= Micro-Professor
MPF-1 Student Work Book

MULTITECH INDUSTRIAL @BRPORATION

Copyright © 1982 by Multitech Electronics Inc.

and Multitech Industrial Corp.

No part of this publication may be reproduced,
stored in a retrieval system,

or transmitted,

in any form or by any means,

electronic, mechanical, photocopying,

recording, or otherwise,

without the prior written permission of the publisher

MULTITECH INOQUSTRIAL GCORPORATION

OFFICE/ 977 MIN SHEN E. ROAD. TAIPEI, 105,
TAIWAN, R.O.C.
TEL:(02)769-1225(10 LINES)
TLX:23756 MULTIHC, 19162 MULTIC
FACTORY/S. TECHNOLOGY ROAD I,
HSINCHU SCIENCE-BASED INDUSTRIAL PARK
HSINCHU. TAIWAN, 300. RO.C.
TEL:(035)775102(3 LINES)

Multitech Electronics Inc.

195 West El Camino Real
Sunnyvale, CA. 94086
U.S.A.

Tel: 408-7738400

Tix: 176004 MAC SUVL
Fax: 408-7498032

< Micro-Professor
MPF-1I Student Work Book

CHAPTER 1.

Program in English~----~--~---»-

Program Explained -

Assembly Listing - e
Checking for Data Entry Errors
Program Execution -

Checking the Results

i ek ek b ek A e e
e o o @
wooONOOUHEWNR

CHAPTER 2.

More Keys: -

CHAPTER 3.

3.1

3.2 Easier to Read -

3+3 Easier to Program

3.4 Easier to Correct -
3.5 How to Proceed Usmg the MPF- I

CHAPTER 4.

4.1 Central Processmg Unit (CPU)
4.2 PIN-OUT.. »

4.3 Memory

4.4 RAM- -

4.5 Dynamlc RAM Statlc RAM

4.6 ROM- e

4 .7 Monitor Program and ROM of the MPF-| -

Unpacking and Installation. ... s
Programming Languagesot i v
Testing & Familiarization-- - oo oo

2.1 Reset or Monitor: What's the Difference?......................
2.2 Is the MPF-l a New Recordlng Artist?.. oo

ASSEMBLY--the Sane Way to Go--

©W W~ TN s

13

-15
17

21

.22
wan 2.3

- 23
24

4229
.38
31
32
33
.33
34

8 AAAreSS oot e e e ee e 2 35,
.9 Byte, Bit oo e 0 36
4.13 Peripherals i 38
4 .14 Parallel I/0 Lines-- - O 1)
4.15 Advanced Hardware Descrlptlon (Optlonal) P |
4.16 Power Supply R Ty P

CHAPTER S5

Learn by DOINE - - wevcoe e oo s s o oo 5]
Flashing a Message -« o s s e e 511

1ot
L]
WNeR

CHAPTER 6

6.1 Exercises and Experiments oo 97
62 Questions of EXercises ... 123
63 Answers to Exercises - oo 00133

CHAPTER 7

1 Major Divisions of the Monitor -+« ool 0 168
Answers to Exercises oo g0

7
7

CHAPTER 8

Sheet 1 of 4 . - 189
Sheet 2--The Control Function of the 8255 203
Sheet 3--Counter Timer Circuit (CTC) and

Parallel 1/0 (PIO) e 204

APPENDIX
Appendix A References - . e 205
Appendix B Alphabetical Llstmg of Monitor and
Interrupt Key e 08

Appendix C . e e e e e e e e e D 1)

CHAPTER 1

.

This workbook is designed for the first time user of
microprocessors and microcomputers but intends to explore
the world of microcomputers. The workbook guides you step
by step' in your learning about microcomputers. We know that
© you will learn a great deal and also enjoy becoming familiar
with microprocessors.

The fastest and most pleasant way to learn is to learn
by doing. You are encouraged to use a MPF-I microcomputer
to do the interesting experiments so that you can learn more
quickly.

This workbook will first teach you to press a few keys
on the MPF-I to see how it responds. And then, the workbook
will teach you to press more keys and let the MPF-I show you
the interesting results. As you progress in this workbook
you learn new modes of operation. What is more important,
you will eventually learn a great deal about microcomputers
and microprocessors. To put it simply, you will know how to
use computers to solve problems.

Never let a computer scare you! When automobile was
first introduced to the world, few people were familiar with
it. Even today, you don't have to know everything about an

automobile to drive it. For example, you don't have to know
too much about the complicated automobile transmission
system to drive a car. But of course, you have to know some
basic principles so that you can shift the gears properly.
Operating a computer can be reduced to basic principles.
Once these principles are learned, you can determine whether
you want to continue and become a customer engineer (auto
mechanic), an operator (a professional driver), or a
designer (an automative engineer.)

To learn how to drive a car, you must become familiar
with the features or functions of some devices or equipment
such as the engine, steering wheel, etc. (In the realm of
computer, these dovices or equipment are generally referred
to as "hardware".) You must at least know the names of some
computer hardware devices and equipment and their basic
fanctions. Once you have learnel to drive a car, your every
move comes naturally and easily. The same 1is true about
(operating) a conpater.

The manuals that accompany your Microprofessor are
designed for reference and to suggest experiments by showing
examples. To get started, it is suggested that: you follow
the procedures given below.

Exercises and Experiments.

As you proceed through this workbook, you will see
the notation Exercise 6-1, Exercise 6-2,..., 1in the
left margin. This is a signal to proceed to the sec-—
tion named EXERCISE and find the same number 6-1, 6-—
2,.... You should answer any questions in the exercise
and then proceed to the ANSWER section to check vyour

work. You will also be asked to perform experiments
(answer questions) in the Experiment Manual (Hard-
ware/Software). The answers to these questions are

usually found in the section named EXPERIMENTS. Occa-
sionally, an answer to an experiment will be part of an
answer to an exercise.

1+1 Unpacking and Installation

Open the "book" containing the Microprofessor (MPF-I).
Locate the power connector in the upper right-hand corner.
(Fig. 1-1)

_ Powey

Find the AC adaptor. The adaptor (Fig. 1-2) is a black
box labeled "AC ADAPTOR MULTITECH". You should make certain
that the wvoltage input shown on the adaptor matches the
voltage supplied by your outlet. 1In the United States it is
assumed (unless a special order is made) that the supply is
117 VAC - which is usually referred to as one-ten (110 V).

You should also check the frequency; the 1label on the
adaptor will show the frequency in hertz (Hz).

Plug the 9V circular shaft into the power receptacle
on the MPF-I. The side opposite the AC adaptor label is to
be plugged into your AC power outlet.

dkhkhkhhkhkhkhhhkkhkhkhkdhhhhkdkhhhhhhhkhhrhkhhhkrhhdrhhhkhhhhhkhhkd

* CAUTION : DO NOT TOUCH THE PRONGS WHILE PLUGGING *
* THE AC ADAPTOR INTO YOUR OUTLET!
**

1+2 Programming Languages

What is a program? How can a program be run
(executed)? To answer these questions, you should know how
a computer communicates with the people who wuse it., A
computer sometimes can be regarded as a 1loyal servant who
always follows the 1instructions given by the master. Once
the master has some good tasks for a computer to do or
requires a computer system to solve some problems, the
master gives step-by-step instructions to the computer.
Each and every step that is required to solve a problem or
to perform a task are given clearly to the computer. These
instructions constitute a program. Any person who writes a
computer program is called a programmer. In order to
program, you have to learn computer programming languages
such as ASSEMBLY, BASIC, PASCAL, APL, FORTRAN, and FORTH.
We will discuss ASSEMBLY language in later chapters.

Now you know that a programmer can give instructions to
a computer. How does a computer talk to a person? In the
case of the MPF-I, a six digit LED (light emitting diode)
display and a built-in speaker are used to tell a programmer
what the MPF-I 1is doing. The MPF-I display can show
modified Roman letters and Arabic numerals from 0 to 9 plus
some special signs.

1.3 Testing & Familiarization

In the exercise below, you will be shown how to enter
and execute a short program. Performing this exercise will
test some of the MPF-I functions and familiarize you with
the MPF-1's Z80¢ microprocessor. The program used in this
chapter adds two numbers, and stores the result in memory.

14 Program in English

Load the first number (5) into the A register, and the
second number (4) into the B register. Add the content of
the B register (4) to the content of the A register (5), and
put the result (9) in the A register. Then, store the value
of the A register in memory location 183@H (H stands for
hexadecimal) and finally halt the Microprofessor.

If you are already familiar with registers and ASSEMBLY
language programming, you may want to skip the next section,
although it is highly recommended for anyone.

1.5 Program Explained

In the program, you will instruct the MPF-I to access
the A register and load it with a value : (5). Now you may
ask : "wWhat is a register?" A register is an area in the CPU
that stores different kinds of information. It can be
regarded as a memory and a work area. Generally, the
registers of Z88 CPU are divided 1intn two <categories--
general purpose registers and special purpose registers.
The general purpose registers are named A, B, C, D, E, F, H,

and L, The special purpose registers include PC, SP, IX,
1Y, I and R. In the case of our program, 5 is placed in the
A (accumulator) register. Because the A register must con-

tain one of the values in any 8-bit arithmetic operations.
It is, therefore, often called the Accumulator. When 5 has
been loaded into A, 4 will then be loaded into B register.
The wvalues in the A and B registers will be ‘added together
and placed into the A register. The value in the A register
will be stored at memory location 183@H, then the MPF-I will
be halted.

1.6 Assembly Listing

All of the program is entered into the MPF-I in hexa-
decimal (hereafter, we will use the common abbreviation hex
for hexadecimal.,) Therefore, you first write your program
in Assembly language and then translate it into hexadecimal.
Most of the demonstration programs written in MPF-I manuals
will also be listed in machine language code which 1is in
hexadecimal. A complete Assembly program listing is shown
below.

1800 3E05 LD A, S
1802 9604 LD B, 4
1804 80 ADD A, B
1885 323918 LD 1830, A
1808 76 HALT

You will now enter the object (machine) 1language code
shown in the Assembly, program listing. If you haven't
already done so, connect your MPF-I to the power sSource.
Now press the system reset key @(the key is used for
initializing the MPF-I). Since the. memory locations at
which you can store programs begin at hexadecimal location
1800H, entry of object code will start at 180@H. Press the
address key |[ADDR] . A random address will be displayed on the
four leftmost digits; these digits will be referred to as
the address field.

Enter the starting address for the machine language
code by pressing i & i . The same result can be
obtained by pressing the program counter [PC] key (this only
works when your program starts at 18AfH). Now inform the
Micro-Professor that data is to be entered by pressing [DATAL
Refer to line 2 of the assembly program 1listing. Line 2
contains two bytes of object code 3E and #5.

Key in the first byte by pressing [3]and then [E]. The
display should now show:
[
HEEREE

Advance the address field display by pressing . The

display will show:
HEEHEN

Enter the second byte of hexadecimal data
and then 5 . The display should be:

by pressing o

Liqe 3 of the 1listing also contains two bytes of
hexadecimal data; enter these bytes by keying:

I@I’l@l

In a similar manner, enter the rest of the program, namely:

6 [d B EEEEEDE D E

1.7 Checking for Data Entry Errors

The program has been entered. It is wise to check for
entry errors. Press 1], ,[@],[@]. Are the right-
most two digits in the data field equal to 3E? If not,
pressand enter ’ . To examine the next byte press
. Is there a 85 in the data field? If the display is
correct continue inspection of all the remaining data using
the E]key. If the present byte or any successive bytes are
incorrect, enter the correct data.

1.8 Program Execution

There are two ways to begin execution at address 18@0¢H.
The simplest is to press [Rg, and then [GO. (The [BC] and [GO
keys are used in program execution. stands for program
counter. This key is used to tell the MPF-I where a program
begins. The key is a signal (that says: "You may go
execute the program".) The second method allows execution
to begin at any address. Press ' , the beginning
execution address e.g. 1 , 8 , 8 , 8 , then press ._ When
you press (in the above program), the screen will go
blank and stay blank. The program has reached thg HALT
instruction and is waiting for the next operator action.

1.9 Checking the Results

To regain control of the keyboard functions, press
MONI. The answer to 5+4 was stored at location 1830H. Key
in . p , 3, . The display should show:

Now let's check what was stored 1in the reg@sters.
Press the [REG key. The word REG should show on the display.

Press RAEL; this will display the contents of the AF register
pair. The first two digits contain the contents of A
register, and the middle 2 digits display the contents of F
register., Do not worry about the F register now. We are
only concerned with the value in A register. Didn't we
store a five 1in A register? And then, didn't we add the
contents of B register (4) to the contents of A register?
If A register contains a nine, then it is correct. Press
[REQ then the key. In this case we are looking at the
contents of the BC register pair. Are the numbers in the
leftmost 2 digits @42 If they are, then Congratulations!
You have just successfully entered your first object code
program onto the MPF-I. If something went wrong, you may
find the answer to your problem in the next section.

When you made the following errors:

1) A byte was incorrectly entered. Write the correct
byte over the incorrect byte.

2) One or more bytes were 1left out., Read section
3.3.3 (in the User's Manual), then remove the bytes one by
one.

3) One or more bytes need to be added. Read section
3.3.2 (in the User's Manual), then add each byte.

CHAPTER 2

Keyboard Familiarization

Are you Keybored? 0.K. Now you know how to enter a

program and, so far, your experience with running a program
has heen successful. But if you're like us, you may be
KEYBORED! i)
Some symptoms of this disease are confusion with each key
functions, and adversion to abbreviations such as [ADDR], [REG],
SBR| and [INS|, and finally, allergic reactions to white, grey
and orange rectangles. The good news is that this disease
is painlessly curable, our RX: read this chapter and find
out how to avoid entering the same program over and over,

2.1 Reset or Monitor: What's the Difference?

In chapter 1, you entered a program, and you were told
there were two ways to_stop the execution of .a program.
One was to press the key, in which case the display
shows a memory address, or you could press thekey, in
which case the display will show. If you were sharp,
you might have noticed that we didn't press the [RS] key to
stop the program when we were planning to look at the
contents of the registers. This is because of the [RS]key]|
is used: (1) to perform a hardware reset of the CPU, (2) to
initialize the monitor program, and (3) to transfer control
to the monitor.

If we were to initialize the monitor program before we
went to check the values in a register, those values might
not remain the same. Unlike the key, the key
transfers control immediately to the monitor. The address at
which the program was currently at when thekey was
pressed is displayed along with the data at that location.
Enter &he following program, and we'll do a short experiment

with the [MONI] and [RS]keys.

1;police car siren:

1800 2 ORG 1846H
1800 OEGO 3 LOOP LD c,0
1802 21C000 4 LD HL, 8COH
1805 CDE405 5 CALL TONE
1808 WQECO 6 LD C,0CeH
18@A 210001 7 LD HL,100H
184D CDE4@5 8 CALL TONE
1814 18EE 9 JR LOOP

10 ;

11 TONE EQU 05E4

12 END

If you had any problems entering the above program, you
need to review chapter 1.

Now for the experiment, after you have loaded the

program, press[PC, then [GO). If everything was entered
correctly, you should hear a sound similar to a European
police car siren. Now, to stop the execution, press

. wWhat happens? appears on the display.
Begin the program again and this time, stop it with [MONIJ.
What happens this time? Instead of going back to ground zero
and initalizing the system, [MONI| simply halted the program

13

where it was and allowed you to examine the registers. When
the program 1is halted the left 4 display digits show the
program counter (where the program was halted) and the 2
right display digits show the opcode at the halted address.
Press [GOl and several times and notice that the
contents of the PC counter address will vary.

14

2.2 Is the MPF-l a new recording artist?

Well, not exactly. But the MPF-I does make tapes.
Examine the top, righthand corner of your MPF-I. Next to
the power socket, you will find two circular metal jacks.
When a cassette recorder cable is connected to these sockets
and to a recorder, a simple storage of data can be
performed. Assuming you have the reguired <cable and
recorder, let's make a tape of the police siren program you
have use just entered. You may wish to check to see if the
siren program is still in the MPF-I memory. If not, reenter
the program. Connect the cables from the cassette recorder
to your MPF-I. Make sure to connect the cable from the EAR
jack to the MPF~I's EAR socket. Do the same with the MIC
cable and socket. Now, press on the [TAPE WR key. The
screen will show a random number in the address field. The
display should be similar to this :

XeX.XeX. —=F

The -F in the data field is the mnemonic for (stands for)
filename. The filename 1is wused to distinguish different
data sets stored on a single cassette. It is also wused to
read back data. You can wuse any combination of the 16
lettered and numbered keys in the filename. For your first
try, let's use something easy to remember, e.g. 08081. Enter
9,0,9,1. Now enter [+]|to move on to the next display. You
will again see a random number in the address field and the
display should look like this:

XeXeXeXe =S

The -S in the data field stands for the starting address of
the data you wish to put on the tape. Our program begins at
1800. Enter 1,8,0,8. Now press to get to the next field
again. You should see a random number, then the mnemonic on
the display should read -E. This signifies that the last
memory address to be written to the tape should be entered.
The 1last address in our program was 1811 so enter m, E,!,!.
Now we are ready to make a tape. Rewind the casette in your
recorder to the beginning of the tape. Press PLAY and
RECORD on the recorder, then press on the MPF-I. If
everything is going correctly, vyou should be able to hear
the noise of data being output. What sounds noisy to you is
actually your program! If the cassette recorder 1is not
ready and you press [GO] , do not worry, the MPF-I will
still send out data and then return control to the user.
You can then begin the process over again.

15

Now let's read the data we wrote to tape back into the
MPF-I. Press [TAPE RD. We now have that familiar mnemonic
(-S) on the screen again. Input 60601, or whatever filename
you used 1in the above exercise. Rewind the cassette and
press [GOl on the MPF-I. Press [PLAY] on the recorder. The
screen will go blank, periods will be displayed for a few
moments, now the filename of the program at that location
will be displayed. In this case 0001, the program will now
be read in. When the "noise" stops, stop the recorder and
reset the MPF-I. Now press and . Is the program the
same? If so, congratulations! If not repeat the above
process with a different volume setting.

16

2.3 More Keys

The MPF-I allows users a great deal of flexibility and
power through keyboard entries. How does a user become
familiar with the keyboard functions? An appendix with an
alphabetic 1listing of the keys 1is at the back of this
manual. But, do you really need to read about each key? I
recommend you proceed through the manual and learn how to
use the keys in the context of programming. Use the appendix
for reference.

