i
Jl:.

=

MULTITECH INDUSTRIAL CORPORATION

COPYRIGHT

Copyright © 1983 by MULTITECH INDUSTRIAL CORP. All rights
reserved. No part of this publication may be reproduced, trans-
mitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means,
efcctronic, mechanical, magnetic, opticaf, chemical, manual or other-
wise, without the prior written permission of MULTITECH INDUS-
TRIAL CORP.

DISCLAIMER

MULTITECH INDUSTRIAL CORP. makes no representations or
warranties, either express or implied, with respect to the contents
hereof and specifically disclaims any warranties or merchantability
or fitness for any particular purpose. MULTITECH INDUSTRIAL
CORP. software described in this manual is sold or licensed “'as is’".
Should the programs prove defective following their purchase, the
buyer (and not MULTITECH INDUSTRIAL CORP,, its distributor,
or its dealer) assumes the entire cost of all necessary servicing, re-
pair, and any incidental or consequential damages resulting from any
defect in the software. Further, MULTITECH INDUSTRIAL CORP.
reserves the right to revise this publication and to make changes from
time to time in the content hereof without obligation of MULTI-
TECH INDUSTRIAL CORP. to notify any person of such revision
or changes.

A MULTITECH INDUSTRIAL CORP.
N) Oflice: 315 Fu Hiin N. R4, Taipe(, Taiwan, R.O.C,
£ Factory: 1 Industrial E, Rd,, (11 Hsinehy Scisnce-based
Industeial Park, Hsinchu, Taiwan, R.O.C.

Chapfer 1 Overview and Installetion

1.1 Introduction 2
1.2 An Overview of MPF-IP Specifications 3
1.3 Installation Procedure 4
Chapter 2 MPEF-IP Specificest
2.1 MPF-IP Hardware Specnﬁcuhon 6
2.1.1 Central Processing Unit ... 6
20,2 ROM 6
213 RAM e, 6
2.1.4 Memory EXPansSion Ar€a ... e 6
2.1.5 Input/Output Port .o 6
2,168 DISPIAY o) 6
217 Keyboard ... 6
218 SPEAKET .o 6
2.1.9 Audio Tape Interface ... 7
2.1.10 System Clock RAIEoooiiii e 7
2.1.11 System Power ConSUMPLON ..o, 7
2.1.12 Main Power Input ... 2
2.1.13 Physical Characternistics ..o 7
2.2 MPF-IP Software Specificatiens 8
22 T 8
D22 e 8
2.2.3 e 8
R P TR RPSUURPPPRRTN 8
P T OO U NP P PPRRPPNURUPPRPI 8
2 2B 8
2 2. 8
2 2 B 9
2.2.9 EQIHOT oo 9
2.2.10 Line Assembler (One Pase Assembler) [TUTE PR U TR URPRTR 9
2.2.11 TWO Pass ASSEmMDbIET ... 9
2212 DiSASSEMDIBT o 9
Chapter 3 System Description
3.1 The Functions of the Monitor 12
3.2 Battery Backup 13
3.2 L RAMS L 13
8.2.2 .. Address DECOABI ..o 13
323 .. 13
3.3 Keyboard Familiarization ... 14
3.3.1 The Monitor ComMMAaNAS ... 14
3.3.2 THE TAB KEY oot 15
3.3.3 Input Line Buffer .. 15

3.4 PRT-MPF-IP .. 16

3.5 Addresses Related with System Expansion
3.6 LED Lamp 17
3.7 Speaker Voice Volume Adjustment . 17
3.8 When the Monitor doesn’t Respond 18
3.9 Software Break—The Instruction: RST 30H 19
3.10 Number Systems ... 19
ST T 19
310 20
8103 e 20
a0 20
3.11 Audio Tape Interface ... 21
3.12CONTROL Qor Q 51
3.13 CONTROL P and CONTROL G ... 29
[4
Chapter 4 Operating MPF-IP
4.1 The Major Monitor Commands 24
4,2 Major Function Entry and Exit 26
421 B Command—Exter and Initialize the Editor ... 26
4.2.2 B Command—Exter and Initialize the BASIC ERTRUNRSN 26
4.2.3 R Command—Re-enler the Text Editor ... 26
4.2.4 C Command—Re-enter BASIC ... 26
4.25 L Command——Enter the One Pass Line Assembler ... 26
426 A Command—Enter and Initialize the Two Pase Assembler 26
4.2.7 D Command—Enter and Initialize the Disassembler 57
4.3 Basic Operations ... 28
4.3.1 System Initialization-The RESET Key ..o 28
4.3.2 Printer Control—CONTROL P ... 28
4.3.3 Software €scape—CONTROL Q ... 29
4.3.4 Bell Control—Control G ... 29
4.4 Support Functions 30
4.4.1 Display/Alter the Conlents of Memoryc.ocoooiiiiiiiiiii 30
442 The F Command ... PO 32
4.4.3 Display/Alter the Contents of Registers ..o 33
4.4.4 The W Command
—The Command Used for Storing Data on Tape 35
445 The L Command
—The Command to Read Data From Tape back to Memory 35
446 The J Command
—The Command Used to Calculate Relalive Address ... 37
4.4.7 The | Command
—The Command for Inserting Data inta Memory 38
4.4.8 The D Command
—The Command for Deleting Data from memory ... 40
4.5 Program Debugging ... 43
451 The B Command—The Command 1o Set and Clear Breakpoint 43

4.5.2 The S Command—The Command 1o Single-step a Program 43
4.5.3 The G Command
—The Command for Executing a program............cocoeeiiviioie 45

Chapter 5 Useful Subroutines

5.1 MPF-IP System Parametersccceevivennnecens 50
5.2 Input/Output Parameters and Summary .,

of Subroutines ... S 51
5.2 BEEP oo e e, 53
5.2.2 CHK 4D oo 53
5.2.3 CHRWR ..o 53
5.2.4 CLEAR .o e 53
5.25 CLRBF ..oovooooiiceve ! SOOI SU USROS 54
5.2.6 CLRDSP oo oot e 54
5.2.7 CONVER ..ot 54
5.2.8 CR oo e 54
5.2.9 R oo 5
5.2.10 CR 2 oo 55
52,11 CR 3 oo oo 55
5.2.92 CURSOR ..ottt 55
5.2.18 DECBIN oottt oo 55
5.2.14 DECIMAL ooooo oot 56
5,215 DEC-SP oot e =6
5 216 BRBO R oo 56
5217 GETCOHR oo, 59
5.2.18 GETHL oot 57
5.2.19 HEXBIN oo et 57
5.2.20 HEX 1 oo oo 58
5.2.2% HEX 2 oo, OSSO U RO OO PROO 58
5.2.22 HEX 4 oo 58
5,223 HEXX oo 59
5.2.24 LDA ... BSOSOV RSOSSNSO STUSUOUTUOTRRSTTON 59
5.2.25 MSG oot e, 60
5.2.26 MTPPRT ..o, 60
5.2 27 ONE 60
5.2, 28 PLINE oo e 61
5.2.29 PLINEFD oot 61
5.2.30 PRINT oot oo e e 61
5.2.31 PRTMES .o oo 61
5.2.32 PTEST oo et 61
5,233 PTESTT oot oo 62
5.2.36 RAMOCHK o 62
5.2.35 READLN .o\t e, 62
5.2.36 SCAN oo 62
5.2.37 SCAN T oo e e, 62
5.2.38 SCAN 2 oo oo 63

5.2.39 SHIFT oo oo 63

5.2.41 SPACE 1 L 64
B5.2.42 TONE e 64
5.2.43 TONE 1K i 64
5.2.44 TONE 2K e, 64
@
Chapter 6 The Text Edifor
6.1 Text Buffer ... 67
6.1.1 LINe POINLEr L. 67
6.2 Enter and Re-enter the Editor ... 68
6.2.1 The "E” Command-Using the Editor in Input Modeo......, 68
6.2.2 The "R Command-Using the Editor in Edit Mode 69
6.2.3 The—= (TAB) KeY ..ot 70
6.3 Summary of the Editor ...ccccivencincnnnnnnaa7l
6.4 Editer Entry and Exit Commands 72
6.4.1 The E Command-Enter and initialize the editor 72
6.4.2 The R Command-Re-enter the editor ... 72
6.5 Text manipulating Commands-The
commands for data input/output/update ;3
6.5.1 The | Command-Insert Linesccooooviiiii i 73
6.52 The D Command-Delete a liNe ..o, 74
6.5.3 The P Command-Print a specified number of lines 75
6.5.4 The Z Command-Print all the lines in the text buffer 76
6.6 Line pointer manipulating Commands ... 77
6.6.1 The B command-Move the cursor to the bottom of a file ... 77
6.6.2 The G n command-Move the line pointer to the nth line of the file
currently in the text buffer (... 77
6.6.3 The U command-The command to move the line pointer one line
up LT LT T E T P Py 78
6.6.4 The N n Command-The command that moves the line pointer n
line down PP PR RPSPPRURPIY 79
6.6.5 The T Command-The command that moves the line pointer to the
top Of the file ..o 79
6.6.6 The L command-The command that prints the line-number which
is now pointed to by the line pointer.viviiiiiiine 89
6.7 String Handling Commands 81
6.7.1 The F Command-To ocate @ SIriNgcocoovviiiiiiiiiiiieee, 81
© 6.7.2 The C command-To change a String ..., 82
6.8 Other Commands
6.8.1 The S Command-Display the Default Values and the Current Text
Il
84
6.8.2 The X Command-Printer Control Commandcccoovvviiieviieannnn. 84
6.8.3 The W Command-Write data from memory {0 tapecc..o.o.. 84
6.8.4 The R Command-Read data from tape to memory 85
6.8.5 EITOr MESSAQES ..viiviiiiiit e 85

Chapter 7 The Assembler and

@
Disassembler
7.1 Two-Pass Assembler 90
7.11 The Use of MPF-IP Two-Pass Assembler ... 90
7.1.2. Assembly Language pseudo-OpS ..o a9
7.1.3 Examples of the Use of the PSEUdO-ODoivieiiioii i 94
7.2 Line Assembler (One-Pass Assembler) ... 97
7.2.1 The-Use of the Line Assembler ... 97
7.2.2 The Method For Calcutating Displacement for Relative Jumps 98
7.3 Error Messages ... 100
7.3.1 Errors resulted from the use of assembler ... 100
7.3.2 Errors Resulted from Mistakes in the Assembly Language
INSITUCHIONS .o e 100
7.4 Disassembler 105
7.5 Summary of Text Editor and Assembler
Parameters ... 107
Chapfer 8 System Hardware
@
Configuration
8.1 System Memory Organization ... 114
8.2 Input/Output Addresses ... 113
8.3 Interrupt 115
8.4 Stacke ... 116
8.5 RSOt) 117
8.5.1 Power-on RESET ... PR e 117
8.5, 2 Warm RESET o 117
8.6 Tape Data Format ... 118
B.8. 1 Bl FOMat L 118
8.6.2 Byte Format TP e, 118
8.6.3 File Format PO PP PSRPRPP 118
8.6.4 Audio Cassette Tape PP RO EPPPPTORIRO 119
8.7 System Clock 119
8.8 Re@Seft 126
8.9 Audio Tape Inteface 120
8.10 The Display and Keyboard 121
8.10.1 Principle of Operation ... 121
8.10.2 The Driving Modes ... 121
8.10.3 FID BUffer DIIVET ..o e 122

8.10.4 ... TSP VPR PPTRR O RO PR PP UUTU SR OO 125

L 4
Appendices
Appendix A: Z-80 Pin Configuration
Appendix B: Z80-CPU Instruction Set
Appendix C: Z80-CPU Programming Reference
Appendix D: MPF-IP Schematic
Appendix E: MPF-IP Monitor Command Summary
Appendix F: Editor Command Summary
Appendix G: Assembler Operation Sequence
Appendix H: MPF-IP ASCII Code
Appendix I: MPF-IP Keyboard Position Code
Appendix J: The Display Patterns for Alphanumeric
Letters and Special Symbols

Chapter 1

Overview
and Installation

1.1 Introduction

The Micro-Professor I Plus (MPF-IP) is a low-cost,
versatile microcomputer system featuring sophisticated

software and hardware capabilities. It is not only
ideal for those who intend to familiarize themselves
with micro-processing and advanced microcomputer

hardware and software, but also can be used for many
dedicated purposes and OEM applications such as
industrial control and instrumentation.

Good design techniques and the use of a Z-80 central
processing wunit (CPU) results in a high performance
unit.

The Z8% microprocessor features a powerful instruction
set, which has 158 instructions. The 7280 operates at
2.5 MHz and processes 8 bits of data at a time. Thus,
Z88 1is one of the most commonly used microprocessors
with wide~ranging applications.

The MPF-IP wuses a display panel that can display 28
characters using l6-segment font. All the 64 standard
ASCII characters can be displayed. The display length
corresponds with the 2@-column printer.

Printing at 48 lines per minute, the printer provides
the means to permanently record the commands, data,
programs, status, and other messages., Each character

printed by the printer is in a 5 by 7 dot matrix.
The keyboard has 49 keys.

The operation of MPF-IP is controlled by an 8K monitor
program which resids in the read only memory (ROM).
The monitor, aided by 4K random access memory (RAM),
enables the user to enter a comprehensive set of single
keystroke commands, which make it easier for the user
to use the CPU, memory, and I/O devices. Thus, the
user can concentrate on microprocessor software
development and application design.

1.2 An Overview of MPF-IP Specifications

1)
2)
3)
4)
5)

CPU: 280
ROM: 8K
RAM: 4K

Contains a text editor

The MPF-IP can execute programs written in assembly
language, because its 8K ROM contains a two-pass
assembler, line assembler, and a disassembler.

Battery backup.

A 20-character display that can display a full 64
ASCII character set.

A 49-key standard typewriter QUERTY keyboard.

8K BASIC Interpreter provided as an option.

Options for the MPF-IP also include:

L I 1

PRT-MPF: thermal printer
EPB-MPF: EPROM programmer board

SSB~MPF: speech synthesizer board

SGB~MPF: sound generation board

1.3
1)

2)

3)

4)

5)

Installation Procedure

If the MPF-IP is to be wused with the PRT-MPF-IP,
connect the PRT<+MPF-IP to the MPF-IP first with a flat
cable connector., (For details, please refer to
PRT-MPF-IP Printer Operation Manual.)

Insert the thermal paper 1into the printer as
illustrated in PRT-MPF~IP Printer Operation Manual,
11 Installation Procedure. Note that the finer
surface of the thermal paper should face up,
because that side of the paper is specially treated
so that dotmatrix characters can be formed by the
heat produced by the thermal head of the printer.

Connect-AC power adaptor (9V/1A) to the PRT~MPF-IP.
Connect AC power adaptor (9V/6@0mA) to the MPF-IP.
When the display shows

KHKKMPE—~T—PLUS** & %

and the printer prints out the identical message, the
MPF-IP is ready to run.

Chapier 2

MPEF-IP
Specifications

2.1 MPF-IP Hardware Specification

2.1.1 Central Processing Unit

The 2Zilog 7Z-86 CPU has a powerful instruction set,

comprising of 158 instructions. It can operate at a
maximum speed of 2.5 MHz. However, MPF-IP operates at
1.79 MHz. Operating at 1.79 MHz adds to the
reliability of the MPF-IP.

2.1.2 ROM

The MPF~IP ROM 1is a single +5V EPROM 2764 that

can store up to 8K bytes of data. The monitor EPROM
address is from @008 to 1FFF, P

[
-

2.1.3 RAM

The MPF-IP has two static RAMs, TMM2@g16P-~2 (Toshiba 2K
X 8 byte NMOS RAM). Thus, the total capacity of RAM is
4K bytes, The user can use a JUMPER at board location
U4 so that other RAMs 12732 or TMS2532 can be used at
location U4,

The address of the RAMs ranges from F@P@Q@ to FFFF (The
locations from F@@d@® to F7FF is assigned for the chip at
board location U4.,).

2.1.4 Memory Expansion Area

The board location U3 is reserved for a single +5V
"EPROM 2764 x 1 or 2732 x l. The addresses reserved for
this location are from 20008 to 3FFF.

2.1.5 Input/Output Port

The I/0 port of the MPF-IP consists of two programmable
8255 chips, which have 48 parallel I/0 lines.

I/0 addresses: 80 ~ 83 (at board location Ul4)
99 ~ 93 (at board location Ul3)

2.1.6 Display

The display of the MPF-IP is a fluorescent indicator
panel that can display 20 l6-segment font characters.

2.1.7 Keyboard

The MPF-IP has 49 keys, 1including alphanumeric keys
(from A to Z, and @ to 9) and function keys.

2.1.8 Speaker

A 2.25 inch speaker is built on the MPF-IP main board.«
6

2.1.9 Audio Tape Interface

The MPF-IP can be connected to most cassette tape
recorders., The speed of data transfer is 165 bits per
second (bps).

2.1.10 System Clock Rate

The crystal oscillator of the MPF-IP oscillates at the
frequency of 3,5795 MHz. Between the crystal circuit
and the cpu is an IC, namely, a 74LS1l4, which divides
the clock frequency by 2. Thus, the system clock rate
is 1.79 MHz., The cycle time is $.56 microseconds.

2.1.11 System Power Consumption

A single +5V power supply, whose current consumption is
450mA .,

2.1.12 Main Power Input
Tﬁe main power input to the MPF-=IP is DC 9V at 600mA.
2.1.13 Physical Characteristics

157mm X 220mm x 1.6mm

2,2 MPF-IP Software Specificdtions

(The major functions of the monitor program)

Immediately after power—-up of the MPF-IP, the monitor
program is executed immediately. The monitor program
resides in the 8K ROM. It performs the following
tasks:

2.21

Initializes a reset cycle:

Initializes the MPF-IP so that it is ready to execute
user programs,

2.2.2

Keyboard scanning:
Scans the keyboard for any key press and responds
accordingly.

2.2.3

Scans the display buffer and can display any character
in the MPF-IP ASCII character set, which contains 64
characters.

224

Stores and retrieves data through audio tape interface
at the speed of 165 bits per second (bps). Each time
the monitor reads from or write to tape, a checksum
will be produced by the monitor and will be matched
with the checksum on tape. Filenames can be given to
data stored on tape for easy access.

2.2.5

Displays and alters the data stored in memory or
registers. Commands used for performing these tasks
include DISPLAY, CHANGE, FILL, MOVE, INSERT, DELETE,
NEXT, and LAST.

2.2.6

Sets or clears the breakpoint in a program.

227

Program debugging can be achieved by setting breakpoint
or exXecuting a program in STEP mode. One breakpoint is
allowed 1in a program, A programmer can examine the
contents of registers or memory locations if a break-
point is set in a program,. A programmer can also look
into the <contents of certain memory locations dr

8

regyisters each time an instruction is executed, 1if the
program is executed in STEP mode.

2.2.8

Calculates the relative addresses to be used by the JR
or DJNZ instructions.

2.2.9 Editor

Provides a text editor. It enables a user to 1input,
change, or list source programs, data, or general text
conveniently.

2.2.10 Line Assembier (One Pass Assembler)

Provides a line assembler (one pass assembler), which
only converts one line of assembly 1language program
into machine code at a time and does not process pseudo
instructions such as ORG, EQU, LABEL, DEFB, DEFW, DEFS,
DEFM, and comments. It uses less memory than two pass
assembler does, but it can only process absolute

values.

2.2.11 Two Pass Assembler

Provides a two pass assembler, which can convert source
programs into machine codes and process pseudo
instructions. It has the functions of a 1linker, and
can print program listings when using together with a
printer.

2.2.12 Disassembler

The disassembler can convert machine codes back into
the form of assembly program.

Note: In addition to that specified otherwise, all the
addresses used in this Dbook are expressed in
hexadecimal.

Chapfter 3
System Description

3.1
1)

2)

4)

5)

The Functions of the Monitor

Stores the program into the RAM. Change or examine
the data in the RAM.

Executes the program stored in RAM.
Executes the program in STEP mode or setsS breakpoint
in a program. FExecuting the program in STEP mode is

very helpful for learning and debugging purposes.

Other functions include audio tape interface,
relative address calculation, and text editing.

The user can develop a dedicated computer system

based on the MPF-1IP, The MPIF-IP is very flexible
for both software and hardware development.

12

3.2 Battery Backup

The MPF-1P features a battery backup so that data will
not disappear even after power is turn off.

On the left of the MPF-IP main board, there 1is a
switch. When the switch 1is on, the power of the
battery backup 1is not supplied to the MPF-IP. When the
system power supply from the adaptor is cut out sudden-
ly (because of a power failure or the adaptor is
disconnected), power will be supplied automatically
from the battery to the RAM of MPF-IP and CD4556BE.
Thus, data stored in the RAM will be preserved.

To test the battery backup, the user can disconnect the
adaptor and then re-connect it to see if data in RAM is
lost.

If you don't intend to use the battery backup, turn off
the switch. The batteries are to be installed on the
back of the PC board.

3.2.1 RAMs

If the RAM of the MPF-IP consists of two CMOS HMG6116
(4K bytes), the battery backup~-which includes four UM3
batteries-~can preserve the data in RAM for about a
year.

If NMOS chips such as TMM2A16P-2 or MS58725P-~15 are used
as the RAM of the MPF-IP, the battery backup can
preserve the data in RAM for only five hours,

If the TCSS516APL is used as the RAM of the MPF-IP, data

in RAM can be preserved for several years. However, to
use TC5516APL, refer to Chapter 8 for the correct wire
cutting and jumping at J2.

3.2.2 Address Decoder

The CMOS 74LS139 (RCA CD4556BE) is used as the address
decoder.

3.2.3
If 2732 or 2532 is installed at board location U4 as

RAM, the power from battery backup will be consumed
much guicker.

13

3.3 Keyboard Familiarization

The MPF-IP can generates 64 ASCII characters, They
include alphanumerical letters (from A to Z, and & to
9), space, special signs, etc. To enter any of these
characters, press the key marked accordingly.

The SHIFT key, which 1is located at the 1lower left
corner of the keyboard, 1s wused to generate the
characters which are marked anove Ehe keyboard kKeys.

3.3.1 The Monitor Commands

The CONTROL key 1is wused to enter major monitor
commands. The monitor commands are entered by typing
the control characters while holding down the CONTROL
key. They are listed as follows:

CONTROL A (Assembler)
CONTROL B (BASIC)

CONTROL C (Re-enter BASIC)
CONTROL D (Disassembler)
CONTROL E (Editor)

CONTROL L (Line Assembler)
CONTROL R (Re—-enter Editor)
CONTROL P (Printer Control)
CONTROL Q (Software Escape)
CONTROL G (Beep Control)

The monitor commands and their functions are explained
in detail in Chapter 4. Only CONTROL P and Q will be

discussed here. Because the printer of the MPF~IP
PRT-MPF-1IP) only prints on thermal paper, CONTROL P is
used as an on/off (toggle) switch. When a user thinks

there is no need for printing paper copies, he can turn
off the printer with the CONTROL P command. For
example, when the assembler is converting a source
program into machine code, the user can turn off the
printer to save thermal paper. If there are errors in

the source program, the user can use CONTROL R to re-
edit the source program. After the source program has
been modified and the assembly completed, the user can
turn on the printer to print hard copies.

CONTROL Q stands for software escape. After pressing

CONTROL Q, the monitor regain control without affecting
any parameters in the RAM,

14

3.3.2 The TAB Key

The TAB key can be used efficiently by a programmer to
type in assembly programs. The [>] key on the MPF-IP
keyboard 1is used as the tab key. Pressing this Kkey
once causes the cursor to move six spaces to the right
on the display. The key code of this key can be found
on the table of MPF~IP ASCII Code. The use of this key
enables a programmer to save RAM space when entering a
program.

3.3.3 Input Line Butfer

The input line buffer accepts input line of up to 44
characters. Therefore, each time a programmer type in
an input line, the length of the input line should not
exceed this limit, Because the length of the display
is 208 characters, the display will shift right to
display the characters typed after the 26th character
of an input line,.

