apostrophes must

be used. The Assembler also accepts a single character preceeded by an

apostrophe as the operand of an irrmediate mode instruction. (See Instruction

Addressing Modes - Irrmediate)

Examples: 'THIS IS A CHARACTER STRING CONSTANT'

'@!"&#%$'

'12 dozen'

I I I I

Expressions

An expression is a sequence of one or more labels and/or numerical

constants separated by the arithmetic operators+,-,* and/ (for add,

subtract, multiply and divide). An expression defines a value in terms

of an algebraic expression that is evaluated at assembly time (not program

execution time). The Assembler evaluates expressions strictly left to

right; there is no operator precedence in expression evaluation and

parentheses may not be used to alter the order of operations.

Examples: START

START+l

SIZE/256*256

TABLE-1

0-1

%101+@10*15/$12

•

•

•

•

Assembler Statements

The Assembler recognizes three types of statements:

- Comment Statements

- Instruction Statements

- Directive Statements

Each statement is one line of assembler source code.

Corrrnent Statements

/ Comment statements are included in assembly language programs to provide

headings and other explanatory information. They, in no way, affect the machine

code generated by the Assembler.

A comment statement consists of a semicolon as the leftmost, non-blank

character followed by any corrmentary whatever.

Examples: CONVERSION PROGRAM

Output Subroutine

Instruction Statements

Instruction statements specify a 6500 assembly language instruction

mnemonic or 11 opcode 11
• The opcode may be preceeded by a label and must be

followed by an appropriate 11 operand 11 corresponding to the instruction

addressing mode as described below. The operand may be followed by any

corrrnentary desired. Thus, the fields in an instruction statement are:

(label) (opcode) (operand) (comment)

where the (label) and (corrment) fields are optional and the (operand) is

as appropriate to the instruction addressing mode. At least one space

must exist between the fields.

Examples: START LOA VALUE GET STARTING VALUE

STX XTEMP SAVE X-REG

TEST SEC

-4-

I

Instruction Addressing Modes

The 6500 Assembler recognizes eight different assembly language address-.

ing modes. These are further analyzed at assembly time and result in the

choice of an instruction from one of the thirteen machine language addressing

modes. Each assembly language addressing mode has a unique operand syntax.

The form of each is as defined below.

Implied

The implied addressing mode has no operand. The operand on which the

instruction is to operate is implied by the instruction opcode itself.

Examples: CLC

INX

BRK

Accumulator

PHA

RTS

TYA

The accumulator addressing mode is used to specify the accumulator •

register as the operand.

Operand Form: A

Examples: LSR A

RORA

Inmediate

The inmediate addressing mode is used to specify a single byte constant

as the operand.

Operand Fonn: #expression or single character constant optionally
followed by an expression

Examples: LDA #0

ADC #1 A

AND #$8F

LDX #99-%101

CMP # 1 ?-l

LDA #LABEL/256

-5-

•

•

•

Symbolic

The symbolic addressing mode is used to reference an absolute (above

page zero) or page zero memory location. When a symbolic operand is

evaluated, the Assembler may choose either an absolute or a page zero

machine language instruction as required by the operand value. If the

opcode is that of a branch instruction, the relative addressing mode is

always used.

/ Operand Form: expression

Examples: LOA VALUE

ASL BITS+2

STA 0

BNE NEXT

CMP LIMIT-1

SBC SIZE/2+START

JMP START

BVS OVRF

Note: If any label in a symbolic operand expression is undefined when
that operand is encountered during pass one of an assembly and the instruction
has both zero page and absolute addressing modes, the Assembler assumes that
the absolute addressing mode and thus a two byte operand will be required. If
on pass two the operand evaluates to a page zero location and one byte could
be used, a warning error is printed noting a forward reference to page zero
memory (error 19). This is not a serious error and only indicates that an
extra byte was used.