Keyboard Familiarization Questions

1. Which keys do not cause a tone to sound when pressed?

2. Why 1is the RESET key the only key that 1is brightly
colored?

3. Look at the MPF-I User's Manual, Table of Contents-3,
Operation introduction. Two of the gray keys are not
listed == which ones?

4. Can you press any key that would cause damage to the
MPF-17?

5. There is a magic key that will tell the Micro-Professor I
to do exactly what you want done. What is this key?

Keyboard Familiarization Answers

1. RESET, MONI, INTR, USER KEY.

2. This key 1is the MPF-I PANIC button. The color should
also serve as a warning that the current contents of the
registers will be lost, when RESET is pressed.

3. [INTRl and [USER|KEY. Additional programming must be done
to make these keys perform a function.

4. No, not unless vyou hit the key with a hammer. Pressing
the wrong key can change your program.

5. GO. If a program has been entered and it is correct.

17

CHAPTER 3

Keeping Your Sanity—
(or How not to Write in Object Code)

.

3+1 ASSEMBLY--the Sane Way to Go

In earlier chapters there have been hints that you
should first write your program in Assembly Language. The
major reasons for Assembly programming are:

.Easier to read
.Easier to write programs
.Easier to correct errors

21

3.2 Easier to Read
What does the 3 instruction program below do?

021l 1010 0000 0000 0001 1010
1100 0110 0000 1000
7011 6010 0000 0010 0600)1 1010

After 1looking at the binary code you probably don't
care. OK! Here is the same program in hexadecimal.

3A 20 1A
C6 08
32 62 1A

How can the hexadecimal program be decoded? Open the
MPF-I User's Manual to Appendix C. Find the section Z88-CPU
INSTRUCTIONS SORTED BY OP-CODE. Search for the opcode
3A (Second column almost halfway down). The row reads

3A 8405 LD A, (NN)

OH! LD stands for load.
A load means making a copy of the data, usually one or two
bytes, then entering the data into a stated destination.

In this instruction, a byte is loaded from memory into A
register. The form LD A,(NN) is still a little hard to
read. The Assembly language instruction is

LD A, (1AGAH)

which means
(1) find memory location 1A@@ (hexadecimal),
(2) make a copy of the byte at location 1A80,

(3) then replace contents of the A register with the copy
from memory.

The entire projram is
LD A, (1AQ0H) ; A <— (1A00H)
ADD A,8 ; A <— A + 8
LD (lAd2H) ,A ; (1A@2H) <— A

This program

1) loads a value from memory into A,

2) adds 8 to the contents of A,

3) puts the result (A register) in memory location 1A02H.
Read the binary code again and compare with the Assembly
language program.

22

3.3 Easier to Program

In your program a test is to be made. If the value in
the A register is zero, then a routine which clears the
account book is to be executed. If the wvalue of A is
negative, then an overdraw routine is executed. Using
Assembly language you can write:

Jp Z,CLRACC ;If A=0 jump to clear account
JP M, OVERDR ;If A is minus (negative) jump
to overdrawn.

In object code programming (hexadecimal or binary) you
may not know where the routines CLRACC and OVERDR will be
in memory. This means you will have to leave a blank area
in the code. Too many blank areas lead to the inability
of locating the exact address where the jump was to be
made to. In assembly language programming you just write
the name of the routine e.g. CLRACE.

3+4 Easier to Correct

Sooner or later it will become necessary to alter
codes--insert, delete, or add instructions. In Assembly
language programming, you can usually find the code to be
modified swiftly. To add a new line,simply write the in-
struction in mnemonic form.

23

3¢5 How to Proceed Using the MPF-I

1. Decide what the program must do. Base your decisions
upon the required input and output.

2. Decide 1if you can write the program. You might be
asked to compute an advanced mathematical function of
which you have no knowledge.

3. Decide whether the MPF-I can program the task.
Unless a special interface 1is designed; electro—
cardiograms can't be read directly.

4. Organize the program flow. Sometimes a flowchart
helps.

5. Write the program in Assembly Language.

6. Hand translate the program into object (hexadecimal)
code.

7. Enter the hexadecimal code into the MPF-I's memory.

8. Test the program.

9. Make corrections in Assembly language and translate
into object code.

18. Save the working program on tape.

QUESTIONS

1. Turn to Appendix C in the MPF-I USER's MANUAL. Find the

section Z8¢-CPU INSTRUCTIONS SORTED BY MNEMONIC. The

table should begin with:

OBJ SOURCE
CODE STATEMENT
8E ADC A, (HL)

Use the table in the manual to fill in the missing
entries in the table below.

0BJ SOURCE
CODE STATEMENT
ADD A, (HL)
————————— ccr
_________ NeG
T T ey A
T xR N
R BIT 3,8
T sk A

24

2. In this section you will be asked to translate frem
object code (written in hexadecimal) to source code
(written in assembly language). This is wusually done
when you can't read the source statement or are given
some code in hexadecimal (this is a rotten situation).

Turn to Appendix C in the MPF-I User's Manual. Find
the section 2Z80-CPU INSTRUCTIONS SORTED BY OP-CODE.
The table should begin

OBJ SOURCE
CODE STATEMENT
80 NOP

Use the table 1in Appendix C to fill in the entries in the
table below:

[oBJ SOURCE
‘ CODE STATEMENT
——— e -
78 LOMHL) B
FF ReT 2y
. B89 _ | NoP
50 LD D, R
A6 AwWD” (L)
CB 10 T ‘
DD CBO5CE|
| ED BO __ | e ;
FD 23 J

UnFil you looked for CB, all you had to do is to find the
object code is to go down a list in hexadecimal order - @,
1,2,3,4,5,6,7,8,9,A,8B,C,D,E,F. All instructions starting
with CB,DD,ED, and FD are in separate lists. The reason for
Fhe separate lists is that the 280 executes these
}nstructions differently. 1In a later chapter, some of these
instructions will be explained.

25

ANSWERS

1.

OBJ SOURCE
CODE STATEMENT

8E ADC _A,HL

3F CCF

ED 44 NEG

12 LD (DE),A
EE 20 XOR N

CB 5C BIT 3,H

CB 2F SRA A

OBJ SOURCE

CODE STATEMENT

70 LD (HL), B
FF RST _38H

20 NOP

50 LD D,B

A6 AND (HL)

CB 10 RL B

DD CBOSCE|SET 1, (IX4D
ED BO LDIR

FD 23 INC 1Y

26

CHAPTER 4

i

This chapter will introduce to you some of the basic
components (by basic, we mean they are indespensable.) and
their functions.

Computers have been called "electronic brains" because
computers can perform such operations as logic comparisons,
arithmetic calculations, and more recently reasoning. But
computers are much more than an electronic brain. Computer
have become more like an individual human being. This will
be discussed later.

4.1 Central Processing Unit (CPU)

The "brain" of a computer or a microcomputer is its
central processing unit (CPU). You may wish to know
what a CPU 1looks like. The MPF-I has a Z80 microprocessor
which is used as a CPU.

You can locate the Z8¢ CPU of MPF-I in a diagram on
page 4 in the MPF-I User's Manual. At the upper left corner
of the diagram, there is an rectangular area marked with Z8¢
CPU. Here is where the CPU is located.

You may have noticed that there is a notch on the
upper edge of the Z8@ CPU. The notch is used to indicate
whether the Z80 CPU is inserted correctly into the socket.
If the notch points upwards, the 288 is correctly inserted.
Otherwise, the Z8@ CPU is not adaquately inserted and the
MPF-I would run into trouble. Typically, reverse in-
sertion causes the Z80 to overheat until it burns up.

Why does the Z8f# CPU have to be mounted correctly?
To answer the question, let's take a look at the CPU. The
CPU 1is an n integrated «circuit (IC) chip which is a 'tiny
piece of silicon on which many microscopic circuits are
built. The chip is packaged in two pieces of a Dual-In-Line
package (DIPs) that keeps moisture, dust, and impurities
away from the chip. But since the chip is sealed in the DIP
package, the circuits inside the package need to be
connected to outside circuits through pins as shown in the
diagram on page C-1 in the Appendix C of the MPF-I User's
Manual.

29

4.2 PIN-OUT

To make sure that a circuit inside the package is
connected to a circuit outside of the package col}ectly, a
specific pin is assigned to make a correct connection. As a
result, each pin is given a specific pin number.

The diagram on page C-1 shows how pin numbers are
assigned to pins. If an IC chip is 1inserted in reverse
(that means the notch of the chip points downwards.), it
results in incorrect connections of circuits. The pins are
not numbered sequentially (1,2,3,4,...) but rather by func-
tion. For example the transfer of data in and out of the Z88
CPU is accomplished thru 8 data pins (14, 15, 12, 8, 7, 9,
19, 13). These 8 pins are grouped together and called the
data bus.

There are several reasons for selecting Z80 as the CPU
for the MPF-I. First, 280 is one of the most popular
microprocessors. It is used as the CPU of many
microcomputers. Many software programs have been written to
run on Z80 based computers. You can share or exchange
software programs with others. Secondly, the Z80
instruction set was designed as an extention of the
instruction set for the Intel 8@8% microprocessor.
Therefore, almost any program written for an 8080
microprocessor can be executed on a Z8f microprocessor
without any changes. The 8086 microprocessor is a very
important microprocessor <chip, for which many software
programs already exist, Thirdly, the Z8# microprocessor
(Z89 CPU) features two sets of general-purpose registers and
additional special purpose registers which make it easier
for computer users or programmers to write programs for 280
based microcomputers.

30

4.3 Memory

Before we proceed to show how a CPU interacts with
other devices, let's take a look at one of the major parts
that constitutes a computer--memory. A human being must have
a memory so that he or she can learn and think. A computer
must have a memory in order to process information and solve
problems.

Memory is generally defined as any device that can
store data in such a manner that the information can be
accessed (or reached) and retrieved (or fetched). In today's

. computers, the memories wusually come in the form of IC
chips. The appearance of these chips look similar to that
of a CPU such as the 280 microprocessor. They have DIP
packages and pins. Each chip is assigned a specific number.
This number indicates the functions the chip can perform.

31

4.4 RAM

Now open the cover of your MPF-I, there is a 24-pin 1IC
chip on the upper right part of your MPF-I. On page I-4 of
your manual the chip is labeled RAM. The chip which |is
marked with either 2p16, 58725, or 6116P-4, is a 16K static
random access memory (RAM). On the part of the printed
circuit board just above the IC memory chip, the words "ug"
is marked to identify the location where the chip should be
installed.

When you try to decipher the words "RAM" and "static"
you may become frustrated. These words are just wused to
distinguish different types of memory chips. The most
commonly used types of memory are RAMs, ROMs (read only
memory), and EPROMs (erasable programmable read only
memory) .

The: RAM, more correctly speaking, should be referred to
as read/write memory. A more correct definition of RAM is
random read/write memory. The RAM is a semiconductor memory
into which information (data) can be stored (written) and
retrieved (read out) again. RAMs differ from ROMs-- once
the power supply of a computer is turned off, the contents
of a RAM disappear. As a result, RAMs are suitable for
storing data which are to be used temporarily by a computer
such as programs and data.

32

4.5 Dynamic RAM, Static RAM

The RAM can be further divided into two types--static
RAM and dynamic RAM. The static RAM is what is generally
referred as those RAMs whose contents disappear, will on}y
change, when written into or as soon as the power supply 1is
turned off. The dynamic RAMs, even when power 1S
continuously supplied can lose data if the contents of such
RAMs do not go through a memory refresh process. Unlike
some (many) CPUs the 280 provides a refresh signal.

4-6 ROM

Data is read from a ROM. No data can be written into
ROM chips. Even when the power supply is cut off, the
contents of ROMs do not change. ROM chips are suitable for
storing data that is to be used repeatedly.

33

4 +7 Monitor Program and ROM of the MPF-I

The location indicated by U6 is used to put a ROM for
storing monitor programs. Almost every microcomputer uses a
ROM or an EPROM memory chip for storing monitor programs,
which are used to control the internal operations of a
microcomputer. An EPROM is a close relative of the ROM. By
applying ultraviolet rays an EPROM can be erased.

Typical functions of a monitor program include the

initialization of the CPU, keyboard scanning, display
control, and responding to the function to be performed each
time a key on the keyboard is pressed. In short, once a

microcomputer is turned on, the CPU of the microcomputer
begins to execute a monitor program. At location U6 in the
MPF-I, either 16K PROMs such as 2716 and 2516 or 32K PROMs
such as 2732 and 2532 can be used for storing monitor
programs.

We have talked about the CPU, memory, and data input
device (such as the MPF-I keyboard), and data output
device (the display and speaker) . Most of today's
microcomputers have these four major components.

34

4.8 Address

Just by watching the keyboard, you may guess that a
programmer can key in a character like "A" or "7". But
where can a character like "A" be stored in the MPF-I. How
is it stored? A computer 1is designed so that it only
recognizes "@"s and "1"s no matter who the manufactuer is.
As a result, when youpressa key to store a word, the
computer first encodes the word into the series such as
#110616#1 and then stores the string of 8's and 1's into a
specific location. Since the computer memory stores vast
amounts of data, data should be stored or retrieved from
specific locations to avoid confusion in data manipulation.
Therefore, an "address" is given to identify the location of
a specific item of data the same way as a specific building
is assigned an address so that mail addressed to the
building can be delivered properly.

ADDRESS BUS

The Z8¢ microprocessor uses 16-digit binary numbers to
identify the locations of data stored in the memory devices
that are connected to it. When the CPU of a computer
intends to access the data stored in its memory devices, it
communicates with its memory through a 16-line address bus.
Each 1line of the address bus corresponds to a binary digit

of the 16-digit address. And each line of the address bus
can convey two signals to the memory--"g" and "1"., Using @
and 1, you can construct 65,536 16-digit numbers. That

means the 2804 CPU can access up to 65,536 memory locations.
The number 65,536 is often written 64K.

35

4.9 Byte, Bit

We have mentioned that data is stored in the form of
strings of @'s and 1's in a computer. In computer systems,
memory size is measured in bytes. In Z80 based
microcomputers such as MPF-I, a byte is equal to eight
binary digits, e.g. 1. A byte looks like p@@@@OP®, 11111111,
110001061, or ©91111001. A byte is made up of eight "bits".
In a binary numerical system, a bit is either a "8" or a
lllli.

You may wonder how an item of information or data is
accessed (for example from the keyboard). Turn to page I-B-3
(sheet 2 of 4). This schematic shows how the IC (8255)
controls the input and output of data of the MPF-I. If you
have not worked with hardware, do not expect to understand
the details of how the 8255 controls devices such as the
displays. Later in the workbook a detailed explanation will
be given of the schematics. This chip controls MPF-I's data
input and output devices such as LED displays, the keyboard,
the cassette interface, the interface to MPF-I's CPU, and
the address decoder. In the 1lower 1left part of the
schematic (A, 7 and 8), you will find a chip (74LS139) which
is connected to a pin of the 8225 chip marked CS (which
stands for chip select). The 74LS139 is an address decoder
used for deciding what range of memory addresses is being
accessed by the CPU. There is a "--" on top of the mark CS.
That means the address decoder works when the input of CS is
low. A low means the voltage is pretty close to zero - pro-
bably @.4 volts., We say the address decoder works is active
low, because when the input of CS is low it becomes active.

36

4 - 10 Clock

Chips (or large-scale integrated circuits, LSIs) in the
Z8¢ family require a clock. The clock supplies a square
wave of a certain frequency used for controlling transfer of
data in the CPU. Every time the clock ticks, data is
tansferred. The illustration below shows how a square wave

looks like.
1
|
|
L
i

'
——t

TIC 5

1
1
1
!
1
I

|
|
TIC 2 TIC 33 TIC 4
Fig 4-1 The sguare wave

Chips using a clock have specific requirements for the
High and Low voltages. A good source for a clock is a
crystal oscillator. On a schematic, it looks like fig. 4-2.

—0-

Fig 4-2 crystal oscillator

On sheet 1 of 4 of the MPF-I schematic, you can locate
the crystal oscillator at (D-7) and (D-8).

The output of the crystal oscillator is connected to
pin 3 of the IC 74LS74 (coordinates D-6), and then to pin 6
of the 288 CPU (D-5). The standard designation for a clock

is & . The 1label <& 1is the point where clock signals go
into the CPU.

37

4 .11 Reset

A requirement for a circuit to work properly is that it
always starts the same way each time it is put to work. The
280 CPU always starts (comes up) by addressing location @600
when power is supplied and a pin called RESET is held 1low
for a few cycles. Any time your MPF-I appears to be out of
control, you may activate a circuit that resets the CPU.
Pressing the RS button controls the circuit that supplies a
reset signal to the Z8@ CPU.

4 .12 Ports

Now we will take a closer look at the schematic for
MPF-I input and output (sheet 2 of 4). On the right side of
the 8255, there are three "ports”. You may ask how ports
can be built on a tiny 4@-pin chip.

The word port conventionally means a harbor, a sea port
where ships can sail in or out, loading or discharging large
amounts of goods. In our study of microprocessors, a port
can be regarded as a place where data from outside can be
"loaded" into the CPU and where a CPU can "discharge" the
data it has processed.

4 +» 13 Peripherals

The chip 8255 1is a 408-pin programmable peripheral
interface IC. Peripherals are generally referred to as
those devices which interact with the CPU for certain
purposes. If you use a cassette tape recorder to record
data or programs, then we say the cassette tape recorder is
a peripheral of the MPF-I. Peripherals can be a printer,
auxiliary memory storage equipment, or a display terminal,
etc.

38

4. 14 Parallel /O Lines

0f the 8255's 48 pins, there are 24 pins wused as
parallel input/output lines (we will wuse I/0 instead of
input/out hereafter.) The word parallel may puzzle you.

When data is transferred bit by bit, we generally call
this method a serial data transfer. Data is transferred
over telephone lines serially. If you want to input or
output eight bits of data or several batches of data all at
once, you have to use parallel 1I/0 lines. In computer
systems, data is usually transferred byte by byte between
the CPU and ROM or RAM chips. As a consequence, we have to
use parallel lines to connect the CPU and its memory
devices. If a byte--01061681--is fetched by the CPU from
its memory, weach bit of this byte will be carried by a
single parallel line to the CPU. Therefore, a data bus
consisting of eight parallel bi-directional lines is used to
supply data between the CPU, memory, and I/0 ports.

The 24 parallel I/0 lines of the 8255 are divided into-
three ports--Port A, Port B, and Port C--with each port
having eight parallel I/0 lines. Each of the three ports is
called an 8-bit port. Port A is an input port, because this
port is wused for «collecting data (which will then be
transferred) to the CPU. Port B and C are output ports,
because the two ports are used for activating displays and
keys.