3.4 PRT-MPF-IP

The printer of the MPF~IP is discussed in detail in
PRT-MPF-IP manual-. Please refer to that manual for

dgtailed operation of the printer. The wuse of
d}sassemble{ and memory dump usually synchronizes with
the operation of the printer. If no printer 1is

connected to the MPF-IP, the functions of disassembler
and memory dump can not be performed.

3.5 Addresses Related with System Expansion

To determine whether peripherals are interfaced to the
MPF-IP, the MPF-IP examines the values of certain
memory locations -~ 60060, 2000, and AQ80. If the
values of these memory locations are the same with
their preset values, then the MPF-IP is connected with
peripherals, The memory range form 6000 to 6FFF 1is
used by the PRT-MPF-~IP, and that for TVB (TV Interface,
Board) is from A@0G@ to A7FF, and 8K BASIC Interface,
from 20080 to 3FFF. The MPF-IP checks the wvalues of
memory 1locations 2080@¢, 6004, and A@P@ to see whether
these external devices are interfaced to the MPF-IP.
If the values of these locations are FF, then the MPF-
IP is not connected with external devices. If the
monitor program returns the values that are identical
with the ©preset values of location 208060, 6000, and
AQ@d, then the MPF-IP 1is connected with external
devices.

It should be noted that when a programmer accesses

these 1locations, the programmer should take into
consideration the use of these addresses.

16

3.6 LED Lamp

There are
right part
them are as

Green LED:

Red LED:

two LED (light emitting diode) on the upper
of the MPF-IP main board. The functions of
follows:

When the monitor program scans the keyboard
and detects a key press, the green LED lamp
will illuminate. The speaker will generate a
"beep" sound at the same time.

-Once the CPU executes the HALT instruction,

the red LED lamp will illuminate.

3.7 Speaker Voice Volume Adjustment

The volume
adjusting
The greater
versa.

of the speaker voice can be controlled by
the impedance of the variable resistor R3,
the impedance, the smaller the sound. Vise

17

3.8 When the Monitor doesn’t Respond

When the monitor doesn't respond to a command line
after the carriage return|[<—] key is pressed (This
is wuswally resulted from incorrect format of the
command line), wuse the back space key ¢« to revise the
format of the command line or re-type a correct command
line after typing [CONTROLJ[Q]. For example, if vyou
intend to 1look at the contents of memory locations
from F80¢ to F8¢3. You should press

<M>=F800

Instead of typing in F80¢, vyou typed incorrectly F88P.
Because the letter "P" is not a hexadecimal character,
MPF-~IP does not respond to this command line, You can
use the back space key ¢ to backspace to P and type in
a ¢ and then a to re-enter the command line.

18

3.9 Software Break—The Instruction: RST 30H

The instruction RST 3@H causes a software break to the
program being executed. A programmer can place this
instruction at locations wherever he intends to examine
the results after certain instructions have been exe-
cuted, e.g., the contents of certain memory locations
and registers. Multiple software breakpoints can be
set within a program with the use of the RST 386H ins-
truction for program debugging. After the CPU executed
an RST 3¢H instruction, control will be returned to the
monitor. Pressing the key and causes the CPU of
the MPF-IP to <continue to execute the instructions
following the software break.

The iInstruction RST 38H also causes a software break.
For details of the use of the RST 38H for software
break, refer to the MPF~IP Monitor Program Listing.

The RST 3¢H has the same effect as the hardware break
achieved by pressing the B key. After a program 1is
entered into the RAM, pressing B will cause the display
to show

which prompts a programmer to enter a breakpoint in a
program. When the CPU proceeds to the breakpoint as
the program is being executed, the monitor will gain
control, Only one breakpoint can be set using the B
key.

3.10 Number Systems
3.10.1

Hexadecimal numbers are frequently used with microcom-
puters. The following table (Table 3-1) shows the
hexadecimal, binary, and decimal numbers.

19

ﬁ—gé;;gé—_cima-l_-"_r— Diec]'_mal Bina ry
T o 0000
I 0001
o PO 2 0010
3 3 0011
4 I 0100
s s 0101
6 6 0110
7 7 0111
8 o 8 1000
9 9 1001
AT 10 1010
B 11 1011
C 12 1100
D N 13 1101
E 14 1110
F 15 1111

3.10.2

Whenever a programmer is prompted to set default values
in the following functions~-Editor, Line Assembler, Two
Pass Assembler, and Disassembler, the values to be
input should be in hexadecimal. Leading zero and
trailing H (which stands for hexadecimal) may be omit-
ted.

3.10.3

When the MPF-IP is in Editor and Line Assembler modes,
hexadecimal values are identified by a trailing H. For

example, "1@" represents a decimal 18, while "1lgRH"
stands for a hexadecimal 1¢--which equals to 16 in
decimal, = For hexadecimal values preceded by the

letters from A through F, leading zero should be placed
so that they will not be mistaken as symbols or labels.
An example is listed as follows:

20

DISPBF EQU @FF2CH
ORG @F0@0H
DEFW OFF65H
DEFB @BDH
LD HL,0F560H
LD A,3F8H

3.10.4

When the MPF-IP is in other modes than the Editor and
Line Assembler modes, all values to be input should be
in hexadecimal. But the trailing H is not required.

3.11 Audio Tape Interface

If operating in the Editor mode, a programmer can store
the program or data on tape with the "W" (write)
command; or read back program or data from tape with
the "L" command and returh to the monitor. If the user
intends to re-enter the editor mode after 1loading a
tape to the MPF-IP, the monitor control command
"CONTROL R" is used. If a user uses the "R" (read)
command in the Editor to read data or program from
tape, the MPF-IP will remain in the Editor after
reading.

3.12 CONTROL QorQ

The Q command is wused to re—enter the monitor.
Pressing the Q key will re-~enter the monitor when the
display shows the following:

* ERRORS

* SYS~SP

* ERR-SP

* The contents of registers or memory locations

21

3.13 CONTROL P and CONTROL G

CONTROL P and CONTROL G (they are uvsually shortened to
T P and T G.) only function wunder the following
conditions:

* When the display sbhows ****MPP-I-PLUS****
* When the MPF-IP is undes condition 3,12
* wWwhen the display shows /" /\

Otherwise, pressing the CONTROL P or CONTROL G will
cause the display to show .weaningless characters.

22

Chapfer 4
Operaling
MPF-IP

This chapter will discuss the basic operations of the

MPF-1P, At the end of this chapter, the reader will
have a basic understanding 1) how to operate the MPF-
IP, 2) program debugging, 3) support functions.

Readers are suggested to learn how to operate the MPF-
IP by following this chapter closely.

4.1 The Major Monitor Commands

The major -monitor commands of the MPF-IP are listed in
the following table (Table 4-1):

Category Command Function
* Major RESET Enter and initialize the monitor
Function
Entry
Q Re—~enter the monitor
E Enter and initialize

the text editor

R Re—-enter the text editor
A Enter two pass assembler
L Enter one pass assembler
D Enter disassembler
B Enter the BASIC language
C Re~-enter BASIC
Fill in Data | F Store data in the RAM buffer
ump Relativej J Calculate the relative address
Insert Data I Insert the contents of a memory
block into the RAM
Delete Data D Dalete one byte of data from
the memory
Execution G Execute a program which starts
Lm from a specified address
Step S Single-step a program

(Execute a program instruction by
instruction.)

Display/Alter
Registers

Display the contents of registers
Display the contents of the next
pairs of registers

Display the contents of the
register pairs that precedes the
registers currently displayed
Change the contents of registers

=] [

X

24

Display/Alter
Memory

Display the contents of
specified memory locations

M
Display the contents of the next
four bytes
Display the contents of the four
bytes that precede the current
displayed location
: Alter the contents of specified
memory ‘
/ Move the —contents of a memory
block to another location
Manipulate B Set or clear breakpoint
Breakpoint
Load/Dump L Load data from tape to memory
Memory W Write data from memory to tape

* Note: Any of

the major functions are entered

by

typing the related control character while holding down

the CONTROL key.

25

4.2 Major Function Entry and Exit

Seven commands are provided to enter major functions.
Four of these commands allow initial entry and re-entry
into the editor and BASIC,. All the seven major
functions are entered by pressing the related control
characters while holding down the key.

4.2.1 E Command—Enter and Initialize the Editor

The editor is initialized by pressing the key while
holding down the [CONTROL| key. For details, refer to
Chapter 6 The Text Editor.

4.2.2 B Command—Enter and Initialize the BASIC

Pressing the key while holding down the key
will enter and initialize BASIC, 1if the board location
U3 is installed with a BASIC Interpreter. However, if
the board location U3 is not installed with a BASIC
Interpreter, pressing the key while holding down the

key will return to the monitor.
4.2.3 R Command—Re-enter the Text Editor

Pressing the R] key while holding down the [CONTROL] key
will re-enter the text editor.

4.2.4 C Command—Re-enter BASIC

Pressing the key while holding down the [CONTROL] Key
will re-enter BASIC without <c¢changing the data in

memory.
4.2.5 L Command—Enter the One Pass Line Assembler

Pressing the key while holding down the [CONTROL key
will enter the one pass line assembler, which will

convert the mnemonic opcode (entered from the keyboard)
to object code and store the resultant object code in
memory. When a line assembler is in use, the user can
specify the RAM area for storing the mnemonic opcode
and resultant object code, respectively.

4.2.6 A Command—Enter and Initialize the Two Pase Assembler

Pressing the [A] key while holding down the [CONTROL key
will enter the two pass line assembler, which can

convert the source program into executable machine
code. It can also process pseudo instructions.

26

B\

4.2.7 D Command—Enter and Initialize the Disassembler

Pressing the [D] key while holding down the key
will enter the disassembler, which convert machine code
into 2-88 mnemonic code. It disassembles the contents
of memory from a specified memory location wuntil an
opcode is found. Then it will disassemble the contents
of the bytes that follow the locations where the
disassembled opcode is stored. In case an incorrect
opcode appears, the display ‘will show a question mark.

For details of the L, A, and D commands, please refer
to Chapter 7 the Assembler,

27

4.3 Basic Operations

4.3.1 System Initialization-The RESET Key

When the key is pressed, a RESET signal will be
generated and the MPF-IP will start a reset «cycle.
Normally the reset signal is automatically generated
after power-up. The MPF-IP is to be initialized to its
reset state by the reset signal,. The monitor control
variables are set and the CPU is ready to accept
monitor commands. Finally, the display will show

¥k kk*MPF~T~-PLUSk* k* %

Note when a "cold reset" (the reset 1initialized by
power—up) is initialized, the 20 characters which are
to be displayed@~~*****MpP-TI-PLUS*****__appear one by
one on the display. 1In the case of a "warm reset" (the
reset initialized by the pressing of the RESET key),

the 20 characters are displayed simultaneously.

When the RESET key is pressed, the operation of the CPU
is interrupted and control is returned to the monitor
which will 1initialize the CPU. The monitor will
examine whether a cold reset or a warm reset is to be
performed. The cold reset or power-on initialization
will be performed if the monitor determines that power
has been interrupted. A cold reset causes the monitor
control parameters and user alterable parameters to be
initialized. A warm reset only initializes the monitor
control. parameters and leaves the user alterable
parameters unchanged.

The warm reset should be performed any time the CPU has
performed unknown operations or the CPU appears 1lost

while executing a command or an 1instruction. The
monitor control parameters can be easily changed whend
an unvalidated wuser program is executed. This will
cause the MPF-IP function improperly. Performing a

warm reset allows the control to be returned to the
monitor.

4.3.2 Printer Control—CONTROL P

The printer control command is entered by pressing the
[Pl key while holding down the key. The default
state of the printer is on, e.g., after the power to
the MPF-IP is turned on, the printer is automatically
turned on. Pressing [P will turn off the
printer. Sometimes a user may not want all the dis-~
played data to be printed. Instead, a user may only
wish to print the necessary data. CONTROL P allows the

28

user to wuse the printer at will. CONTROL P 1is an
off/on (toggle) switch which selects only two states--—
either on or off.

4.3.3 Software Escape—CONTROL Q

This command 1is entered by pressing the [Q] key while
holding down the [CONTROL key. Whenever the monitor
loses control of a program or the MPF-IP, pressing
[@] will return control to the monitor without
changing the preset parameters. Though pressing the
RESET key will also return control to the monitor, some
variables preset by the program might be damaged.

4.3.4 Bell Control—Control G

This command 1is entered by pressing the key while

holding down the [CONTROL key. CONTROL [G] is also a
toggle switch. The default state of this switch is on,

e.qg., after power is applied to the MPF-IP,
is on. When this switch is on, the MPF-IP will sound a
beep each time a key is pressed. When this switch is
off, the beep sound will be suppressed each time a key
is pressed.

29

4.4 Support Functions

4.4.1 Display/Alter the Contents of Memory

The M command displays the hexadecimal contents of four
consecutive memory locations. The use of the M command
is listed as follows:

1.

Display the contents of four memory locations
starting from the specified address. The format of
the command is

M <starting address> [|<—

The command line is entered following the following
steps:

a. Type M, the MPF~IP will respond with
<ry= A

b. Enter the starting address of a memory range
whose contents are to be displayed.

c. Press the carriage return key [«—], The MPF-IP
will display the contents of four consecutive
memory locations immediately after the key
is pressed.

<Mmr=0d110 IE RF Dz 2z

The mand Key:

These two keys are used in conjunction with the ™
command. While the MPF-IP is displaying the con-
tents of four consecutive memory locations after a
user typed in M, <starting address>, and [,
pressing the { key causes the MPF-IP display the
contents of the next four memory locations,

SME=gnLd D& 530 DI 3]

Pressing the key causes the MPF-IP display the
contents of the four consecutive memory 1locations
that precede the currently displayed locations.

If no starting address is given after the M command,
e.g., the is pressed immediately after the M
command, the MPF-IP will display contents from
location 0060.

30

3. The [Key
~-The Key Used to Perform a Memory Dump

The [key when used in conjunction with the M
command allows a memory dump to be performed. The
format of the memotry dump command line is:

M <starting address> [;]J <ending address>

A printer must be used to perform a memory dump. If
the MPF-IP is not connected with a printer or the
printer 1is off, the MPF-IP will return control to
the monitor after the command line is entered.

Me=0,10
ToNg sy a3 03 ED
1nde w3 Es D2 0
DaOs ZE S2 U3 3
00 ZE &1 DT

DOLO 3E

A user may use the memory dump function to set
linking address. The format of command is:

M <starting address> []] <ending address> space bar

<linking address> (
M=, L

SN

S0

B HNa
=Y R

B0

CRIbu
4. The [i] Key
--The Key to Alter the Contents of Memory

The command format is:
M <starting address> [5] <datal data2 dataw>
SEFEGOID 22 B
After executing the above command, use the M command

again to examine the <contents the four bytes
starting from location FB808 '

31

Note: The MPF-IP accepts input line of 40 characters or
less. Any input line should conform to this rule.

5. The [/] Key
--The Key to Move the Contents of a Memory Range

The command format is:

M <starting address> [/ <ending address> space bar
<destination address> [«—]]

e
12

a0 Gy ano a3
Enad w? ERODE
UonsS IS o=s D3
oanc =1 D3
noyLn

N =
ISR e

" 1ar

=
=

e opE R

S = AN,

M
||

-
.

M

= O
]
vt

[}

™
MY M

o
M

'l‘l “r
1T ™M
T MM
B T B

m MM

=
o0 D
7
B
™

m M

DO R A RO L
Lot

= 0

Mo

'I‘I

N

<M>=0s110 F2R00
CMr=F200.F310

FS0U 01 09 02 ED

F304 A% EA 03 DO

FSus 3E 92 D3 83

FSOC 3IE §1 D3 93

FELO 3E
Note: When moving the contents of a memory range to
another location, be careful not to damage the data
stored 1in system RAM. If the data in system RAM 1is
damaged, the monitor will function improperly.

If the 1input parameters are incorrect, . the error
message "ERRORS" will appear on the display. Pressing
Q0 will return control to the monitor.

4.4.2 The F Command

The command 1is applied to fill data into a memory
range. The format of the command is:

F <starting address> space bar <ending address>
space bar <data>

32

LPMeE=010 F200

SME=FSODNLFS 0

FEOQO 01 00 X £
FSDa A9 ER 03 0y
Feuos 38 2@ o3 &2
FSol ZE &1 D3 22

FSlo ZE

CER=FEN0 FS10 24
SMFEFE00,.FE10 '
FSOon 24 24 349 54
FS04 34 34 34 3

FBOS 34 39 24 39
Fans 84 24 24 34
Fain Za

The above example shows that the contents in the bytes
from F8¢0 to F81¢ are scrambled. After the F command
that fills 34 1into the same memory range, all the
locations from F800 to F8l0 are stored with 34, Note
if the starting address of the command line is not in
RAM, the display will show "“ERRORS", which will

disappear after pressing [Q] or Q.
4.4.3 Display/Alter the Contents of Registers

The R command 1is provided to display or alter the
contents of registers. The format of the command is:

R <register>

If a l6-bit register is entered in an R command line,
the MPF~IP will display the contents of that register
only,

If a 8-bit register is entered in an R command 1line,

the MPF-IP will display the contents of that register
and the contents of the register which 1is normally
paired with the specified register.
<R>= AF FF13
<R>= HL FF3S
{R>= aF ROFD
<R>= Ix FFOD
<R>= SP FEAD
1. To display the contents of register A, type R A [&]
2. To display the contents of register pairs such as
BC, DE, HL, B'C', D'E', H'L', just type in either
one of the register that is contained in a regiser
pair. For example, to display the contents of the
register pair HL, a user can type either R H

or R L .

33

4.

To display the contents of all registers, press

Bl &=

The display will show the contents of two register
palrs--AF and BC. To examine the contents of the
successive register pairs, press the key. Using
the procedure described here, the contents of the
registers are to be displayed following the order--

AF, BC, DE, HL, A'F', B'C', D'E', H'L', IX, IY, SP,
pC, IF

To display the contents of the A', press

Rl [[[«

The registers a', ', B', C', D', E', H', L' are
printed by the printer as follows:
<R>= AF AUFD BZ FOF2
<R>»= ce DOF& WL 74F4
The Use of the [} Key:
The use of the (flkey is quite the contrary to that

of the key when used in conjunction with the [}
kev,

The [:] Key
—-~The Key to Alter the Contents of Registers
The format of the command is:

R <register> (] <data> [&—]

To alter the contents of 16~bit registers or
register pairs, such as IX, 1Y, SP, pPC or BC, DE,
four hexadecimal letters should be entered after : .
If more than four hexadecimal letters are input,
the MPF~IP only accepts the four hexadecimal

letters last entered. To alter the contents of 8-
bit registers, only two hexadecimal letters should
be entered. If more than two hexadecimal letters

are entered, the MPF-IP only accepts the two
hexadecimal letters last entered.

To alter the contents of A', F', B', C', D', E', H',
L', type either

R B C ' : 1234 or
R B ' : 12 [
R C ' : 34 [

34

After the R command has been entered, 1if a Kkey,
which is not related with registers, is pressed, the
display will show the contents beginning from the
first register pair--AF.

4.4.4 The W Command—The Command Used for Storing Data on Tape

With 1its audio tape interface, the MPF-IP can write
data from its RAM to tape. The W command is provided
for achieving that purpose. The command format is:

W <starting address> space bar <ending address>
space bar <filename> (<]

The above command stores the data of a memory range
specified by starting and ending addresses under a
given filenane, The filename <consists of four
alphanumeric characters or less. If more than four
alphanumeric characters are entered as a filz2name, only
the first four are accepted as legal filename.

Because more than one files can be stored on a tape,
various program or data files are identified by
different filenames.

Before pressing the key, make sure

1) Both ends of the recorder line are plugged into the
MIC jacks of che MPF-IP and the recorder.

2) Rewind the tape properly—-

Rewind a new tape to the beginning of the tape. For a
tape on which files already exist, rewind the tape so
that the newly created file will not overlap with files
created previously.

3) The PLAY and REC buttons of the tape recorder - are
already depressed.

During the data transmission from the MPF-IP to tape,
the TONE-OUT lamp lights up and the speaker sounds a
noise. But the display shows nothing during the data
transmission process.

35

-

445 The L Command—The Command to Read Data from Tape
back to Memory

The format of the command is:

L <filename>

To read the file whose filename is PACE from tape to
the MPF-IP, press the following:

<L>=PACE
Before pressing the key on the MPF-IP, make sure

1) Both ends of the recorder line are plugged into the
EAR jacks of the MPF-IP and the recorder.

2) The voice volume of the recorder is set higher than
middle level.

After the key was pressed, press the PLAY button
on the recorder.

Because the filename, starting and ending addresses are
recorded on tape, a wuser only has to type 1in the
filename~-in this case, PACE. The MPF-IP will search
the filename on tape. When the MPF-IP found the
specified file on tape, it will read data contained in
the memory range, which is specified by the starting
and ending addresses, to the SAME memory location in
RAM,

When the MPF~IP writes from memory to tape, a checksum
will be produced and written at the end of a file. When
the MPF-IP reads from tape to memory, it will produce a
checksum according to the values (data) being read. At
the end of the reading operation, the MPF-IP will
compare the checksum so generated with the checksum
that 1s written on tape when data is first recorded

from memory to tape. If the two checksums are
identical, the reading operation is performed
successfully, Otherwise, the error message "ERRORS"

will appear on the display.

During the reading process, four dots will illuminate
on the display. If a tape contains several files, the
filenames will be displayed one after another until the
specified file is located. When the MPF-IP locates the
specified file, four -'s will be displayed. After the
reading operation 1is ©performed successfully, the

36

display will appear in basic form:
<L>=<filename>

when reading data from tape to memory, make sure that
data cannot be read to the area used as system RAM., If
data from tape is read into system RAM area, program
will not execute properly.

Because the L command generates noises while reading
data from tape to memory, entering a filename that does
not exist on the tape enables a programmer to locate
the blank area on a tape. When a user intends to write
data from memory to tape, this skill is very helpful
for a programmer to locate usable space on a tape.

4.46 The J Command—The Command Used to Calculate Relative
Address

Relative address is used in such instructions as JR and
DJNZ. The J command enables a programmer to calculate
relative address easily. The format of the command is:

J <starting address> space bar <destination address>

—

The starting address is where the opcode of a JR or
DJNZ instruction is located, or from where a JR or DJINZ

is to jump. The destination is where a JR or DJINZ
instruction will Jjump to. Because a JR or DJNZ
instruction can jump +127 or -128 locations, if the

result of a J command is greater than +127 or less than
-128, the display will show "ERRORS",

The following example demonstrates how to use the J
commandg.

The JR 1instruction at address F866 is to Jump to
location F8C4. The relative address should be put into
location F861. First use the M command to put 18-~the
opcode for JR--into F86@. Then type

<J>=F860 space bar F8C4

to calculate the relative address and then put the
resulant relative address to the location F861~~the
location for storing the oprand. Because the display
does not echo what the MPF-IP has achieved, a user can
examine the locations F860 and F861 by using the M
command. If a printer is connected to the MPF-IP, the
printer will print the above as follows:

37

<M>=F860:18
<J>=F868 F8C4
<M>=F860 F867

F86¢ 18 62 00 00
F864 00 09 00 00

The J command is very useful when the one pass 1line
assembler is in use. When a user intends to use the JR
or DJINZ instruction but cannot make certain where will
he the destination address, the programmer can first
type in JR xxxX (which stands for a decimal number
between -128 and +127). The programmer can use the J
command to calculate the relative address for the JR or
DJNZ instruction when the line assembler proceeds to
the destination of the JR or DJINZ instrucion.

4.4.7 The | Command—The Command for Inserting Data into
Memory

The use of the I command 1is demonstrated 1in the
following example.