Indexed

The indexed addressing mode is used to reference an absolute (above

page zero) or a page zero location as specified by the instruction operand

plus the contents of the specified index register at instruction execution

time. When an indexed operand is evaluated, the Assembler may choose either

an absolute or a page zero machine language instruction as required by the

operand value.

Operand Form: expression,X or

expression,Y

-6-

Examples: LOA TABLE-1,X LOX LIST, Y

STA MARK,Y LOY STACK,X

DEC 0,X ROR DIVISR,X

ASL TWO,X STX ZIP,Y

See the note under Symbolic.

Indexed Indirect

The indexed indirect addressing mode is used to reference a location as

/ specified by the address in the two page zero locations indicated by the

instruction operand plus the contents of the X index register at instruction

execution time.

Operand Form: (express ion ,X)

Examples: LOA (LIST,X)

STA (ADRS,X)

Indirect Indexed

CMP (LIMITS+2 ,X)

ORA (BUFFER,X)

The indirect indexed addressing mode is used to reference a location as

specified by the address formed by adding the Y index register to the address

in the two page zero locations indicated by the instruction operand.

Operand Form: (expression), Y

Indirect

Examples: LOA (LIST),Y

STA (ADRS), Y

CMP (LIMITS+2), Y

ORA (BUFFER),Y

The indirect addressing mode is used to reference a location as specified

by the address in the two locations indicated by the instruction operand.

Operand Form: (expression)

Examples: JMP (RETURN)

JMP (RETABL+RND)

-7-

•

•

•

Not all 6500 instructions can ha ve all addressing modes. The table on the

• following page defines for each instruction the available assembly language

and machine code level addressing modes.

I

-8-

J

General

Shift

Bit
Test

Compare
Index

!Decrement/
I Increment I
!
I
I

!Jump

!Load
! Index
I

Store
Index

Store

Branch

Implied

Table l

6500 Instruction Addressing Mo des •
Assembler I I I Addressing Modes AC IM Symbolic Indexed Indirec~

I

I

I I I ! Ma chin e Language A I z A R z A z A I
' Addressing Modes C M p b e p b p b n n j n

s l s s I i

X X y y I X y I i
I I I

I I

I I

' I :

! ADC AND CMP EOR I ;

i

I
I

LDA ORA SBC X X X I X x i X X X I

I I '
' I ! !

I ! I I

ASL LSR ROL ROR X X X X X i ! I
!

I I '
I

I ' I
I I I

BIT X X ! ' I

I I I I I I

' I I
I I

I ! CPX CPY X X X I
;
I
i

I I ;
I I I

I I ' I
I I

xi DEC I NC xi X I X ' ' i I
I • I ! I I

JMP X I I : X
! i JSR X i

I

I ! I I

LDX I X X X X X I

I xi
I

I I

LDY X X X X I ;
; I I '

I I ! STX X X x , ' I I I

STY X X X I i i l

! : I I I
I

STA I X! X : X X X X J X I
I ! i BCC BCS BEQ BMI j I

' I :
' i

I BNE BPL BVC BVS ' i X
i i

' '
BRK NOP RTI RTS I

i ICLC CLD CLI CLV
IDEX DEY INX INY I mplied
PHA PHP PLA
,SEC SED SEI
ITAX TAY TS X
ITXA TYA TXS

PLP
;

' I

AC - Ac cumulator

I M - Immediate

ZP - Zero Page

- 9-

Abs - Ab so lute

Re l - Relative

In - Indirect •

•

I

Directive Statements

Directive statements specify an assembler directive (as opposed to a

6500 instruction). Directives are used to define numerical and character

string constants, to set the program location origin, reserve space and

equate labels to values. All directives begin with a period and appear

in the opcode field of a directive statement. The directive may be pre­

ceeded by a label and must be followed by an appropriate operand. The

operand may be followed by any conTllentary desired. Thus, the fields in

a directive statement are:

(label) (directive) (operand) (comment)

where the (label) and (corrrnent) fields are optional and the (operand) is

as appropriate to the directive. At least one space must exist between

fields.