You can locate Port A on the schematic sheet 2 of 4.
In the lower right part of the IC 8255, there are eight pins
marked with PA@, PAl, PA2,...PA7. They are connected to
eight parallel lines., Pin 37 (the pin marked PA7) 1is used
for inputing data stored on cassette tape into the MPF-I.
Pin 38 (the pin marked with PA6) is connected ¢to the \User
key, which will become active when the signal on it is low.
PA@ through PAS5 are connected to six rows of the keyboard
matrix. The input signal becomes low only when keys in the
active column are pressed. Since the 8255 is programmable,
a programmer can program a port to be input or output.

In the MPF-I, Port-B 1is an output port wused for
controlling the LED displays. As you can see on the
schematic, PB@ through PB7 1is wired to the displays with
eight parallel lines. Each pin or bit of Port B is used to
control one of the seven segments of the LED display and the

decimal point. Fig.4-3 shows the name of each segment and
the corresponding bit in Port B.
2 Port Bk

— —
fl--’b K:f;i5|4] 3]2[1]o0]

d p c b a f g
el § 'C
—

d P Fig A4-3

39

Port C has many functions. Bit 7 of Port C (PC7) is
used for writing data into cassette tape. It 1is also
connected to the speaker and an tiny LED lamp. Once you
press a Key on the keyboard of the MPF-I, the speaker of the
MPF-I will generate a sound and the LED lamp will blink.
Except for the keys marked with [RS, [MONI}, [INTR, and [USER|,
all the other keys cause the LED lamp to blink and the
speaker to generate a sound.

The PC6 is used for single step execution of a program
or when break points exist in a program. Bit 8 through bit
5 are connected to the LED displays and the keyboard matrix.
Bit @ selects the rightmost LED display and bit 5 selects
the leftmost LED display. All these bits are active high.

Thus PC@ through PC5 are used for selecting LED
display. For example, when PC@ is high, the rightmost
display of the LED displays is active.

You may have noticed that the parallel lines of Port B
and C first go through three blocks marked with 75492. The
three blocks are actually three ICs used as drivers that
amplify the 1incoming signals and convert them into strong
signals.

When you use a cassette tape recorder to read data to
the MPF-I CPU, the data goes into the CPU through PA7. When
the CPU of MPF-I writes data into a cassette tape, the data
goes to the cassette tape through PC7.

40

4 . 15 Advanced Hardware Description (Optional)

4.15-1 P10: Parallel /0 Circuit

The 280 parallel 1I/0 circuit (PIO) is one of a set
of chips manufactured to facilitate 280 interfacing. The
PIO circuit is designed to provide a two-port, programmable,
TTL compatible parallel data transfer between the Z88 CPU

and peripheral devices. Turn to schematic sheet 3 of 4.
In the D and C of column 4, you can find Port A and Port
B. The two ports are independent 8-bit parallel bi-

directional peripheral interface ports using "handshake"
data transfer method.

The 28¢ PIO is an IC chip with 48 pins. Of the 40
pins, D@ through D7 is used as z88 CPU data bus. This is a
bidirectional, tristate bus which is used to transfer all
data and commands between the CPU and PIO.

4.15.2 CTC: Counter-Timer Circuit

The Z886 counter—timer circuit, like the Z88 PIO circuit
is one of a group of IC chips manufactured to facilitate Z80
CPU interfacing. This chip performs timing and event
counting functions with four independent 8-bit channels
which interface directly to the 280 data bus.

The CTC chip 1is used when a program requires thac
certain operations be performed at fixed time intervals or
at pre-set frequencies. In general, the relationship
between the CTC and CPU can be regarded as that between a
person and his or her watch. The CTC is a Z'->in chip with
eight pins (D@ through D7) used as CPU data bus, zevea pins
used as CTC control, three pins as interrupt ce¢- -ol, and
another seven pins as channel signals. The remaiuning three
pins are pin 24 (to which a 5-volt power is supplied), pin 5
(ground), and pin 15 (which receives a one-phase 5-volt
clock pulse).

41

4 - 16 Power Supply

A power adaptor is supplied together with the MPF-I so
that you <zan convert the higher voltage typically supplied
by a wall outlet to 9V at 6@0mA.

The MPF-I requires a single 5V power supply at 500mA.
A regulator is installed right beneath the socket for the
power adaptor to convert 9-volts to 5-volts. A heat sink
may or may not be attached to the voltage regulator to
dissipate the heat of the voltage regulator. Don't touch
the voltage regulator. It makes your finger uncomfortable.

42

Questions

to 1.3 ySs 1 f
1. he info h p
nd 8 CPU.

—/ N—
000 TES
ARy e I

I H
|| =
]

O

OoOmE =

—— —

N I sy I Y I N O O
Ny O O I O
I Iy I Iy O Iy A
N I I I N Iy B

FFFFFF

4-2. In Appendix B there are
Look in the lower right hand corner.

Fig 4-5

Below the
which sheet
this is shee
locate any

four pages of schematics.

MULTITECH

TITLE: ypp.y

SHEET 2 OF 4

DATE

REVISION|

DRAWING NO.”

gyog22l A

title MPF~I there
you are reading.

t 2 of 4. Find sheet 1 of 4. Notice that to

component there are coordinates on the

is an entry indicating
In the figure above

boarders Fig 4-6.
5
S i [6
D Coordinate C=-5
0
|
C
I
1
dem oo == =
|
B
A
T T 1
8 7 6 ' 5
Fig 4-6
Locate the component at €-5. What is this

component?
it?

This part also h

as a U number what is

4-3. The 280-CPU transfers data in and out through its'
data pins There are eight data pins that are all accessed at
one time. The eight pins are grouped under the name data
bus. Turn to the diagram CPU PIN-OUTS Appendix C page C-1.
Locate the DATA BUS. D@ is the least significant binary
digit and D7 is most significant binary digit. Fill in
chart below

BINARY DIGIT| D7|D6|D5|D4|D3|D2|D1|DJ
PIN NUMBER

Wwhen vyou filled in the chart above, you probably observed
that the pin numbers for the data bus are not sequential.
The pin numbers jump all around. There 1is no requirement
that pin numbers for a bus be sequential.

4-4, Find the RAM in one of the sheets of the schematics
in Appendix B (it is labeled U8). What sheet 1is the RAM
on__ . What are the coordinates of the RAM? .
Around the edges of the chip are the pin numbers and their
functions. In the center you will see HM6116. A 6116 is a
type of RAM. Also on the chip is a memory address. The
unit as delivered has the 6116 RAM located at addresses
1800H to 1FFFH.

4-5, Again refer to the MPF-I schematics. Find U6 the
monitor ROM. What sheet 1is it on? . What are the
coordinates?_ . Notice the type of allowable chips written
on U6-~ a 2516 or 2532. The 2516 option allows 2048 bytes or
characters (2K=16K of bits) of information to be retained
by the 2516. How many bytes would you think the 2532 chip
allows to be retained?

4-6. The z8@¢ CPU is able to address memory chips by
connecting the address bus to the 288 CPU and to the memory
chip. The individual lines of the address are labeled Ag to
AlS. Find the address bus from the 789 CPU (Ul) to the

monitor ROM at U6. Enter the pin connections of 288 CPU and
U6 in the chart below.

ADDRESS BUS
PIN NAME Al5 |Al4 [A13 |Al2 |All (A10 |A9 (A8 (A7 A6 |AS |Ad (A3 A2 |AL |A@

280 CPU (Ul)
PIN NAME

RAM (U6)
PIN NAME

45

Although it may be clear to you from reading the schematic
the address (and data) lines travel under U6. This means
that Ap of the Z80# CPU is connected to Ag@ of U7 and A@ of

U8. Enter the corresponding pin connections in the chart
below.

ADDRESS BUS
PIN NAME Al5(Al4l Al3 Al2l Al) Al@l A9 A8 A7 A¢g AY A4l A3 A2l All AD

280 CPU (Ul)
PIN NAME

RAM (U8}
PIN NAME

4-7. The data bus connects to several ICS just as the
address bus does. Find the data bus on sheet 1 of 4. Enter
the corresponding connections (pin numbers) in the chart
below

DATA BUS PIN NAME D7 D6 D5 [D4 | D3| D2|D1| Do

Z8OBCPU (Ul) PIN NAME 14

ROM (U8) PIN NAME 9

The entire data bus is also used to access information
from devices such as the keyboard. The 8255(Ul4) controls
the keyboard so the data bus must be connected to this chip.
This is so that the 8255 can send keyboard information to
the CPU. Look at sheet 2 of 4 coordicates C-8 and D-8. You
will see lines (wires) with the labels D@ to D7. Where did
these lines come from? To the left of D@ through D7 1is a

parenthesis labeled SHI1,3. SH stands for sheet. The data
lines leave sheet 2 of 4 and connect to sheets 1 and 3. Can
you find the «connection on sheet 1? What are the

coordinates? What are coordinates for the data bus on sheet
3 of 4?2

46

Answers

4-1
280
Cpu

4-2 At C-5 the Z80-CPU. The U number is 1.

4-3 BINARY DIGIT|D7|D6(D5|D4|D3|D2|D1|D@

PIN NUMBER 13/1e| 9| 7| 8|12{15|14

4-4 The RAM is on sheet 1 of 4.
The coordinates of the RAM are C-2.

4.5 The ROM is on sheet 1 of 4.
The coordinates of the ROM are C-4.
The ROM can store (retain) 4@96 bytes.
(4K=32K bits).

a-6
[ADDRESS BUS
PIN NAME Al15 |A14|A13|A12|A11|A10| A9| A8| A7|A6|AS| A4| A3| A2| Al|AD
280 CPU (Ul) 5 4 3 2 1| 40| 39| 38| 37|36|35(34|33[32|31]30
RAM (U6) NOT USED 18 |19 22 23 (1 |2 |3 |4 |5 611718
PIN NAME
ADDRESS BUS
PIN NAME Al@|A9| A8| A7|A6|AS51A4 A3 |A2|AL|AD
- T = |
280 CPU (Ul) 4@ 39| 38|37 36|35/34;33!32/31|30
PIN NAME } . [
RAM (U8) . 19/29]23) 1| 2| 3| 4| 5| 6! 7| 8
Mﬂ_ﬁ__l o I

4-7 .
DATA BUS PIN NAME| D7 | D6 | D5] D4| D3 | D2 | D1 D@
289CPU_(UI) PIN NAME| 13 10| 9| 7] 8 112 15 14
IROM _(U6) PIN NAME| 17 | 16 | 15| 14| 13 |11 | 1@ 9
RAM (US) PIN NAME | 17| 16|15 14| 13 [11[18] 9

The <coordinates of the data bus on sheet 1 of 4 are D-1.
The coordinates of the data bus on sheet 3 of 4 are C-7 and
D-7.

47

CHAPTERS

Introduction to Programming
the MPF-I

.

S .1 Learn by Doing

You will now be guided through a series of examples from the

MPF-I User's Manual. You should first key in the example
and execute the program. But if you want to learn
programming, you must do more. Each example will be
analyzed--some examples in great detail. Whenever a new

instruction occurs, you will be shown:

1) how to test if it is in the 280 instruction set.

2) the correspondence between assembly code and object code.

3) what registers, flags and memory locations are affected
by the instruction.

4) and finally the reason for using the instruction.

5. 2 Flashing a Message

Turn to EXAMPLE 2 in section 5.18. Key in and execute
this example. Does the program flash HELP US for 580 ms
(1/2 second) and then go blank for 5008 ms? Actually you
should see HELP US for a longer time than 50# ms and' blank
screen for less than 560 ms. The program lights the screen
for 500 ms but the display takes a period of time to
extinguish (fade out) when they are no longer selected.

51

HRY
37 =H

5« 3 Program Analysis

Exercise 5-1

Statement 1l: flash 'HELP US'

You must understand you are writing your program in a

highly readable form. Some words in your program will

be translated into an object program. An example is the
comment statment, like statement 1. When using an assembler

to translate your source program into object code,
comment statement must start with a semicolon.

semicolon signals the assembler to ignore the comment
statement. Why use a comment statement? Comments are used

to make the program understandable to readers and
programmers. Such statements are called documentation.
comment statement helps document a program.

cBe H3

g
1
3
(VA
9
1N

£ =5 52

Statement 2: ORG 1880H

The ORG statement informs the assembler where to place
the translated code. ORG stands for origin -- a beginning.
When the assembler sees an ORG statement, it sets a counter
which determines the location of each - translated
instruction. This 1location counter is advanced as each
instruction is converted into object code.

Statement 3: LD HL,BLANK

This statement loads the address of BLANK into the re-
gister pair HL. To determine the address of BLANK, refer to
line 19. BLANK is a label and thus is in the column (field)
where labels are located. The address of LABEL, 1826, is
given by the lefthand column. . The location counter 1is re-
sponsible for calculating the values in this column. It has
now been determined that statement 3 loads the value 1826
into the HL register pair. The H can be assumed to stand
for high, thus the high byte, 18, is loaded into the H
register. L means low, so the low byte, 26, is loaded into
the L register. '

When you are writing a program, you need to know what
the instruction set is. Can the register pair HL be loaded
with a value given in the instruction (BLANK)? This value
is called an immediate, because you can look at the object
code and immediately see the numbers being loaded into the
registers.

To determine the Iegality of LD HL,BLANK, you need to
know two facts: 1) is there an H and an L register which can
they be paired and 2) is the instruction allowable. To
determine the first fact, turn to Appendix C and find the
page titled Z-80 CPU REGISTER CONFIGURATION. Yes, near the
top of the page under MAIN REGISTER SET you see H and L.
The Z8# REGISTER CONFIGURATION 1is also shown in fig 5-1
(and fig 5~2). Now look in Appendix C for the page with
the title 16-BIT LOAD GROUP 'LD' 'PUSH' and 'POP'.
Find SOURCE at the top of the chart then REGISTER
below SOURCE. Under REGISTER the fourth entry over from the
left contains HL, thus H and L may be paired. But are H and
L being wused as a source in the instruction LD HL,BLANK?
No, the BLANK is being loaded into HL, therefore, HL 1is a
destination. Looking on the left side of the chart, find
DESTINATION then REGISTER. The fourth entry from the top
(under REGISTER) is HL. So HL can be used as a destination.
Can an immediate value be loaded into HL? Travel from left
to right in the row labeled HL until you come to the column
labled IMM.EXT (immediate extended). At the intersection
of the row and column, there is value (21). A box with a
value in it means that the instruction is allowed. Each “"n"
in the box stands for one byte. The upper "n" is the value
to be loaded into L, and the lower byte is the value to be
loaded into H.

53

MAIN REG SET

ACCUMULATOR FLAGS
A F
8 [
[») E
H L
A A
i |
8-BITS 8-BITS

(ONE-BYTE) (ONE-BYTE)

Fig 5-1

54

16-Bit Load Group /
SOURCE /
/
MM, | Ext. | REG.
REGISTER EXT. | ADDR| INDIR.
AF [BC| DE| HL| SP | ix | 1Y | nn | o | (sP)
AF F1
ED
8c o1 8 | c
n n
n n
ED
DE 1 s8 | D1
(5) n n
n n
21 2a
DESTINATION | REGISTER | _HL L0 n E1
A n n
ED
SP F9 DO |°FD | 31 78
(1) Fo | F9 | n n
n n
2
(2) oo | oo | bp
(3) X 21 2a | &1
n n
n n
FO | FD | FD
1% 21 24 | E1
) n n
n n
ED.| €D ED | DD | FD
EXTERNAL | (. a3 |53 {22 |73 |22 |22
ADDRESS n |n {n |n |n |n
n n n n n n
PUSH | REGISTER i oD | FD
INSTRUCTIONS | IN (SP)y| F5 | €5 | OS5 | ES Es | E5

NOTE: The Push & Pop Iastructions adjust the SP alter every execution.

Fig 5=2
(3)
(1 /
\ 16-Bit Lo?[Group

Symbelic Flags Opcode No.ol Nool M No.ol T
Mnemonic Operation s 2 H PV N C 78 541 210 Hex Byles Cycles States
LD oa nn 90 - n v e X+ X = « = 0000000t 3T 5 w0 T

i
LD an IX = nn e & X s X & o @ 011 100 oD . a kY]
00 00 00V 2
(2)

Fig 5-3

(4)

55

The correct form for the source code can be found on
the next page titled 16-BIT LOAD GROUP (see fig 5-3 also).
On the 1leftmost column 1is the mnemonic column. Mnemonic
means assisting or intended to assist the memory. f
below the title MNENOMIC is the form for load immediate, LD

dd, nn. The LD, of course, means load. "nn" 1is the
immediate value - BLANK (1826) in statement 3. To
understand "dd" 1locate the column labeled COMMENTS on the
far right. "dd" tells the programmer what register pairs

can be used in the 16 bit load immediate instruction. Thus;

LD BC,nn
LD DE,nn
LD HL,nn
LD SP,nn

are allowed. To complete the LD HL,nn instruction, simply
£i11 the value for nn , e.g., LD HL,BLANK. LD HL,1826H
would produce the same result.

If you are hand translating the assembly language in-
structions you must use the chart on the previous page.
Remember that 2lnn that was found at the intersection of HL
and IMM.EXT 21 1is called the opcode (operation code). The
translation gives

212618
Why wasn't the result of the translation

211826

56

Because the low byte 26 must follow the opcode, then the

high byte 18. Don't fight it! You must write values this
way in 280 coding., LD HL,BLANK translates into a 3 byte
instruction. The location counter will be advanced by 3 in

preparation for the next instruction 18060 + 3 --> 1803. In
summary:

Location Counter Object Code Statement No. Source Code
1800 212618 ~ 3 LD HL, BLANK
Ex 5-3

Statement 4: PUSH HL

The PUSH instruction is used to move the contents of a
register pair or a 16-bit register to a specific place in
memory. To determine the assembly language code mnemonic,
turn to Appendix C and proceed to the chart 16-BIT LOAD
GROUP. Travel down the 1leftmost column labled Mnemonic
until the mnemonic PUSH is located. Since "gg" means that
BC, DE, HL and AF are allowed, this is the correct form. To
translate the instruction into machine language, refer to
the chart 16-BIT LOAD GROUP 'LD' 'PUSH' and 'POP'. The
source is the content of the HL register pair. Find
SOURCE, Register and then HL. For destination find the title
PUSH INSTRUCTIONS at lower left hand part of the page. Where
the column HL and row PUSH INSTRUCTIONS meet is the value
ES. This is the wvalue you will enter. This one byte in-
struction advances the location counter by one 1883+1 -->
1804.

Details of the push instruction.