Here is a memory range started from F8680 to F813. The
contents of this memory range are listed as follows:

AMYSFREO0I10 11 12 13
14 15 16 17 18 13
{M>=FSOUAIZ0 21 22 &3

3

ny r=
v
)

g4 25 26 27
<NP=F300.F5

M
i

[

Feao i

i0 1 1 13
F804- 149 1S 18 (7
Fguge 15 19 20 214
FBUC 22 2& 2% g%
FR10 28 27 28 29
LiX=FELQS
L1x=F204 1 & & 4 5

dow the contents of five bytes-~1, 2, 3, 4, 5--are to
be inserted into this memory range. The contents of
the first byte "1" is to be placed into F8¢5; that of
the second byte "2" is to be placed into F8¢6; "3" into
F807; "4" into F808; and "5" into F8@9. Type J F804
space bar 1 space 2 space 3 space 4 space 5 .
The printer should print

38

<J>=F804 1 2 3 4 5

Use the M command to examine if the data is 1inserted
proverly. Type M F860 [.}] F813 [<. The display
should show:

S oy
N) UG -GN

TEBES G

DU TR oT]
T 0

XY S
My »= !

i »- =
)

53
SEogC o &
=

o

D,
0 o
D

LGS

Note when inserting data into memory, the insertion is
made beginning from the address following the address
specified in the command line.

Because five bytes of data were inserted to the memory
range, the five bytes of data--15, 16, 17, 18, 19--
which previously occupied the locations from F885
through F889 were shifted five locations.

Since the insertion causes shifting of data, a limit
address (or default wvalue) is set as soon as the I
command 1s entered, so chat the shifting of data will
be limited by the default value--data will never be
shifted beyond the limit address (default value) FEGO.
Note that after pressing I, the display always shows

<I>=FEQQG/
The default value is set to prevent data contained in
system and wuser RAM from being destroyed by the

shifting of data. Before using the T command, a user
may examine the default value by typing

After typing I and [&—], the display (or the prrinter--—
if the printer is on) will print

<I>=FEBB/
The default value can be changed by the user. Type
AGEEERE=
The display or the printer will print

<I>=FE0H/FBOY

After changing the default value, a programmer can
reset the default value by typing

[[[«—]

39

The display or the printer will print
<I>=FBg@/C

Each time a byte of data is inserted, the byte that
prededes the limit address (default value) before the
insertion is shifted out. Thus, if five bytes of data
are to be inserted, the five bytes that precede the
limit address will be shifted out. The following
example shows how data of some bytes is lost after an
insertion of data.

—
0HY

= e
DU DU Y

= =

P SRR Y

I R
[+

fie

&

SR

The above example shows that after a data insertion,
the four bytes that precede the limit address before
the data insertion was shifted out. It should be noted
that the I and D commands are very useful when using
the line assembler, However, after using the I and D
commands, the relative address following the JR or DJNZ
commands should be verified using the J command.

Note data can not be inserted into ROM area. Because
the MPF-IP only accepts input lines of 48 or less
characters, the command line for an insertion should
not exceed 4 characters. For more details of the I
command, refer to the MPF-IP Monitor Program Source
Listing.

4.4.8 The D Command—The Command.for Deleting Data from
Memory

The functions of the D command is contrary.to that of
the I command. The D command also causes the shifting
of data in memory. Therefore, a default value is set
as soon as the D command is entered to prevent data in

system and user stack from being changed. The default
value is also FE@Q.

A. Before using the D command, a user may want examine
the default value by typing

After typing D and [€—], the display (or the printer—-
if the printer is on) will print

40

<D>=FEvWyd/

B. The default value can be changed by the user. Type
0 [[@ [l [«
The display or the printer will print

<D>=FEQA/FBGO

C. After changing the default value, a programmer can
reset the default value by typing

D @ [

The display or the printer will print
<D>=FB@H/C

After entering the D command following step A, or B, or
C, the display will prompt the user to enter a starting
address by printing <D>= , The user may enter the
starting address to perform a data deletion. The
example below shows a data deletion process.

(M>=FROG:1 2 3 4 S &
78 9 10
(M=FE00.FELD

Fooo 01 D 03 N4
F304 NS ués 07 08
F30s8 09 0 F& CF
FBOC FF FF FF FF
Fe10 FF

<U>=rFEUDS
{O>=FS08
<M>=FB00.FS10

Fe0 9L 0z 03 o4
F&y4 0SS 0&e 07 08
F3ug LD FF FF FF
Fgoc FF FF FF FF
F210 FF

41

The following example deletes the data in two

bytes—-

F8A4 and F8¢PhK. The limit address is set to F8#8 in the

beginning.

Each time a byte is deleted from the memory,

cMysFE0NIL &
P - S W

<MrE=F200 . FR10
FSOan gy N ol

Fang 0S5 05 0F
FEos 09 10 FF
F3nC FF FF Fr
Fz10 FF

CO>=FENDAFEus
CO>=F3g
Chr»=F20S/
LO>x>=F306
Mr=FZ00.Fa1)

F3o0
204
Fs0s
Fagn

Fa10

N 03
a7 0
o Fr
£ FE

NMmo o
MM W

ua
0

FF

FE-

the byte

which precedes the limit address is filled with a zero

and the contents in the bytes that follow the

byte are shifted.

42

deleted

4.5 Program Debugging

4.5.1 The B Command—The Command to Set and Clear
Breakpoint

The default value of breakpoint is 1FFF after power is
applied to the MPF-IP or a warm reset.

A. To examine the breakpoint, type [«<—]. The
display or printer should print

<{B>=]1FFF

{R>=1FFF/

B. To change the breakpoint, type F868 [<—. The
printer or display should print

=1FFF/F860

KB2=1FFF-FEaT

C. To reset the breakpoint after changing the
breakpoint, type [B[C][«<—Y. The display or printer
should print

=F860/C

{Br=FB&U./C

Note only one breakpoint can be set with the B command.

If an instruction has more than one byte, the
breakpoint should be set at the first byte of the
instruction. Otherwise, it will ~cause error when

executing the program.

When processing breakpoint, the MPF-IP will use user's
stack. When the execution of a program is interrupted,
the state of the CPU remains unchanged, 1including the

interrupt mode and the state of the interrupt flip-
flop.

45.2 The S Command—The Command to Single-step a Program

The format of the command is:

Bl <starting address> [¢«—

43

The command allows a program to be executed instruction
by instruction. This command allows a programmer to
examine the state of registers and memory after an
instruction is executed. :

After the [« key is pressed, the CPU will execute a
instruction specified by the starting address then
stop. When the CPU stops, the display of the MPF-IP
will display the address of the next instruction to be
executed, e.g., the contents of the program counter.

To execute the next instruction, press the [S] key.
After an instuction 1is executed, control will be

returned to the monitor.

If the starting address is not entered in the command
line, the CPU will execute from address 0009,

The following example program starts from F884.

FE00 LD Al
Fgoe LD wmy2
Fa04 LD R»3
F806 LD A»a
FZ08 LD H:S
FEUA LD A5

Single-step the program from F804, and keep single-
stepping the program., The printer should print:

FB8U6 AF 0300 BC FFOO
FS808 mF D400 BC FFOO
F8B0A AF 0500 BC FFOO

The monitor uses the user's stack when a program 1is
single-stepped. Thus, the stack pointer should point
to the user's stack in RAM-~location FEAQ. Otherwise,
the MPF~IP will detect immediately and display ERR-SP.
If the stack pointer points to the system stack used by
the monitor, SYS~SP will be displayed, because stack
overlapping causes mistake when the instruction of RET
is execu“~d. When stack overlapping occurs, the stack
pointer should be reset to its default value. or RESET
be pressed.

Once the MPF-~IP is reset, the monitor will set the
user's stack pointer to its default value--FEAd. I1f a
user's program does not affect the SP register, then
the stack overlapping will not occur.

44

The purpose of single~stepping a program is to enable a
programmer to trace the running process of a program.
However, if a program is too long, single-stepping a
program 1is too time consuming. In this case, the
tracing of a running program can be achieved by setting
breakpoint in the program.

4.5.3 The G Command—The Command tor Executing a program

The format of the command is:

<G>=<starting address>

If no starting address is specified in the command
line, the CPU will execute according to the value of
the program! counter,

The following example calls for a programmer to

1) Type in a short assembly program;

2) Set a breakpoint in the program;

3) Use the G command to execute the program;

4) Use the R command together with the v key to examine
the registers;

5) Use the S command to single-step the remaining
instructions of the program after execution of the
program was interrupted by a breakpoint.

The program to be entered is listed below:

F806 LD A,l
F802 LD A,2
F8903 LD A,3
F864 LD a,d
F8065 LD A,5

The program may be entered by using the M command:

SM>=FSQNI2E 1 3£ 2 =
E & 3E 4 2£ S

Use the disassembler by typing CONTROL D to examine 1if
the program is entered correctly:

<D>=F300 F&80D%

FB00 3E LD AsO01
F80& SE LI AsD2
Fand4 IE LD AsU3
F8Ns 3£ LD ARs04
Fgoge 3E LD A0S

45

Set the breakpoint:

=1FFF Fang

Use the G command to execute the program:

<G>=F800

Use the R command and [¥] key to examine the contents of
registers.

Feus KRF 0300 BC FFXO
F30& DE FFuwd HL FFOU
F3UE aAF 9RFF < 9DFF
FeNe o 41FE WL 0SFF
Fsoe 1IX FFoD IY FFUOQ
F808 SP FERAD PC FER6

Use the S command to singLe~step the remaining
instructions of the program.

Note: After the execution of a program was interrupted
by a breakpoint, the display will show the current
value of the program counter——-the next instruction to
be executed-~-~and the contents of register pairs AF and
BC. .The user may press the v key to examine the con-
tents of other registers. After the user has examined

the registers, he can press the [Glor the [§] key to
execute the remaining instructions.

46

EXERCISES

4.1

4,2

Print the contents of the memory range from 00¢¢¢
to 0014.

Move the contents of the memory range from (084d to
Pp@18 to the memory range starting from F990 to
F91le.

Print the contents of the memory range from F9068
to F9140.

Change the contents of memory location F908 to 44
and that of F9081 to 22.

Examine the contents of the memory locations F9ogd
and F9¢) to see whether their contents have been
altered to 44 and 22.

Fill 44 to the memory range from F982 to F914.

Dump the contents of the memory range F908 through
F91@ to see if the contents have been changed.

=300 FE0

Fann 49 23 44 44
Fad 44 a4 45 99
Frang 44 44 44 94
30l 44 494 a4a 44
Fe10 34

47

Chapfier 5

Useful
Subroufines

5.1 MPF-]JP System Parameters

ADDRESS | LABEL BYTES FUNCTION

OFEDOH | STEPBF 4 Tape File Name

OFED4H | STEPBIF+4 2 Tape Starting Address
OFEDEH | STEPBF+6 2 Tape Ending Address

OFED7H | STEPBF+8 1 Tape Check Sum

OFEDBH | END-DATA-ADDR 2 Editor Top

Assembler Text Buffer To

OFEDDH | END-LN-NO 2 Editor Last Line Number
OFEDFH | RAM-START-ADDR 2 Editor Low Limit

OFEE1H | EDIT-END-ADDR 2 Editor High Limit

OFEER3H | ST-F 2 Assembler Symbol Table From
OFFESH | ST-T 2 Assembler Symbol Table To
OFEE7H | OBJ-F 2 Assembler Object Code From
OFEE9H | OBJ-T 2 Assembler Object Code To
OFFEBH | END-ADDR 2 Limit of Insert and Delete
OFEEDH | BRAD 2 Break Point Address

OFEFFH | BRDA 1 Data Of Break Point Address
OFFFOH | POWERUP 1 Power Up Initialization

50

ADDRESS| LABEL BYTES FTUNCTION
OFEF1H TEST 1 Test Flag
OFEF2H | STEPFG 1 Step Test Flag
OFEF3H | PRTFLG 1 STEP mode test flag
OFEF4H | BEEPSET 1 BEEP toggle switch h
OFEF5H | FBEEP 1 Beep Frequency
OTFEF6H | TBELP 2 Time Duration Of Beep B
OFFF8H | MADDR 2 Temporary Storage o
OFFFAH | TEMP1 4 Temporary Storage
OFEFEH | ATEMP 1 Temporary Storage -
OFEFFH | KLTEMP 2 Temporary Storage

IMIAD 2 Contains the address of
OFFO1H Opcode FF' Service Routine

(RST38K)

OFF034 | RCOUNT 1 Register Counter
OFFO04H | INPBF 40 Input Buffer i
OFF2CH | DISPBF &2 Display Buffer
OFF7%H | GETPT 2 Check llex pointer
OFF80H | TYPEFG 1 Memory and Register Test Flag
OFF81H | CRSFET 1 Display delay time
OFF82H | OUTPTR 2 Input buffer pointer
OFF84H | DISP 2 Display buffer pointer
OFF86H | INPTR 2 Limit of input buffer pointer
OFF88H | REGBF 26 Register Buffer
OFFA2H | EDITOR 14 RAM Buffer For Editor
OFFBOH | ASSFMBLER 79

RAM Buffer For Assembler

51

5.2 Input/Output Parameters and Summary

l.

of Subroutines

Input buffer: INPBF - INPBF+39

The inpot buffer consists of 40 bytes starting from
INPBF to INPBF+39. Data is stored in the input
buffer in ASCII format. Thus, up to 48 ASCII
characters can be stored in the input buffer.

When a wuser intends to print the contents in the
input buffer, set IX = INPBF and then call MTPPRT,
then the data in the input buffer will be printed
out.

Input buffer pointer: (OUTPTR)
The input buffer pointer is expressed by (OUTPTR).

Input buffer lower limit: (INPTR)

Display buffer: DISPBF — DISPBF + 81

Display buffer pointer: (DISP)

The address of (DISP) is the address in the display
buffer from where the display pattern for the next
character to be displayed is stored.

52

5.21 BEEP

{Address]:
(Function]:
]:
]:
[Register]:
]:

5.2.2 CHK 40

(Input
[Output

[Call

[Address]:
[Function]:

[Input
{Output

]:
]:

[Register]:
]:

[Call

5.2.3 CHRWR

[Address]:
[Function]:

(Input
[Output

]:

]:

.

[Register]:
]:

[Call

5.2.4 CLEAR

[Address]:
[function]:

(Input
[Output

—

as oo

@8G3H

Call TONE to generate sound.
None

None

AF, BC, DE, HL

None

@912H

Check the number of contents in the display
buffer. If the number is greater than 40,
change the IX pointer.

(DISP)

IX &— IX (If the number of contents is
less than 44@.)

IX ¢— (DISP)-38

Carry flag = 1 if (DISP) < (DISPBF+38)

AF, DE, HL, IX

None

924K

Convert a byte (ASCII code) in A register
to display patterns and store them into
display buffer and input buffer
respectively., Then call CURSOR.

A, (DISP)}, (OUTPTR)

Store the ASCII <code <contained in A
register in (OUTPTR). The display pattern
is made up of two bytes. The first byte is
stored in (DISP), and the second byte Iis
stored in (DISP)+1.

(OUTPTR) <¢— (OUTPTR)+1

(DISP) &~ (DISP)+2

AF

CONVER, CURSOR

@9B9H

Clear the display buffer, and set the
contents of DISP and OUTPTR to the starting
address of display buffer and input buffer
respectively.

None

(OUTPTR) <«— INPBF

(DISP) ¢&— DISPBF

53

(Registe
fCall

]
]:

5.2.5 CLRBF

[Address]:
[Function]:

(Input
[Output

[Register]:
]

5.2.6 CLRDSP

(Call

(Address]:

]:
]:

[Function]:

[Input
[Output

]:
]:

(Register]:

[Call

5.2.7 CONVER

(Address

]:

]:

(Function]:

[Input
[Output

]:
]:

{Register]:

[Call

5.28 CR

(Address

]

]:

[Function]:

(Input
[Output

]
]:

[Register]:

{Call

]:

None
CLRDSP

07F6H

Call CLEAR, set 1IX to be the starting
address of the display buffer, and call
CHRWR to generate

None

(OUTPTR) <— INPBF+1

(DISP) &—— DISPBF+2

IX &— DISPBF

AF, IX

CLEAR, CHRWR

98404
Clear the display buffer,
None
None
None
None

@821H

Convert a byte (ASCII code) in A register
to display pattern and store them in
display buffer.

A, (DISP)

The display pattern consists of two bytes,
The first byte is stored in (DISP), and the
second byte in (DISP)+1.

(DISP) &— (DISP)+2

AF

None

G93BH

Print out all the contents in input buffer.
Check the TV interface. If TV interface
board exists, then jump to TV interface
service routine.

(OUTPTR)

(OUTPTR) &— INPBF

(DISP) «¢— DISPEF

AF

CR@, PTEST, PRINTT, CLEAR, CURSOR

54

529 CR1

[Address]: @97AH

[Function}: The same as CR but the display timing 1is
about 1 sec.

[Input]: (OUTPTR)

(Output]}: (OUTPTR) < INPBF
(DISP) <—— DISPBF

[Register]: AF, B, A'F', B'C', D'E', H'L', RHL.

(Call l]: CR@, PTEST, SCAN1l, PRINTT, CLEAR, CURSOR

5210 CR 2
fAddress]: @981H

[Function]: The same as CR but CR2 do not <call CLEAR
and CURSOR. The display time is about 320 msec.

(Input]+ (OUTPTR)

[Output]: None

[Register]: AF,B,A'F',B'C',D'E",H'L'.
(Call }:+ CR@, PTEST, PRINTT

5211 CR 3

{Address]: 0985H

[Function]: The ‘same as CR but CR3 call routine CLRBF
instead of CLEAR. The display time is about
489 msec.

[Input]: (OUTPTR)

[Output]+ (OUTPTR) ¢&— INPBF+1
(DISP) &— DISPBF+2

[Register]): AF, IX

[Call }: CR@, PTEST, CLRBF

5.2.12 CURSOR

[Address]: @A79H
[Function]: Get cursor message
[Input]: (DISP)
[Output]: The first byte of cursor in (DISP) and the
second byte of cursor in (DISP)+1l.
(DISP) <¢— (DISP)
The contents of (DISP) remains the same.
(Register]: AF
[call]: CONVER

5.2.13 DECBIN

[Address]: PB28H

[Function}: Convert decimal numbers (in ASCII codes) to
hexadecimal numbers until a non-decimal
number (the numbers not in the range from @
to 9) is encountered.

55

{Input]: DE. The wvalue of DE is a pointer that
points to the first ASCII <code to be
converted.

(Output]: HL. The hex wvalues returned by the
subroutine are stored in HL.

[Register]): AF, BC, DE, HL

[Call]: None

5.2.14 DECIMAL

(Address }: OABBH

([Function]: Convert hexadecimal values in HL to
corresponding decimal values (in ASCII code
format). Store decimal value into input
buffer and its corresponding display
pattern to display buffer.

[Input]+ HL 1is used to store the *hex values to be
converted.
(OUTPTR) points to the starting address of
the input buffer.
(DISP) points to the starting address of
the display buffer.

fOutput J: (OUTPTR) <¢— (OUTPTR)+?
(DISP) <«— (DISP)+2*?

? is the number of characters to be
printed.

[Register]: AF, BC, DE, HL, 1Y

[Call]: CHRWR

[Example]: Given the value of HL is ¢g20¢H, its decimal
equivalent~-—-512--will be returned after
calling DECIMAL., 512 will be stored in
ASCII form (35 31 32) in the input buffer
and its display pattern 1is stored in

display buffer.
5.2.15 DEC-SP

{Address]: @399H

[Function]}: Put FF in (DISP) and (DISP)+1
fInput]: (DISP)

[Output }: (DISP) remains unchanged.
(Register]: AF, HL

{Call)+ None

5.2.16 ERROR

[Address 1: 06C4H
([Function]: Print ERROR message and call PRTMES
[Input]: None
[Output J]: (OUTPTR) &— INPBEF+8
(DISP) «— DISPBF+16
[Register]: AF, HL
(Call]+ PRTMES

56

5.2.17 GETCHR

(Address):
[Function]:

[Input -

[OQutput

[Register]:

[Call

]
]:

]

5.2.18 GETHL

([Address]:

[Function]:

[Input
[Output

]
]

[Register]:

(Call

5.2.19 HEXBIN

]

[Address]:
[Function]:

(Input

[Output

]:

]:

[Register]:

[Call
[Note

]:
]

@8AEH

Use (GETPT) as a pointer. Load (GETPT) to
HL and increment HL until (HL-1) is one of
the following delimiters: SPACE, TAB,
=, / and (HL+1l) is not SPACE or TAB.
(GETPT)

HL &= HL+?

(GETPT) &~ (GETPT)+?

AF, HL

None

Sy ey

@BESH

Call GETCHR. Using HL as a pointer,
convert ASCII codes to hex values and store
them into HL.

(GETPT)

(GETPT) <— (GETPT)+?

HL is stored with hex value. If there 1is
only one hex digit, H = ¢ and the digit is
stored in L. If the data 1is not

hexadecimal digits, carry flag = 1. 1If the
last ASCII code is <CR>, zero flag = 1.

AF, DE, HL

GETCHR, ONE

gAF4H
Convert ASCII codes to hex wvalues until
non~hex digit is encountered. DE is used

as a pointer.

The value of DE 1is the ©pointer, which

points to the first location of ASCII code

to be converted.

The wvalue of HL is the hex numbers after

being converted. (HEXFLAG) 1is set if there

exists a digit within (A, B, C, ...F) or

the last none hexadecimal character is 'H',

AF, BC, DE, HL

ONE

1) The execution of this subroutine stops
when the value of (DE) is not within the
range from 3¢ to 39 and the range from
4] to 46. Refer to the MPF-IP ASCII
code table.

2) If the data to be converted 1is, stored
from the location F8pP@, then the value
of DE should be set to F8¢9. After

57

5.2.20 HEX 1

[Address]:
[Function]:

[Register]:

5.2.21 HEX 2

[Address]:
[Function]:

[Register]:

5.2.22 HEX 4

[Address]:
(Function]

calling HEXBIN, the value of HL will be
1234 and (HEXFLAG) = 0.

PAADH

Convert the least significant four bits in
register A (binary data) to ASCII code and
display pattern, and call CHRWR.

A, (DIsP), (OUTPTR)

The ASCII code is stored in (OUTPTR). The
display pattern consists of two bytes--the
first byte is stored in (DISP), and the
second is stored in (DISP)+1l.

(OUTPTR) <~ (OUTPTR})+1

(DISP) ¢~ (DISP)+2

AF

CHRWR

AOA9AH

Convert the contents in A register (two hex
numbers - one byte) to two ASCII codes and

display patterns. Call HEX1l twice.

A, (DISP), (OUTPTR)

The ASCII code converted from the most
significant four bits is stored in (OUTPTR)
while the first byte of its display pattern
is placed into (DISP) and the second byte
of its display pattern into (DISP)+1.

The ASCII code converted from the least
significant four bits 1is stored in
(OUTPTR)+1 while the first byte of its
display pattern is placed into (DISP)+2 and
the second byte of its display pattern into
(DISP)+3.

(OUTPTR) <« (OUTPTR)+2

(DISP) ¢« (DISP)+4

AF

HEX1

BA92H

Call HEXX and SPACEL.

HL, (DISP), (OUTPTR)

In addition to the output generated by
HEXX, the ASCII code of 'SPACE' is stored
in (OUTPTR)+5 while the first byte of its
display pattern is placed in (DISP)+8 and

58

{Register
(Call

5.2.23 HEXX

(Address
[Function

{Input
[OQutput

[Register
[Call

5.2.24 LDA

[Address]:

[Function

[Input
(Output
(Register
(Call

]:
]

]:
]:

]
]1:

]
]

]:

]:
]:
]:
):

the second byte in (DISP)+9.
(OUTPTR) < (OUTPTR)+5
(DISP) &~ (DISP)+10

A

HEXX, SPACEl

@AB9H

Convert the two bytes of hex values in HL
to ASCII codes and display patterns. Call
HEX2 twice,

HL, (DISP), (OUTPTR)

The ASCII code converted from the most
significant four bits in H is stored in
{OUTPTR) while the first byte of its

display pattern is placed in (DISP) and the
second byte is placed in (DISP)+1.