1• The following directives are provided in the 6500 Assembler:

.BYTE Directive

This directive is used to generate single byte numerical constants

and character string constants of any length.

Operand Form: expression or character string constant, ...

Examples: .BYTE 0

.BYTE %10,@10,10,$10, 1 10 1 ,TEN

MESG . BYTE I MESSAGE 1
, 255, 1

•
1

, $0

.BYTE SIZE/2+1

.WORD Directive

This directive is used to generate two byte numerical constants in the

low, high order by byte used for machine addresses.

Operand Form: expression, ...

Examples: .WORD $ABCD

. WORD START,START+2

.WORD 10,100,1000,10000

.DBYTE Directive

This directive is used to generate two byte numerical constants in

high, low order by byte.

I
Operand Form : expression ,

Examples: .DBYTE $ABCD

.DBYTE START,START+2

.DBYTE 10,100,1000,10000

Note : Any other character string following a period such as .END, is
ignored by the Assembler.

Equals (=) Directive

This directive is used to set the program location origin, reserve

•

space and equate labels to values. Each of these operations uses a distinct •

statement form and is shown separately below.

Setting the Program Location Origin

Statement Form: * - expression

Examples: * = $0300

*=START

* = LAST+l5

Reserving Space

Statement Form: label*= *+expression (label is optional) or

label *=expression+*

Examples: * = *+l

TABLE*= *+128

ARRAY*= XDIM*YDIM+*

-11-

I
I

I

•

I ,.

I

Eguating Labels to Values

Statement Form: 1 abel = expression

Examples: TEN = 10

START = $8C00

SIZE = XDIM*YDIM

Note: In all forms of the equals directive, all labels used in an expression
must be defined previously in the assembler source file or the Assembler
cannot determine the location of subsequent labe l s during pass one of the
assembly. This can result in 11 label previously defined 11 errors (error 12)
for the subsequent labels during pass two.

Assembly Commands

The Assembler has four assemble commands :

A or A0 gives a fully assembly listing

Al gives an errors-only listing

A2 gives an object tape listing

A3 assembles object code directly to memory

Full Assembly Listing - A

The A or A0 coIT111and gives a full assembly l i sting including, from left

to right, for each line of assembly source code :

- source code line number

- program location

- object (machine) code - zero to three bytes

- source code

If any errors were detected in the source code, pointer(s) to the erro r

and the appropriate error number(s) appear after the above line. The machine

code generated in the case of an error depends on the type of error, but

generally, is either the appropriate opcode byte with a zero operand or three

NOP bytes to facilitate patching without requiring reassembly.

See Figure 1.

-12-

A

10 PAGE 0., 1 Sl!JAP SUBROUTINE
20
30 ENTR'r': NO PARAMS
40 EXIT : STUFF SWAPPED
50 A SAVED
60 PURE PROCEDURE
70
80 4700 * = $4700
90

10~3
110 4900
120

SWAP STORAGE
:+< = :+<+512 SWAPB PAGE 0 , 1

130 TEMP STORAGE
140 4902 RTN RETURN

__ tse _____________ A,
* = *+2
:+< = >1<+1 A (NOT SWAPPED)

E# 1
160
170 REMOVE RETURN FROM HIS STACK
180 4902 EAEAEA SWAP: STA A

------------------------------,
E# 5

1.90 4905 68 PLA
200 4906 1.8 CLC
210 4907 6901 ADC #1 ADJUST AS RTS DOES
220 4909 8D0049 STA RTN
230 490C 68 PLA
240 490D 6900 ADC #0

-------------------------------,
E# 18

250 490F 8D0149 STA RTN+1.
260 ;
270 SWAP PAGES 0, 1
280 4912 A200 LDX #0
290 491.4 8D0001. SWAP1. LDA 256., X
300 491.7 BC0048 LD'r' SWAPB+256, }<