A PUSH instruction transfers the contents of registers
to a region in memory called the stack. The stack is
defined by a pointer called a Stack Pointer (sp). In
EXAMPLE 2 the stack pointer was set by the monitor before
you began execution of the program.

57

STEPS IN THE EXECUTION

OF PUSH HL

STEP 1: DECREMENT THE STACK POINTER

<—Sp Before
<—SP <—--SP-1 After

RAM memory

STEP 2: PUSH H ONTO THE STACK

H L
1 8 <—[1 8]2 6]

STEP 3: DECREMENT THE STACK POINTER

1l 8, <—— SP Before
&—SP <—SP-1 After

STEP 4: PUSH L ONTO THE STACK

H L
(1 872 6]

N o
|

Ex 5-4

58

Statement 5: LD IX, HELP

This statement 1is very similar to statement 3., It is a
load immediate instruction. The 16 bit register IX is being
loaded instead of the register pair HL. The immediate value
is 182@H (see statement 13). There is something new besides
using index register IX as the destination. This
instruction has two opcodes. Find the object code for the
instruction by turning to the 16-BIT LOAD GROUP 'LD' 'PUSH'
and 'POP' in Appendix C. The intersection of the source
IMM.EXT and destination IX shows DD2lnn. The two opcodes

are DD and 21. The reason fot the double or extended
opcode 1is because the 288 CPU, designed by Zilog, is an
improved 8088 (an earlier CPU designed by INTEL). Zilog

wanted the 288 CPU to be able to execute all of the 8080
instructions plus the ability to execute new instructions.
Some opcodes were not used by the 8880 CPU. If only one
opcode was used in the empty slots (unused 80806 opcodes),
only a few new instructions could be added. A double opcode
allows the DD to be followed by one of 256 different codes
(APH to FFH). Now in place of one unused opcode, many new
instructions can be added. 1If you look at the row labeled
IX, you will see that all the instructions have as the first
opcode a DD. HELP 1is a label in statement 13. The value
of the location counter at this point is 182@. When you
translate LD IX,HELP to object code, the nn (2 bytes) will
contain 1828. The object code for LD IX,HELP is DD 21 20
18. Don't forget the lower order byte 28 is written
first followed by the high part of the address 18.
LD IX,HELP 1is a four byte instruction. The location
counter will advance by 4 18084 + 4 = 1808

Ex 5-5

Statement 6: LOOP EX (SP),IX

The instruction asks the computer to EXchange the two
byte pair currently pointed to by the stack pointer with the
contents of the IX register.

BEFORE:
tt
I X ss
v Yy
[bb [aal Xx¢— sp
(RAM memory)

59

AFTER:

X tt

$ ss

vy XX | bb
aa¢— sp

(RAM memory)

The first time this instruction is executed, the stack will
contain 1820H and IX will contain 1826H. Because of the
exchange, the next time this instruction is used the stack
will contain 1826H and IX will contain 182PH. The action of
EX (SP),IX 1is to make index register IX alternate between
pointing to the message HELP US at 1820H and the blank
display at 1826H. Enclosing an instruction in parentheses
indicates a memory reference. The stack pointer is enclosed
by parentheses (SP) thus the stack points to memory.

Ex S5~6
Statement 7: LD B,50

The constant (immediate value) is loaded 1into the ‘B
register. The exercise Ex 5-17 will explain this
instruction.

EX 5-7
Statement 8: CALL SCAN1

A series of instructions which perform a definite task
is called a routine. A program consists of one or more rou-
tines. The monitor contains several routines which the user
may wish to access. SCAN1 is a monitor routine which will
(as one of its actions) display the area pointed to by IX.
The display consists of 6 sections so IX will point to a six
byte region. A routine accessed by another routine or
program can be called a subroutine. The CALL instruction is
the preferred method to access a subroutine.

The CALL instruction breaks the sequential processing
of instructions by transferring control to a new address.
In statement 8 the new address 1is the entry point into the
routine SCAN1. The execution of SCANl is terminated by a
return (RET) instruction. The return instruction is used to
order program control to continue Jjust after the -CALL
instruction.)

60

instruction b address
of t
/7, nex

o - o© [sequential

5% > |instruction =5
. - at T W©
instruction Y a0t
N .3\' S
W) A o
AN
R We
D> eot
= S
/’e*c
cAaLL scanl ~ © to SCANI location 624

.

Ov—___Feturn by referencin?
3 u

next sequential RET

instruction the stack

How a CALL-RET Works CALL SCAN1

In reality when CALL SCANl is executed, the contents of the
program counter (PC) which already points to the next se-
quential instruction are saved on the stack. The contents
of the PC (186F), 1in Example 2, are pushed (saved) on the
stack. Now the program counter 1is loaded with the
subroutine address given the CALL SCANl instruction. (in
this example the address is @624H, SCANl). Program control
is now transferred to SCANl. When the return (RET)
instruction in SCAN1l is executed, the program counter will
be loaded from the stack. The value on the stack is the
address of the next instruction after SCANl, so control
returns to location 180FH.

After the above explanation you may have forgotten
what's happening. The call to SCANl will use the six bytes
at BLANK to control the screen (displays). Zeros are sent to
the display in the MPF~I, which turns off all the segments
in a display. So BLANK blanks the screen, but only for a
short time.

EX 5-8
Statement 9: DJINZ HELFSEG

Statement 9 provides the solution to the very short
time that SCAN1l will blank out the screen. What is needed
is a method of repeating statement 8 which will again

display the current pattern that the IX register is pointing
to.

The DJNZ instruction will:

61

1) Decrement the B register. B was loaded with a 5@
(decimal) so it will now contain 49 (decimal).

2) Compare B with zero.

3) If B is not equal to zero, program control is trans-
ferred to the location given in the operand field.
The operand field contains HELFSEG so,the program
continues at the statement containing HELFSEG as a
label.

From the above you can see that statement 8 will be
executed 5@ times until B becomes zero. When B does equal
zero, execution continues sequentially at statement 16.
Executing statements 8 and 9 fifty times will hold a pattern
of the screen for about 500 ms.

Ex 5-9

Statement 1@0: JR LOOP

The J in this statement means Jump. A jump is a
transfer of control. The R means jump relative from where
the program counter is at this time. The program counter
has advanced to location 1813. The operand Loop in-
dicates a relative jump to the statement with the label
LOOP--statement 6.

Ex 5-1¢

Statement 11:

This 1is a sneaky way to get a line with nothing but a
semicolon. This comment line without a comment makes the
program easier to read.

Statement 12: ORG 1820H

Reset the location counter to 1820H. The following
data will be located at hex location 1820 and up.

62

Statement 13 to 24

DEFB means define a byte. That is: reserve a location
and enter a particular pattern at this location. The DEFB's
are used to generate display patterns (characters).

Ex 5-11
Statement 26: SCAN1 EQU 0624H

This "statment is used to inform the assembler whenever
you see the operand SCANl put the hexadecimal number 0624
in its place. EQU means equate.

Statement 27: END

An end statement informs the assembler that there is
nothing left to translate into object code.

It is possible to know what every statement in a
program does and not understand what the program is doing.
Lets trace the major actions of EXAMPLE 2.

The first time statements 1 to 6 are executed IX will
point to BLANK and a pointer to HELP is on the stack.
Statements 7 to 9 will keep the screen blank out for about
500 ms. Then statement 10 transfers the program control to
statement 6. Statement 6 will make IX point to HELP and put
a pointer to BLANK on the stack. Statements 7 to 9 will
display HELP US for about 560 ms. Again statement 18
transfers control to statement 6. An exchange of the
contents of IX and the stack occurs so that now blanks will
be displayed for about 5@@¢ ms. You must press either RS or

MONI to stop the alternating display.

63

Ex 5-12
TERMINATING A MESSAGE

Turn to EXAMPLE 1 in section 5.1¢. Key in and execute
the example. In each EXAMPLE only new features will be
discussed. There are three new features in this example.
One, only one screen pattern is displayed. In Example 2,
HELPUS alternated with a blank screen. Two, a different
routine, SCAN is used to display the message. Lastly, the
program can be Stopped by pressing a key, namely the [STEH
key.

Program analysis
Statement 3: LD IX,HELP

Only one message is displayed and no blanking will
occur, thus IX is loaded with a pointer (an address) to the
message. When either SCAN or SCAN]l are called the 6 byte
group pointed to by IX will be displayed.

Statement 4: CALL SCAN

You should read the explanation of SCAN in section 5.3.
You will discover:

1) IX points to the display buffer.

2) The message (contents of the display buffer) will be
displayed until a key is pressed.

3) The A register will contain the internal code of the key
pressed. See Statement 5 below for a discussion of key
codes.

4) The address of SCAN in the monitor is @S5FEH.

Statement 5: CP 13H

How can the continuous display be terminated? Decide on
one key to terminate the program. In this program the [STEP)
key has already been choosen. The monitor program in con-

64

junction with hardware is designed to return a unique inter-
nal code for any key (except [RS, [MONI], INTR, and [USER)
pressed. Actually a code dependent upon the position of
key 1is returned first. The position code is converted into
an internal code when using SCAN. To determine the internal
code for [STEP]- or any other key - refer to Appendix A
section 2; Internal code (CALL SCAN): You will find STEP in
the second row from the bottom and the fourth column from
the right. The code is 13H.

EX 5-13

What 1is needed 1is a method of testing the A register
for a particular code (key value). The compare
instruction - (CP 13H) compares the wvalue 13H with the

contents of the A register. The details are:

1) Put a copy of the A register into a temporary register.

2) Subtract 13H, or any value given as an operand, from the
copy.

3) If the copy of A equals the test (choosen) value set the
zero flag. If the copy of A is less than the chosen
value, set the sign flag. Thus testing a maximum of two
flags can determine how the A register compares to a par-
ticular value-when the compare instruction is used before
testing.

In summary:

A = test value; zero flag is set.

A < test value; sign flag is set.

A > test vaue; neither the zero or sign flag is set.

Actually, using the results of the compare instruction
is easier than thinking all about flags as you will see in
the description of statement 6.

EX 5-14

The compare instruction does affect flags. Turn to
the second page of the 8-BIT ARITHMETIC AND LOGICAL GROUP.
Find the set of <columns labeled Flags. Now find the row
labeled CP s. We will analyze the meaning of the first two
columns under flags. The S <cloumn means sign (of the
comparison). There is an up down .arrow at the CP s position
in this column.

65

Up arrow means if the result was negative, then the
flag will be set. In plain terms when the A register is
smaller than the test value, the sign flag is set. The down
arrow indicates the result was either zero or positive and
the flag will be cleared. Again in plain English, the value
of the A register was not less than the test value.
Remember set means 1 and reset eans zero. The Z column
means zero. If A equals the test value, the flag will be
set (up arrow). If A is not equal to zers, the flag is reset
(down arrow).

Statement 6: JR NZ,DISP

The program should be designed to repeat the current

display unless any key but [STEP| is pressed. The compare
statement CP 13H resets the zero flag if any key but [STEP is
pressed. Then all that is needed is an instruction that

will jump back to CALL SCAN, labeled DISP, when the zero flag
is not set. JR NZ,DISP says transfer program control to DISP
if the result of the test (or any operation that affects the
zero flag) was non-zero (NZ). If the key was pressed,
then statement 6 does not break the sequential flow of
instructions and the next instruction executed 1is HALT.
when a program cycles again and again through the same
sequence of instructions it is said to be looping. When a
test does not break the sequential execution of
instructions, the slang expression ‘'fallen thru' (to the
next instruction) is used. In this example, you could have
avoided understanding flags. Understanding the interaction
of

CP 13H and JR NZ,DISP

would be sufficent. Do a compare. If the A register equals
the operand of the CP instruction, then a JR NZ, label will
not jump to label. If the A register dosen't equal the
operand, then JR NZ, label will transfer control to the
instruction with the label.

Ex 7 15
Statement 7 HALT

The computer has stopped looking for commands to
execute, The screen will go blank. To regain <control you

must press either or [R§].

66

Ex 5—16
Using (Calling) Two Monitor Routines

Turn to EXAMPLE 3 in section 5.18. Key in and execute
the example. Read the instructions given below the listing.
Statement 4 LOOP CALL SCAN

EX 5-17
Statement 5 LD HL,OUTBF
EX 5-18

Statement 6 CALL HEX7SG

HEX7SG 1is a routine residing in the monitor. Turn to
section 5.5 and read about HEX7SG. The sequence of the

actions for a particular key press will now be described.
Assume that you pressed the key. Statement 4 CALL SCAN
[RELA

will put the internal code for]l into the A register.
— > A register
HEX7SG first converts the D into a 7-segment display format

|
D B3=)

(D converts to B3) and then stores the byte B3 at location
OUTBF. Effectively, statement 10 now reads

OUTBF DEFB B3H

Next HEX7S5G converts the 1 1into a seven segment display
format and stores the result at OUTBF+1

1 30 =)
EX 5-19

statement 10 and 11 now read

OUTBF DEFB B3H
DEFB 38H

Statement 7 JR LOOP

The Jjump relative command will jump to location LOOP.
Statement 4 (again) CALL SCAN

67

summary

Remember that SCAN will output the contents of the
display buffer and cycle until a key is pressed. When a key
is pressed the internal code of the into key is loaded into
the A register. What is in the display buffer. The first
two bytes contain the display codes for the bytes in the A
register. HEX7SG converted contents of the A register into
display code.

l. Actions of SCAN

(scan

1.
CIT LI 1]
+1 +2 +3 o t4_45
X x N L4
o] \J } g F<£://

2. Actions of HEX7SG

2.

KEY CODE A register

HEX7SG

A register

;Z] CONVERT
TO DISPLAY| “->OUTBF

FORMAT UTBF+1

Open the MPF-I Experiment Manual (Software/Hardware) to
Introduction to Designing Microcomputer Programs. Read B.
Flowchart. One additional symbol you should know is

Name of
Routine

68

A flowchart of EXAMPLE 3 is

LD IX with the address of OUTBF

Execute the routine SCAN

Load 1Y with the address of OUTBF

HEX7SG Execute the routine HEX7SG

—

LOOP

EX 5-20

A DISPLAY CONVERTER
Turn to EXAMPLE 4 in section 5.10. Key in and execute
this example.

EX 5-21

POLICE SIREN
Turn to EXAMPLE 5 in section 5.10. Key in and execute
this example.

EXAMPLE 5: Simulate a police car siren

The siren produced by this program consists of two
tones, each one lasting 0.73 sec. The two frequencies are
256Hz and 352Hz.

69

Statement 3 LOOP LOOP c,0

The frequency is controlled by the value in C. The
larger the wvalue of C, the lower the frequency. The note
produced is a square wave. The wider the square wave, the
lower the note.

High "1"
L LT T fou wgn

Low Freq—-J
High Freg

The square wave is held high for the number of counts in C,
and then low for the same count. But the test for the time
to hold C high or low is done after subtracting one from the
value of C. What is one less than C? For all values except
zero, it is simple, e.g., 192-1 = 191 FEH -1 = FDH. What is
one less than zero? When the computer is using plus and
minus numbers, FFH equals -1, Thus one less than zero is
FFH. But the test for the square wave generator doesn't use
signs, therefore, FFH is equal to 255 decimal. In statement
3, the C register is loaded with zero. This will generate
the biggest number when tested by the tone routine and the
lowest possible frequency using the monitor tone routine.
The calculation given below the code in EXAMPLE 5 shows this
frequency to be 265Hz (Hertz=cycles/sec). This is close to
the middle of a piano keyboard (middle). Occasionally,
computer programs use a trick, 1like one 1less than zero
having the effect of being a large number.

Statement 4: LD HL,@C@H
How long will the tone at 256Hz sound? Another calcu-

lation reveales the period of one cycle at 256Hz to be 3777
micro seconds.

one 1 cycle
cycle
3777
mico-
seconds

1 cycle

|

70

The value in HL, when used by TONE, determines the
number of «cycles and thus the length of the sound at a
particular frequency. At 256Hz a value of 2 in HL produces
a length of 7554 micro seconds——less than a hundred of a
second. In this example, HL contains the value @C@H which
equals 192 decimal. The length of the sound is 3777 micro
sec. x 192 = .73 sec,.

Statement 5: CALL TONE

In specifying parameters (values) for the TONE, you
already know that the frequency is set by the value in C and
the length »of a sound is contained in HL. Reinforce your
knowledge of TONE by reading section 5.7. Do not avoid
studying how to calculate the frequency and the tone length.

EX 5-22

71

Memory Checking

Turn to Memory Check section 6.1. Key in and execute
the program. Note the display and the condition of the HALT
LED. The HALT LED is a red light to the right of the
displays. Why did you run this program? Read further.

What are the areas of employment in the microprocessor
field? A partial list could be:

1) Chip (integrated circuit) designers -- the 288 CPU 1is an
example of a chip requiring a high level of technology.

2) Hardware designer - the people who determine how the
components will interface.

3) Software programmers —the MPF-I the monitor is a software
program held in a PROM.

4) Applications programmers - The Music Box program
(Experiment - 18) is an application program.

Some additions to the list would be a sales staff. But
something wvery important (and a growing field) is missing.
The people who design tests. The wvarious ICs and the
computer as a whole should be tested. Testing starts with
the components. Your 286 CPU 1is tested at the factory. The
tests guarantee that the 288 CPU will function over a
specified voltage and temperature range. Two built—-in tests
are provided for your convenience - a PROM test and a RAM
test.

EPROM Testing .

The information in a PROM doesn't disappear when the
voltage is removed. Some PROMs, EPROMs can be erased by
applying ultraviolet rays. PROM tests take advantage of
the fact that information in a PROM doesn't change easily.
Imagine a very small PROM containing only 4 location (bytes)
Assume that the bytes are 02,081,083 and 00. Adding up the
bytes would give a sum of @6. If a byte contains an
incorrect value, the sum would be different. For example,
if the last byte were @l instead of @@, then the sum would
be @#7. Since the sum is being used to check the PROM, it is
called a checksum. Even with only four bytes, the sum might
be larger than the largest value that a byte «can contain.
Any carries out of the byte are ignored. In spite of

72

throwing away the carries,the sum in the byte will always be
the same in a healthy PROM and circuit. If you had e
PROM with 2048 decimal locations of which 2047 are needed,
you have 2 spare byte. Could the spare byte be used to
produce a useful checksum? VYes, by adding the correct value
to the checksum of 2047, the result can be made to equal
zero. As an example, adding 2 to a hexadecimal result FEH
produces a carry (which is ignored) and a byte containing
a zero. If the PROM routine changed, the test programmer
changes the extra byte to guarantee a result of zero. Now
the PROM test only has to be written once. It is always
enough to add up all the bytes in the PROM and test for a
zero result. Your Micro-professor PROM test routine uses
this add-up-to-zero method.