The ASCII code converted from the 1least
significant four bits in H is stored in
(OUTPTR)+1 while the first byte of 1its
display pattern is placed in (PISP)+2 and
the second byte is placed in (DISP)+3.

The ASCII code converted from the most
significant four bits in L is stored in
(OUTPTR)+2 while the first byte of its
display pattern is placed in (DISP)+4 and
the second byte is placed in (DISP)+5.

The ASCII code converted from the least
significant four bits in L is stored 1in
(OUTPTR)+3 while the first byte of its
display pattern is placed in (DISP)+6 and
the second byte is placed in (DISP)+7.
(OUTPTR) <~ (OUTPTR) +4

({DISP) &« (DISP)+8

AF

HEX2

@8BLH

The same as that of GETCHR. But LDA sets HL
directly.

HL

The same as that of GETCHR.

AF, HL

None

59

5.2.25 MSG

fAddress]:
[Function]:

[Input]:

{Output 1J:

[Register]:
[Call]

5.2.26 MTPPRT

[Address]:
(Function]:

[Input
[Output

[Note

5.2.27 ONE

(Address]:
{Function]:

{Input)
(Output J:

*

{Register]:
(Call]

]

]
(Register]:

] .

p9CAH

Convert ASCII code stored in input buffer
to display patterns and put the resultant
display patterns to display buffer until a
<CR> 15 encountered. HL. is used as the
pointer for the input buffer.

HL, (DISP), (OUTPTR)

HL & HL+?

(OUTPTR) &~ (OUTPTR)+?

(DISP) <~ (DISP)+2%*?

AF, HL

CHRWR

6A40H

Print the contents of the memory range

pointed by IX until a <CR> is encountered.

IX

None

A'F', B'C

The use of MTPPRT is listed below:

1) Set the value of IX, which points to the
starting address of a memory range to be
printed;

2) MTPPRT regards PA as a line feed signal,
g9 as a TAB, and #D as the end of the
memory range;

3) The data to be printed 1is stored 1in
memory in the form of ASCII codes and
should be ended with @DH;

4) When the data to be printed exceed 20
characters, MTPPRT will generate a line
feed signal automatically.

@B14H

Convert a byte (ASCII code) in A register
to hex digit,

A (ASCII code)

A (hex number)

If the data is not a hex number,

carry flag = 1.

If the value of A falls within A to F,
(HEXFLAG) # 6.

AF

None

60

5.2.28 PLINE

[Address]:
[Function]:

[(Input 1:
[Output]:
[Register]:

5.2,29 PLINEFD

[Address]:
[Function]:
[Input]1:
[Output J:
(Register]:

5.2.30 PRINTT

[Address]:
(Functionj}:

-

{Input]
{Output]
[Register]
{Call]

L]

5.2.31 PRTMES
(Address]:
[Function]):
[Input]:
[Output]:

[Register]:
[Call]:

5.2.32 PTEST

[Address]:
[Function]:

[Input 1:
[Output }:

6A30H

Call PLINEFD twice and perform line feed
twice.

None

None

AF, B

6AY0H

Perform a line feed action.
None

None

AF, B

P89 3H

Call PTEST. If MPF-IP is connected with
PRT-MPF and the printer is on, print out
all contents ir the display buffer.

None

None

AF

PTEST, MTPPRT

P886H

Call MSG. Display the contents of a memory
range on display and print the same with
PRT-MPF.

HL: The starting address of the memory
range.

(OUTPTR) +?

(DISP)+2%*?

AF, HL

CLEAR, MSG, DECDSP, CR2

P8A3H

Check the condition of the toggle switch of

the printer. If it is on, call PTESTT.

None

1) Zero flag = 1 1f a printer exists and
the toggle switch is on.

2) Zero flag = 0 when the printer does not exist
the toggle switch is on.
3) Zero flag = B when the printer is off.

61

[Register]: AF
[Call l]: PTESTT

5.2.33 PTESTT

(Address): @8A8H

[Function]: Check if the MPF-IP is connected with the
PRT-MPF.

[Input]: None

{Output]: Zero flag = 1 if the MPF-IP 1is connected
with the PRT-MPF.

[Register]: AF

(Call]: None

5.2.34 RAMCHK
[Address]1: 0819H

[Function]: Check if a memory address is in RAM,
[Input]: HL is stored with the address to be

checked.
(Output]: Zero flag = 1 if the address is in RAM.
Zero flag = @ if the address is not in RAM.
[Register]: None
(Call]: None

5.2.35 READLN

[Address]: @9D4H
[Function]: Read a string of characters ended with <CR>
[Input l]: (DISP), (OUTPTR)
[Output]: (INPTR) &= (OUTPTR)

(OUTPTR) < (OUTPTR)+?

(DISP) ¢~ (DISP)+2*?
[Register]): AF, BC, DE, HL, A'F', B'C', D'E', H'L'
[Call |]: CHK48, CURSOR, CR@, SCAN, CHRWR

5.2.36 SCAN

[Address]: @246H

[Function]: Call SCAN2 and BEEP.

[Input]: IX points to the buffer containing display
patterns.

[Output]: Internal code for the key pressed.

[Register): AF, BC, DE, HL, A'F', B'C', D'E', H'L

[Call]: SCAN2, BEEP

5.2.37 SCAN 1
[Address]: @29BH
[Function]: Scan the keyboard and display one cycle.

Total execution time 1is about 16 ns
(exactly 15.7 ms, 28804¢ clock states @ 1.79

62

{Input
[Output

]:
]:

[Register]:
]:

[call

5.2,38 SCAN 2

[Address]:
[Function]:

[Input
[Output

]
]:

{Register]:
]:

5.2.39-SHIFT

[Call

[Address

[Input
(Output

5.2.40 SKIP

[Address

[Input
(Output

]

[Function]:

):
]
[Register]:

1:

(Function]:

]:

]

.
*

MHz}) .
The same as SCAN.
1) If no key is pressed,
then carry flag = 1.
2) If a key press is detected during one

scan, then carry flag = @ and the
position code of the key pressed 1is
stored in A. (The position code |is

determined by its position in the 28 by
3 keyboard matrix. Refer to Chapter 8)
AF, A'F', B'C', D'E', H'L"'
None

324DH

Similar to that of SCAN1l, but differ with

SCAN]l in two respects:

1) SCANl only scans once, while SCAN2 keeps
scanning until a key is pressed.

2) SCAN] gets a position code, while SCAN2
returns an ASCII code.

The same as SCANI].

Internal «code (ASCI1 code) of the Kkey

pressed.

AF, BC, HL, A'F', B'C', D'E', H'L'

SCAN1

6AQDH

For controlling the PRT-MPF, Move the
thermal head to the right, The greater the
value in B, the farther the thermal head
will be shifted to the right.

B

None

AF, B

?B40H

Skip TABs and BLANKs. Use HL as a pointer,
increment HL wuntil (HL) is not SPACE or
TAB.

HL

HL <« HL+?

? is the number of TABs or BLANKs and (HL)
is not TAB or BLANK.

A €& (HL)

Carry flag = 1 if (HL) is not within the
range from A to Z.

Carry flag = @ if (HL) is within A to Z.

63

[Register]: AF, HL
(Call]: None

5.2.41 SPACE 1

[Address }: @A95H

[Function): Load 28H (SPACE) to A and then call CHRWR.
{Input }: (DISP), (OUTPTR)

[Output 1: The same as that of CHRWR.,

[Register]): AF

{Call 1: CHRWR

5.2.42 TONE

[Address]1: #6874H
([Function]): Generate a square wave to the MIC and
speaker on MPF-IP,.
[Input]: 1) The register C is used to control the
" frequency of the tone to be generated.
Its cycle is 2*(44+13*C)*@.56 micro-sec,
which equals to 206/(109+3*C)KHz.
2) HL is wused to store the number of
periods, which should be less than or
equal to 32768.
(OQutput]: None
{Register]: AF, B(C), DE, HL
[call]: None

5.2.43 TONE 1K

(Address]: @86FH

[Function]: Generate a sound of 1lKHz.

{Input]t HL 1is used to store the number of periods,
which should be less than or equal to
32768.

[Output]: None

(Register]: AF, BC, DE, HL

[Call]: None

5.2.44 TONE 2K

(Address): 8872H

[Function]: Generate a tone of 2KHz,
[Input]: The same as that of TONE1lK.
(Output }: None

[Register}: AF, BC, DE, HL

[Call]: None

64

Chapfer 6
The Text Editor

The text editor of the MPF-IP is used to create text
file--which normally consists of assembly 1language
source programs. Source program orx data 1s first
entered from input devices such as the keyboard to the
text buffer, which is an area in the RAM. Then, source
program or data will be output to memory devices or
executed,

The MPF-IP Kkeyboard 1is normally used as the input
device, and 1its 2@0-charactey display and printer are
used as output devices. Cassette tape 1is used as perma-
nent storage for data and programs.

66

6.1 Text Buffer

On MPF-IP, text is stored in the text buffer, which may
be specified by the user. When the text editor 1is
initialized, a wuser may specify the starting address
and the ending address of the text buffer., If the user
does not specify the starting and ending addresses, the
MPF-IP will set them automatically. In this case, two
default values are set automatically by the MPF-IP,

When a 4K RAM is installed on board location U4, the
default values are F@@d and FAFF. That means the text
buffer is the RAM area starting from F@PP® through FAFF.
When the board location U4 is installed with a 2K RAM,
the default values are F80# through FCFF,

Text is stored in the text buffer in ASCII form. Each
ASCII character is stored in a byte. A text line may
consist of different number of characters and is always
ended with a carriage return character "@#D" (Refer to
the MPF~IP ASCII Code table). The ASCII1 code for
carriage return "@D" also requires one byte fto store.

Thus, a user can easily calculate the RAM space neces-
sary for the text buffer which can meet his specific
programming need. When a user allocates a memory space
in the RAM of the MPF~IP to be used as the text buffer,
it is desirable that the text buffer be set largey than
what is actually needed for the text buffer, enabling
easier editing and modification of the source file in
the future.

6.1.1 Line Pointer

A logic current line pointer is used to point to the
location at which data (such as a character) will be
stored. By logic, it means that the line pointer is
actually wused internally by the computer but does not
has a physical form. ~Because the MPF-IP's editor is
a line-oriented editor, a line pointer is neseccary to
point to the location upon which an editor operation is
to take place.

The current line pointer is always positioned in front
of the first character of the current opened (accessed)
line. The <current opened line is also known as an
active line. All editing operations begin from an
active 1line. After an editor operation is completed,
the 1line pointer either points to the beginning of the
line last accessed or a newly opened line (the line
that is one line down from the line last accessed.)

67

6.2 Enter and Re-enter the Editor

There are two ways for you to enter from the monitor to
the editor:

6.2.1 The “E” Command-Using the Editor in Input Mode

The E command 1is entered by typing the E key while
holding down the CONTROL key,

After the E command is entered, the display will prompt
a user to specify the starting address (lowey limit) of
the text buffer by displaying

F:
When being prompted by the editor, you can

1) Enter the starting address followed by a carriage
return [&]. After you typed 1in the starting
address and the MPF~IP will prompt you again to
enter the ending address (upper limit) for the text
buffer by displaying a "T". After typing in the
ending address for the text buffer and the carriage
return key [the MPF-IP will display INPUT then

the cursor of the editor. At this time, the user
can enter the instyuctions of a mnemonic sSource
program. -

2) Press the [key to enter the input mode of the
editor and type in your program. Note that after
the key is pressed, the MPF-IP will display the
default values for the text buffer for a few seconds
and then prompt you to enter your program,

When the MPF-IP is under the control of the monitor,
the E command allows a user to enter the editor in
input mode. Once the E command 1s entered, all editor
parameters (defavit values) will be reset.

When the MPF-IP is in input mode, the display will

print the editor prompt character . After an
instruction line, a carriage return is entered to sepe-
rate it from the next instruction line. Pressing the

carriage return key twice allows a user to re-enter the
editor in edit mode.

68

6.2.2 The “R” Command-Using the Editor in Edit Mode

The R command 1is entered by typing the R key while
holding down the CONTROL key.

When the MPF-~IP is under the control of the monitor,
pressing "R" allows a user to re-enter the editor in
edit mode without changing the parameters and the data
that is already stored in the text buffer.

Note that the difference of the editor's E and R com-
mands is that the E command resets the parameters
(default values), while the R command enters the editor
without changing the default values and the text en-
tered with the text editor. After typing in the R
command to re—-enter the editor, the line pointer is
always positioned in the beginning of the top line of
the text buffer,.

69

6.2.3 The-(TAB) Key

when the editor is in input mode, the key is used
the same way as the TAB key. The key can be used
efficiently to save memory space. For example, if the
following instructions are to be entered, memory space
can be used most efficiently by typing the keys in
accordance with the following sequence:

B

1) FOR INC HL

O (SPACE)

L]

) (CARRIAGE RETURN)

L FOR LOOP CALL SCAN1
(O]

OBERHOEHU0OEEEHOMNEG

(CARRIAGE RETURN)

70

6.3 Summary of the Editor Commands

Category

Editor Entry

Commands

Enter (CONTROL)

Function

Enter the editor from monitor

and Exit Re-entey (CONTROL)[Enter the editor from monitor
Quit Quit the editor and enter the
monitor
Text Delete Delete a line
Manipulating Insert Insert a line
Commands Print n Print n lines
Read/filename/ Read data from tape
Write/filename/ Write data to tape
A Print all the data in text buffer
Line Pointer Bottom Move the line pointer to the
Manipulating bottom of the file
Commands Gn Move the line pointer to the nth
line in the text buffer
Line numbey Print the line number of the line
pmointed to by the line pointer
Next n Move the line pointer to the next
n line
Top Move the line pointer to the top
bf the file
Up n Move the line pointer up n lines
String Change/old string/|
Handling new string Change a string in the current line
Commands

Find/stying/

Find the line with the
gpecified string

Other Commands | Space
and the memory space used to store
the current text file
X

rint text buffer default values

Control the prnter (a toggle switch)

Carriage Return

Display the next line

M1

6.4 Editor Entry and Exit Commands

6.4.1 The E Command-Enter and initialize the editor

The E command has been discussed in detail in 6.2.1
6.4.2 The R Command-Re-enter the editor

The R command has been discussed in 6.2.2. Note that
after entering the editor while the MPF-IP is undeyr the

control of the monitor, the edit mode prompt character
"$" will prompt you to enter your program.

72

6.5 Text Manipulating Commands-The commands for
data input/output/ update

6.5.1 The | Command-Insert Lines

The I command is used to insert program lines beginning
from the active line. The following procedure

examplifies the use of the I commad:

1) Find the current line with the following commands
T' B' U’ N' G Or FA
2) Press I, and the MPF~IP will respond with

$I
INPUT
I\

3) When the editor prompt character "N" appears on the
display, 1input your instruction lines. A carriage
return should follow each instruction 1line to
identify the end of a program line, After all the
program lines have been entered, type the carriage
return key twice to return to the edit mode.

Example :

Use the T and Z commands to print the text file
currently in the text buffer.

EDIT

TOP LINE OF TEXT
LINE 2

LIHE 3

LINE 4

EOTTOM L INE

If two lines are to be input after the third line, use
the T, G, and I commands.

LIME 3R
LIMNE Z3E

73

il

After the two lines have been inserted, print the file
currently in the text buffer with the T and Z commands.

xZ

TAOF LINE OF TEXT

LINE 2
LINRE 3
LINE 3A
LINE 3B
LIME 4

EOTTOM L {NE

6.5.2 The D Command-Delete a line

The D command allows a user to delete a line from the
text file. The use of the command is examplified as
follows:

1) Locate the line to be deleted using the T, B, U, N,
G and F commands.
2) Enter the D command, the MPF-IP will respond with

$D

3) Press the carriage return key, and the editor will
delete the current line and move the line pointer up
one line,

Example :

Print the data in the text buffer with the T and 2
commands:

P
;o

TOF LINE O TEXT
CIME
LINE
LINE
LINE &
LIME

EOTTDM LINE

n

Gk

R
k

[\

Locate the line to be deleted with the T and F
commands, and delete the line with the D command

[0}
W

)

W r O

74

Print the data now in the text buffer wusing the 2
command.

&
~ =

TOFP LIME GF TENMT
Lineg &

LiMeE 3

LINE 2A

LINE 4

EODOTTOM LINE

6.5.3 The P Command-Print a specified number of lines.

The P command allows a user to print n lines beginning

from the «current 1line. If the P command 1s not
followed by a number, the editor will only print one
line, The use of the command 1is examplified as
follows: -

1) Locate the line to be printed using the T, B, U, N,
G and F command.

2) Enter the P command which may or may not be followed
by a number. to specify the number of lines to be
printed. The MPF~IP will respond as follows:

SP n

3) Press the carriage return key. The PRT-MPF-IP will
print the data as specified.

4) After the MPF-~IP executed the P command, the line
points to the last line printed.

5) If the command line does not include the number of
lines to be printed, the MPF-IP will print only one
line.

Example :

Given the data 1n the text buffer is as follows:

5z

TOF LIME OF TEXT
LIME 2

LIMHE 3

LINE 3A

LINE 4

EOTTOM LINE

75

If line 3, 4, and 5 are to be printed, you can use the
G command to locate line 3.

Then enter the command line "P 3" to print the three
desired line.

$F05
LIMNE 3
LINE 38
LIME 4

6.5.4 Tﬁe Z Command-Print all The lines in the text buffer

The use of the Z command is as follows:

1) Use the R command to enter the edit mode. (Skip this
step, if the MPF-IP is already in the edit mode.)

2) Enter the Z command. The MPF-IP should respond with

Sz

3) Press the carriage return key. The MPF-IP will
print all the data currently in the text buffer.

76

6.6 Lline pointer Manipulating Commands

Five of the line pointer manipulating commands allow a
usey to move the line pointer to a desired position and
one enables a user to display the line number currently
pointed to by the line pointer.

6.6.1 The B command-Move the cursor to the bottom of a file

The use of the command is as folows:

1) Type in B. The MPF-IP responds with

$B

2) Press the carriage return key. The MPF-IP will
print the last line of the file currently 1in the
text buffer and move the line pointer to that line.

Example :

The data now in the text buffer is as follows:

52

TOP LIrk OF TERT

LINE 2
LINE 2
LINE 3w
LINE 4

EOTTOM LIME
Type the B command, the MPF-IP will print

$B
EOTTOM LINE

6.6.2 The G n command-Move the line pointer to the nth line of
the file currently in the text buffer
The use of the "G n" command is depicted as follows:

1) Enter the G n command. The MPF-IP will responed
with

$G n

77

2) Press the carriage return key. The PRT~MPF
print the nth line of the file currently in the
buffer and move the line pointer to that line.

Example :

The following data is stored in the text buffer.

-
—
m
W n

LIME 3R
LINE 4
EOTTDOM LINE

If a user intends to move the line pointer to the
line of the file, he can use the G 4 commad.

535G 4
LIME 3R

After the command has been executed by the MPF-IP,
line pointer points to the start of the 4th line.

6.6.3 The U command-The command to move the line pointer of
line up.

the use of the command is as follows:

will
text

4th

the

1} Enter the U n command.' The MPF-IP will respond with

$U n

2} Press the carriage return key, The MPF-IP will
print the line that is n lines up from the current

line pointer to that line.

3y If the command line of the U command does
include the number of lines, the line pointer
only be moved up one line.

Example :

The data now in the text buffery is as follows,.

$Z

TOP LINE OF TEXT
LIME 2

LIME 3

LIME &R

LIME 4

BATTOM LINE

78

not

will

In the example in 6.6.2, the line pointer has been
positioned in the 4th line, If a user intends to move
the 1line pointer to the second line, he can use the
"U 2" command.

0z

LIRE 2
6.6.4 The N n Command-The command that moves the line pointer
n line down

The use of the command is listed as follows:
1) Enter the N n command. The MPF-IP will respond with
SN n

2) Press the carriage return key. The display and
printer of the MPF-IP will print the line that is n
lines down and move the line pointer to that line.

3) If the command line does not specify a number, then
the command 1line will have a default value of @,
e.g.,, the command line assumes that the numer "1" is

specified.

Example :

The data in the text buffer is the same as that in the
example in 6.6.3. In the above example, the line
pointer was moved to the second 1line,. If a user

intends to move the line pointer to the fifth line, the
command "N 3" should be used.

6.6.5 The T Command-The command that moves the line pointer
to the top of the file.
The use of the command is as follows:
1) Enter the T command. The MPF-IP will respond with
ST
2) Press the carriage return key. The MPF~IP will

print the top of the file and move the line pointer
there,

79

Example *

The data in the text buffer is the same as that in the
previous example. In the above example, the 1line
pointer has been moved to the fifth line. To move the
line pointer to the top of the file, enter the T com-
mand by pressing T. The MPF-IP will respond.

$T

6.6.6 The L command-The command that prints the line number
whish is now pointed to by the line pointer

The use of the command is as follows:
1) Type in the L command. The MPF-II will respond

SL

2) Press the key. The printer and display of the
MPF-IP will print the value of the line pointer.

Example :

The data in the text buffer is as follows:

-

TOF LiME OF TEXT

LINE &
LIME ZA
LIANE &5
LingE 3
LINE &
CIME 4
LINnE 5§

BOTTCOM Ling

Suppose that the user has applied the F command to move
the line pointer to the line "LINE 3A"

IE A,
LIME 2x

To find out the line number of the line "“LINE 3A",
enter the L command.

[

80

6.7 String Handling Commands

Two editor commands are used for string handling. The
Find command allows a usey to locate a specific string
in the text buffer, The Change command enables a usey

to change the contents (characters) of a string.

6.7.1 The F Command-To locate a string
The use of the command is as follows:

l) Enter the F command. The MPF-IP will respond with

SF

2) Specify the string to be located by typing /string/,
then type 1in the carriage return key. After the
carriage return key is pressed, the MPF-IP will

start searching for the specified string.

If the string is located by the MPF~IP, the MPF-IP
will print the line containing the string and move
the 1line pointer to that line. If the MPF-~-IP can

not f£ind the string, it will print

?$

3) The specified string should be enclosed in certain

delimiters such as /, ., *, —, =.

Example :

The data in the text buffer is as follows:

LimE

CIME TR
LLME <

Lime <
EOTTCM LINE

If a wuser intends to locate the line containing the

string "“3A", enter the F command as follows:

(f a user intends to locate the line containing the
string "4A", type as follows:

-
3

SR

0

Because these is no such a string containing “4A“f the
MPF-~IP couldn't locate the string 4A, It will print

?$

If you first move the line pointer to the 7th line in
the buffer, and then type in the F command to locate
the string containing "3A", the MPF-IP still can not
find the string containing 3A. That is because there
is no such a string containing 3A after the 7th line of
the file.

185G 7

cIME 4

6.7.2 'Thc C Command-To change a string

The C command is used to change a string in the active
line., The use of the command is as follows:

1) Use the F, G, N, and U commands to move the line
pointer to the line where a string is to be changed.
2) Enter the C command. The MPF-~IP will respond with

$C

3) Enter the string (which should be enclosed 1in de-
limiters), and then press the [&—1 key. If the user
intends to change "INC A" to "DEC A", he should type
/INC/DEC or *INC*DEC.

4) The PRT-MPF will print the corrected line.

82

Example :

The data in the text buffer is as follows:

If the user intends to change the third line to

3", the fourth line to "LINE 4", and the fifth line

“LINE 5", and the sixth
seventh line to "LINE 7",

line to "LINE 6", and
and the eighth line to "L

8", use the G, N, and C commands as follows:

306 =
LINE ZwH

3C SEASES

LINeE 3
=

LIME ZE

SRS S

CIMNE 4
N

UINE %
SC 73757
LINE &
SN

LINE 7
N

LIME S
sC S5457

LIME &

After all the corrections
the text buffer will be as

52
TOP LiHE
LIME Z
LINE
LIME
_INE
LIMNE
L IHE

@ N g s W

have been made, the data
follows:

OF TEXT

BEATTOM L INE

83

"LINE

to
the
INE

in

6.8 Other Commands

6.8.1 The S Command-Display the Default Values and the Current
Text File

The data in the text buffer is as follows:

TCF LINME 2F TEXT
CTieE

lne &

_IME E

LiMmE 9

LIifiE S

z0VT0M Lime GF TEXT

Enter the S command causes the MPF-IP to print the
default wvalues of the text buffer and the upper and
lower 1limits (starting and ending addresses) of the
current file.