310 491A EAEAEA STA SWAPB+256,S
---------------------------------------,
E# 8

320 491D 98 TYA
330 491.E 9D0001 STA 256,X
340
350 4921 B500 LDA 0,X
360 4923 BC0047 LDY SWAPB,X
370 4926 900047 STA S1,,JAPB., X
380 4929 98 TYA
390 492A 9500 STA 0, X
400 492C E8 INX
410 492C• D0E5 BNE S1,,JAP1
420
430 492F EAEAEA LDA A

------------------------------,
E#

440 4932 6C0049
450

DO

INTERCHANGE 2
PAGE 1 E:'r'TES

THEN INTERCHNAGE
PAGE 0 BYTES

256 LOOPS

,=,
I...

460

JMP <RTN)

. END Figure 1
Full Assembly Listing

-13-

•

•

e r
I

l

•

I

•

•

Errors-Only Listing - Al

The Al corrmand produces the same output described above for the full

assembly listing, but does so only for source lines which contain detected

assembly errors.

See Figure 2.

Object Tape Listing - A2

The A2 corrmand produces an object tape listing in the standard format

which includes for each object tape 11 record 11
:

- start of record character (a semicolon)

- number of data bytes in record up to 24 (18 hex)

address (or location) of data bytes (4 hex digits)

- values of data bytes (2 hex digits each)

- record checksum (4 hex digits) - 16 bit sum modulo 65536

- carriage return, line feed, nulls

See Figure 3.

Assembly to Memory - A3

The A3 corrmand produces no printed output, but places the object code

resulting from the assembly directly into RAM at the specified program location,

plus any offset previously entered with the M (Memory Offset) corrmand.

This corrmand must be used with caution as there is no protection against

the object code overwriting the Assembler or other needed RAM .

-14-

Al

150 4902 A * = *+1 A (NOT S~JRPPED >
-------------------t
E# 1

180 4902 EAEAEA SWAP : STA A
------------------------------t
E# 5

240 490D 6900 ADC #0
-------------------------------t
E# 18

310 491A EAEAEA STA SWAP8+256,S
---------------------------------------t

/ E# 8
430 492F EAEAEA LDA A

------------------------------t
E# 5

Figure 2
Errors-Only Listing

A2

;184902EAEAEA681869018D00496869008D0149A200BD0001BC004808ED
;18491AEAEAEA989D00018500BC00479D0047989500E8D0E5EAEAEA0D93
;0349326C00490133

Figure 3
Object Tape ·Listing

-15-

•

•

•

•

I

•

•

Assembly Errors

The following descriptions of assembly errors and their possible causes

are provided to facilitate elimination of these errors in an assembly.

1. A, X, Y, SAND PARE RESERVED NAMES

One of these reserved names was found in the label field. No
code is generated for a statement with a reserved name as a label.
Use of a reserved name in an expression wi 11 give an 11 undefi ned
label II error, error 18.

3. ADDRESS NOT VALID

An address greater than 65535 (hex FFFF) was encountered.

4. FORWARD REFERENCE IN EQUATE, ORIGIN OR RESERVE DIRECTIVE

An expression used in one of these directives includes a label
that hasn't been previously defined in the assembly source file.

5. ILLEGAL OPERAND TYPE FOR THIS INSTRUCTION

An operand was found which is not defined for the specified
instruction opcode. Refer to Table l for the defined instruction
addressing modes .

6. ILLEGAL OR MISSING OPCODE

A defined opcode was not found. Refer to Table l for the defined
opcodes.

7. INVALID EXPRESSION

An expression was found that is not a valid sequence of numerical
constants and/or labels separated by valid operators or is not a
valid instruction operand form.

8. INVALID INDEX - MUST BEX ORY

An indexable instruction was found with an invalid index.
Refer to Table 1.

9. LABEL DOESN'T BEGIN WITH ALPHABETIC CHARACTER

10.

A non-alphabetic character was encountered where a label was expected.