Turn to the EPROM test section 6.1

Initialization

The statements
LD HL,O
LD EC,800H

are called initialization code. The HL pointer is set to
the beginning address of the EPROM--zero in MPF-I. The BC

rogister pair is set to the number of bytes to be tonbed,
The MPF~I monitor PROM holds 2K bytes, which equals 800
neragecinal locations, The, CALL sUs, is made to I

subroutine which adds up all the bytes in the monitor EPROM.
When the subroutine SUM completes execution a RET instruc-
tion is executed and control is returned to the relative
jump statement

JR Z,SUMOK

If the result of summing all the numbers in the A register
‘is zero, the relative jump on zero will transfer control to
location SUMOK. The command at SUMOK will transfer control
to beginning of the monitor location zero. If the sum of
the bytes in the PROM was not zero, then the Jjump relative
command will not transfer control and program execution
continues at the next command which will halt the processor
(MPF-1).

73

ROM TEST Flowchart

STEP
START INSTRUCTIONS

1 INITIALIZE LD H,0;BEGINNING OF PROGRAM
HL<—0 LD BC,800H;PPOGRAM SIZE
BC<——800H

2 m CALL SUM

3 YES NO|
4 HALT HALT
5 RETURN TO THE MONITOR RET

74

SUBROUTINE SUM FLOWCHART

START

CLEAR A
AND THE
CARRY FLAG

STEP INSTRUCTIONS

XOR A

2 ADD BYTE TO
THE ACCUMULATOR ADD A, (HL)

3 Aﬁb\\
ALL THE \NO CPI
BYTES JP PE,SUMCAL
DDE

YES

4 SET FLAGS

RELATNE TO

THE VALUE OF OR A
REGISTER

5 RET RET

75

EX 5-23

The subroutine SUM

The flowchart of SUM shows the actions performed by SUM.
Read the flowchart then proceed to the detailed explanation
of each command given below.

XOR A

XOR means exclusive OR. An exclusive OR operates on two
bytes. The contents of the A register is always one of the
bytes, the other byte 1is given in the operand field. The
command XOR B will exclusively OR registers A and B. When
bytes are exclusively ORed together, 8 bit pairs are ored to
form a one-byte answer.

Assume A contains 10101108 and B contains 11601010 then
XOR B

gives

8 bit pairs 110 010190 register B
1810118629 register A
21100611090 result

What do vyou observed whenever the bits in A and B were the
same? The answer is zero. Whenever the bits were different,
the answer is 1. The "truth" table below shows this
relationship

A B XOR B
1 1 /]
1 [1
a 1 1
4]] [}

76

XOR A means exclusively OR A against A. All the bits will
be the same, thus the contents of A will be zero after XOR
A. XOR A is a sneaky way of clearing A to zero.

EX 5-24

ADD A, (HL)

This instruction adds the contents of the location pointed
to by HL to the accumulator register A. The first time the
instruction is executed, HL points to the first byte of the
monitor EPROM. The first byte of the EPROM is added to A,
A <-— @ + first byte.

CPI

The compare and increment instruction will:

1. Compare the contents of the A register with the 1location
pointed to by HL. This feature 1is not wused by the
subroutine SGM.

2. Increment the HL register pair.

3. Decrement the BC register pair.

4, Test BC for non-zero, after it has been decremented. 1If
BC 1is non-zero, then set an indicator. The indicator
is called a flag. The flag used is the P/V flag. The
P/v flag 1is used in several ways. The next instruction
will show you one use for P/V.

JP PE,SUMCAL

The JP PE,SUMCAL instruction orders the computer to transfer
control to SUMCAL, if the parity flag is set. Set means that
a "1" is in the flag.

p/V Comments
Set 1 also called on
Reset [5] also called cleared

77

The instruction CPI influences the actions of JP PE,SUMCAL.
If BC is not zero, then program control transfers back to
SUMCAL. BC was set to the number of bytes to be tested.
The result of CPI and JR PE,SUMCAL working together is that
control will be transferred to SUMCAL until all of the
bytes have been summed up. CPI and ADD A, (HL) also work
together each time CPI is executed. HL increases by one.
If control 1is transferred to ADD A, (HL), the next byte
is added to register A.

OR A

The results of executing an OR instruction can be
determined by using the "truth" table below

A B OR B Operands
1 1 1 Both one
1 [%} 1 One Zero
] 1 1 One Zero
[}] [4] Both Zero

The conclusion you should draw from the table is that unless
both operands are =zero, the answer is one. Another
conclusion is that if both operands are the same, the result
will be the same as the operands.

1 OR 1 gives 1 @ OR @ gives 0.

ORing A against A will not change the value of A, For
example

OR A 11001019 Register A
11001019 Register A
A 11001010 Result in Register A
Then why OR A? Because another action occurs. Certain

flags are set whenever an OR operation occurs. The flag
settings depend upon the result of the OR operation. If the
result of the OR operation is zero, then the zero flag Iis

78

set. This zero flag is what we are interested in. If the
checksum was zero, then A contains zero. ORing zero against
zero gives zero with the =zero flag set. After the
instruction RET 1is executed, the next instruction is JR
Z,SUMOK instruction. This, of course, tests the zero flag.
If it 1is set, control is transferred to SUMOK, Look again
at yocur flowchart.

RAM TEST
STEP INSTRUCTION
START
1 INITIALIZE LD HL,18@0H;POINT TO
HL<——1800H FIRST LOCATION
BC<———80A0H LD BC,800H;SIZE OF RAM
2 CALL RAMCHK
3 HALT
4
CPI

JP PE, RAMT

RETURN TO RST
THE MONITOR

79

STEP

EX 5-25

SUBROUTINE RAMCHK

RAMCHK

MEMORY CONTENTS
TO THE A REGISTER

ONE'S COMPLEMENT
OF THE A REGISTER

RETURN CONTENTS
TO MEMORY

FLOWCHART
INSTRUCTIONS
LD A, (HL)

CPL

LD (HL) ,A

MEMORY CONTENTS
TO THE A REGISTE LD

A, (HL)

ONE'S COMPLEMENT
OF THE A REGISTER

RETURN CONTENTS
TO MEMORY

CPL

LD (HL) ,A

RETURN

80

RET

RAM Testing

A RAM is designed to have 1its memory conts
altered. This property is used when testing RAM:
address the following procedure is followed. Lc
from memory into the A register. Change each zer

"1" and each one bit to a "@". This is calucu a one's
complement. Put the complemented byte back into the
original memory location. Load the complemented byte back

into the A register. Again perform a one's complement and
put the result back into the orginal memory location. Now
compare the byte in the memory location with the byte in the
A register. A failure indicates a bad memory, or possibly a
bad address, bad data lines, or the CPU 1is not decoding
instructions correctly .

Why does this program work? That is how can it test a RAM? A
bad RAM chip has to exhibit a failure by returning an
incorrect bit or bits when read. Assume in the frame shown
below that bit 1 is stuck low (will not go high) and that
bit 6 is stuck high (will not go low).

7 6 5 4 3 2 1 B
T [T 1T T1c] | Ram memory location

When the location 1is read 1into the A register and
complemented, bit 1 will go high and bit 6 will go low.

L T T T T THA[] A register

Writing back the contents of A into the same memory location
will not change bits 1 and 6 1in memory. Comparing the
contents of A with memory will give a non-zero result
bits 1 and 6 at the of two locations are not equal.

If the one's complement instruction appears to detect errors
then why are there two complement instruction? If you have a
healthy RAM, after testing all the memory locations, it
should be the same. With a single complement, they
won't be complementively twice restores each healthy memory
location to its origianl values.

EX 5-26
EX 5-27

81

Questions
5-1

Change the comment statement to read we don't need any help.
How would you separate the comment statement from the rest
of the program?

5-2
How would you make a program start at 1900H ?

what would the statement ORG C@@@H do? .
What is the effect of starting a program at 1¢@H, ORG 106H ?

5-3

Use the 16-BIT LOAD GROUP charts in Appendix C to answer
the following questions. What is the opcode for LD DE,
BLANK ? How many bytes in the instruction LD BC,1826H? Is
the instruction LD AF,BLANK allowed? 1Is the instruction LD
DH, BLANK allowed? 1Is the instruction LD SP,BLANK allowed?

5-4

show with a drawing all the steps in the PUSH BC
instruction. Do the same for the PUSH IX instrucion. Hint
: use Appendix C 16-BIT LOAD GROUP SP-1 <- IXH means that
the high byte of the IX register (a 16-bit register) 1is put
on the stack first. Can a constant be pushed upon the stack?
Label the fields in the 1listing shown below

1803 E3 4 PUSH HL

5-5

llow can you verify that LD 1IX,HELD is the correct form
of the assembly language source statement? Using the table
16-bit LOAD GROUP Appendix €, find the column Symbolic
Cperation. What does the entry for LD IX, nn indicate?

82

5-6

Using Appendix C find the exchange instruction. What
is the title of this group? what is the opcode for
EX (SP),IX ? The DD again means? The location counter
was 1808 what will it change to after the EX (SP),IX
instruction?

5-7

The B register is an eight bit (one byte) register. How
many bits are loaded in the LD B,508? What instruction
group will give the object code for LD B, 587? Find the

correct group in Appendix C.

What is the object code for LD B,58?

What is the source label ? What is the DESTINATION label ?
How many byte instruction is LD B,50 2

Ahy does the 50 in LD B,50 translate to 32 in the object
code ? The title of the immediate column
in the 8-bit LOAD GROUP 'Lp* is IMME., and

the title in the 16-bit LOAD GROUP 'LD' 'PUSH' AND 'POP' is
EXT.IMME. Why are the titles different ?

5-8

Find the CALL AND RETURN GROUP on the same page with the
RESTART GROUP-Appendix Ca You will CALL SCAN1
ununconditionally. The condition column is labeled UNCOND.
The choice of the correct row should be easy, what is it?
What is the opcode ? How many bytes is the instruction?
What goes in nn? What is the object code for CALL SCAN1?

5-9

Read section 3.3.4 Relative Address Calculation. Try
using the RELA on the DJNZ statement in this program. What
is value of s What is value of D ? Find the
JUMP GROUP in Appendix C. What is the opcode of DJINZ?
THE e-2 means the relative distance to be Jjumped. In
statement 9, the value of this byte is FB. Explain what this
value means.

83

5-10

Find the JUMP GROUP in Appendix C. Now locate the row
labeled JUMP 'JP' relative. Note the ' 'P' should read 'JR'.
The first column under condition UNCOND is the correct
column. What is the opcode? The second byte of the object
code contains F5. How many bytes backward does this wvalue
represent? Show how to compute where the JR instruction
jumps. ‘

5-11

Study the display formats 1in Appendix A. Now change the
screen display from HELPUS to all 8's. Display your initials.
Use blanks in any position not occupied by your initials.

5-12

Projects

Some of the projects suggested in this paragraph may be
beyond vyour abilities at this time. Instructions not vyet
explained may be needed. You may want to start designing
your program now. Or experiment with altering instructions.
How can you alternate alpha messages on the display? How
would you put a blank message between alternating alpha
messages? How can you have messages which are on the screen
for different periods of time? Design a program which will
move a display across the screen.

84

5-13

Give the internal codes for

Key g |1 5 Go MOVE MONI
Code | [JJU J|U 1|0 1 1 [1 []

Find the 8-BIT ARITHMETIC AND LOGIC group in Appendix
C. The compare instruction 1is considered to be a logic
instruction. Find ‘the row "labeled COMPARE 'CP'. The
compare instruction in EXERCISE 1 is of type immediate so
find the -column labeled IMMED. What is the opcode for
comparé? In exercise 1 what value does n represent?

5-14

Can the contents of register B be compared to the contents
of register A?

5-15

Turn to the JUMP GROUP in Appendix C. Earlier the
UNCONDitional RELATIVE jump was examined. Now two new jumps
(conditional jumps) are examined - Jjump relative if zero,
and jump relative 1if non zero. What is the opcode if Jjump
relative if zero? What is the opcode of jump relative if
non—-zero? How could you determine the mnemonic for jump
if zero?

5-16

Write a program to HALT if any key with a* key code is
pressed except the [STEP] key. Write a program to HALT if the
GO] key is pressed. Write a program to halt only if the
key 1is pressed followed by pressing the minus [Elkey. Test
your answers by running your programs, Start thinking about
this!

You may find the exercise difficult and you may not have
the backgound. Build a combinations safe. A plus indicates
a clockwise turn, and a minus indicates a negative turn.
The safe will only open if you enter R14 L35 R7. If give
the wrong combination an alarm goes off (for this problem a
1300HZ tone).

85

5-17

wWhat will be displayed the first time statement 4 in EXAMPLE
3 is executed?

What locations does the display buffer use?
How is the routine SCAN able to find the display buffer?

5-18

wWhat is the opcode of the instruction LD HL,OUTBF?

The HL register pair is used as a pointer. What label and
address does HL point to?

Are there any other pointers to OUTBF?
Why is HL pointing to OUTBF?

5-19

The description in section 5.5 under register states destroy
AF, HL. Does this mean that these registers are useless
after being used by HEX7SG routine,

What registers are destroyed by SCAN?

86

5-20
Why wasn't EXAMPLE 3 written as follows?
ORG 18@0H

LD IX,O0UTBF
LD HL,OQOUTBF

LOOP CALL SCAN
CALL HEX7SG
JR LOOP
How do you stop the program? Why are there two EQU

statements? Add code to stop the program by pressing a key
other than RS or [MONIl. What is the problem with exiting on
a particular key code?

5-21

why 1s EXAMPLE 4 of any value?

Where is the information to be dlsplayed stored?

Change the program to display |- ! E_— E|ﬁ “

Are there any instructions not pr v1ously explained in this
program?

Why is B loaded with a 37

5-22

How would you make each tone sound for .365 seconds?
llow would you make the lower sound last for .73 seconds and
the higher sound last 1.46 seconds?

How would you add one more tone?

You will now vary paramenters (values) and 1listen to the
results.
In statement 3 change @ to at least three different numbers.

In st atement 3 and 7 change @ and 10@H to at least three
different wvalues. In statement 4 try loading different

87

values into HL. In statement 8 try loading different wvalues
into HL.

How do you make two tones of equal time intervals? Read all
of the information accompanying EXAMPLE 5 and the details of
the TONE routine section 5.7. Pick two tones say 408 and
10060 cycles (Hertz) and the time interval (1 second).

If the frequency 1is already known, then to find C use the
formula.

Now compute the leng;h of each sound at 400 Hertz
at 1009 Hertz
For equal time intervals of one second at 400 Hertz
at 1000 Hertz

In summary

TONE | VALUE OF C VALUE POF HL

400
1000

88

5-23

Find the RESTART GROUP in Appendix C. What is the
opcode for RST @ ?
A restart instruction 1is a special form of a CALL

instruction. RST @ is equivalent to CALL @000@H. How many
bytes in a restart instruction ? How many bytes is a CALL
i* - zuction ? Does a restart instruction save bytes? To

‘ocation does RST @ transfer control ? What happens to
the .- 1tents of the old (next sequential location) program
counter 7

Can the contents of the old program counter be accessed ?

5-24
The subtract instruction could also be used to clear A.

For example SUB A,A subtract A from A would zero out the A
register. Why wasn't SUB A,A used?

5-25

How would you test several PROMs and report which ROMs
failed.

5-26
The Z-80 has another complement command NEG. This command
will take the negative of the value in the A register. What

is the opcode of the NEG?
How is the negative of plus two produced?

5-27

What does the CPI instruction do?
Writes a RAM test for a 4K RAM memory beginning at 2000H.

89

Answers
5-1

[; WE DON'T NEED ANY HELP]
[; WE DON'T NEED ANY HELP]
i
1
i

A semicolon does not have to be followed by text--comments.

5-2

[ORG 194@H]

[Your code would start at hexadecimal location C@@@. But
the MPF-I as delivered does not have any memory at this
location—-—-so an ORG C@0@H might be a poor placement of the
object code.]

[This is the space occupied by the monitor. Unless you are
modifying or writing a new monitor locations, 008¢H to @7FFH
are to be avoided].

5-3

[11)
[3]
[no]
[no]
[yes]

5-4
(No, no entry under IMM EXT]
{LOoC] [OBJ CODE] [STMT] [SOURCE STATEMENT]

5-5

[Look in Appendix C 16-BIT LOAD GROUP second table entry
from the top.]

[IY <~— nn means that the immediate value nn will be loaded
into the IX register.]

5-6

[Exchanges 'EX' AND 'EXX'. This group follows the 16 bit
load instructions.]

[DDE3]

[a double opcode]

[18FA-not 1818 the program counter uses hexadecimal values.]

90

5-7

[8-BIT LOAD GROUP 'LD']

[66 n or @6 32]

[IMME.]

[REGISTER,B]

(2]

[56 is decimal, 32 is hexadecimal]

[The EXT. means extended and indicates a bigger immediate.
16 bits as opposed to 8 bits,]

[2]

5-8

[CALL, IMMED. EXT]

[CD]

[3]

[The location of the subroutine in EXERCISE 2 is the address
of SCAN1]

[CD 2406]

5-9

[180F]

{188cC)

[106]

[FF means jump back 1 byte. FE means Jjump back 2.
So FB indicates a jump back of 5 (FF-1, FE-2, FD-3,
FC-4, FB-5). A two byte backward jump will put the
program counter at the beginning of the DJIJNZ instruction.
3 more bytes puts the program counter at the beginning of
the CALL SCAN1l instruction-label HELFSEG.]

5-10

(18]
[11 decimal, B Hex]
[1813-B = 1808 remember the program counter is at 1813]

5-11

[Enter BF in location 1828 to 1825]
[My 1intials are RJB so in locations 1828 to 1825 I would
enter 03,B1,A7,00,00,00)

5-13

KEY @ 1 5 GO MOVE MONI
Code @6 @1 @5 12 1C X
(FE)

[13]

91

5-14
[yes CP B]

5-15

(28]

(20]

[Turn to the second page of the JUMP GROUP. Under mnemonic
find the JR commands. Urider symbolic operation find if Z=0
continue, if Z=1 PC <- PC + e. Remember if 2Z=0 the zero
flag was not set the result was not zero and one jump
occurs. If Z=1 the contents of the PC is changed. Namely,
jump if result is =zero. The mnemonic is JR 2,e. 1In
Exercise 1 e means the distance to jump.]