The above print-out shows that the lower limit of the
text buffer is F800 and the upper limit is FCFF, and
the memory now being used to store the current file
begins from F80@ to F848.

6.8.2 The X Command-Printer Control Command

When the MPF-~IP 1is 1in edit mode, the X command
functions as a toggle switch. It toggles on or off the
printer.

6.8.3 The W Command-Write data from memory to tape

The file (whose filename is POIU) in the text buffer is
as follows:

TAQF LIHE OF TENT
LIME 1
LINE &
LINE 3
LINE 4
LIME S

ECTYOMm LINE UOF TEXT

84

To write data from memory to tape, first plug one end
of the recorder line to the the MIC jack of the MPF-IP
and the other end to the MIC jack of the cassette tape
recorder. Put the tape recorder in record mode, and set
the wvoice volume control switch properly. Then enter
the W command following the command format below:

W POIU
After the carriage return is pressed, the MPF-IP will
write data from its RAM to cassette tape. The file is

stored on the tape with the filename POIU. Note that
while typing 1iIn the command line, a space should be
entered between the W command and the filename,

6.8.4 The R Command-Read data from tape to memory

The R command is applied to read data from cassette
tape to the RAM of the MPF-IP.

Plug the recorder line to the EAR jacks of the MPF-IP
and the tape recorder properly before reading data from
tape to the RAM of the MPF-IP. Rewind the cassette
tape to the beginning. Enter the R command following
the command format below.

R POIU [¢t

Before pressing the <carriage return key, put the
recorder in play mode. After you have entered the R
command and the filename and set the tape recorder to
play mode, you can type the carriage return key. After
the carriage return key is pressed, the MPF-IP begins
reading data from tape to its RAM.

6.8.5 Error messages

1) When the MPF-IP is in edit mode, the ?$ represents
that an incorrect command has been entered (For
example, the MPF-IP will not accept such commands as
Y or V.) and the MPF-IP is ready to accept a correct
commandgd.

2) When the MPF-IP 1is in input mode, if the input data
has overflown the memory space specified, the MPF-IP
will print *$, exit from input mode and enter edit
mode.,

85

Example :

When the text buffer is allocated the memory space
starting from F86d through F8a3, entering the
instruction "INC HL" will cause the MPF-IP display the
following error mesage because that instyuction
line yrequires seven bytes to store -~ The "INC HL"
line requires one byte to store the code for TAB,
another one byte to store the code for a SPACE, and
five bytes to store the characters.

FiFE200n TIFzOz
IHPOT

M0 HL
SEDIT

86

Chapfer 7

The Assembler
and Disassembler

The resident assembler and disassembler of the MPF-IP,
together with the editor, makes the MPF-IP a very
poweyful and unique microcomputer.

The major application of the assembler is to «convert
source program written in mnemonic form to binary code
which can be understood by the computer. For example,
the instruction "LD A,3" will be converted to "3E@3" in
hexadecimal or "@@11 111¢ @@@0 @011" in binary. The
binary code generated after the convertion process 1is
also known as machine <code or object code. The
conversion process carvied out by the assember program
is called assembly.

The disassembler is a program that converts binary
machine code into mnemonic form assembly source program
that 1is more readable than machine code. Strictly
speaking, a disassembler disassembles machine code.
Another useful application of disassembler is that it
can be used to read the contents of an EPROM -~ the
program contained in an EPROM together with the PRT-
MPF .,

The MPF-~IP assembler resides in an 8K EPROM that houses
the monitor and editor programs, while the disassembler
shares a 4K EPROM with the printer control program that
controls the operations of the PRT-MPF.

The functions of both a two-pass assembler and a one-
pass assembler (line assembler) are provided by the
MPF-IP, Both the two-pass and one-~pass assembler use a
routine whose function is to convert mnemonic source
program instructions to machine code.

When an assembly language source program is assembled
by the MPF-IP two-pass assembler. Duromg pass one, the
two—-pass assembler will first fetch the labels in a
source program to create a symbol table which contains
the labels and theiy corresponding values, During pass
two, the assembler will use the values provided by
symbol table to generate the actual object code.

The oneé-pass assembler, however, does not accept sym-
bols and labels. When a usey applies the one-pass
assembler to assembley source code to object code, he
can only give absolute values as addresses and dis-
placement. The greatest advantage of the line
assembler is that it saves memory space. When a one-
pass assembler is in use, source program is directly
assembled to object code and stored in the memory. No
memory Space 1is required to store mnemonic source
program,

88

The MPF~IP assembly language conventions are similar to
280 assembly language conventions. Note the differences
of MPF-IP assembly lanquage conventions and that of
Z88's:

1) A comma "," should be inserted to separate operands.
2) A semicolon ";" should precede each comment.
3) The MPF-IP only accepts values in base 10 and base

16 number systems,

89

7.1

Two-Pass Assembler

7.1.1 The use of MPF-IP Two-Pass Assembler

a.

To enteyr the two~pass assembler --

When the MPF-IP is in monitor mode, pressing A while
holding down the CONTROL key allows a user to enter
and initialize the two~pass assembler. The MPF-1IP
will respond with:

OrRG : A

To entey the starting address of the source program-
What the MPF-=IP prints on the display prompts the
user to enter the starting address of the source
program. The starting address should be specified

with a hexadecimal number. After the starting
address 1s entered, vyou have to press the carriage
return key. If the starting address of the source

program is FA@@, the MPF-IP will print
ORG @ FADO

If no starting address is entered before you press
the <carriage return key, the MPF-~IP will select a
default value as the starting address of the source
program. The default value for model with 2K RAM is
FDBG, and that for the model with 4K RAM is FBOO. If
the MPF-IP (with 4K RAM) assigns a default value to
the source prodram, it will print:

ORGS © FEDNDO

Enter the starting address for the symbol table:
After the starting address of the source program has
been decided, the MPF-IP will request the user to
input the starting address for the symbol table by
printing the following:

SYM BF A

A hexadecimal address is to be entered, followed by
a carriage return, If the user enters F8@A, the
MPF-IP will respond with

E¥YM >F:Fg00 T
Enter the ending address of the symbol table:
Type in the ending address of the symbl table ang

the carriage return key, the MPF-IP will respond
with

920

ZYMOSF RSO0 TIF3FF

If no starting address is assigned to the symbol

table in step «c¢., then default values will be
assigned automatically as the starting and ending
address by the MPF-IP. In model with 4K RAM, the

default values are FD@@ and FEAJ. In model with 2K
RAM, the default values are FE@® and FEAO. The PRT-
MPF will print

SYM FFIFDON TIFERD

Enter the starting address for the object code:
After the PRT-MPF has printed the starting and
ending addresses for the symbol table, the MPF-IP
will prompt a user to enter the starting address for
the object code:

OBJd 1 A

When being prompted, the user may type 1in the
starting address of the memory which 1is ¢to be

assigned to store the object code. Usually, the
address is the same as the starting address of the
source program. Then type in the carriage return

key. If the address FA@@ is entered, the MPF-IP
will respond with

0= SF:FAanNo T

Enter the ending address for the object code, then
press the <-~' key. If FBFF is entered by the user
as the ending address, the PRT-MPF will respond with

CEJ >F:ifFADO T:FEFF

If no starting address is entered in step e. before
entering the carriage return, the MPF-IP will assign
two default wvalues as the starting and ending
addresses for the memory where the object code
generated from the assembly process will be stored.
The default values for MPF-IP model with 2K RAM are
FDP® and FDFF, and that for model with 4K RAM are
FB@Y and FCFF. When operating on 4K RAM model, the
PRT~-MPF will print

CEJ >F:FE00 T:FCFF

After the carriage return is pressed in step f., the
MPF-IP will start fetching data from the beginning
of the text buffer and assembling the data into
machine code. 1f error occurs during the assembly

91

process, the MPF-IP will stop the assembly process
and print the error messages. Refer Section 7.3 for
error messages.

7.1.2 Assembly Language Pseudo-Ops

In addition to the executable 1instructions, assembly
language uses pseudo opcodes in a source program to
facilitate the generation of object code during the
assembly process, The pseudo-ops are applied 1in a
program the same way as an opcode is used in a program.
The only difference between the pseudo-op and opcode is
that the opcode performs a specific operation when
executed, while the pseudo~op does not. The use of
pseudo-=ops are descriped as follows:

1) Data Defination
1. DEFB -- Define Byte

The function of this pseudo-op is to store an 8-bit
operand 1into the memory location pointed to by the
current value of the reference counter. The
reference counter 1is wused as a pointer to the
location in memory and corresponds to the program

counter, The format of a pseudo-op line 1is as
follows:

Label Opcode Operand Comment

XXX DEFB expression ;YYY

If a label is used in a pseudo=-op instruction, then
the walue of the label is assigned with the wvalue
of the reference countey and is the address of the
data. You can refer to the MPF~IP Monitor Program
Source Listing for the use of the DEFB pseudo-op.

2. DEFW -~= Define Worg

The function of this pseudo-op is to store a l6-~bit
operand into the two consecutive memory locations
pointed to by the current value of the reference
counter. The reference counter 1is used as a
pointer to the location in memory and corresponds
to the program counter. The format of a DEFW
pseudo-op line is as follows:

Label Opcode Operand Comment

92

XXX DEFW expression ;YYY

The low order byte of the operand is to be stored
in the memory location pointed to by the current
value of the reference counter, while the high
order byte of the operand is to be placed into the
next higher memory location.

3. DEFM -- Define Message
The operand of this pseudo~-op is a string of
characters enclosed in two single quotation marks.
The function of the DEFS pseudo-op is to store the
ASCII code for each character

2) DEFS —— Define Storage

During the execution of a program, a certain number of
bytes may be reserved ¢to store the results of the

executed instructions. The pseuds-op DEFS reserves a

memoyy space which starts from the location pointed to

by the current value of the reference counter. The

length of the memory space is specified by the operand

of the pseudo-op. The format of a DEFS pseudo-op line

is as follows:

Label Opcode Operand Comment

BUFFER DEFS 128 ; Define a storage of
128 bytes

The example above defines a memory space of 128 bytes.
3) Program Termination -- END

Any source program Should be ended with the END pseudo~
op. Thus, any sybsequent instructions following the
END pseudo-op 1is ignored. If an assembly language
program is not ended with the END pseudo-op, errors may
occur.

4) The pseudo-op to assign a value:
EQU -- Equate

The EQU pseudo-op assigns the value of the operand to a
label. The vaue is a 16-bit hexadecimal number. Only
one value can be assigned to a symbol (label) in a
program, If two values are assigned to the same symbol,
errors will occur. The EQU pseudo=-op is used in the
followng way:

93

Label Opcode Operand Comment

PWCODE EQU @ASH ; Powey up code.
P82551 EQU 83H ;8255 I control port
5) Reference Counter Control -- ORG

The assembler wuses a reference counter to count the
memnory locations which will be stored with the
assembled machine code of the program being assembled.
After an instruction has been assembled by the
assembler, the number of bytes it takes to store the
machine code of the instruction is added to the value
of the reference counter. Thus, the current value of
the reference counter always corresponds to the memory
location into which the object code of the next
instruction 1s to be stored. When a program is to be
stored into the memory, starting from a specific
address, the ORG pseudo-op 1s used to set the value of
the reference countey to that specific address.

6) LABEL --

A label may <consist of up to six alphanumeric
characters, The first character of a label must be a
letter of the alphabet.

7) The Summary of Pseudo-ops.

1 DEFB @F8H ; Define byte. (low byte value)
2 DEFW @F786H ; Define word. (value)

3 DEFM 'AAAA® . Define message,

4 DEFS n ;. Define storage. (CONST)

5 ORG QF850K ; Origin. (CONST)

6 EQU 9F850H . EQU. (CONST)

7 END ; end of assembler.

8 ; Comments.,

7.1.3 Examples of the Use of the Pseudo-op

The following examples may help the reader to furthery
understand the use of the pseudo-ops. The following
monitor subroutines will be used in the examples:

CLEAR: The function of the subroutine is to clear the
contents of the display buffer, 1i.e., to store
FF into the display buffer.

MSG : The MSG subroutine converts the ASCII code
pointed to by the HL register pair to display
pattern and then store the display pattern into
display buffer until the "@D" code is
encountered.

94

SCAN : The subroutine displays a sequence of characters
(The starting address is (IX), and the display
pattern is stored from that address through the
next 49 bytes) until a key is pressed.

DISPBF:The subroutines displays the starting address of
the display buffer.

Example 1:

The following program, when executed, displays the six
characters -- A, B, C, D, E, F, -~ until a key is
pressed.

CruL CLENR
LD SLyFATY
CRLL M3G
CAHlLt DECDSP
LD IXsIISPEF
CALL SCANM
PRT DEFUM aZ24iH- ipE
! DEFK 2442K 310D
DEFUW 4a454a4%H scF
DEFE 0ODH
LISPEFr EQNU OFFZCH
DECHSP EQU 0329SH
MSG ERJ 09CAaH
SCTAN ERQRU g2a6H
CLEAR EQU 99B9H
END

Because this 1is a simple program, it only takes a
limited memory space to store the source program and
the object code. When a two-pass assembley is in use,
there is no need to change the default values. If the
user only wants to see the resulkts of the program,
he/she may turns off the PRT-MPF-IP, uses the assembler
to convert the source program into object <code, and
then press FB@@ (4K RAM) or [GOl FDA® (2K RAM) to
execute the program.

Example 2:

The following example program, when being executed,
displays the characters "ABCDEFWELCOME" until a key is

pressedqd.

g5

Chall CLEAR
LD HLPAT
CAaLL Mss
CRLe DECDEP
LD IXsDISPEBF
CALL. 3CAN
PRT DEFiv 4291H AR
DEFW 4453H CD
DEFW 48aSH jFEF
DEFM *WELCOME ™
BEFE DA
DISPBF EQJ QFF2CH
JECDIP EQU D39SM
MSG& EOU USCAH
SCHN EQU D246&H
CLERR EQU 08ESH
END

Example 3:

The example program has the same function as the
program in Example 2. However, this program does not
simply display the display patterns stored 1in the
display buffer. Instead, the program moves the
contents of the display buffer to a working storage
area, and then displays the contents of the working

storage.

CALL CLERR
LD HLs>FAT
CALL MSGO
" CAhaLL DBeCIsP

LD HLsDISPESF
LD DESBUFFER
LD BC»40
LDIK
LD IXsBUFFER
Crall SCEN

FET VEFW 4241H AR
LEFW 444Z3H :CD
DEFW 46a5H SEF
JEFM ‘{ELCOME”
LIEFB UODH

BUFFER EGQU
DISPEF EGU
DECDSP EQU
M3SG gxu
SCnanN EQU
CLEAR EQU
£ENHD

96

OF 9EOH
OFF2CH
0395H
U3CAA
N246H
03EB9KR

7.2 Line Assembler (one-pass asscmbler)

The use of the line assemlber is ineonvenient to a
user. However, the advantage of the line assembler is
that when a line assembler is in use, no memory space
1s required to store source program. When a user's
source program is very long, the use of line assembler
saves user's RAM space.

After an instruction line is entered from the keyboard,
the line assembler immediately assembles the source
code 1into object code, Because no symbol table 1is
created when a line assembleyr is in use, absolute
values should be given to labels or symbols.

7.2.1 The Use of the Line Assembler

1. Enter the line assembler by pressing [0 while
holding down the [CONTROL| key. The MPF-IP should
show:

ces @ A

2. Enter a value for the reference counter, and then
press the key. For example, if the user types
in F8¢d@, the PRT-MPF-IP would respond with

CED oo SERn
while the display should show
Sc BN

3. Enter the starting address of the memory space to be
used to store the object code, then press the [
For example, if the user types in FC@@, the PRT-MPF-~
IP will print

while the display of the MPF-IP shows

4, If the user does not enter the starting address of
the object code, then default values will be set
automatically by the MPF-IP. Model with 4K RAM sets
the default vaue to FP@O (the object code will then
be stored beginning from F@8@2.), while model with 2K
RAM sets the default value to F8¢9.

5. As soon as the starting address - (or the value of the

97

reference counter) is shown on the display, you can
begin entering the instructions. An 1instruction
line 1is separated with another instruction line by
the carriage return. As soon as the carriage reutrn
is presseg, the 1line assembler assembles one
instruction 1line from source code to object code
immediately.

Pressing the carriage return key twice returns the
control to the monitor.

When ervror occurs, the MPF-IP prints "?" and returns
the control to the monitor.

An absolute value should be entered as the operand
for a relative jump instruction.

7.2.2 The Method For Calculating Displacement for Relative

Jumps

1. Use the JR $+N instruction.

2. Use the J monitor command.)
When the programmer uses a relative jump instruction
without knowing the exact displacement, he can use a
random number or zero as the operand for the
relative Jjump instruction and enter the exact
displacenment as the operand until the exact
displacement is calculated correctly. The following
examples shows the use of the line assembler.

Example 1:

The following example program displays the alphabetical
letters from A to T. F@@o is assigned as the starting
address for the program, while the object code of the
program is also stored beginning from Fg@@.

CRIG @ FoOag

B g0

Ty

OO LD TN IREAH
DS 1ERUE

Fana Tyl NnzaesH
ClhaemDE

Fonzr

98

Examples 2:

The example program also performs the same task as the
program in Example 1, However, 7000 is assgned as the
starting address of the program, while the object code
1s stored beginning from F8¢0.

CES o Sann
Cal o=
[T
S0 LD IH.aZEaN
DoeiEwmak
TODa CRrLL OZGEH
Clarnu2

Sogr

Though the address 7000 is not in the RAM of the MPF-
IP, the assigning of 7980 as th starting address for a
program 1is significant considering the fact that the IC
memoyy to be inserted on the board location U6 (of PRT-
MPF-IP) 1is assigned the addresses from 7008 to 7FFF.
If a programmey intends to write data to an EPROM to be
inserted to U4 of the MPFIP, he should use the skills
examplified in this example to set the starting address
of the program to 7000, store the assembled object code
in the RAM, and then write the data (assembled object
code) from RAM of the MPF-IP to EPROM.,

99

7.3 Error Messages

7.3.1 ErrorsResulted from the lse of Assembler

1. 'OBJECT OVER':
When the object <code resulted from an assembly
process requires more memory space than originally
set upon entering into the assembler, the MPF-IP
will print 'OBJECT OVER' after pass one, Press the
"Q" key returns the control to the monitor.

2. 'SYMBOL OVER':
When the symbol table takes more memory space than
originally set upon entering into the assembler, the
MPF-IP will print 'SYMBOL OVER'. Pressing the "Q"
key allows the monitor to regain control,

7.3.2 Errors Resulted from Mistakes in the Assembly Language
Instructions

I ILLEGAL INSTRUCTION

U UNDEFINED SYMBOL

E EXPRESSION OUT OF RANGE
D DUPLICATED SYMBOL

[TILLEGAL LABEL

Q% QUOT EXPECTED

C CONSTANT EXPECTED

(In this case, the operand of ORG or EQU sould be
preceded with a leading zevo.)

Example

Given the program below is to flash the 20 alphabetical
letters from A to T:

CcAaNy. Qi sSFInNR
CVER £l 9EBEEAN
i s

EWL UEIER

Lo HL s T oA

FUSR L

Ll IS CVER
LCOF1L Ex CLFP2slk
LD E«3ZN
CALL SCHEM!
nJHZ LOGF2
JR LOCR I
ErD

-
O
(@)
sl
o

100

SCAN 1: The subroutine to scan the keyboard and display
characters for one cycle.

POTER : The starting address of the buffer in which the
display pattern is stored.

BLANK : The starting address of the buffer in which the
display pattern for "blank" is stored.

1. Enter the input mode of the text editor, and type in
the program with default wvalues unchanged:

SFY D

Frevan TIFARFF
INFIT

ANy EQU EFTON

POCTER EQU DREAR
TIZAML B EIBH

LD BLsEB_ANK
FUISH HL
LT IXsFCVER
LCSPYLY o CSPayIX
LD 230
S CALL LAY
.42 LCCFrez
A5 LoC/e

£

“@i'm
Pl]
)

1

101

2. After
assembler

code with the

The assembled
stored
you

the

in the memory starting from FB@g.
press <G> .FB@g¢ [<],

program has been entered, use the
to assemble the source program to machine
default values unchanged:

CRIZ @ FEOO
I O =
CEJ >F:r
PASS ¢
BLAMK E€QU SFDOH
i, efF Do
POCTER £RU 0U3ZAH
o NEES
SCRMNL ERL Q23RA
3. g23E
H
& FEOU
LD HL s EBLANK
S, FEOD c1D0oseF
FUSH HL

5. FBO3 £S5
LI IX.POTER

>. FEDa DDZ1EAONE
LOCFY EX (3P 1X
2. FR08 DDES3
il Bazi
9. FEDA ne1E
LOGFPZ CALL ICANI
19. FEODC CD3EDR2
nJunZ LGee?2
1. FRU0F LOF R
JE LOCP)
1&. FEY11 13FS
ETD
1. FEL3
0 EQRCES
FASS 2
SYMBEGL
ELANK £F D0
SGTER DELA
TCANY 29
LCG®!L FEB05
LOQCGFE FEOC
object <code of the above program is

As soon as
the 20 alphabetical letters

will flash on the display.

3. If the

beginning

usey adds

the pseudo-op ORG F9¢G¥H in the

of the source program, the new program

will be as follows:

102

Example:

Example:

After
like:

BLYINK
FCTER
SCANI

SFDUOH
NDEEAH
023EH

OF 900H
LD HL s BLAMNK
FUSH HL

LD IXHFDTER
EX CSPILIX
(1 Ppcdil
CALL SCaMy
J400Z2 LOooez
JELOCPY
[a]

Laoery

Lacee

to
Each time the
the display is shifted

The carriage eturn key [may be used
shift the display to the left.
[key is pressed,

left one character. For example, when the
following error (error D) occurs, the
characte "D" is not displayed on the display.
Any afte the [key is pessed, "D" will be
displayed.

FoEooa T IfFAYF G5 Funnan

1P LT RRRREY) e

: OF5 Fudow Loc-~ L) A E

o= [I 2 0100 it

LOC” JFr LGCP LOC® JF LGOF

EDIT 2 DA01 C30000 A

£0 L

RS TROG 2 ERRIRT

SYM SFITOOUG TIFECRN FRSS ¢

cad F:CBeO0 T:5CFF SYMEOL

PRSE ! LGCF D00
When using line assembler, the effect of JR
XXXX is the same as JR + - n,.