LABEL GREATER THAN SIX CHARACTERS

A string of more than six valid label characters (A-Z, 0-9, $, . ,
:) was found before a non-valid label character. This is a warning
message. Assembly continues using the first six characters of the
label .

-16-

12. LABEL PREVIOUSLY DEFINED

The identified label has previously occurred in the assembler source •
file or this occurrence of the label had a different value on pass
one than on pass two. The latter error may be caused by previ ou s
errors in the assembly.

13 . OUT OF BOUNDS ON INDIRECT ADDRESSING

An indirect-indexed or indexed-indirect address does not fall i nt o
page zero as required.

15. RAN OFF END OF LI NE

/ An operand is required and wasn't found before t he end of t he li ne .

16. RELATIVE BRANCH OUT OF RANGE

The target address of a branch instruction is farther away the n the
minus 128 to plus 127 byte range of the instruction permits.

18. UNDEFINED LABEL

The identified label is not defined anywhere within the ass emb l er
source file.

19. FORWARD REFERENCE TO PAGE ZERO MEMORY

This warning message is generated when an instruction that has bot h
page zero and absolute addressing modes has an operand that is de ­
fined later in the assembly source file to be a page zero addres s.
During pass one of the assembly two bytes are allocated for t he
operand since its value is not yet known. Then dur i ng pas s two
the operand is found to require only a single byte so one byt e
is wasted. This is usually not a serious error because the generat ed
code wi l l generally execute as expected.

20. IMMEDIATE OPERAND GREATER THAN 255

An immediate operand expression evaluated to greater than 255, the
maximum value that can be represented in a single byte i mme di at e
operand.

25. LABEL (SYMBOL) TABLE OVERFLOW

The size of the work space is insufficient to hold the current
source file and a table for all of the labels encountered i n the
program. To assemble will require a reduction in either the s ize
of the program source file or the number of symbols or an incre as e
in the size of the work space.

-17-

•·

•

•

Editor Operation

The Editor provides a very easy to use means for creating assembly

language source files and for editing, correcting, printing and punching a

tape copy of the created file. The Editor is general purpose in that it is

well-suited for creation of any type of source file whether it be assembly

language, BASIC, another computer language or other form of printed docu­

mentation.

/ Editor Co1T1Tiands

INIZ clears any entered source lines from memory. To prevent in­

advertently clearing the work space, the question "INIZ?(Y/N)"

is asked after the INIZ command has been entered. The user

must enter "YES" (or simply 11 Y11
) to complete the initializa­

tion operation.

(line number)(any text)

RESEQ

enters a source line. The line is placed into the source file

at the position indicated by the specified line number. If a

line number of zero (0) is entered, the line is placed immediate­

ly after the previously entered line unless another command has

been executed in the interim . If a zero numbered line is entered

after the execution of a PRINT co11T11and, the line will be placed

after the last line referenced by that command. Line numbers may

be 1 through 65535.

resequences all line numbers in the source file by 10, starting

with 10. After the RESEQ command has been executed, the next

sequential line number is output.

DELETE (line specification)

deletes the specified lines from the source file. The (line

specification) may take any of the following forms:

-18-

I

first line - last line deletes the specified lines

first line - deletes first line through the end • - last line deletes from the start through last line

line deletes the specified line

PRINT (optional line specification)

prints the specified lines in order by line number. The (line

specification) may take any of the forms listed above for DELETE

or may be omitted in which case all lines in the source file

. are printed.

In the PRINT and DELETE co1TTT1ands any number of -line specifications,

spearated by commas may be entered after the command.

All colTTTlands can be abbreviated down to their first letter. All commands

and source lines must be followed by a carriage return.

When entering commands or source text lines, corrections for typing

errors can be made to a line anytime before the final carriage return is

entered. An up-arrow character may be used to delete all characters so far

entered on the line and a back-arrow may be used to successively delete pre­

viously entered single characters, one back-arrow for each character to be

deleted.