5-17

[Blanks]

[1900]

[SCAN uses IX to point to the display buffer]

5-18

[21]

[OUTBF, 1900)

[Yes, index IX]

[We don't know yet. Statement 6 will reveal all]

5-19

[No, it means that HEX7SG wrote over the previous contents of
AF and HL . Perhaps one should say alter rather than des-
troy.]

(AF, B, HL, AF', BC', DE']

5-20

[Because SCAN changes the contents of HL]

[Press Moni or RS]

[Two constants are needed. One for CALL SCAN and the other
for CALL HEX7SG]

ORG 1800H

LD IX,0UTBF

LOOP CALL SCAN
CP a key code; This is the key code
JR EXIT; That stops the program
LD HL,OUTBF
CALL HEX7SG
JR LOOP

[One key code will not be displayed]

92

5-21

[Because once the basic actions are understood, you can use
this routine in a longer program to display results]
[Statements 16,17,18 locations 1900,1981,1902. The label is
BYTE®]

[Change statement, 16,17 and 18 to

1900 BA 16 BYTEO DEFB OBAH
1901 DC 17 DEFB ODCH
1962 FE 18 DEFB OFEH

[Yes INC DE- increment DE adds one to the register pair DE]
[Statement 19 is also new., DEFS 6 define storage reserves a
number of bytes, 6 in this case, in memory. This area is
used as a display buffer.]

[So that the loop shown below

LOOP LD A, (DE)
CALL HEX7SG
INC DE
DJNZ LOOP

will be executed three times . The first execution of the
loop will convert the two digit (16) in BYTE @ to display
code and put the codes in OUTBF and OUTBF + 1. The next
loop will convert the two digits (32) in BYTE 0+1 to display
code and put the codes in OUTBF +2 and OUTBF +3. The final
converts 54 and puts the result in OUTBF +4 and OUTBF +5.

5-22

[Change statements 4 and 7 to

statement 4 LD HL,060H

statement 7 LD HL,80H]

[Change statement 7 to statement 7 LD HL, @FFH]
[After statement 8 add the code

LD C,060H
LD HL,GE@H
CALL TONE

[163]

[63]

[44 + 13 x 163] x 2 x 0.56 = 2423 micro sec]
[44 + 13 x 63] x 2 x 0.56 = 967 micro sec]

93

1/2423 x ©.000001 = 1/.002423 = 412 periods
1/.0080967 = 10834 periods

TONE VALUE OF C VALUE OF HL
400 163 412
1000 63 1934

5-23

[C7] [1]) [3]). [YES] [0000H]

[Just as in the CALL instruction the program counter is
saved on the stack]

[Yes if no other instructions that affect the stack are
used, a RET (return) instruction will reload the program
counter.]

5-24

[The XOR instruction always clears the carry flag, even when
the operand isn't A (e.g. XOR B). The SUB A,A also clears
the carry flag but it is easier to remember this fact when
using XOR actually either instruction is equally good.]

5-25

[Test each ROM separately. When any ROM fails, save the
address range of that ROM. When all ROMs have been tested,
report the ranges of ROMs that failed.]

5-26

[There are two opcodes ED and 44. This is an extended in-
struction. This instruction is not present in the 8080/85
computers. Observe the number chart below:

Hex Binary

@2 00900010 plus two +2

gl 000B0P01 plus one +1

00 00000000 zero []

FF 11111111 negative one -1
FE 11111118 negative two =2

[Write the value of plus two in binary
goo00010
Take the one's complement--toggle each bit

11111101

94

Add one

11111101
+ 1

11111119
We have
F E

NEG gives a result which 1is one greater than one's com-
plement and thus is called the two's complement.

5-27

[It dec¢rements the contents of the BC register so that the
JP PE,RAMT instruction <can determine when all of memory
has been tested. Remember BC contains the memory size.
The CPI instruction also advances the memory pointer HL to
the next location to be testnd.]

[Only the first two instructions need to be changed.
LD HL,1880H becomes LD HL,200@H and LD BC,80@0H becomes
LD BC,1080H.]

95

Useful Routines

Once a program 1is tested and debugged, any part, or
all, of the program can be used as a subroutine in a lerger

program. You can build up a libary of useful routines by
understanding how to use the ©programs presented in this
chapter. Knowing how a program works permits you to tailor
it to a specific application. Understanding a program also
allows you to write a more powerful general
subroutine-~e.g., extending the range of a multiplication
routine. All of the experiments referred to below are in

the MPF-I Experiment Manual unless otherwise noted.

Some basic principles—Applications of arithmetic
and logical instructions

Turn to Experiment 2 Basic Applications of Arithmetic
and Logic Operation Instructions in the MPF-I Experi-ment
Manual. Read Section I, Theoretical Background. Some of
the concepts presented in this section are for your review.

Adding is considered to be a fundamental process. You
can add numbers rapidly because you have memorized the one
hundred basic combinations such as: 3 + 4, 0 + 7, 8 + 9,
and 9 + 8. The computer has been given a few rules also.
The Z8@ CPU instruction set allows either 8 bit adds (one
byte) or 16 bit adds (two bytes). In 8 bit adds, the A
register is always one of the numbers added (augend), and it
also contains the result (sum). ;!

Permissible 8-bit Adds

In the MPF-I User's Manual, turn to Appendix C. Find
the 8-bit Arithmetic and Logic Chart. Find the row labeled
ADD. The registers that can be added to A are given under
Register Addressing (Fig. 6-1).

SOURCE
REGISTER ADDRESSING
A B e D E H L

P

Any of these can be added to the A register
Fig 6-1

98

The Assembly language instructions are of the form

ADD A, r

where r is any one of the registers A,B,C,D,E,H,L. You can
verify this by turning to second page of the 8-bit
Arithmetic and Logical Group and looking at the first entry
in the column labeled Mnemonic (fig. 6-2).

The permissible wvalues of r (fig. 6-3) are listed in
Comments column. To perform an add of two with registers,
both the A register and the selected register (the r
register) must be first loaded.

Mnemonic
ADD A,r
Fig 6-2
Cominents
r Reqg
ane B
¢l (6
210 D
7?11 E Per t1issible values of r
e H
101 L
111 A
Fiq 6-3

Exercise 6-~1, 6-2

The value to be added to the A register may be accessed
from memory by using the HL register pair as a pointer (fig.
6~4). The source is register indirect (REG. INDIR). This
means that a register (or register pair) will pecint to the
byte in memory to be used as the source.

REG
I~DIR

(L)

Fig 4-4

99

Exercise 6-3

) Two other pointers to memory are permitted. Either
index register IX or IY may point to the byte to be added to
the accumulator--aA register(fig.6-5). An offset of up to
+127 or down to -128 is allowed with either index registers.
The source is named INDEXED.

INDEXED

(IX+d) (IY+D)

Fig 6-5
Exercise 6-4

A constant may be added to the A register. The column
labeled immediate 1is used to determine the hex code (fig.
6-6). The range of decimal numbers that can be wused in a
signed add is +127 and -128.

IMMED

n

Fig 6-6

Exercise 6-5

If the result of an addition has to be contained in a
byte and all the numbers were unsigned--essentially always
positive, then the largest answer would be 255 (decimal)=FF
(hexadecimal)., Even more restrictive is the use of signed
numbers. The leftmost bit 1is wused for the sign of the
number. Then only 7 bits are available for the size of the
answer. The largest result would be 127, the smallest-128.

Exercise 6-6

Fortunately a method of extending the size (precision)
of numbers used in addition has been provided. When- ever
two numbers are added, the result is checked by the 288 for
a carry. If the two numbers didn't produce a carry, a flag
called the carry flag 1is reset (cleared). If a carry is
produced, then the carry flag is set. The carry flag adds
an extra bit in the answer.

100

ADD A,B

8 bits

ERegister A Augend
8 bits

[:::::::]Register B addend

carry flag 8 bits

Register A SUM

9 bits

Now an unsigned answer can be as large as 511 (decimal)
= 1FF(hexadecimal). Proper use of the carry flag can extend
both the size of unsigned and signed additions; the process
is explained in the following example. The program shown
below is the first example in section 1II. Example of
Experiments under Experiment 2.

Statement Source statement
ORG 1800¢H .
LD A,E

ADD
LD
LD
ADC
LD
RST

ONOUIS W
wT PPy

M= = = =
Tree>»0

Diagram

[register Augend
:] E register Addend

H L

[| AJ Result

101

Statements 2 to 4

A conventional add of D and E with the 8 bit result in L.

Statement 5

The A register is zeroed out.

Statement 6

The add with carry, ADC, instruction adds the two operands,
A and zero, and the carry flag together. The result is in
A. The carry flag was set or reset by the ADD in Statement
3. The reason for the ADC A,0 was to transfer the contents
of the carry flag to the A register.

Exercise 6-7

Statement 7

Transfer the carry (or no-carry) that was loaded into A into
H.

Statement 8

The RST 38H instruction enters the monitor without executing
the power-up code.

Exercise 6-8

The second example (Example 2) wunder 1II. Example of
Experiments (In Experiment 2 in the MPF-I Experiment Manual)
can best be explained by a diagram.

102

1A01 1A00 Memory location

D E Registers

H L sSum

Exercise 6-9

Exercise 4 is also best understood by using a series of
diagrams and a flowchart.

First pass through the loop

+11
+10
sum
+9
+8
second . Add IX and IX+4
operand result (sum) in IX+8
+6 \/J
+
+5 ,\7
+4
first +3
operand
+2
+1
IX+0

103

+3

Second pass through the loop
+11
+10

+9
+8
+7
+6 F
+5 Add IX+1 and IX+5

+§ result (sum) in IX+9
+

+2
+1
IX

Location of the operands

+2 +1 IX+0

o ——

+6 +5 IX+4
Addend

]

+10 +9 IX+8

LT I*

104

Flowchart

Start

Initialize

B<~4
IX<-1AQ@H
Clear carry flag

!

A <= (IX)

A <—- (IX+4)

(IX+8) <--A

Return to
monitor

Instructions

ORG

LD

AND

LD

ADC

LD

INC

DEC

JP

RST

105

1800H

B,4
IX,1A@08H
A

A, (IX)

A, (IX+4)

(IX+8),A

IX

NZ,LOOP

38H

Study the charts, diagrams and the code. You should be
able to understand how the program works.

Exercise 6-10
Exercise 6-11

Read the instructions in Example 5 (Experiment 2, MPF-I
Experiment Manual).

The DAA stands for Decimal{(ly) Adjust the Accumulator.
Consider the problem below

99
+98

The result should be 197, if a decimal answer is
desired. The computer will display the result of 9+8 as
16+1. To the computer 16 means produce a carry so put down
a one and carry 1.

1
99
+98
1

Now 9+9+1 will be seen as 16+3. Put down a 3 and carry

99
+

[
Carry

For reference purpose, the right hex digit in a byte is
called the right nibble and the left hex digit, the left
nibble,

3 1
Left Nibble Right Nibble

106

The carry bit is a flag altered by the add instruction.
Another flag affected by the add instruction is the half
carry flag. Whenever a carry is produced by adding the two
right hex digits, a half carry flag is set. Adding 9+8 did
produce a carry, so the half carry flag is set. The DAA
instruction will add 6 if the left nibble is a hexadecimal
number or if the half carry flag is set.

99
98 Half Carry
Carry[I] 31
6 DAA instruction
—

Then if the left nibble is a hexadecimal number or if
the carry flag is set then a 6 bit is added to the left
nibble.

Now you have the correct decimal result. Nibble is
sometimes spelled Nybble.

Exercise 6-11b

Experiment 3 (MPF-I Experiment Manual)--more addition and
subtraction.

Read Theoretical Background Section I.

Exercise 6-12

Read Theoretical Background Section 2,3, and 4.

107

Exercise 6-13

Perform II.l. 1in the II. Student Exercises.

Exercise 6-14

Perform II.2., 1in the Student Exercises. Read Exercise 6-15

first.

Exercise 6-15

Perform II.3. in

Exercise 6-16

Perform II.4. in

Exercise 6-17

Read and perform

Exercise 6~18

Read and perform

You can use both

the Student Exercises.

the Student Exercises.

Experiment 3~1 in the Student Exercises.

Experiment 3-2 in the Student Exercises.

ADD A, (nn) and ADC A, (nn).

108

Experiment 4: Branching and Looping

Read Theoretical Background part 1,2, and 3 in
Experiment 4. By now you should understand the carry and
zero flags. Parity will now be explained. Consider the
circuit below

[
1
4

Transmitter3 Receiver

.

by
/

For transfer of information, you need lines @ to 6.
Line 7 is an unused spare. If a 3 was sent lines @ and 1
would be high 11 (binary)=3 (decimal). 1If line @ was open,
then a two would be sent 1¢ (binary) =2 (decimal). How
would the receiver know that line @ is open? 1In the diagram
above, there is no way of knowing.

A transmitter can be designed to count the number of
set bits in each transmission on lines @ to 6. Furthermore
the transmitter can use 1line 7 to always make the total
number of set bits in lines @ to 7, odd or even. If an odd
number of set bits 1is desired (even parity), then line 7
would be high when a three is sent. The byte would be 1600
9011. If a four is sent, line 7 is held low--0@@0 0106. A
five gives 1009 9161. Bit 7 is used as the parity bit. A
receiver can check parity by using either a fixed hardware
design or software.

The transmitter and receiver are made to agree on
whether even or odd parity will be used. A parity error
results when a line is open, grounded, or shorted to another
line. The receiver detects the parity error and informs the
operator of unreliable transmission. ‘

109

Parity can be tested by software by using one of the
following logic commands AND, OR, XOR. ANDing the A
register will test for even or odd parity and does not alter
the contents of A. .If an odd number of bits are set (on,
high) in the A register, then the parity flag (P/V flag) is
cleared (reset, zero). If an even number of bits are set,
then the parity flag is set (on, high).

Exercise 6-19

Now read the remainder of I. Theoretical Background.
How does one understand a new program? For example, the
program loop in Section 5. The first thing you hope for is
good documentation. Documentation consists of explanation
in the form of paragraphs and comments given with most
instructions. Many programmers "play computer". As they
read through the ©program, they pretend that they are the
computer and ask what is happening to the registers, the
memory, and is data being sent to or received from external
devices (peripherals). Restudy the program 1loop and play
computer.

Exercise 6-20

Experiment 5: Stack and Subroutines

Read about the stack which 1is discussed in section I.
Theoretical Background. Be careful most of the instruction
numbered (1) to (17) don't exist in the Z88# instruction set.
They are wused to demonstrate how PUSH and POP work. The
program

LD SP, 1FAFH
PUSH HL
PUSH AF
POP BC
POP DE

is shown below with drawings

LD SP,1FAFH SP— 1FAF
1FAE
LFAD
FAC

RAM Memory

110

PUSH HL

(2)
L L sp(l) LFAF
11 jIFAE
(3)(J 72 J1FaD
(4) [JLFAC

1) Decrement the stack pointer.
2) Contents of register H to the stack-~-H is not changed.
3) Decrement stack pointer.

4) Contents of register L to the stack--L is not changed.

PUSH AF 1FAF
A F 11 1FAE
44 22 1FAD
33 1FAC
44 1FAB <-SP
POP BC 1FAF
(3) 11 1FAE
L— 22 1FA (4)
B c (1) 33 1FAC<A(2)
[33 [44 | 44 1FAB <~SP

1) The contents of the top of the stack are loaded into
register C.

2) Increment the stack pointer. Now the top of the stack
is 1FAC.

3) The top of the stack is popped to register C.

4) Increment stack pointer.

111

POP DE

1FAF
S |
1| 1eac

22 1FAD
33 1FAC
44 1FAB

1FAA

Read Section 2. Subroutine:

Exercie 6-21

BCD stands for Binary Coded Decimal. What this means
is that the computations will be in a decimal form. This
allows operating on decimal numbers (adding, subtracting,
etc.) The reason for the DAA (Decimal Adjust the
Accumulator) instruction at statement 12 is to insure a
decimal result after each addition. Each time the computer
adds, it produces a hexadecimal result which must be
converted to decimal.

Read II. Example Experiment of the Experiment 5.
This experiment should read: Perform the following

BC — HL
DE — BC
HL —> DE

using stack operations

Exercise 6-22

Experiment 6: Rotate Shift Instructions and
Multiplication Routines

112

When a CPU chip 1is designed, the designer decides what
features to incorporate. There is a limited amount of space
(Real Estate) in a chip. The instruction set must be
choosen very carefully. Until recently chips containing
multiply 1instruction were expensive and sometimes very
specialized. How can a useful CPU be built that doesn't
contain a hardware multiply instruction? A hardware
multiply means that the multiply is accomplished by circuits
built into the CPU chip. A multiply is a series of actions.
You can multiply by wusing a series of instructions other
than the multiply command. A very essential instruction is
the ability to shift and/or rotate. Read Section 1. under
the Theoretical Background. This section will introduce you
to the rotate and shift instruction group. Don't try to
memorize the instructions in this group. There are too many
of them.

Exercise 6-23

Read Sections 2. Binary Multiplication: to 5. Program
flowchart.

These are not easy sections. The object is to show you

how to multiply by shifting, bit testing, and adding. Read
these sections several times.

Follow II. Example Experiments:

Exercise 6-~24

Experiment 7: Binary Division Routine

Read 1. Binary division by hand calculation. If you are
overwhelmed (snowed) by the explanation, you have a binary
choice. You may accept that the division method works and
proceed to 2. Division Program Design or read the
explanation below.

113

The problem is really

10100 J 11101101 =—> 20) 237

The first step is

19100) 111011@l<—dividend
divisor

shift divisor until it becomes smaller then the dividend

00001 quotient

jlllﬂllﬂl
10100

Then put a one in the quotient.
Now subtract

00081

i 11101101

19100
1001 <«— New dividend

114

Bring down the next digit to the new dividend

10100 ;lll@llﬁl

10108
10011

Test the divisor

apeAl

10100 ; 11101101
10100

18911
19100

No, dividend 1is too small. So put a zero in the quotient
and bring down the next digit

p00010

10100 11161101

10160
100110

Now divisor is smaller than the dividend. Put a one in the
quotient and subtract.

20001081

10100 Jill01101

10100

10011@
190198 Subtract
10018 New Quotient

Bring down the next digit.

115

Po0e0101

101608 J11161101

10100
1006110
10100
190101

Divisor is smaller than dividend. Put a one in the quotient
and subtract.

11 quotient

00001011 <-quotient (17) divisor 20)237 divisor
1@1?01 JI11e1101 <-dividend (237) _203’7

T 100110
divisor 16100 20
(20) 106101 17 remainder
10100

19001 <~-remainder(17)

Read 2. Division Program Design

Exercise 6-25

Experiment 8: Binary-to~BCD Conversion Program

Read only 1. Methods of binary-to-BCD conversion. A sample
conversion--Convert

900109811 (binary) to decimal. The correct answer is
19 (decimal).