DRG0 7o SEGOr Tang

CEL SFOan CnJd TN

IMFOT IR

00N JR MFA3aRs Tun UR Sa4 D-

1222 13238

FONE OF GIFoaa FQOZ U8 T -0k

LEF 1EF
the source program is assembled, it looks

103

LCCOF1 £

DT IFEAN - -
TiEmer)

AR r

0 BF DA ttere €
11. -

T

DS RY |
13, €
. £
¢. FEBC . ¥
ORG 059NnH v ERR
S. Faun THes o
T T T
LD N s BLANK SRR
:
£. FE00 ZiDoer Hlant
FUSH hL wTER
5 ranr Be ST
a0z ES -
LD IX,PCTER Leak
LGDR2

s. Sw0d DU EAOR

¥oLEP s lK
Ng IPES

D OE,20

U e L E
ALL ZITAL
AnC CD=20g
JrZ LCCrPE

1&. Fa0fF VAR E
dF LTCCFL

EDS 12fa

EF D0
JEEFA
0E3IE
Fans3
Fooc

Though the starting address of the source program and
the memory space to store object code have been set

upon entry into the assembley, the ORG

pseudo~op in the

program changed the starting address to F90¢ while the

object machine
starting from FB@Q.

code is stored into the memory space

5. If the useyr sets the RAM area for object code and
symbol table improperly, the following errors will
happen:

a. The RAM area for symbol table is

CEG @ FEOU
EVAMOSEIFDAOQRT SFDOS
CEJ PFEIFEQQATIFOEF
VM CVER

b. The RAM area for the object code

OrRD & F3an
S RE I FDONT iFEZD
-

CERUAT (RS 0R

104

too small:

is too small:

7.4 Disassembler

The major function of the disassembler is to convert
object code to mnemonic source program for debugging
purpose. The disassembler of the MPF-IP resides in the
same IC that holds the monitor program for the PRT-MPF~-
IP. Thus, if an MPF-IP is not connected with the PRT-
MPF-IP, it is impossible to enter the dis assembler.
The use of the disassembler is as follows:

l. Use the monitor command D to enter dis assembler by

typing [CONTROL] [. The display should show
<D> =

2. Enter the starting address of the object code. To
use line disassembler, press the carriage return
key directly. Each time the key is pressed,
the 1line disassembler converts one line of object
code to source code., If an instruction line has more
than 2¢ characters, vyou can press the [key to
shift left the display. Each time the &= is
pressed, the display is shifted one character left.

3. Press the space key [—=]|, then enter the ending
address of the object code.

4, Then follow step (1) or (2):

(1) Press the key:
This will directly converts the object code
specified by the starting and ending addresses

into mnemonic source code,

(2) Press the space key, enter the linking address,

then press the [&] key.
This will convert the object code between the

starting address and the ending address into
source code and assign the linking address as
the starting address of the source code.

5. Press the [€—1] key, then PRT-MPF-IP will print out
the disassembled source code,

The following examples disassemble machine code con-
tained in the first 16 bytes of ROM to source code.

105

Example 1:

<D> = <starting address> @ <ending address>

oo 0L LI BCa030q
0igs &0 CFD

DU0S £R R PE.DDOZ
Juas 3E LD As8E

g90x D3 oUT R~
NUOC ZE LD Fiosd
DOOE D3 CUT 224

Example 2:
<N> = <starting address> [::] <ending address> [::]

<linking address>

Shr=0 10 eudg

SO 0y LD EBC,QZOn
S0U3 EU CFRD

S0O0S ER JF O PELOONS
S5008 ZE LD w28
CO0A D& OLT (23iHA
SODZ 3E LD AL
200z DZ GOUT <237,H

Example 3:

<D> = <starting address>

<Nh>=10 10

oL Gf oD BCL030U0
DOD: D CFD

DONS ER ok PE.UDDZ
oo0s JE LD Rpses
Ooon 03 OUT C82).@
JUucC ZE LD As&l
QO0E D3 OUT c=23h,A

The linking address allows a programmer to disassemble
the object code from a memory device <correctly. For
example, 1if programmey intends to disassemble the ma-
chine code of an IC whose address starts from 28900, the
programmey can insert the IC to the socket at board
location U6 on the PRT-MPF-IP, initiatize the dis-~
assembler and enter 79000 and 7FFF as the starting and
ending addresses and 2800 as the linking address, then
the object <code in the IC will be disassembled
correctly to source code.

106

7.5 Summary of Text Editor and Assembler Parameters

The monitor program of the MPF-IP antomatically sets
the default values concerning memory usage if a user
does not specify the starting and ending addresses of
the memory space used for storing text buffer, source
code, or object. The default values are as follows:

(1) For use with line assembler

ORG : FOOG (4K RAM)
F800 (2K RAM)

OBJECT: F@0Q (4K RAM)
F8QO (2K RAM)

For use with two—pass assembler

ORG : FBOO (4K RAM)
FDOO (2K RAM)
SYMBOL - FDOO-FEAO (4K RAM)
FEOO-FEAO (2K RAM)
OBJECT : FBOO-FCFF (4K RAM)

FDOO-FDFF (2K RAM)

For use with text editor

ORG : FOOO (4K RAM)
F800 (2K RAM)

(2) The default wvalues for text editor, two-pass
assembler, and 1line assembley are so assigned
because the MPF-IP (the model with 4K RAM) assigns
the memory space from F@@o to FAFF for storing
program oy data when the MPF-IP is in. the text
editor input mode, FB@@ to FCFF for storing the
object code of the source program, and FD@@ to FEAQ
for storing the symbol table.

For the model with 2K RAM, the RAM area from F800
to FCFF 1is used as the text buffer for storing
program oy data entered in the text editor's input
mode, FD@@® to FDFF for storing the object code, and
FEGQ to FEAQ for storing the symbol table.

107

(3)

(4)

Because the default values were assigned with
proper usage of RAM space in mind, it may not be
necessary to change the default values when a
programmer has no special requirements for memory
space allocation.

If entering a simple, short program, the user may
use the F or M monitor commands to entey the
object code of a source proaram directly into the
memory.

108

Chapter 8

System
Hardware
Configuration

8.1

System Memory Organization

The memory map of the MPF-IP is as follows:

ll

0000 EPROM
U2
1FFF 2764 (8K)
2000 EPROM
U3
2764 (8K)
SFFF 2732 (4K)
4000 EPROM
U4
2732,
AFFF 2532 (4K)
U4
2016,5516
6116
F7FF
. RAM
800 us
2016,5516
FFFF 6116
Uu2:
On board location U2, as 8K EPROM (0008 through
1FFF) is inserted -- the monitor.
Uu3:

Either an 8K EPROM or a 4K EPROM may be 1inserted
into U3. If an 8K EPROM (2764) is 1installed, the
memory on the 8K EPROM ranges from 2000 to 3FFF, If
a 4k EPROM (2732) is installed, the memory on the 4K
EPROM ranges from 20088 to 2FFF. Because the socket
at U3 accepts 28 pins, while the 2732 has 24 pins,
the top four pin holes of the socket at U3 are left
empty when a 2732 is to be installed.

110

3.

u4:

Either RAM or EPROM may be inserted into U4. If a
RAM is inserted, the addresses of the RAM range from
F@@® to F7FF. Either 2016, 5516 or 6116 may be used
as the RAM inserted in U4. When youy MPF-IP has
battery back-up, 6116 or 5516 1is suggested because
they consume less electricity than 2016. Your MPF-
IP may be installed with either a 2016 or 6116, If
a user intends to use 5516 on U4, then he should
jump and cut several wires at board 1location J2.
(The J2 area is located near the top edge of the
ud.,)

If an EPROM is 1nstalled on U4, the addresses of the
EPROM range from 4880 to 47FF, Either 2732 or 2532
may be installed on U4. Howeveyr, several wires
should be re-youted at J2.

U5:

A RAM (F8¢0 to FFFF) is installed herxe. The system
RAM used by the monitor resides in this RAM. Either
2816, 5516 or 6116 may be Installed on US.

Aftey J2 has been re-routed to allow a 2732 to be
installed on U4, a 2716 may also be used on U4
without changing the routing at J2.

After J2 has been re-routed to allow a 2532 to be
installed on U4, either 2716 or 2516 may also be
used on U4 without modification at J2.

When different RAMs or EPROM are to be installed on
U4 or US, several wires should be re-routed at the
J2 area. The re-routing at the J2 area is shown as
follows (<~X=> represents that the wire should be
cut, while <-=~> represents that wires should be

jumped.)

(1) When 5516 is to be used on U4 and US:

Wire Cutting Wire Jumping
35 15
10+ 11 34
1064 510
4669 911

11

(2) When 2732 is to be used on U4:

(3)

Note:

Wire Cutting Wire Jumping
305 25
6668 78

When 2532 is to be used on U4:

Wire Cutting Wire Jumping
1604 57
4069 . 264
3665 8 & Vcce
6 6 8 1—9

When an EPROM is inseyted on U4 and the RAM on
U5 1is to be connected to battery back-up, the
user must first disconnect the VCC line between
U4 and U5 and then connect the VCC line for U4
to the VCC line of any other IC on the «circuit
board. (Refer to sheet 6 of the schematic.)

112

8.2

The

1.

Input/Output Addresses

input/output adresses of the MPF-IP are as follows:

80 A

81 B 8255-1
82 C Ul4

83 CONTROL

90 A

91 B 8255--2
92 o C U13

93 CONTROL

The 8255 1s a programmable 4¢~pin large scale
integrated circuit with three 8-bit ports -- A, B,
C. The three ports have 24 parallel input/output
lines. The functions of the 8255 are programmable.

The functions of the I/0 1lines of the two 8255s on
the MPF-IP are defined by the MPF-IP monitor and
hardware confiquration as follows:

8255-1I

(1) Port A: PA@ through PA7 are output lines used to
select digit 1 through digit 8.

(2) Port B: PB@ through PB7, output lines, selects
digit 9 through digit 16.

(3) Port C: PC@ through PC3, output lines, selects
digit 17 through digit 26. PC4 is the input line
for the |SHIFT| key, PCS5 is the input line for
the [CONTROL) key, .while PC6 and PC7 are not
used.

8255~11

(1) Port A: PA® through PA7, output lines, select
segment A through H of the l4-segment display.

(2) Port B: PB# through PB6, output lines, select
segment I through dp, while PB7 is not used.
(3) Port C: PC@ and PC2 are the input lines from

the keyboard. PC3 is the input line from audio

13

tape recorder. PC4 1s used by the monitor to
handle single-~step and break-point functions.
The bit is usually one. The usey must not send
zero to this bit at will. PC5 is the output
line to tape, and is also connected to the
speaker and the TONE-~OUT green LED lamp. This
bit 1is used when the MPF-~-IP beeps or writes to
tape. This bit is active low. PC6 and PC7 are
not used.

114

8.3 Interrupt

Non-maskable interrupt can only be enabled by the
monitor prgram, and cannot be enabled or disabled by
the programmey.

PC4 is normally high. When a high (or oneg) 1is sent to
the counter at U9, the counter, 74LS90, 1is reset and
will remain inactive. When the MPF~IP single-steps a
program oy the CPU reaches g break point, a zero cr low
is sent out from PC4 to U9, causing the counter start
counting., During the first four machine cycles gene-
rated by the counter, the CPU saves all user's
registers and status and checks the validity of usr's
stack., Then during the fifth machine cycle, QA becomes
high, and the program counter points to the instruction
to which the break point is set. . The high signal 1is
inverted at Ul1@, and activates the NMI (NMI is active
low.) This will interrupt program execution and jump
back to monitor program.

The following is the logic state of U9 (74LS99).

Ro|R,|Qa|Qp|Qc|Qp | NMI | 3F 4

Normal .
State 0 1 0 0 0 0 1 U9 is reset to 8. 84

BREAK — — starts .

g%%omes 01 0jo0p0j0)o0 1 Ro = Break = ¢ counting
is Mod 5

1st M1 | 0| 0| O] 0| 0|1 1 Qo » Qc » Qp Counter

2nd M1 | 0 | O | O | O | 1] O 1 when Q, from 150 & Q,

3rd M1 | 0 0 0 0 1 1 1 from g— 1 °

4th M1 0| 0|0 1 0 0 1

5th M1 | 0 0 1 001} O 0

115

8.4 Stack

Fig. 8-1 shows the stack configuration. The default
value of the system stack pointer is FED@, while that
of the user's stack pointer 1is FEAQ. The monitor
keeps <checking the value of the stack pointer. Once
the monitor discovers that the user's stack pointer
points to a location in the system stack, the error
message SYS-SP will pe displayed. If there is a stack-
related instruction (e.g. RET) in the user's progran,
an error may occur when user's stack and system stack
overlap.

[T~

User's stack

FEAO

System stack

FEDO

Monitor

Used-Area

Fig. B8-1 Stack Configuration

116

8.5 Reset

The MPF--IP performs two types of RESET -- "cold" reset
(power~on reset) and "warm" reset.

8.5.1 Power-on RESET

The reset cycle performed immediately after powering on
the MPF-~IP is referred to as a cold reset. The MPF-IP
will perform the following 1in a power-on reset cycle.

(1) Disable interrupt (IFF set to 0);

(2) I register set to 0;

(3) Interrupt mode set to &;

(4) User's SP is set to FEAQ

(5) Reset 1FFF as default break-point;

(6) Reset the default values for the text editor and
assembler;

(7) Reset the upper limit to FE@O for the DELETE and
INSERT editoy command;

(8) Turn on the PRT-MPF~IP and reset the value of RST
38H. ;

(9) Display *****x MPF~I-PULS ***** character by
character.

8.5.2 Warm RESET

When the RESET key is pressed, the MPF-IP performs the
same first four functions as in 8.,5.1 The display
kkkkk MPF-I-PLUS ****% shows up on the display at the
same time. However, the parameters, which are reset in
a cold reset in steps 5 through 7, are not changed in a
warm reset.

"7z

8.6 Tape Data Format

8.6.1 Bit Format

[]
'
.
.

AN

2KH,, 8Cycle 11Ky, 2Cyded
L] 3

IKHz, 4Cyde 1
—_—
3-2

SZKH.,4Cyde:
]

F-%L- 6 ms
Fig.

8.6.2 Byte Format

Start Siop
T 0 bitOpitloitDitIbitdbitsbitepit7] 1
'[4 60 ms >-|J
. Fig, 8-3
8.6.3 File Format
4
Lecd| File | Slart | Eng | Chk | Editor& | Mid | patq E;Ir\[c{
syne | name | addr- addr sum Assembler Yy i
TKHZ & 2 2 1 18 2KHz Variable 2KHz
4sec Byte Byte Byte BY1e Byle 2sec Length 2sec
Fig. 8-4

118

8.6.4 Audio Cassette Tape

1., Labeling your cassettes: Make it a good habit to
record the filenames, comments and remarks, and the
starting and the ending positions of the tape
counter,

2. When writing data to tape, make sure that the tape
onto which data is to be stored is blank,

3. After data has been stored on tape, you should load
the data or program which has just been stored on
tape to the MPF~IP to examine 1if the program or
data is stored correctly. If it is, vyou can turn
off the power to the MPF-IP.

8.7 System Clock

A crystal oscillator, which generates square wave at
3.579 MHzZ, is. used to generate <clock pulse for
controlling transfer of data in the CPU. The output of
the crystal oscillator is connected to pin 3 of 74LS74,
the D-~type flip-~flop, which divides the output of the
crystal oscillator by two. The output of the 740574,
clock pulse at 1.79MHz, 1is used as the system clock
pulse.

119

8.8 Reset

When the RESET key is pressed, the flip-flop (74LS74)
at Ull generates two shaping wave —-- RST and RST (Refer
to the schematic sheet 1 and 2). The RST is sent to
the CPU and the RST is sent to the 8255 to start a warm
reset cycle. Because of the functioning of RAl and Cl7
which are connected to 74LS74, the MPF-IP will perform
a cold (power on) reset cycle when power is supplied to
the MPF-IP.

8.9 Audio Tape Inteface

The audio output is output from the PC5 of 8255-~II, It
is output after being filtered and attenuated through
C5, R6, R7, R8. The audio output is also sent to the
built-in speaker and green LED through Q2. Thus, the
PC5 of 8255-II not only provides audio tape interface
but also controls sound output.

Data stored on tape is read into the MPF-IP through C7,

R9, R19, D1, D2, U8 and Uld to the PC3 of 8255-I1 under
the control of the software.

120

8.10 The Display and Keyboard

The display of the MPF-IP is a fluorescent indicator
panel (FIP), featuring low power consumption, low
voltage operation, clear, bright light output, and
compatibility with MOS LSI.

8.10.1 Principle of Operation

FIPs Utilize the principle of directly heated triodes,
composed of hot cathode (Filament), <control Grid, and
Anode. Electrons emitted by the hot <cathode are
accelerated through the electrical field- by the
application of positive signal potential to the control
Grid and Anode. The electrons impact the fluorescent
material on the Anode, exciting it to luminesce.

Segment ——

oo

Filament ///\ Py
Electron I
777

Fig. 8-5

In Fig. 8-5, the filament is the cathode, and the
segment 1s the anode.

8.10.2 The Driving Modes

As to driving method of FIP, both dynamic and static
' modes are available, and they are related to the con-~
struction of FIP. Electrode connections of Anode seg-
ments are shown in Fig. 8-7 Features of both dynanic
and static mode are summarized as follows.

(1) Static Driving Mode
i) Only one common Grid covers all digits and
always supplied with positive voltage.
ii) Selection of display position, display pattern
(Numerals, Characters, Symbols) are decided by

121

segment signal. (Electrode terminals of each
segment are independently drawn out.)
iii) Segment selection time is arbitrary.

iv) This driving method is suitable for FIPs which

display comparatively few digits. (Number of
electrode terminals increase repidly in
accordance with the increase of display
digits.)
(DYNAMICS) (STATICS)
A“At’,"CAd Aaﬁ-'x‘cﬁdgaﬁ-bl nA"cﬁ-?n" Abﬁlc‘;‘dl

i
hH I JH

= —
AN -
GnA
Fi F2
Fig. 8-6 Fig. 8-7
(2) Dynamic Driving Mode
i) Grids are divided in each digit, and electrode

terminals of individual Grids are drawn out.

ii) Segments of each digit (Grid) are parellel
connected, so that total number of segment
electrodes per one panel 1is equivalent to
those of one digit.

iii) Segment selection signal must be supplied
in timing with digit (Grid) singal to be
lighted.

iv) This driving method is suitable for FIPs which
must display comparatively many digits. (Total
driving circuit cost is cheaper.)

8.10.3 FID Buffer Driver

The Fluorescent Indicator Panel (FIP) is an excellent
display device, easy to use, low operating voltage, low
power consumption and provides good matching with MOS
LSIs and u-~COMs. However some FIPs vrequire high
voltage and current due to increase in size of the
panel and number of digits. In order to drive these
FIPs, the interface circuits between FIPs and logic are
indispensable. The description covers the fundamental
ideas of interface circuits for FIPs.

122

At present, engineering studies with the object of
making FIPs operate at still lower voltages and lower
power consumption are being continued. The demands of
increse in size of the panel and the number of digits
tend to require an increase in the driving voltage or
current., To drive these FIPs, the voltage and current
capacity of the driving circuit become problem. Maxi-
mum operating voltage of LSIs is in most cases up to 44
V and it is impossible to drive directly the large FIPs
with these LSIs. 1In case of the circuits are assembled
with discrete components, buffer drivers are required
as interface. The driving voltage of FIPs, 1including
the cutoff voltage, vranges from 12 V to 64 V. Direct
drive 1is possible up to about 49 V by using LSIs or
microcomputers. However, above this voltage buffer
drivers are always required.

Buffer-drives of the FIP interfaces are considered as
follows:

The determination of necessity of buffer~driver is
shown in Fig. 8-8.

[
) Ocrere : No Buffer
: (CMOS : Driver Driver
B " Fip
: Driv‘mg: |
YA INPUT Cueui! A
"CU”' S Breakdown
' LSl K P-MOS Voltage Current
: Y) with Capacity YES
! #COM Driver OK?
/ 1
V. .
1,/ t

Fig. 8-8 Determination of Necessity of Buffer-Driver

123

As shown 1in Fig. 8-8, some driving circuit contains
driver in it, but in case of output of the driving
circuit 1is not enough to drive the FIP directly, a

buffer-driver is necessary.

The buffer-driver
output voltage, current from

On MPF-IP, NEC's UPAS8QC is

for FIP. Fig. 8-9 shows
driver to the system and the

vee

Active Low

v

must be chosen in

accordance with
and output mode required.

Datz (nput

Logic
Ciecoit

| I

used as the buffer driver
connhection of the Dbuffer
FIP.
— T T |
] | 11111
(—- -2 -l - A R ™
- _[//\

Grid. Segment Drver
(aput Signal
=Viey. ep)
Fig.
In Fig. 8-9,
and provides a wvoltage of
conception driving circuit

Zener Diode 1ot
Cu-off Voliage

P>

x

8~9

the system sends an active low to the FIP

39V to
and

the
wave

The
the

driver.
form of

filament voltage are shown in Fig. 8-10.

Fig.

“On* voltage Jevel
for anode, grid

Filament
voltage

—

GND.

"Off*" voltage level
. forenogde, grid

-

8-10

124

8.10.4 The Structure of FIP

The dynamic FIP is a display panel that can display up
to 28 characters. Each display on the FIP consists of
16 segments, including the decimal point and single
quote mark. The 16 segments are identified as a, b, c,
d, e, £, g, h, 1, j, k, 1, m, n, dp, and COM. Each
segment is wired to a control line, while each digit on
the FIP 1is also controlled by a wire, 1identified as
dgl, dg2, dg208. A segment is illuminated only
when the digit selection signal and segment-selection
signal are supplied simultaneously to the FIP. But it
requires a scanning circuit to display each digit.

125

(1) Scanning method of the FIP:

The principle of scanning the seven-segment display is
as follows:

Each time a digit-selection signal is output, it is
coupled with the segment-selection signal to display an
alphanumeric character, a symbol, or a punctuation
mark., For example, 1if the digit-selection signal
selects dgl, while the segment—selection signals choose
segments a, d, i, j, then the digit to which the dgl is
connected will be lighted, displaying the letter "I",

The scanning method is: Apply a signal voltage to the
digit-selection 1lines 1in the sequence of dgl, dg2,
dg3,...dg28. When a digit-selection line is activated,
voltage signals are applied to the segment-control
lines a, b, ¢,...COM to display a desired character,

After all the digits in the FIP have been scanned once,
the scanning 1is repeated from the beginning. EBach
digit must be scanned at least 20 times per second.
Because of the persistence of vision of human eyes, all
digits in the display appear to be lit simultaneously.
The scanning speed can not be too fast, since the
residual 1light of the neighboring digit may cause
confusion.

(2) Scanning period and keybounce:

The keypad is usually depressed by hand. In general,
the microcomputer's reaction 1is much fastey than a
human's response. To key in data or a command from the
keyboard, the microcomputer must scan the Keyboard
repeatedly until a key is found depressed.

A Kkey bounces for a short time when being depressed or

yeleased. Fig. 8-11 1is a time response diagram of
typical key-=depressing or key=~releasing operation.

126

depressing releasing

bouncing bouncing
— e,
5_____
key rel. key dep. H§| key rel.|(lkey dep.
L 117 4_715'— .
i (TIME
Tn Tn+) Tn+2 Tn+3 Tn+4 Tn+5 Tn+6

Fig. 8~11 The Time Response of Keyboard Scanning

Thus, a key-depression might be identified as two or
more key-depressions 1f the key-board scanning rate is

too fast. To avolid this problem, the period of
scanning must be longex than the bouncing time (usually
bouncing time is no longer than 18m sec). Since it

takes more than 5fm second for a human to release a key
after he pressed a key, the period of scanning Iis
between 10m sec and 50m sec.

In Fig. 8-11], _an upward arrow indicates when a key is
examined. At Tn+2, microcomputex program found that
the key was depressed and returned the keycode. At
Tn+3, the key was also found depressed. Since the key
was found depressed in a previous scan, the micro=
computer program would determine that this was not a
new key-depression (i.e. the key had not been released
during this time interval). Oonly if the key is found
depressed at Tn+4 or Tn+5, a key-depression found at
Tn+6 is really a new key-depression.

A program for getting input data from a Kkeyboa¥rd
designed 1in accordance with this rule will be error-
free, no matter how long the duration of key-depression
is and whatever is found at Tn+l and Tn+4 (@ ox 1).

(3) Keyboard and Display Scanning Program

Usually the microcomputer scans the keyboard to fetch
input of data from the keyboard. However, the keyboard
scanning can not to be too fast because of Key
bouncing. Therefore, the CPU has sufficient time to
scan the display while scanning the keyboard. Thus,the
keyboard and display scanning is performed by a single
subroutine ~- SCANl. The execution cycle of SCANl 1is
15.7 m second, e.g., it scans the keyboard and display
199 times per second.