Note: Up-arrow may be I, A or shift/N; back-arrow may be
on your keyboard.

or shift/0

If an uninterpretable command is input, an explanatory error message is

output with a pointer to the specific part of the command which could not be

interpreted. When such an error occurs, any correct commands that appeared

on the line previous to the erroneous command have been completed; those

after the point of the error were not.

-19-

•

•

I
I ,.
I
I
I ;

Assembler/Editor Statistics

Source File Storage Requirements (per line):

two bytes for the line number plus,

one byte for each text character plus,

one byte for the line terminator character (0D)

All repeated characters such as a sequence of spaces, occupy only two

bytes; one for the character and one for a re peat count.

Symbol Table Storage Requirements:

Six bytes/symbol. 6500 opcodes and reserved names occupy no symbol

table space.

Assembly Speed:

Approximately 600 lines per minute.

-20-

•

•

•

Appendix A

OS-65D V3.0 Version

of the

6500 Assembler/Editor

In OS-65D V3.0, the Assembler/Editor is loaded from disk and initiated

by typing ASM after the A* prompter in the DOS kernel command mode. Whenever

exiting to the DOS, you can return to the Assembler/Editor as long as it is

/ loaded by typing RETURN ASM.

This version of the 6500 Assembler/Editor contains the following commands

in addition to those described elsewhere in this manual.

EXIT

Hnnnn

Mnnnn

Control-I

exits the Assembler/Editor and transfers control to the
OS-65D kernel which then displays the A* prompter.

sets the high memory limit to hexidecimal address nnnn.

sets the memory offset for A3 assemblies to hexidecimal
nnnn .

tabs 8 spaces from the current print position. Also:

Control-LI
Control-Y
Control-T
Control-R
Control-E

7 spaces
6 spaces
5 spaces
4 spaces
3 spaces

Control-C aborts the current operation.

command line sends the command line to OS-65D to be executed then
returns to the Assembler.

This version of the Assembler/Editor occupies memory from 0200 through 16FF.

Its work space starts at 3179 (3279 in mini-floppy versions) and is utilized

as shown below:

3179,317A
317B,317C
317D
317E

address of start of source (low, high) - normally 317E
address of end of source +l (low, high)
number of tracks required for source
normal start of source

Note: It is possible to carry the Assembler 1 s symbol table forward from one
assembly to another. To do so, exit the Assembler after the first assembly

A-1

and enter the machine language monitor by typing "RE M". Change location
0855 from 0A to 18 and read out the contents of locations 000A and 000B.
Enter the values from these locations into locations 12FA and 12FB, respective- •
ly. Then re-enter the Assembler by re-entering the DOS kernel at 2A51 and
typing "RE A". Now the symbols from the first assembly will remain in the
symbol table for reference during the next assembly. Likewise, the symbols
from the first and second assemblies will remain for the third assembly, etc.
If you want to eliminate all but the symbols from the first assembly, exit
the Assembler and immediately re-enter it by typing "RE A' '. To restore normal
operation of the Assembler change location 0855 ba ck to 0A. This will cause
the symbol table to be cleared at the beginning of each assembly.

I

•

A-2

•

•

•

1•

I
I

1•
)

Appendi x B

Word Processor WP- 1B Version

of the

6500 As semb ler/Editor

The WP-1B diskette boots up with the following message:

OSI 6500/6800 SOFTWARE DEVELOPME NT SYSTEM VERSION l .0

MEMORY SIZE ?

Enter the memory size in deci mal or he xi decimal preceeded by a$ or
just hit the return key and al l available memory wi ll be used. The

/ system then displays:

SELECT ASSEMBLY:

A. 6500
B. 6800

Type an A to select the 6500 Assembler/ Editor or a B to select the 6800
Assembler which uses the same Editor. Instructions for use of the 6800
Assembler are provided in a separate manual.

This version of the 6500 Assembler/Editor contains many enhanced Editor

commands as described in the Ohio Scientific Word Processor Manual. The section

of that manual entitled 11 Extended Features for Advanced Programming Topics 11

also applies with the exception that BASIC is not included.