116

Number to be converted

@es1l 6011

Shift most significant into
carry, add, carry, and double
BCD number

o@e1l 6611
Add, carry, and double
BCD number

ge@1 0611
Add, carry, and double
BCD number

ooel] ep11
BCD number
Add, carry, and double

2001 @211
Add, carry, and double
BCD number

2001 o@ll
Add, carry, and double
BCD number

p001 @@L
Add, carry, and double
BCD number

2001 0011
Add, carry, and double
BCD number

Execute a DAA instruction because
a half carry occured
Add 6 = 9119 (binary)

117

BCD area

2000 0000

0000 0000
9000 0000

+2
7000 0000

0000 0000
0000 0000
_____ 40
0000 0000

2000 0000
0000 0000

+0
0000 0000

6000 2000
0000 0000
1
6000 0001

2000 0001
0000 00081

+0
0000 0010

0000 0010
0000 0010
+0

0000 0100

0000 0100
6000 0100
+1

0000 1001

0008 1001
0000 1001
+1

0001 0011

2001 0011
+ 0110

2061 1001

The answer is 19

A second conversion converts 1111 1111 (binary) to 255
(decimal) . The purpose of the shift into carry flag is so
that the selected bit can be added to the shifted result.
Each add (double) and shift in carry will be shown as one
step

Number to be converted Zeroed out BCD 'number
1 1 1 1 1 1 1 1 0000 0000 0000 0000

ittt

(1) (2) (3) (4) (5).(6) (7) (8) decimal
shift and add bit (1) 0000 0000 0000 00O1 1
Shift and.add bit (2) 0000 0000 0000 0011 3

Sshift and add bit (3) 0000 0000 0066 0111 7
Shift and add bit (4) p000 0000 0000 1111
BCD adjust 9119

0000 0000 0001 6101 15

Shift and add bit (5) 0000 0060 6410 1@11
BCD adjust - 2119
0000 @000 6011 @0G1 31

Shift and add bit (6) 0000 0009 0110 0011 63
shift and add bit (7) 0900 0000 1100 @111
BCD adjust 9119

#0006 0001 9010 @111 127

Shift and add bit (8) @666 201 @100 1111
BCD adjust 21140
0000 8016 @181 @181 255

The answer 255 1is correct. Read 2. Assembly Language
Programming Technique

Exercise 6-26

Example Experiments

118

Exercise 6-27

Experiment 9: BCD-to-Binary Conversion Program

The basic method of hand conversion is given in 2.
Principle of the checking process (3) under Theoretical
Background. As you can see by dividing the number to be
converted repeatedly by 2 and saving the remainder, a rather
easy conversion is obtained.

Exercise 6-28

Now a method of dividing over and over by 2 is needed.
Shifting a binary number to the right always divides by 2
with a remainder of 1 or @#. Shifting a BCD number to the
right will give an incorrect result in two bit positions in
each byte. Read 1. and 2. under Theoretical Background.
The shifting problem is explained.

Conversion from BCD to binary is rather straight foreward.
The program must: (1) divide by 2 (2) save the remainder
(3) correct two bits in each byte of the BCD number,and (4)
have two loop controls—-one for the number of BCD bytes and
a second one total number of divides respectively.

Exercise 6-29

Experiment 10: Square—-Root Program

Square root has never been considered one of the easier
methematical operations. Years ago, the only easy method
was to wuse square-root tables. Various other methods
existed for those who were interested in expanding mental
effort--slide rules, logarithms (again tables), and a hand
method which consisted of doubling dividing, and
subtracting. The hand method given in this experiment is
easier than one taught in schools before calculators.
Binary numbers lends themselfs to square root computations.
Read 1. Calculating square roots of binary numbers by hand.
Try very carefully to follow the processes.

119

The square root of larger numbers can be calculated by
enlarging X,Y, and R. The square root routine in section 2.
expands the size of number whose square root is to be found
and the size of the answer. First read only up to the
program. Now you will match the program with the flowchart.

Statement 7: LD A,B

The original data is not stored in register A and C but
in BC. So statement 7 loads B into A.

Statement 8: LD B,16

The original data to be shifted is contained in two
registers A and C. The 16-~bit data is shifted two bits at a
time so the shift count would be 8. The fractional part of
the answer is 8 bits, thus 8 more shifts of 2 bits each time
are required. The total shifts, tests and subroutines are
16.

Statements 9-11

These statements will zero out the X area, HL, and the
R area, DE. HL ¢~ DE < @

Statements 12-13

Statement 12 subtracts (N) 40H from the contents of the
accumulator. On the first pass, A will contain the upper
part of the original data. Statement 13 subtracts R, (DE)
from X, (HL).

HLA ¢~ HLA<-DEN
Xy XY RP

Statement 14

If DE 1is less or equal to HL, then the results of the
subtraction performed in statement 13 are to be kept. In
this case, the carry flag will not be set and control is
transferred to location SQl statement 17. If DE is greater
than HL, the number in HLA, XY needs to be restored.

120

Exercise 6-30

The square root of 81 and 16 are whole numbers
(integers). For a more interesting case, consider the
square root of 58. The square root of 58 is approximately
7.615. In binary numbers, a bit represents twice as much as
the bit to the right and half as much the bit to the left.
In 111, the middle bit represents value of 2. The left bit
is equal to 4 decimal and the right bit is equal to 1
decimal.

1 1 1
4 + 2 + 1 = 7 decimal
What is one-half of one? One-half (1/2). Going to the

right of the binary point gives .1 (binary) which equals .5
decimal. The next position to the right is one half of 1/2
or 1/4 (.25)

.81 (binary)=.25 (decimal) To represent .75 use two bits
.11= .5 (decimal)+ .25 (decimal)= .75 (decimal) To obtain
decimal (fractional) results in taking square root, continue
the shifting process beyond the integer part of the number.

Interger result only

X Y 58 (decimal)
[Pe11iola
L [pr]
R P
Shift the wvalue in XY 4 times (2 bits each). The result R
will be 0000 8111 (7 decimal).

Fractional result

Shift the value in XY four more times. Now bits representing

1/72 .5
1/74 .25
1/8 .125
1/16 .0625

have been used, the answer is:(9111.1001

121

Under these conditions the’ carry flag will be set —-- the
jump instruction will not break the sequential flow and
statement 15 is executed next.

Statements 15 and 16

The original values subtracted from A and HL are added
back in. Thus the original number is restored except the
carry flag will be set. Remember this!

STATEMENTS 17 to 19

The carry flag will be shifted into R (register D & E
). If RP (register D, E and a constant are smaller than or
equal to XY (register H, L, A, and C) then the carry flag
should be one (set). If RP was greater than XY then the
carry flag should be zero (reset).

However, the subtraction in statement 13 has left the
carry flag in the opposite condition, thus statement 17
complements the carry flag. Statement 18 and 19 rotate D
and E one place to the left. The carry £lag enters the.
rightmost bit of E.

STATEMENTS 20 to 26
The first shift to the left of H, L, A and C is
performed by statement 21 to 23, The second left shift by

statement 24 to 26. Statement 21 -- shift C to the left one
bit and put a zero in rightmost bit. Statement 22 -- rotate
A to left and receive the carry from C. Statement 23 -~

shift HL to the left by doubling the register pair HL and
accept the carry from A by adding with carry.

-— -— #
a U [l
H L A c
ADC HL,HL RLA SLA C

Statement 28 -- Loop back 15 times (a total of 16 passes)
to SQO.

122

Questions of Exercises

6-1 Which of the following instructions are not allowed
-~ give the reason?
a) ADD A,B b)ADD E,A c)ADD A,HL
c) ADD A,A d)ADD AC,DH

6~2 On the second paye of 8-BIT ARITHMETIC AND LOGICAL
GROUP is a column titled symbolic operation,
explain the meaning of A <= A+r for the ADD A,r
instruction.

6-3 (a) Using the first page of the 8-BIT ARITHMETIC AND
LOGICAL GROUP find the opcode for adding the memory
location (pointed to by HL) to the A register?
Using the second page of this same group locate the
row containing the symbolic operation for register

indirect.
(b) What is the symbolic operation?
(c) What 1is the mnemonic in the same row? Find
intersection with the column labled opcode.
(d) What is the opcode ?
(e) What is hexadecimal equivalent of 106001102

6-4 Refer to the first page of the 8-BIT ARITHMETIC AND
LOGICAL instructions.
(a) What is the opcode for ADD A, (IX+4)?
{(b) What is the significance of the +4?
(c) How does +4 show up in the hexadecimal codes DD
daz

6-5 (a) Write the mnemonic (assembly language code) for
add 3 to the A register.
(b) Write the mnemonic for adding -4 to A.

the

86

an

(c) The hexadecimal code for ADD A, 3 is C683. Can you

guess what the hex code for ADD A, -4 is?

6~6 If A contains 74 hexadecimal and B contains
hexadecimal will the instruction ADD A,B add a)

BF
a

negative number to a positive number b) two negative
numbers C) two positive numbers. What do you think the

rightmost bit would be called?

6-7 The add with carry instruction comes in all the same
flavors as the ADD command. Use the information in
Appendix C 8-BIT ARITHMETIC AND LOGIC GROUP both pages
to answer the following questions. Fill in the blank

entries, [] below.

123

Instruction object code
(hexadecimal)

ADC A,D { (a)]
ADC A, (IX+d) [(b)]
ADC A, (IX+4) { (c)]
[(d) 1 FD 8E 25
[(e)] FD 8E FD

(f) The mnemonic for add with carry is given as ADC
A,s (see second page of 8-bit ARITHMETIC AND
LOGICAL GROUP). What does the s mean?

Execute the first exercise (I) under example of
experments (of Experiment 2 of MPF-I Experiment
Manual). Fill in the chart shown in this section.

(a) What is accomplished by the instructions

LD A, (1A@GH)
ADD A,E
LD L,A

Show your answer by using a diagram.

(b) See Experiment 2 (II. 2) What is accomplished by
the instructions

LD A, (1AG1H)
ADC A,D
LD H,A

Again show your answer using a diagram.
(c) Will above code always give a correct result?

(d) Using another method add two 16 bit numbers.
The operands are in the locations 1A@@ and 1A@1 as
before but the result (sum) is stored in HL.

A new instruction was used that requires knowledge
of 16-bit arithmetic. Turn to Appendix C 16-BIT
ARITHMETIC. The second page of this section shows
the Mnemonic ADD HL,ss in the first row. The
Comments column shows ss to be any one of BC,DE,HL,
SP. Thus ADD HL, DE is a legal instruction. The
Symbolic Operation column shows HL is added to ss
and the result is placed in HL. When ss is DE the
operation is HL <- HL+DE

(e) Load and execute exercise 2,

124

6-10

6~11b Perform 5.

6-12 In example 3-1 convert all the numbers to base

(a)

(b)

(c)

(d)
(e)

Add
(a)
(b)
(c)
(d)
(e)
(£)
(9)
(h)
(1)
(3)

(k)
(1)

comments to each statement below
LD B,4

LD IX, 1A@G0H

AND A

LD A, (IX)

ADC A, (IX+4)

LD (IX+8),A

INC IX

DEC B

JP NZ,LOOP

What two instructions could be
instruction?

What is the replacement?

Load and execute exercise 4.

replaced

Expand example 4 to add a 64 bit number.

Exnand example 4 to add a 128 bit number.

ten decimal. Show your answers.

[HEX [7F [aDp [aC [2E |

[DEC | | | [

Now check the results of the addition

7F+AD=? and subtraction 7F-AD=? Are the answers

correct?

in Example of Experiments.

In Example 3-2 what adjustments would have to

be made if the leftmost addition results in a carry?

by

What is the significance of a set carry bit after
a subtract operation?
How many borrows occured in Example 3-2?

125

one

(a)

(b)

(c

~

(d)

6-13

i1l in the names of operands in the boxes
below., Use Sum, Augend, Addend.

1
NI —

L]

Again enter the names of the operands in the
boxes below. Use Subtrahend, Minuend, and
Difference.

—
B —
E—

Study again the flowchart for addition. Note
that the decision box at the second step from
the end<:>, can cause a repeat of 5 steps.
Each repeat is called a pass. The page after
the flowchart shows what events occur on the
first pass. The diagram may be a little hard
to read at first. What is the first event?
Second event?

Third event?

Fourth event?

Fifth event?

The top part of the next page shows the events

of the second pass. The results of the third and
final pass are shown at the bottom of this page.
The complete program is shown at the end of this
section. Fill in the values of the registers. The
carry flag and memory locations for each step.

126

INSTRUCTION REGISTERS FLAG

A B [(IX) |[(IY) . Z

ADD3 XOR A
LD B,3

ADDLP LD A, (IX)
ADC A, (IY)
LD (IX),A

INC IX
INC IY
DINZ ADDLP

ADDLP LD A, (IX)
ADC A, (1Y)
LD (IX),A
INC IX
INC IY
DJNZ ADDLP

ADDLP LD A, (IX)
ADC A, (IY)
LD (IX),A
INC TIX
INC IY
DJINZ ADDLP
RET

6-14

Show the object code and location counter in the
listing below. Assume the program starts at
location 180@@H.

EXP3
LOC OBJ CODE M STMT SOURCE STATEMENT

ORG 1800H
7 LD B,3
8 XOR A
9 ADDLP LD A, (IX)
10 ADC A, (1Y)
11 LD (IX),A
12 INC IX
13 INC 1Y
14 DJINZ ADDLP
15 RST 38H

127

6-15

To execute the 3-~-BYTE ADDITION PROGRAM. You must
first have IX and IY point to the data. There are
two ways to do this. What are they?

6-16

To perform the subtraction statement 14 was changed from ADC
A, (IY) to SBC A, (IY). (a). What was the code for ADC A,
(IY)? (b). What is new code for SBC A, (IY)? (c). Why is
the third byte of each command zero?

6-17

(a) In adjusting to five byte data how many lines of the
program changed?
(b) What changes were made?

6-18

(a) When 1is it correct to call the rightmost bit of the
flag register a carry flag?

(b) When is it correct to call the rightmost bit a borrow
flag?

(c) Read and perform Experiment 3-2 in Experiment 3 of the
MPF-I Experiment Manual. you can use both ADD A, (nn)
and ADC A, (nn).

6-19
(a) What is the parity of the bytes given below?
6110 1100
0100 00600
P11l 1111
0100 0001

(b) In the bytes below what would be the setting (state) of
the parity bit (7) to have even parity?
9110 1100
0100 0000
#1111 1111
9100 0091
6-20

Example Experiments of Experiment 4 (MPF-I Experiment
Manual)

Exercise 1 Follow the instructions--Before executing
the program add comments to each instruction.

128

6-21 Label the order of the actions in the diagram

below

Main Program

CALL

CALL

CALL

N

Subroutine 1

Subroutine 2

RET

2

I~

6-22

(2) Explain this program statement by statement. Note
after shifting left four bits with method shown below
could result in the loss of data if the original
number is greater than 15 decimal.

Ex.

[11

'l

(110

ele o

0o |

[

[11

11|

111

1]o o

00]

l

1|8 @

0w|

[0 00

ole o

77

129

number is 12 (decimal)

shifting gives no
data lost

number is 15 (decimal)
no data lost

number is 16 (decimal)
data lost, bit was

shifted out of the
register by adding

6-23
Find the ROTATE AND SHIFT GROUP in Appendix C in the MPF=-I

User's Manual. On the second page of this group find the
column labelled Symbolic Operation.

Except for the last two operations RLD & RRD , all of the
instructions operate on 8 bits and the carry flag, CY.

(a) What 1is the real difference between instructions
starting with R (rotate) and starting with S (Shift)?

(b) Again, 1look at the diagrams for the rotate instruc-
tions, the bit shifted out of the byte is transferred
into the carry flag and in some cases the bit is also
transferred to the other end of the byte. How are
these two cases separated by the assembler?

(c) Draw the symbolic operation for
RLA
RRA
RLCA
RRCA
6-24
I1I. Sample Experiments
(a) 1. Draw a diagram showing how the shift is performed
(b) 4. Comment on each line of the program show how it works
625

Perform the exercises given in Illustrations of Experiments.

6-26
Study the sample program EX@81 LISTING

STATEMENTS 15 through 28 clear the BCD area. This is the
area where the result will be developed.

The contents of a particular register is l1oaded into all the
BCD bytes.

(a) What register is used?

(b) What statement zeros out A?

130

(c)

What statement puts zeros into the BCD bytes (one for
each loop)?

(d) What are the statement numbers in the loop that =zeros
out the BCD bytes?

(e) How marry passes will be made ?

(f) At what statement was B loaded with the number of bytes
to zero out ?

(g) STATEMENTS 22 to 27 computes the number of shifts to be
made.

If the binary number consists of 3 bytes how many shifts
into the carry flag must be made ?

(h) Assume D = 3 number of binary bytes. Statement 23 will
load this value into the A register. What do statements
24 to 26 do ?

(i) What is happening at statement 27 ?

STATEMENTS 368 to 35 will shift all the binary bytes one
to the 1left and leave the carry flag with the highest
order bit.

(j) What is the address of the first byte to be shifted ?

(k) What register pair points to memory when the ROTATE LEFT
(RL) command is executed ?

(1) How is the starting addres for each series of shifts
loaded into HL ?

(m) What statement numbers are contained in the _loop Fha?
adjusts all the BCD bytes each time a new binary bit is
available in the carry flag ?

(n) How many passes will be made through the loop ?

(o) What do statements 47 and 48 decide ?

6-27

Example Experiments

Perform experiments

convert the decimal number 9 to binary. Show the
process.

Convert the decimal number 492 to binary show the
process.

131

6-29

The BCD~-to-~Binary conversion program given in section 3 will
now be analyzed.

STATEMENTS 11 TO 17 divide the BCD number by 2. The result
must be tested for adjustment of bits 7 and 3.

(a) How many bytes will be rotated to the right by one place
?

(b) STATEMENTS 18 to 24 check the two potentially incorrect
ag;sis bit 7 being tested in statement 19 ?

(c) What is statement 21 doing ?

(d) What is the other bit position to be tested ?

(e) Statement 24 corrects what ?

(f) Discuss Statements 26 to 29 ?

(g) The STATEMENTS 32 to 35 rotate the bit that was shifted
out of the BCD numbers into the high order byte and
rotate all the binary bytes to the right. How many

binary are there ?

(h) Discuss STATEMENTS 37 to 38.