(4) Construction of MPF~IP display:

127

The display of the MPF-IP is an FIP consisting of 290
digits. A total of 35 control lines are used to control
the display. Twenty lines are used for digit selection,
and the remalining 15 control lines are used for segment
selection,

The MPF-IP has two 82555 -~- designated as 8255-I and
8255-11 for input/output control. The Port A's eight
output lines PA¢ through PA7 of 8255-1 control eight
digit selection 1lines dgl through dg8, the Port B's
eight output lines PB@® through PB7 control digit
selection lines dg9 thiough dglé, and PC@ through PC3
control dgl7 through dg2d. The 8255-II's PA@ through
PA7 control segments a through h, and its PB2 through
PB6 contrxol segments 1 through DP.

All the segments are controlled by logic "@" signals.
If a segment is at logic "@", then it is lit. If a
segment is at logic "1", then it is extinguished.

The digits of the FIP are also controlled by the logic
"p" signals. If a digit is at logic "@", then it is
selected, If a digit is at logic "1", then it is not
selected.

(5) The structure of matrix-from keyboard:

A matrix~form keyboard is an important yet inexpensive
input device for the micromputer. The structure of the
keyboard 1is a numbeyxy of wires in a matrix form. At
each node of the matrix, a keypad 1is positioned.
Please refer to the schematic of the MPF-IP.

The keyboard consists of 20 vextical lines and 3 hori-
zontal lines, As a result, there are 6¢ (20 x 3) nodes
—-— contact —-- points for keyboaxds. Of the 60 contact
points, 45 are connected with signal lines,

Each key on the MPF-IP keyboard has a unique position
code. When a key is pressed, the position code of the
key pressed is fetched by the monitor program.

The three horizontal lines are connected to PC@ through
PC2 of 8255-TI1. Refer to the schematic of MPF=IP sheet
2 and sheet 4. On sheet 4, you can see that three
resistors are cnnected to the +5V power. Thexefore,
when no key is pressed, the input to the three pins --
PCP through PC2 -- must be high ox 1.

The 20 horizontal lines ~- PA@ through PA7, PB@ through
PB7, and PCO through PC3 -~ are wired to the keyboa¥xd
and display., Refer to the schematic sheet 2, 3, and 4.

128

Each key on the keyboard is assigned a Kkey position
code. In the beginning of keyboard scanning, a counter
is set to zero. Once a key being examined is found to
be undepressed, the counter's value is increased until

(6) Keyboard scanning program

At the beginning of keyboard scanning, the Port A of
8255-1 outputs "“11111118" for 19 m sec, 1i1lluminating
the rightmost digit on the FIP and scanning the first
horizontal 1line to detect whether a "¢" signal 1is
enterxed. If a key 1is pressed (a "g" signal 1is
detected), the key pressed can be identified by the
port address (which is resulted from examing the state
of the pin PC@ through PC2 of 8255-I1I.)

If no key in the first column is depressed, then the
Port A of 8255-1I will output "11111181", illuminating
the second digit from right on the FIP and scanning the
second row lines to detect whether a "@" signal is
entered.

In general the keyboard scanning proceeds in the
sequence, from top to bottom, from right to left of the
key matrix, to éexamine if any key is depressed.

a key is found depressed. Thus, when a key is found
depressed, the counter's value is the position code of
that key.

(7) Conversion table

After the monitor program has fetched the position
code, it will convert the position code to internal
code. Then, it will check whether the SHIFT (8255-1I
PC4) and CONTROL (8255-I PC5) keys are pressed., If both
keys were not depressed, then the internal code of the
key pressed 1is the ASCII code of this Kkey. If the
monitor found that either SHIFT or CONTROL Kkey 1is
pressed, then the intexnal code should be processed
further by the subroutines KCTRL and KSHIFT in order to
get the ASCII code of this key.

129

S|
=
e

freyn

g-12 segmen

130

Appendix A

Z-80 Pin Configuration

The Z-80 GPU is packaged in an industry standard 40 pin Dual In-Line Package. The /O pins are shown
in figure 3.0-1 und the function of each is described below.

‘ﬁ‘l
MREQ
SYSTEM 10RQ
coNnTROL RO
WR
RFSH
HALT
WAIT
U ¢
conTROLS N7
NMIT
RESEY
U BUSRO
8US R
CONTROL \ BUSAK
s
+BV
GND
AgArs
(Address Bus)
D()‘D7
(Data Bus)
M,

(Machine Cycle one)

MREQ
(Memory Request)

27 30
- % A
LI
19 32 !
20) ~
- A
21 M
N —— A4
22 3s A,
- —— Ag
36 e
«28 37 A
‘——’w ! ADDRESS
— & Ag BUS
18 39
- ———a Ag
, .4_0_> Al(]
4
— “‘—"’lz A
% & A
16 2-80 CPU 3 12
— -Ta- Agq
i. —5_’ Ald
26 ————» A5 /
— 2
25
23
-
14
16 P
12 oy
l:; 8 %2
B 3 > 03 DATA
~——— lko——0 D 8US
) 4
-‘Th- 05
1
g %
. ———~ D-,

2-80 PIN CONFIGURATION
FIGURE 3.0-1

Tri-state output, active high. A,-A | 5 constitute a | 6-bit address bus. The
address bus provides the address for memory (up to 64K bytes) data
exchanges and for 1/O device data exchanges. 1/O addressing uses the 8 lower
address bits to allow the user to directly select up to 256 input or 256 output
ports, Ag is the least significant address bit. During refresh time, the lower

7 bits contain a valid refresh address.

Tri-state input/output, active high. D-D7 constitute an 8-bit bidirectionat
data bus. The data bus is used for data exchanges with memory and 1/0
devices.

Output, active low.W] indicates that the current machine cycle is the OP
code fetch cycle of an instruction execution. Note that during execution
of 2-byte op-codes, M1 is generated as each op code byte is fetched. These
two byte op-codes always begin with CBH, DDH, EDH or FDH. M1 also
occurs with IORQ to indicate an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates that the
address bus hoids a valid address for a memory read or memory write
operation. '

IORQ
(tnput/Output Request)

RD
(Memory Read)

WR
(Memory Write)

RESH
(Refresh)

HALT
(Halt state)

WAIT
(Wail)

INT
(Interrupt Requeslt)

NMI
{Non Maskable
[nterrupt)

Tri-state output, active low. The IORQ signal indicates (hat the lower half of
the address bus holds a valid {/0 address for a I/0 read or write operation. An
IORQ signal is also generated with an M1 sjgnal when an interrupt is being
acknowledged 1o indicate that an mterrupl response vector can be placed on
the data bus. Interrupt Acknowledge operations occur during M, time while
1/0 operations never occur during M, time.

Tri-state outpu(, achive fow, RD indicates that the CPU wants 10 read dala
from memory or an 1/O device. The addressed 1/O device or memory should
use this signal (o gate data onto the CPU data bus

Tri-state outpul, active low. WR indicates that the CPU data bus holds valid
data to be stored in the addressed memory or 1/O device.

Oultput, active low. RFSH indicates 1hat ¢the lower 7 bits of the address
bus contain a retfresh address for dynamic memories and the current MREQ
signal should be-used to do a refresh read to all dynamic memorics.

Outpul, active low. HALT indicates that (he CPU has executea a HALT soft-
ware instruction and 18 awaiting evher 2 non maskable or a maskable inter-
rupt (with the mask cnabled) before operation can resume. While halted, the
CPU executes NOP’s 1o mamtam memory refresh aclivity.

Inpul, active low. WAIT indicates to the Z-80 CPU :hat the addressed
memory or [/O devices are not ready for a data lransfer. The CPU continues
to cnter wall states lor as long as (his signal is active. This signal allows
memory or /O devices of any speed to be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated by /O devices. A
request will be honored a(the end of the current instruction il the internal
software conteolled inlerrupt enable flip-Nop ([F1°) is enabled and if the
BUSRAQ signal 1s not active. When the CPU accepts the interrupt, an acknowl-
cdge signal (IORQ during M| time) is sent out at the beginning of the next
instruction cycle. The CPU can respond 1o an interrupt in three different
modes that arc described in detail in section 5.4 (CPU Control Instructions).

Inpul, negative edge triggered. The non maskable interrupt request line has a
higher priorily than INT and is always recognized at * end of the cutrent
insteuction, independent of the status of the interrupt ¢nable {lip-flop. NMI
automatically forces the Z-80 CPU (o restart to location 0066y. The program
counter is automatijcally saved in the exiernal stack so that the user ¢an return
to the prograny that was interrupted. Note that continuous WAIT cycles can
prevent the current instruction from ending. and that a BUSRQ will override
a NMI.

RESET

BUSRQ
(Bus Request)

BUSAK
(Bus Acknowledge)

[nput, active low. RESET forces the program counter to zero and initializes
the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register I = 00y

3) Set Register R = 00y

4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high impedance state
and all control output signals go to the inactive stale.

Input, active low. The bus request signal is used to request the CPU address
bus, data bus and tri-state output control signals to go to a high impedance
state so that other devices can control these buses, When BUSRQ is activated,
the CPU will set these buses to a high impedance state as soon as the current
CPU machine cycle is ternunated,

Output, active low. Bus acknowledge s used to indicate to the requesting
device that the CPU address bus, data bus and tri-state control bus signals
have been set to their high impedance state and the extemal device can now
control these signals.

Single phase TTL level clock which requires only a 330 ohm pull-up resistor
to +5 volts to meet all clock requirements.

Appendix B

Z80-CPU Instruchion Set

INTRODUCTION:

The assembly language provides a means for writing a
program without having to be concerned with actual
memory addresses or machine {nstruction formats. It
allows the use of symbolilc addresses to identify wemory
locations and mnemonic codes (opcodes and operands) to
represent the instructions themselves. Labels (symbols)
can be assigned to a particular instruction step in a
source program to ldentify that step as an entry point
for use in subsequent instructions. Operands following
each Iinstruction represent storage locatlions, registers,
or constant values. The assembly language also includes
assembler directives that supplement the machine
fnstructfon. A pseudo-op, for example, is a statement
which 1s not translated into a machine {nstruction, but
rather {8 interpreted as a directive that controls the
assembly process.

A prograuw written in assembly language {s called a
source program. [t consists of symbollc commands called
statements. Each statement {s written on a single | {ne
and way consist of from one to four entries: A label
fleld, an operation field, an operand field and a
comment fileld. The source program is processed by the
asseabler to obtain a machi{ne language program (object
program) that can be executed directly by the Z80-CPU.

Zilog provides several different assemblers which differ
in the features offered. Both absolute and relocatable
assemblers are avalilable with the Development and
Microcomputer Systems. The absolute assembler {s
contained in base level software operating {n a 16K
memory Space while the relocating assembler is parct of
the RIO environment operating in a 32K memory space.

A. THE ASSEMBLY LANGUAGE

{ The assembly language of the 280 is designed to
ninimize the number of different opcodes
corresponding to ‘the set of basic machine
operatfons and to provide for a consi{stent
description of instruction operands. The
nomenclature has been defined with specfal emphasis
on mnemonic value and readabilfty,.

The movement of data is indicated primarily by a
single opcode, LD for example, regardless of
whether the movement 18 between different registers
or between registers and memory locations.

The first operand of an LD instruction 1is the
dest{nation of the operation, and the second

operand 1s the source of the operation. For

example:

LD A,B

indicates that the contents of the second operand,
register B, are to be transferred to the first
operand, reglster A. Stmilarly,

LD C,3FH

indicates that the consctant 3FR i{s to be loaded
into the register C. In addition, enclosing an
operand wholly in parentheses indicates a memory
location addressed by the contents of the
parentheses. For example,

LD HL, (1200)

indicates the contents of memory locations 1200 and
1201 are to be loaded into the 16-bit register pair
HL. Similarly,

LD (IX+6).C
indicates the contents of the register C are to be
stored in the memory location addressed by the

curreat value of the t6-bit index register IX plus
6.

B-2

The regular formation of assembly instructions
minimizes the number of mnemonics and format rules
that the user must learn and 'manfpulate.
Additionally, the resulting programs are easler to
interpret which in turn reduces programming errors
and improves the maintainabtlicty of the software.

B. QOPERANDS

Operands modlfy the opcodes and provide the
{information needed by the assembler to perform the
destfgnated operatlon,.

Certain symbolic names are reserved as key words 1in
the assembly language operand fields. They are:

1) The contents of 8-bit registers are
| specified by the character corresponding
to the register names. The register names
are A,B,C,D,E,H,L, I /R,

2) The contents of l6-bit double registers
and reglster pairs consisting of two B8-bit
registers are specified by the ctwo
characters corresponding to the register
name or register palr. The names of
double registers are IX,1Y and SP, The
names of registers pairs are AF,BC,DE and
KL.

3) The contents of the auxilliary register
pairs consisting of two 8-~bit registers
are specified by the two characters
corresponding to the register pair names
followed by an apostrophe. The auxiliary
register pair names are AF’,BC’,DE’ and
HL’. Only the pair AF’ {stactually allowed
as an operand, and then only in the EX
AF,AF’ instruction,

4) The state of the four testable flags is
speciflied as follows:

FLAG ON CONDITION OFP
CONDITION

Carry c NC

Zero 2 NZ

Sign M (minus) P (plus)
Parity PE (even) PO (o04dd)

OPERAND NOTATION

The following notation {s ugsed in the description
of the assembly language:

1)

2)

3)

4)

3)

6)
7)
8)

9)
10)
11)
12)

13)
14)

15)

r specifies any one of the following
reglaters: A,B,C,D,E,H,L.

(HL) specifies the contents of memory at
the location addressed by the contents of
the register pair HL.

n specifies a one-byte expression in the
range (0 to 255) nn specifies a two-byte
expression in the range (0 to 65535).

d specifies a one-byte expression in the
range (-128,127).

(nn) specifies the contents of memory at
the location addressed by the two-byte
expression nn.

b specifies an expression in the range
(e,7).

e specifies a aone-byte expression in the
range (-126,129).

cc specifies the state of the Flags for
conditional JR, JP, CALL and RET
instructions.

qq specifies any one of the register pairs
BC, DE, HL or AF.

88 specifies any one of the following
register pairs: BC,DE,HL,SP,

pp specifies any one of the following
register‘pairs: BC,DE,IX,SP.

rr specifies any one of the following
register pairs: BC,DE,L1Y,SP.

s specifies any of r,n, (RL), (I1X+d),(1Y+d).
dd specifies any one of the following
register pairs: BC,DE,HL,SP.

m specifles any of r,(HL), (IX+d),(IY+d).

C.

RULES FOR WRITING ASSEMBLY STATEMENTS (SYNTAX)

An aBsembly language program (source program)
consistg of labels, opcodes, operands, comments and
pseudo-ops in a sequence which defines the user’s
program.

There are 74 generic opcodes (such as LD), 25
operand key words (such as A), and 6%4 legitimate
coubinations of opcodes and operands Iin the 280
{instruction set.

ASSEMBLER STATEMENT FORMAT:

Statements are always written in a pétttcular
format. A typical Assembler statement is shown
below:

LABEL OPCODE OPERANDS COMMENT
LOOP: LD HL,VALUE ;GET VALUE .

In this example, the label, LOOP, provides a means
for assigning a specific name to the instruction
LOAD (LD), and is used to address the statement 1n
other statements. The operand field contains one
or two entries separated by one or more commas,
tabs or spaces. The comment field (8 used by the
programmer to quickly identify the action defined
by the statement. Comments must begin with a
semicolon and labels must be terminsgted by a colon,
unless the label starts in column No. 1.

Z280-CPU INSTRUCTION SET

ALPHABETICAL

ASSEMBLY MNEMONIC OPERATION

ADC HL,ss Add with Carry Reg. pair ess to HL
ADC A,s Add with carry operand 8 to Acc.
ADD A,n Add value n to Acc.

ADD A,r Add Reg. r to Acc.

ADD A, (HL)
ADD A, (1X+d)
ADD A, (1Y+d)
ADD HL,ss
ADD IX,pp
ADD 1Y, rr
AND s

BIT b, (RL)
BIT b, (1X+d)
BIT b, (IY+d)
BIT b, r

CALL cec,nn

CALL nn

CCF
CP s
cPD

CPDR

CP1

CPIR

CPL
DAA
DEC m
DEC IX
DEC 1Y
DEC s&8
DI
DJIJNZ e

EI
EX (SP),HL

Add location (HL) to Acc.

Add location (IX+d) to Acc.
Add location (IY+d) to Acc.
Add Reg. pair ss to HL

Add Reg. pair pp to IX

Add Reg. pafr rr to IY

Logical AND’ of operand s and Acc.
Test BIT b of location (HL).
Test BIT b of location (IX+d)
Test BIT b of location (IY+d)
Test BIT b of Reg. ¢

Call subroutine at location nn 1if
condition cc 1Is true
Uncondftional call subroutine
at location an

Complement carry flag

Compare operand s with Acc.
Compare locatfion (BL) and Acc.
decrement HL and BC

Compare location (HL) and Acc.
decrement HL and BC,

repeat untfl BC=0

Compare location (HL) and Acc.
increment HL and decrement BC
Compare location (HL) and Acc.
increment HL, decrement BC
repeat until BC=0

Complement Acc. (1°s comp)
Decimal adjust Acc.

Decrement operand m

Decrement IX

Decrement 1Y

Decrement Reg. pair ss

Disable interrupts

Decrement B and Jump

relative 1f B¥¢Q

Enable interrupts

Exchange the location (SP)

and HL

EX (SP),IX Exchange the location (SP)

and 1X
EX (SP), 1Yy Exchange the location (SP)

and 1Y
EX AF,AF’ Exchange the contents of AF and AF’
EX DE,HL Exchange the contents of DE and HL
EXX Exchange the contents of

BC,DE,HL with contents of
BC’,DE",HL’ respectively

HALT KALT (wailt for {nterrupt or reset)
IM O Set interrupt mode O
IM 1 Set interrupt mode 1
M 2 Set interrupt mode 2
IN A, (n) Load the Acc. with
{nput from device a
IN £, (C) Load the Reg. r with
input from device (C)
INC (HL) Increment location (HL)
i INC IX Increment IX
i INC (IX+4d) Increment location (IX+d)
INC 1Y Increment IY
INC (IY+d) Increment location (IY+d)
INC r Increment Reg. T
INC ss Increment Reg. patlr ss
IND Load location (KL) wicth

input from port (C),
decrement HL and B
INDR Load location (HL) wicth
input from porc (C),
decrement HL and decrement B,
repeat until B=0
INI Load location (HL) with
input from port (C);
and {ncrewment HL and decrement B
INIR Load location (HL) with
input from port (C),
increment L and decrement B,
repeat until B=0

JP (HL) Unconditional Jump to (HL)
JP (IX) Unconditional Jump to (IX)
JP (1Y) Unconditional Jump to (1Y)
JP cc,nn Jump to location nn
1f condittion cc 18 true
JP nn Unconditional jump to location nn
JR C,e Jump relative to
PC+e 1f carry=1
JR e Unconditional Jump
relative to PC+te
JR NC,e Jump relative to

PC+e 1f caryy=0

JR

JR

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LF
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LDD

NZ,e
Z,e

A, (BC)
A, (DE)
a,l

A, (an)
A,R
(BC),A
(DE), A
(HL) ,n
dd,nn
dd, (nn)
HL, (nn)
(RL), ¢
1,A
1X,0n
IX, (nn)
(1X+d),a
(1X+4),t
1Y, nn
1Y, {(nn)
(LY+d),n
(1Y+d),r
(nn), A
(nn),dd
(nn),HL
{an),1X
(nn), 1Y’
R, A

r, (HL)
r,{(I{X+d)
r,{IY+d)
r,n

r,r’
SP,HL
SP,IX
SP, 1Y

LDDR

Juumwp relative. to

PC+e if non zero (2=0)
Jump relative to

PC+e If zero (Z=1)

Load Acc. with location (B
Load Acc. with location (D
Load Acc. with I

Load Acc. with location nn
Load Acc., with Reg. R

Load location (BC) with Ac
Load location (DE) with Ac
Load location (HL) with va

C)
£

¢,
c.
lue n

Load Reg. pailr dd with value nn
Load Reg. pailr dd with location

Load HL with location (nn)
Load locatfion (HL) with Re
Load 1 with Acc.

Lcad 1X wich value nn

Load 1X with location (on)
Load location (IX+d) with
Load Ylocatfon (IX+d) wich
Load IY with value nn

Load 1Y with location (nn)
Load locatton (I1Y+d) with
Load location {I1Y+d) with
Load locatiou (nn) with Ac
Load location (nn) with Re
Load location (nn) with HL
Load locacion (nn) with IX
Load location (nn) wich IV
Load R with Acce.

Load Reg. r with location
Load Reg. r with location
Load Reg. r with location
Load Reg. r with value n
Load Reg. r with Reg. r’
Load SP with HL

Load SP wich IX

Load SP with IY

Load location (DE) wich lo
decremenc DE,HL and BC

B ¢

value
Reg. r

value
Reg. r
c.

(nn)

n

n

g. pair dd

(HL)
(IX+d)
(I1Y+4d)

catlion

(RL),

Load location (DE) with location (HL)

decrement DE,HL and BC;
repeat until BC=0

LDI

LDIR

NEG
NOP
OR s
OTDR

OTIR

0UT (C),x
oUT (n),A
OUTD

OUTI

POP IX

POP 1Y

POP qq

PUSH IX
PUSH 1Y
PUSH qq
RES b,m
RET

RET cc

RETI

RETN

RL o

RLA

RLC (BL)
RLC (IX+d)
RLC (IY+d)
RLC r

RLCA

RLD

RR m
RRA
RRC m

Load location (DE) with location (HL),

increment DE,HL,

decrement BC

Load location (DE) with location (HL),

{increment DE,HL,

BC and repeat unt
Negste Acc. (27s

No operation

decrement
i1 BC=0
complement)

Logical ‘OR’ of operand s and Acc.

Load output port
decrement HL and
repeat until B=0
Load output port
increment RHL, dec
repeat until B=0
Load output port
Load output port
Load output port
decrement HL and
Load output port
increment HL and
Load IX with top
Load 1Y with top

Load Reg. pair qq with top of stack

Load IX onto stac
Load 1Y onto stac
Load Reg. pair qq

(C) with location
B‘

(C) with location
rement B,

(C) with Reg. r
(n) with Ace.

(C) with location
B

(C) with location
decrewent B

of stack

of stack

k
k
onto stack

(HL)

(HL),

(HL),

(HL),

Reset Bit b
Return from
Return from
cc is true

Return from
Return from
Rotate lefrt

of operand
subroutine
subrouvtine

interrupt

m

1if condicton

non maskable interrupt
through carry operand n

Rotate left Acc.

Rotate location (
Rotate location (
Rotate location (
Rotate Reg., r lef
Rotate left circu
Rotate digit left
between Acc. and

through carry
HL) left circular

IX+d) left ctircelar
IY+d) left circular

t circular
lar Acc.
and right
location (HL)

Rotate righet through carry operand m

Rotate right Acc.
Rotate operand m

B~19

through carry
right circular

RRCA
RRD

RST p
SBC A,s

SBC HL,ss

SCF
SET b, (HL)
SET b, (1X+d)
SET b, (1Y+d)
SET b,r

SLA
SRA
SRL
SUB
XOR

ww BB B

Rotate right circular Acc.
Rotate digit right and left
between Acc. and location (HL)
Restart to location p

Subtract operand s

from Acc. with carry

Subtract Reg. palr ss from

HL with carry

Set carry flag (C=1)

Set B{t b of locatfon (HL)

Set Bit b of locatfon (IX+d)

Set Blt b of locatlion (IY+d)

Set Bit b of Reg. r

Shifr operand m left arithmetic
Shift operand m right arithmetic
Shifec operand m right logical
Subtract operand s from Acc.
Exclusive “OR’ operand 8 and Acc.