The disk operating system which can be entered by ty ping 11 EXIT" contains

the following additional command of use to the 6800 Assembler user:

Xnnnn switch to the 6800 processor and transfer control to hexidecimal
location nnnn.

The system also includes indirect file capability.

Using Indirect Files

Often it is desirable to be able to merge two or more assembler source

fil es . The indirect file provides a mechanism for doing this .

In order to use an indirect file, you must have enough RAM to hold the

required program(s) in the Assembler work space and another copy of the program(s)

above the work space. The top of the work space can be appropriately set up

B-1

with the DOS Hnnnn command. Then the indirect file mechanism is set up

with this address +l by entering it into the following location:

21A2 indirect file input address (high) - normally= 80

The low part of this address is fixed at 00.

Transfers to and from the indirect file are then performed as follows:

Dumping Source from the Work Space to an Indirect File

l. Load the source into the Assembler work space with the LOAD command.

/ 2. Output the source but type a [after typing PRINT and before hitting
the RETURN key. This turns the indirect file output on.

3. At the completion of the output type a]. This will be echoed as]]
and will turn the indirect file output off.

Loading Source from an Indirect File to the Work Space

1. Clear the work space by typing INIZ then YES. Or, load the source
file into the work space into which the indirect file is to be
merged.

2. Type a Control-X and hit the RETURN key.
be loaded into the work space. When the
end of the file, the indirect file input
can containue with editing or assembly.

The indirect file data will
J character is input at the
will be terminated and you

Note: It is possible to carry the Assembler's symbol table forward from one
assembly to another. To do so, exit the Assembler after the first assembly
and enter the machine language monitor by typing "RM". Change location 0855
from 0A to 18 and read out the contents of locations 000A and 000B. Enter
the values from these locations into locations 12FA and 12FB, respectively.
Then re-enter the Assembler by re-entering the DOS at 2500 and typing "RA".
Now the symbols from the first assembly will remain in the symbol table for
reference during the next assembly. Likewise, the symbols from the first and
second assemblies will remain for the third, etc. If you want to eliminate
all but the symbols from the first assembly, exit the Assembler and immediately
re-enter it by typing "RA". To restore normal operation of the Assembler
change location 0855 back to 0A. This will cause the symbol table to be cleared
at the beginning of each assembly.

B-2

•
[

[

[

[

[

[

e r
[

I
I
I

I
.[

l

•

I
I 1•
I
I
I I

I
I
I

1•
I
I
I
I
I
I
J

1•
]

Appendix C

C2P - lP Cassette Version

of the

6500 Assembler/Editor

This version of the Assembler/Editor is supplied on an auto-load

cassette tape. The following procedure may be used to load the Assembler

from tape:

Loading the Assembler/Editor

1. Apply power to your personal computer then reset it by pressing
the break key. Load the cassette, label up, into the cassette
machine and turn the cassette machine on with the volume at
about mid-range.

2. Type 11 ML 11
•

The M initiates the 65VP monitor and the L starts the auto-load.
In a few seconds the four zeros in the upper left portion of the
video monitor should change to an incrementing address value with
a rapidly changing data field. The value of the address is depend­
ent on which auto-load cassette is being read. At this time a check­
sum loader is being read into memory in 65VP format. Upon completion
(no more than 30 seconds), the checksum loader will load the rest of
of the cassette. The Assembler comes up with the message INIZ?(Y/N).

Should a checksum error occur, the following message is printed:

OBJECT LOAD CHECKSUM ERR
REWIND PAST ERR - TYPE G TO RESTART

If a checksum error consistently happens at the same location, the cassette
is probably bad - contact your OSI dealer concerning replacement. However,
should checksum errors occur randomly at various locations, it is most likely
that there is a problem with the cassette machine or the connection to the
computer. Check for broken or frayed connections. Make sure that the play­
back head and pressure roller/capstan assembly is clean. With a minimal
amount of care, no problems with auto-load cassettes should be encountered.