6-30

Now that you have read how to hand calculate square root,
solve the problems below.

Compute the square root of 16 (decimal). Show the results
of each text, subtraction, and shift.

132

Answers to Exercises

6-1 [b) Operands are in the wrong order for the assembler
correct instruction is ADD A,E
c) Can't add the 16-bit register pair HL to the 8
bit register A answer must fit in an 8 bit byte.
e) can't pair A and C or D and H.]

6=2 [The value of r is added to the contents of the A
register. The result, sum, is put into A.]

6-3 a. [86]
b. [A<—- A+(HL)]
c. [ADD A, (HL)]
d. [10860110)
e. [86]

6-4 a.[DD86 the index instructions have an extended
opcode.]
b.[The memory location referenced will be four more
than the value of IX. For example if IX = 7000 then
memory location 7068 is referenced.]
c.[The 04 replaces the d.]

6-5 a.[ADD A,3}
b.[ADD A,-4]
c. [C6FC]

6-6 [a) 74 hexadecimal=01110108min binary so A is a
positive number. The leftmost bit is zero. This is
called the most significant bit MSB. The number
in B BF hexadecimal = 10111111 is a negative
number, the MSB is 1.]

{The least significant bit LBS. It is also bit number 8.]

6-7 a.[8A]

b.[DD 8E d]

c.[DD 8E 04]

d.[ADC A, (IY+25H)]

e.[ADC A, (IY-3)]

f.[See Comments s is any of r,n,(HL), (IX+d), (IY+d).
Also under comments r is given as any of
B,C,D,E,H,L,A.]

133

Preset Value Result of Program Execution’
Register Register Flag
D E HL Sign [Zero [P/V [Carry
SAH | AGH 100 Depends on when sampled
461 | 77H _@9@BD
ADD
LoC 03J CODE M STMT SOURCE STATEMENT
1800 1 ORG 18ARH
1800 7B 2 LD A,E
1841 82 3 ADD A,D
1802 6F 4 LD L,A
1803 3E0B 5 LD A,0Q
1805 CEQA 6 ADC A,
1807 67 7 LD H,A
1808 FF 8 RST 38H
6-9 al 1200
C_J
—
—
CARRY]

bl [1a01
[1 o

+ []carry

H
]

c [No, if the values in 1A@0H to 1AAlH and DE
are large, the result (sum) will be 17 bits
in size.]

d(LD L, (LAGOH)

LD H, (1AZ1H)
ADD HL,DE]

134

ADDL6BIT

LDC 0BJ CODE M STMT SOURCE STATEMENT

18060 1 ORG 18006H
1804 3A081A 2 LD A, (1AQ@H)
1803 83 3 ADD A,E
1804 6F 4 LD L,A
1885 3AQ11A 5 LD A, (1AQ1H)
18048 8A 6 ADC A,D
1879 67 7 LD H,A
180A FF 8 RST 38H
RESULTS
1a01 1AP0 DE HL
an 21 nov4 A005
7l g1 8783 08824 Zero flag set
a. [The number of passes through the loop 4 is loaded

into the B register.]

b. [Load the base (starting) wvalue in the index
register IX.]

c. [Clear the carry flag.]

d. [Load the first operand into the A register.
(augend)]

e. [add the second operand to A; the result (sum) is in
A. A <~ (IX) + (IX + 4)}

f. [Store the current sum at IX +8.]

g. [advance IX to point to the next set of operands and
sum.]

h. [B <= B~1]

i. [If the result of decrementing B is non-zero then
loop back to LOOP.]

1. LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1800H

1800 B604 2 LD B,4

1892 DD210@1A 3 LD IX,l1A00H

1866 A7 4 AND A

1807 DD7EQA 5 LOOP LD A, (IX)

18¢A DD8E@4 6 ADC A, (IX+4)

18@D DD7708 7 LD (IX+8) ,A

181¢ DD23 8 INC IX

1812 85 9 DEC B

1813 Cc20718 10 JP NZ ,LOOP

1816 FF 11 RST 38H
FOR ADD

1AQ3H-1AA0H 1AG7H-1A04H 1APBH~1AGBH FLAG REG

3B712345 8FFDAA1Q CB6ECDS5S 42

FFFFFIFF FFFFFFFF FFFFFFFF 43

135

[oLD NEW

LD B,4 LD B,8

ADC A, (IX+4) ADC A, (IX+8)

LD (IX+8),4 LD (IX+16),A]
{ OLD NEW

LD B,4 LD B,16

ADC A, (IX+4) ADC A, (IX+16)

LD (IX+8),A LD (IX+32),A)

6-11b

FOR SUBTRACT
1AQ3H~1AM0H 1AQ7H~-1A%4H 1APBH-1A@8H FLAG REG

8FFDAALG 3B712345 548C86CB 42
FFFFFFFF FFFFFFFF yoA0ee0 42
SUB4B

LoC OBJ CODE M STMT SOURCE STATEMENT

18060 1 ORG 1800H
1809 8604 2 LD B,4

1802 DD216A1A 3 LD IX,1A00H
1806 A7 4 AND A

1807 DD7EN@ 5 LOOP LD A, (IX)
180A DDYE(4 6 SBC A, (IX+4)
188D DD7718 7 LD (IX+8),A
1810 DD23 8 INC IX

1812 35 9 DEC B

1813 c20718 10 JP NZ ,LOOP
1816 FF 11 RST 38H

FOR ADD & DAA
1AA3H~-1A@GAH 1AQ7H-1AP4H 1APBH~1A@G8H FLAG REG

12345678 87654321 99999999 42
35868794 44556699 87425493 42
ADD4BDA

LocC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 18004
1808 0604 2 LD B,4

1392 DD21881A 3 LD IX,1A00H
1806 A7 4 AND A

1887 DD7EG0 5 LOOP LD A, (IX)
18@A DDBEG4 6 ADC A, (IX+4)
186D 27 7 DAA

180E DD7708 8 LD (IX+8) ,A
1811 DD23 9 INC IX

1813 @5 16 DEC B

1814 C2@718 11 Jp NZ,LOOP
1817 FF 12 RST 38H

136

[DEC]

b’ Yes]

¢ Four bytes would have to be reserved for
the answer (not three). The carry would be
placed in the highest order byte of the

6-1"afl [HEX[7F [AD [12C[2E |
1T]

answer.,
Carry
I I |
High order byte Low order byte

(rost significant digit) (Least significant byte)

dl A borrow has occurred.]
el 2]

6-13al [AUGEND]
+ [RDDENT]
(50w])
bl [FINUEND]
— [SubTiwnend]
[oirrerence] |

c[LD A,(IX) Load the accumulator with the
contents of the memory location pointed to
by the IX index register.]

[ADC A,(IY) Add to the accumulator the
contents of the memory location pointed to
by the IY index register.)

[LD (IX),A Store the accumulator away in the
memory location pointed to by the IX index
register.)

[INC IX Advance by one the IX register.]

[INC IY Advance by one the IY register.]

137

"INSTRUCTION REGISTERS FLAG
A B (IX) (IY)

ADD3 XOR A ? 2 BD AC @
Lb B,3 ? 3 BD AC a

ADDLP LD A, (IX) BD 3 BD AC 0
ADC A, (1Y) 69 3 BD AC 1
L0 (IX),A 69 3 69 AC 1
INC IX 69 3 7C AC 1
INC__IY 69 3 7C 65 1
DJNZ ADDLP 69 2 7C 65 1

ADDLP LD A, (IX) 7C 2 7C 65 1
ADC A, (1Y) E3 2 7C 65 [
LD (IX),A E3 2 E3 65 [
INC IX E3 2 6A 65 ?
INC 1V E3 2 GA 48)
DJINZ ADDLP E3 1 6A 4B 2

ADDLP LD A, (IX) 6A 1 6A 4B @
ADC__ A, (1Y) B5 1 6A 4B 0
LD (IX),A B5 1 B5 4B ¢
INC IX B5 1 ? 4B [
INC_ IV B5 1 2 2 f
DJNZ ADDLP BS 1 2 2 [
RET

6-14

EXP3
LOC OBJ CODE M STMT SOURCE STATEMENT

1800 ORG 1800H

1800 7603 7 LD B,3

1842 AF e XOR A

1803 DD7E0S ¢ ADDLP LD A, (IX)

1806 FDBEQQ 0 ADC A, (IY)

1869 DD770# 11 LD (IX),A

184C DD23 12 INC IX

18AE FD23 13 INC 1Y

181 1@F1 14 DINZ ADDLP

1812 FF 15 RST 381

138

6~15 [One-—-Change the code.

(LD B,3) and statement 9 (LD A,(IX) insert

LD IX,1900H
LD IY,lAB0H

Two--Load IX and IY from the keyboard.
Press REG, IX, 1, 9, 8, @
Press REG, 1Y, 1, A, @, @

Between statements 8

The test data must also be loaded by entering

ADDR, 1, 9, ©, @4, DATA, B, D, +, 7, C, +, 6,
ADDR, 1, A, @, #, DATA, A, C, +, 6, 5, +, 4,
To run the table data--first set--replace the
test data by
ADDR, 1, 9, @, @, DATA, 6, 5, +, 3, 8, +, 9,
ADDR, 1, A, 0, @, DATA, D, F, +, C, E, +, A,
6-1..al FD BE 00]
b ¥D 96 €0]
cl A displacement of zero was used--in ‘effect,
there is no displacement.] '
6-17al 1]
bl Statement 8 became LD B,S]
6-1ral Wwhen addition or incrementation is performed.
It is not incorrect to call this flag a carry
flag when subtraction is performed.]
bl Only when subtraction is performed.]
CXOR A

Lh A, (1820H)
ADD A, (1823H)
LD (1826AH),A
LD A, (1821H)
ADD A, (1824H)
LD (1827H),A
LD A, (1822H)
ADD A, (1825H)
LD (1828H) ,A

139

A

B

7
B]

G-

lval Even]
[odd]
[odd]
[Even]
b[Reset (clear)]

[

[Set (on)]

[Set (on)]

[Reset (clear)]

6-20
[ORG 1800H ;Program code starts at 1880.
LD HL,190¢H ;The HL register pair will point
;to the memory location in which
;a byte is to be placed.
LD B,20H ;B is the loop counter which is
;used with DINZ, 20 passes will
;be made through the loop.
Loop LD (HL),A ;The current value in A will

;be stored at the location
;pointed to by HL.

INC HL ;Advance the memory pointer so
;that the next sequential memory
;location can receive the contents

;of A,

DJINZ LOOP ;Decrement the loop counter B
;and return to LOOP if B is non
;zero.

RST 38H ;Enter the monitor program.

Answers to Experimental results (1), (2), (3) under
exercise 1 of II. Example Experiments (Experiment 4,
MPF-I Experiment Manual)

(1)

(2)
(3)

19A0H to 191FH are zeroed out. 1920M is unchanged.
Now locations 19AfH to 191Fid contain 55H
1920H is unchanged.
Locations 190AH to 19FFH contain 64H.
Remember loading zero in B and using DINZ for loop
control will give 256 passes. DJINZ will first
decrement the value in B then test @0H-1=FFH (255
decimal).

Trace this program in your mind--play computer
(Trace the program in Exercise 2. Nested loops
under II. Example Experiments of MPF-I Experiment
Manual).

Results:

(1) Memory locations
19AM-19¢F 1910-191F ... 19EC(~19EF 19F0-19FF
a9 A1 NE OF

Did you get the same results?

140

(2) Revised chanyges are

LD HL,1900H in place of LD HL,19FFH and
INC HL instead of DEC HL

Test your program.

3. Read MPF-I Experiment Manual, Experiment 4,
II. Example Experiments, Exercise 3. first.

Since DEC BC doesn't set flags, the JR NZ,LOOP
will be useless. Between DEC BC and JR NZ,LOOP
insert

LD A,B
OR C

If any bit is set, the OR command will reset the
zero flag indicating a non-zero result.

4, Read MPF-] Experriment Manual, Experiment 4,
II. Example Experiments, Exercise 4, (1)

(1) Comment for each statement

[ORG 1800H ;Program begins at 18¢8H
LD HL,1BA3H ;First base address from which
;data will be transferred.
LD DE,1AQ%H ;First destination address for
;data movement.

LOOP LD A, (HL) ;These two instructions move one
ibyte
LD (DE).,A ;From a source address pointed to

;by HL to a destination address
;pointed to by DE.

1BAN | <—HL
1AQ0 l<—DE
Cp OFFH ;After each byte is transferred,

;the A register will still contain
;a copy of the byte. Compare FF
;against the contents of the A
;register. If A contains zero,
;set the zero flag.
JR Z,EXIT ;1f the compare instruction
;found a zero in the A register,
;then a jump to EXIT will be made.
INC HL ;Continue here if A was not egual
;to AFFH. Advanced the source
;pointer to prepare for the
;next move.

INC DE ;Advance the destination pointer.
JR LOOP ;Make another pass through the
;loop
EXIT RST 38id ;Transfer control to the monitor.

141

(2) Comment on each instruction

ORG 1800H ;Start program code at 18@0H

LOOP LD A, (HL)

;The current contents of the

;memory location pointed to
;by HL is loaded into A.

NEG ;Gives a two's complement of A

LD (HL),A ;Return complement value of A
;to memory.

INC HL ;Advance memory pointer

AND A ;Clear the carry flag to get

;a correct result in the next

;subtraction.
SBC HL,DE ;If HL less than DE,

then

;the zero flag is not set.
ADD HL,DE ;Restore the data at HL to

;its original state.
JR NZ,LOOP ;If the result of the

;SBC HL,DE was non-zero (HL

;still less than DE},

then

;transfer control to LOOP.

Main Program

Subroutine 1

Subroutine 2

6-22

ANSWER (1)

PUSH
PUSH
PUSH
POP
POP
POP

HL
DE
BC
HL
BC
DE

E5
D5
C5
El
Cl
D1

(2) 1
?
3
4 LOOP1

6
7 LOOP2

m

10
11

12

13

ORG
Ln
LD
PUSH

LD
ADI}

NINZ
LD

INC

POP

DINZ

HALT

lepen
5,210
"L, 1AGEH
BC

A, (HL)

8,4
A,A

LOOP2
(HL) ,A

HL
rC

LOOP1

;S5et location counter to zero.
;Loop 21 times.
;First location to he shifted.

; have
swill
;loop

BC on
be a
(LOOP

stack because iU
ltered by the inner

2) .

;Load memory byte to shifted
;4 places i
sNumber of adds (shifts) is ¢,
add will shift value in A
one place.

;Loop control--4 passes (loopns).

;bach
sleft

;Retu
jmemo

rn sh
ry.

nto A,

ifted wvalue to

;Advance menmory pointer.
;Relocated
;preserved on the stack by
;statement 4.

;Have 21 numbers been shifted?
loop back to LOOP].

PO,
;Yes,

Ouit.

(3) Change statement 11 to read ADRC

6-23

afIn shift instructi
bit byte or the carry

LD
Le
LD
LD
CALL

L, 1ABEI
DE,1AG2Y
IX,1lA%0H
5,0

MADRD

end. It will be lost]

b [The presence of a C

value of RBC that was

A, (1iL)

ons the bit shift out of either the 8
flag is not rotated around to opposite

in the third position indicatees a

transfer both into the carry flag and the opposite end of

the byte.]

143

c use MpPF-I manual page C-17

RLA cy 7 ¢
RiA 7 ¢ (cy]
KLCA Cy 7 "
T '
6-24
a |
H L D E
{ [I |]
f—— 32 bit data~
H LSB MSB L D E
SRA H cF RRL €5 RR/D RR/E

Note the carry flag has been drawn in several places
for convenience this is the same carry flag.

[MULTIPLY X 2

ORG 1810H

SLA E

RL D

RL L

RL H

RST 381 1

2. [ANSWER

ORG 183¢H

LD B,S
LOOP2 PUSH BC

LD HL, 1APQH

LD B,4

AND A
LOOP1 RL (HL)

INC HL

NPINZ LOOP1

POP BC

DJINZ LOOP2]

144

3. [ANSWER

ORG 1800H
LD B,4
LOOP2 PUSH BC
XOR A
LD HL,1AAGH
LD B,4
LOOP1 RLD (HL)
INC HL
DJINZ LooP1
POP BC
DJINZ LOOP 2]
ba. [
MPYS LD BC,80AH ; Load B with 8 thus shifting
; the value in A 8 times.
;s Zero out C
LD H,C ; Zero out the H register
LD L,C ; Zero out the L register
M1 ADD HL,HL ; Shift the sum left one place
RLA ; Rotate the most significant
; bit of A into the carry flag
JR NC,M2 ; Test if carry is set means
; that an add should occur
ADD HL,DE ; Add if carry set
ADC A,C ; Put bit shifted out of A back
; into opposite end of A
M2 DINZ M1 ; Are there more bits to be
. ; tested in A
RST 38H ; Return to the monitor

This program is different from the theoretical background
problem in only one respect. The theoretical background
problem is an 8 bit by 8 bit multiplication and in this

example a 16 bit number is multiplied by an 8 bit number.

So done

145

II. Answer to II. 5 is in Answer to Experiment 6

6~25 See answers in 6-24

6=26

al A

b [15 an exclusive OR of A will clear A and the carry flag.]
c [18]

d [18 to 20)

e [The number of passes equals the value in B]

f (16 the D register contains the number of bytes in BCD area.]

gl 24]

h [Each statement doubles the value of A. The final result
is 8 * A =24 if D= 3]

i [Register C will hold the number of shifts.]
J (1AGeH)
k [The HL register pair -- see statement 33]

1 [Statement 17 loads H with 1A the value of H never changes.
Statement 31 zeros out the L register]

In summary:

1A02 1Ap1 1A00
[]] L

]
Ks) (2) (1)

\\\\‘“f—-——‘____‘_—,d,/ H L

The numbers (1), (2), (3) are pass numbers.

m STATEMENTS 37 to 45 double the number; add the carry
(obtained from shifting the binary number to be converted
and then decimally adjust all the BCD bytes.

n [49 to 45 1

o [The B register controls the number of passes. B is loaded
with D which has the number of BCD bytes.]

[Statement 47 decrements the bit count and statement 48
decides whether all of the bits in the BCD number have been
processed.]

Trace the program again, it is a good practice.

146

(-8

N

[\S]

[
@ =
o~

N =
—

- 2 J

g—1 1 L 1 4} 1
256 128 64 32 16 8 4

[

256 + 128 + 64 + 16 + 4 + 2 = 492

147

al 5 —- statement 12 loads the B register with 5 and the loop
at statements 15 to 17 is controlled by the DJNZ statement.]

b{ A <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>