The cassette version of the Assembler/Editor permits loading and saving

source code in a manner similar to ROM BASIC.

To save source code:

Type SAVE (CR); type PRINT (line specification), turn on the cassette

C-1

machine in record mode and type (CR). As in ROM BASIC, the save mode is
disabled by typing LOAD (CR) followed by a space.

To load previously recorded source code:

Turn on cassette machine in play; type load, wait for leader to pass,
they type (CR). The LOAD mode is disabled by typing a space.

This version of the Assembler/Editor also provides the following
commands:

I

EXIT causes the computer to execute its reset vector and display
11 C/W/M? 11

• Great care must be taken never to type 11 C11 as
this will destroy the Assembler/Editor. The Assembler/Editor
may then be re-entered by typing 11 M 1200 G".

CONTROL-I tabs 8 spaces from the current cursor location.

The above commands, as all other Assembler/Editor commands may be executed
by typing the first letter only.

This version of the Assembler/Editor occupies memory from 0240 through

1390 (hexidecimal) and requires a minimum total of SK of memory to operate.

Its source file work space starts at 1391 and ends at lFFF, as supplied .

The entry location is hex 1300. While running all of page zero is used.

However, you can exit the Assembler/Editor, use page zero and re-enter it by

typing 11 M 1300 G11
•

The following locations may be changed in the cassette version of the

Assembler/Editor to suit your requirements:

12C9,12CA the low, high memory address of the start of the source file
work space. 1391 hex, as supplied.

12CB,12CC the low, high memory address of the end of the source file
work space. lFFF, as supplied.

12FC,12FD the low, high memory offset used to bias placement of object
code during an A3 assembly. 0, as supplied.

12FE,12FF the low, high address of the next available source file
storage location. These locations are initialized to the
address of the start of the work space by the INIZ command
and, thereafter, are automatically updated by the Editor.

Note: It is possible to carry the Assembler's symbol table forward from one
assembly to another. To do so, exit the Assembler after the first assembly
and enter the machine language monitor by 11 M". Change location 0855 from
0A to 18 and read out the contents of locations 000A and 000B. Enter the
values from those locations into locations 12FA and 12FB, respectively.

C-2

•

• ,

I

I

•
r

I
I

• I
]

]

]

.l
]

]

] •
.I
]

I
]J

I
]

]].
]

/

Then re-enter the Assembler by typing ".1300G". Now the symbols fr c,1 .i the
first assembly will remain i n t he symbol table for reference during the
next assembly. Likewise, the symbols from the first and second assemblies
will remain for the third assembly, etc. If you want to eliminate all but
the symbols from the first assembly, exit the Assembler and immediatel y re­
enter it by typing "Ml300G 1

' . To restore normal operation of the .A.ssembler
change location 0855 back to 0A. This will cause the symbol table to be
cleared at the beginning of each as sembly.

C-3

	Table of Contents
	Introduction
	Elements od the Assembly Language
	Labels
	Constants
	Expressions

	Assembler Statements
	Comment Statements
	Instruction Statements
	Instruction Addressing Modes
	Implied
	Accumulator
	Immediate
	Symbolic
	Indexed
	Indexed Indirect
	Indirect Indexed
	Indirect
	Table: Instruction Addressing Modes

	Directive Statements
	.BYTE
	.WORD
	.DBYTE
	EQUALS (=)
	Setting Program Location Origin
	Reserving Space
	Equating Labels to Values

	Assembly Commands
	Full Assembly Listing
	Errors-Only Listing
	Object Tape Listing
	Assembly to Memory

	Assemby Errors
	Editor Operation
	Initializing
	Entering
	Resequencing
	Deleting
	Printing

	Assembler/Editor Statistics
	A - OS.65D V3.0 Version
	B - Word Processor WP-1B Version
	C - C2P-1P Cassette Version