Appendix €

Z80-CPU Programming Reference

280—-CPU

INSTRUCTIONS
SORTED BY
OP-CODE
0]:N) SOURCE
CODE STATEMENT
Qu NOP
018405 LD BC NN
02 LD (8C).A
03 INC BC
04 INC B
05 DEC B
0620 LO BN
07 RLCA
08 EX AF,AF’
09 ADD HL.BC
0A LD A, (BC)
08 DEC BC
oC INCC
(Vo) DECC
0E20 LDCN
oF RRCA
102€ OJNZ DIS
118405 LD DE NN
12 LB (DE)A
13 INC DE n
14 INC D
15 DECD
1620 LD O,N
1?7 RLA
182E JR OIS
19 ADD HL,DE
1A LD A (DE)
18 DEC DE
1C INC E
10 DEC €
1€20 LD EN
1F RRA
202E JR NZ,DIS
218405 LD HL NN
228405 LD (NN) HL
23 INC HL
24 INC H
25 DECH
2620 LD H N
127 DAA
RSN oy

29
2A8405

ADD HL HL
LD HL.(NN)
DEC HL
INC L
DEC L

LO LN
CPL

JR NC.DIS
LD SP.NN
LD (NN).A
INC SP
INC (HL)
DEC (HL)
LO (HL)N
SCF

JR C.DIS
ADD HL SP
LD A,INN}
DEC SP
INC A
DEC A
LOAN
CCF

LD B,B
LD 8.C
LD B.D
LD B.E
LD B,KR,NN
LD B.L
LD B,(HL)
LD'B.A
LDCB
(DCC
LD C.D
LD C.E
LD C.H
LoC.L
LD C,(HL)
LDC.A
LD DB
LD D,C
LD D.O
LDD.E
LDD.H
LD D.L
LD D,(HL)
LD D.A

sl sl aladiad
SESRRCRCRSRS]
mmmmmmmmp

>

- r
loRe]
Ix
om

LD H.0
LOH.E
LD HH
LD H.L
LD H,(HL)
LD H,A
LD L,B
LD L,C
toLD
LD L€
LO LH
Lo L.L
LD L, (HL)
LD LA
LD (HL).B
LD {HL),C
LD (HL),D
LD (HL.E
LD [HL},H
LD (HU)L
HALT

LD (HL),A
LD AB
LD AC
LO AD
LD AE
LD AH
Lo AL
LD A (HL)
LD AA
ADD A B
ADD A,C
ADD A.D
ADD A.E
ADD A H
ADD AL
ADD A, (HL]

ADD A A J

ADC A B
ADC A.C
ADC A.D
ADC AE
ADC A H
ADC A L
ADC A (HL] -
ADC A,A
SUB B
SUB C
SUB D
SUBE
SUB H
SUB L
SUB {HL)
SUB A
SBC A,B
SBC A.C
SBC A.D
SBC AE
SBC A H
SBC AL
SBC A (ML)
SBC AA
AND B
AND C
AND D
AND E
AND H
AND L
AND (HL}
AND A
XOR B
XOR C
XOR D
XOR E
XOR H
XOR L
XOR (HL)~
XOR A
ORB -
OR C
ORD
ORE
ORH
OR L

OR [HL)
OR A

[T S e 2 S R (A B SR N

88 CPB
89 cPC
BA cPD
88 CPE
8C CPH
BD CPL
BE CP (HL)
BF CPA
co REY NZ
Ci POP BC
28405 JP NZ.NN
€38405 JP NN
CA48405 CALL NZ.NN
cs5 PUSH B8C
C620 ADD AN
c? RST O
cs RET 2
c9 REY
CAB405 JP Z,NN
CC8405 CALL ZNN
CD8405 CALL NN
CE20 ADC AN
CF RST 8
00 RET NC
D1 POP DE
D28405 JP NC NN
D320 OUT (N) A
D48405 CALL NC.NN
05 PUSH DE
D620 SUBN
D7 RST 10H
D8 RETV C
D9 EXX
DAB405 JP C.NN
D820 IN A (N)
DC8405 CALL CNN
DE 20 SBC AN
OF RST 1BH
€0 REY PO
EN POP HL
€28405 JP PO.NN
€l EX {SP} HL
€48405 CALL PONN
ES PUSH HL
€620 AND N
E? RSY 20K
€8 AET PE

JP (HL)

EA8405
EB
EC8405
EE20
EF

FO

F1
F28405

JP PE NN
EX DE,HL
CALL PE NN
XOR N
RSY 28H
RET P
POP AF
JP P NN
DI

CALL P.NN
PUSH AF
OR N
RST 30H
RETM
LD SP.HL
JP MNN
El

CALL MNN
CPN

RST 38H
RLCB
ALCC
RLC D
RLC €
RLC H
RLC L
RLC ML)
RLC A
RRC B
RRC C
RRC D
RRC E
RRC H
RRC L
RRC (HL)
RRC A
RL B
RLC
RL D
RLE
RL H
RL L

RL (HL)
RL A
RR B
RR C
RR D
RR E

P ARV A VR IR
cgic RR H ¥ CcBS54 BIT2.H RES O.H
CB1D AR L CBS5 BIT 2L RESO,L
CBI1E RR (HL) CB56 BIT 2.(HL) RES 0,(HL)
CB1F RR A CcB57 B8IT2.A RES 0.A
820 SLA B cess 8IT 3B RES 1.B
cB21 SLAC CB59 81T 3.C RES 1.C
CB22 SLAD C85A 8IT 3.0 RES 1.0
CB23 SLAE cB58 BIT 3.E RES 1.E
cB24 sLtaH CB5C BIV 3 H RES 1,H
€825 SLA L €880 BIT 3,L RES L
CB26 SLA (HL) CBSE BIT 3,(HL) RES V,(HL)
827 SLA A CBSF BIT 3.A RES 1,A
cB28 SRAB CB60 BIT48 RES 2.8
CcB29 SRA C CB61 BIT 4,C RES 2,C
cB2A SRA O €862 8IT 4D RES 2.0
CB28 SRAE C863 BIT 4€ RES 2.E
cB2C SRAH cB64 B(T 4MH RES 2. H
cB20D SRA L CB65 BIT 4L RES 2L
CB2E SRA (HL) CB66 BIT 4.(HL) RES 2,(HL)
CB2F SRA A CBA7 BIT 4.A RES 2.A
C838 SRL B 868 BIT 5.8 RES 3.8
€839 SRLC €869 BIT5C RES 3,C
CB3A SRL D CB6A BIY 5.D RES 3.D
CB38 SRLE CBGB BITSE RES 3.
Cc83C SRL H CB6C 8IT5H RES 3.H
€830 SRL L CB6D BITS.L RES 3.L
CB3E SRL (HL) CB6E BIT 5.(HL) RES 3,(HL)
CB3F SRL-A CB6F BITS A RES 3.A
CB40 BIT 0.8 cB70 BIT 68 RES 4.8
CBa1 BIT 0.C CR71 8IT 6.C RESA.C
CB42 81T 0.0 CB72 BIT 6.0 RES 4D
CcB43 817 0,F CB73 8IT 6.E RES 4.E
CBa44 BIT O.H €874 BIT6H RES 4.H
CBA45 BITO.L CB7% BIT 6.L RES 4L
CB46 BIT 0.{HL) CB76 8IT 6,(HL) RES 4. [HL)
cBa47 BIT0.A CB77 BIT 6.A RES 4 A
CR48 BIT 1.8 CB78 8IY 78 RES5,B
CB49 BIT1.C CB79 BIT 7.C RES 5,C
Cc84A 8IT1.D CB7A EIT 7.0 RES 5.D
cB84B 8IT 1.E cB78 BIY 7.E RESS.E
ce4c BIT 1. H CB7C B8iT7.H RES S5 H
CB4D BIT1.L CB70 BIV?I L RESS5.L
CBAF BIT 1.(HL) CB7E BIT 7.(HL) RES 5.(HL)
CBAF B8(T 1A CB7F BIT 7.A RESS5.A
€850 BIT 2.8 CB80 RES 0.8 RES 6,B
cBs51 BtT 2.C cB8g1 RES 0.C RES 6,C
CBS2 BIT 2.0 CB8?2 RES 0D RES 6.0
CB853 BIT 2.E cB83 RES 0.E RES 6.E
= oAb

ﬁ cBB4
c8B85
cBB6
cea?
CcBB8
cBB9
CBBA
o1:1:]:)
CBBC
(of:1:]0)
CBBE
CBBF
€B8Co
CBC1
CBC2
c8cC3
CBC4
CcBCH
CBC6
C8C7
cBecs
CBCY
cBCA
cacs
cacce
CB8CO
C8CE
CBCF
csDO
(o110}
CBD2
cBD3
CBD4
CBODS
CBD6
csD?
cBDS8
ceD3
CBDA
ceos
c8DC
CB8DD
CBDE
CBOF
CBEO
CBE1
CBE2

RES 6,H
RES 6.1
RES 6,(HL)
RES 6.4
RES 7.8
RES 7.C
RES 7.D
RES 7.E
RES 7.H
RES 7.L
RES 7.(HL)
RES 7.A
SET 0,8
SET0.C
SET 0,0
SETOQ,E
SETO.H
SETO.L
SET 0,(HL}
SET 0.A
SET 1.8
SET 1.C
SET 1D
SEY 1€
SEY 1.H
SET 1.L
SET 1.(HL)
SET 1.A
SET28
SET 2.C
SEY 2.0
SET 2,E
SET 2.4
SET 2.L
SET 2.{HL)
SEY 2,A
SET 3.8
SET 3.C
SET 3.0
SET3.E
SET 3 H
SET 3L
SET 3,(HL)
SET 3.A
SET 4,8
SET4.C
SET 4D

SEY 4.€ :

CBES

f cBE6
¥ CBE?
H CBES
§ CUE9
4 CBEA
1
| CBEC
 CBED
f CBEE
E CBEF
R CBFO
i CBF1
R CBF?2
i CBF3
§ CBF4
A CBF5

CBF6

CBF7

| CBf8
i 6BF9
i CBFA
i CBFB
{ CBFC

CBFD

| CBFE

CBFF

4 DDO9
¥ 0019
| 00218405

DDR28405
0D23
0029
OD2AB8405
0028
DD3405
DO3IR05
DD360520
DD39
DD4605
DOD4ENS
DD5605
ODSEQ0S
DD660S
DDEEODS
0D7005

L2RZ105

IR RN

SET AL
SEY 4_(HL)
SET A A
SET5.8
SET5.C
SEY 5.0
SETS.E
SET5.H
SET 5L
SET 5.(HL)
SET S A
SET 6.8
SET 6.C
SET 6.0
SET 6.€
SET 6.H
SEY 6.L
SEY 6.(HL)
SET 6,A
SET 7.B
SET7.C
SEY?D0
SEY 7.E
SEY 7.H
SEY 7L
SET 7.(HL)
SET7.A
ADD 1X BC
ADD IX,DE
LD I1X.NN
LD (NN).IX
INC IX
ADD VX IX
LD IX, (NN)

- DECIX

INC (I X+d}

DEC (iX+d)
LD (IX+d).N
ADD IX SP

LD 8,(1X+d]
LD C,{1X+d)
LD O.{1X+d)
LD E.lIX+d)
LO H,(1X+d)
LOL (X +d)
LD (1X+d).B

LD (1X+d).C §

DD7205

DD7305
DD740%
DD7505
DD7705
DD7EQS
DD8605S
DDBEDS
DDJI60S
DD9E05
DDA605
DDAEOS
DDB60S
DDBEDS
DDE

DDE3

DDES

DNEI

ODF9

DDCBO506
DDCBO50E
DDCBO0516
DDCHOLHIE
0DCB0526
DDCBO52E
DDOCBOS3E
DDCBO546
DDCB054E
DDCB0556
ODCBO55E
DDCBO566
DDCBOS6E
0oDCBOS76
ODCBO5S7E
DDCBOS86
DOCBO58E
DDCBO596
ODCBOS9E
DOCB0O5A6
DDCBOSAE
DDC80586
H DDCBOSBE
§ DOCBOSCe
1 DDCBOSCE
§ DOCBO5D6
i DDOCBOSDE
i DOCBO05E6
|l DDCBOSEE

LD (1X+d).D
LD (1X+d).E
LD (IX+d} H
LD tIXe+d} L
LD (1X¢d) A
LD A (IX3d)
ADD A (IX¢d)
ADC A (YX+d)
SUB {IX+d)
SBC A (1X+d)
AND (iX+d)
XOR (1 X+d}
OR (tX +d)
CP (I1X+d)
POP tX

EX ISPy IX
PUSH IX

JP (1X)

LD SP.IX
RLC (IX+d)
RRC (IX+d)
RL (IX+d)
RR {IXid}
SLA (1X¢d})
SRA (IX+d)
SRL (IX+d)
BIT O IX+g)
BITY.(IX+d)
BIY 2 (1X+d)
BIT 3.(4X+d)
BIY 4 {IX.¢d)
BIT 5 {1X+d)
BITB6.1X+dl
BIT 7 {tX+d)
RES 0,(iX+d)
REST.U{X+d)
RES 2.(1X +d)
RES 3.(1X+d)
RES 4 ({X+d)
RES 5.(1Xd)
RES 6.(1X -}
RES 7, (IXd)
SEY O, {1 X4}
SET 1. UXd)
SEY 2.(1X+d)
SET 3 11X+d}
SET 411X +d}
SET 5. {tX ¢d!

| DDCBOS5F6 SET 6.(I1X+d)

] DOCBOSFE SET 711X+ d)

i £040 INB.(C)

B €D41 ouTi(C) B
ED42 SBC HL.BC
ED438405 LD (NN).BC
€D4a4 NEG
£ D45 RETN
£046 IM O

4 £D47 LD LA
ED48 IN C (C}
€D49 ouT {C)1.C

i €D4A ADC HL BC

§ ED4BB4A05 LD BC.INN)
EDAD RETI

i €050 (N D.(C)
£DS1 OUT (C).D
£D52 SBC HL OE
€ED538405 tO (NN).DE

| EDSH M1
£ED57 LD AN
ED58 IN E (C)

| €D59 OUT (C)E

EDSA ADC H\..DE
EO588405 LD DE,(NA)
EDSE IM 2
ED6O IN H{C)
ED6 OUT (CLH
£D62 $8C HL HL
EDE7 RRD
£D6S IN L (C)
FD69 OUT (C).L
EDGA ADC HL,HL
ED6F aLoD
£ED72 SBC HL,SP
ED738406 LO (NN} SP
ED78 IN A (C)
€079 OUT IC).A
ED7A ADC HL.SP
ED7BB40S LD SP (NN}
EDAD LD}
DA cPI
EDA2 INT
EDAJ «]0) 4
EDAB LDO
£0A9 crD
EDAA IND
€DAB ouTD

. STEAFDD

—}

F"E%ao

eDB)
EDB2
EOB3
EOB8
EDBS
€E0OBA
EDBB
FDO9
FD19
FD218405
FD228405
FD23
FD29
FD2A8405
FD28
FD3405
FD3505
FD360520
FD39
FD4605
FDAE0S
FDS605
FDSEOS
FD6605
FD6EOS
FD7005
FO?7105
FD7205
£D7305
FD7405
FD7505
FD72705
FD7€05
FD8505
FDBEOS
FD9605
FDIEODS
FDA605
FOAEQS
FOB&0OS
FOBEOS
FOE1
FOE3
FDES
FOE9
FDF9

FDCBO506

LDIR FDCBOSOE RAC (1Y +d)
CPIR FODCBO516 RL (1Y +d)

INIR FDCBOS1E RR (1Y+d)-
OTIR FOCBO526 SLA (IY+d)
LODR FOCBOS2E SRA (1Y+d)
CPDR FOCBOS3E SRL [1Y+d).
INDR FDCB0546 BIT 0.(1Y+d)
OTDR FOCBOS4E BIY 1,(1Y+d)
ADD 1Y BC % FOCBOS56 BIT 2,{1Y +«d}
ADD.1Y DE FOCBOSSE 8IT 3,{1Y44)
LO IY.NN FDCBO566 BIT 4 (1Y+d)

LD (NK) 1Y H FOCBOS6E BIT 5.(1Y+d)
INCIY FDCBO576 BIT 6.(1Y +d)
ADD tY 1Y FOCBOS7E BIT 7,01Y +d)

LD 1Y (NN) FDCBOS86 RES 0,(1Y+d)
DEC 1Y FDCBOSBE RES 1.HY+d)
INC (1Y ¢d) FOCB0O596 RES 2.{1V+d)
DEC (1Y ¢d) FDCBOS9E RES 3 (1Y +d)
LD (1Y +d}.N FDCBOSA6 RES 4,(1Y+d)
ADD 1Y SP FOCBOSAE RESS.{IYd)
LD B,(I1Y+d) FDCBOS586 RES 6.(1Y+d)
LD C.{1Y+d) FOCBOSBE RES 7,(IY+d)
LD D.lIY+d) FDCBOSC6 SET 0.{IY +d)
LD E.(1Y+d) FOCBOSCE SET 1,(1Y+d)
LD H,(IY+d) FOCROSD6 SEY 2.(1Y+d)
LO L.(1V+d) FDCBOSDE SET 3.(1Y+d)
LD (1Y+d) B FOCRQS5E6 SEY a.(IV+d)
LD (1Y+d),C FOCBOSEE SET S.{IY+d)
LD (iY+d}.0 FOCBOS5F6 SET 6,11V +d) 8
LD (1Y+d)E FOCBOSFE SET 7.(IVid)- - §
l. D (' Y ‘dl) H - i A ST S i SR S PR 3 RO ST s
LD DY d) L

LO (1Y +d).A

LD A.(1Y +d) 280—-CPU

ADD A (1Y +d)

ADC A1V { INSTRUCTIONS
SUB (1Y +d) : ;

SBC A (1Y +d) SORTED BY
AND (1Y +d)

XOR (1Y ¢d) MNEMONlC

OR (1Y +d) e —T——
sor § oBJ source |
EX (SP1 1Y H CODE STATEMENT :
PUSH 1Y BE ADC A.(HL) - §
4P (1v) DDBEOS ADC A (IX+d)
LD SPAY y FOBEOQS ADC A (1Y +d)
RLC (IY+d) BF ADC A.A

a9

DDO9Y
OD19
DD29
DO3%S
FDO9
FD19
£029
FD39
A6
DDAG605S
FDAB0S
A7

A0

Al

A2

A3

A4

AS

£620
CB46
DOCBOS46
FDCBO546

ADC AB
ADC AC
ADC A,D
ADC AE
ADC AN
ADC AL
ADC AN
ADC HL BC
ADC HL.DE
ADC HL HL
ADC ML SP
ADO A {HL)
ADD A,(1X+d)
ADD A, (1Y +d}
ADD A.A
ADO A B
ADD AC
ADD AD
ADD A E
AOD AH
ADD A L
ADD AN
ADD HL.BC
ADO HL OE
ADD HL HL
ADD HL,SP
ADD iX,BC
ADD IX.DE
ADD IX,IX
ADD I1X,SP
ADD 1Y BC
ADD IY.DE
ADD IV)Y
ADD 1Y SP
AND (HU)
AND (I1X+d)
AND (1Y +d)
AND A
AND B
AND C
AND D
AND €
AND H
AND L

AND N

BIT 0,(HL)
BIT 0.{IX+d)
BIY 0.0Y+d)

s

cB47 81T 0.A DDCBOSGE BIT 5,(1X+d)
CB40 BIT 08 FDCBOS6E BIT 5. (1Y +d}
€841 BIT 0.C CB6F BIT5 A
€842 817 0.0 C868 BIT58
CB43 BIT 0.€ C869 BIT5.C
CB44 8iTO.H CB6A BIT 5.0
CB45 BIT O,L CB68 BIT5,E
CBAE BIT 1,(HL) CB6C BIT 5 H
ODCBOS4E BIT 1.(1X+d) CcB60 BIT5, L
FDCBOS4E BIY 1,{1Y+d) cB76 B'T 6,(HL)
CB4F BIT 1.A ODCB0576 BIT 6,{1X+d)
BCas 8IT 1,8 FOCBOS?76 BIT 6,{IY +d)
cB4s BIT 1.C cB77 BIT 6,A
CB4A BIT1.D CB70 BIT 68
cBa4s BIT1E CB7Y BIT 6.C
CB4C 8IT1H cB872 BIT 6.D
CcB4D BIT 1.4 cB73 BIT 6.E
cB856 BIT 2,(HL) CB74 BIT 6.H
DDCBO556 BIT 2.(1X+d) c875 BIT 6.L
FDCB0OSS6 BIT 2,(1Y+d) CB7E 81T 7.(HL)
ces? 8IT 2.A DDCBOSTE BIT 7.(1X+d)
CB50 8(7 2,8 FOCBOS7E BIY 7.(1Y +d)
CB51 81T 2,C carF BIT7.A
cB52 BIT 2.0 ca78 BIT 7.8
€853 BIT. 2,E cB79 BIT7.C
CB54 BIT 2M CB7A 8iV 7.D
CB5S BIT 2.1 cB78 BIT 7.k
CBSE BIT 3.(HL) CB2C 8IT7H
DDCBOSSE BIT 3.{IX+d) cB87D BIT7.L
FDCBOSSE BIY 3,(1Y+d) DC8A0S CALL CNN
CB5F BiT 3.A FC8405 CALL M.NN

F cB58 BIT 38 D48405 CALL NC.NN
CB59 BIT 3.C CD8405 CALL NN
CB5A 8IT 3.D C48405 CALL N2, NN
cBSB BIT 3.E FAB405 CALL P.NN
c85C BIT 3.H ECB405 CALL PE,NN
C85D BIT, 3.L £48405 CALL PO.NN
CB66 aIT 4.(HL) CCB405 CALL Z NN
DDCB0566 BIT 4,(1X+d} 3F CCF
£DCBO5S66 BIT 4.(1Y+d) BE CP (HL)
CB67 BIT 4.A ODBEOS CP 11X +d)
CBED BIT 4B FDBEOS CP (1Y +d)
cB61 BITA4.C BF ce A
cB62 BIT 4.0 88 crs
€863 BIT 4.E 89 CPC
CB64 BIT 4 H BA cPO
CB65 817 4L ee Cre

| CB6E BIT 5.(HL) 8C CPH

BD
FE20
ENAS
t D89
£oA)
£0B1
2f

27

35
0013505
F3505
3D
0%

08
00

15

18
1D
25

28
00?28
FO?28
20
38
F3

3a

DO 3405
FD3405

Qrason

cePt

CP N
cpPD
crPORA
CPI
CPif
CPL
DAA
OEC (HL]
DEC (1X+d}
DEC (1Y +d)
DEC A
DECB
DEC 8C
DECC
DECO
DEC DE
DECE
DECH
DEC HL
DEC (X
OeC 1y
DEC L
DEC SP

DI

OJNZ DIS
gl

EX (SP) HL
EX (SP).IX
EX (SP),1Y
EX AF AF’
EX DE HL
EXX
HALTY
‘MO

IM 1

IM 2

IN A C)
IN AINI]
IN 8.(C)
1IN C.{C)
IN O,1C)
IN E (C)
IN H.(C)
IN L (C)
INC (HL)
INC (I1X rd}
INC 1Y «d)

028405
C38405
€284GS
F28405
€ AB405
£28405
CAB40S
Jaze
182¢€
302F
202¢
282€
02

12

77

70

71

72

13

74

75
3620
po7705
007005
0071056

| 0D7205

INC A
INC B
{NC 8C
INC C
INCD
INC DE
INC €

INC H
INC HL
INC 11X
INC Y
INC L

INC SP
IND

INDR

INJ

INIR

JP {HL)

JP (1X)

JP (1Y)
JP C NN
JP M AN
JP NC NN
JP NN

JP NZ NN
JP PNN
JP PE NN
JP PO.NN
JP Z NN
JR C,DiS
JR DIS

JR NC.DIS
JR NZDIS
JR Z.0IS
LD (BC). A
LD (DF).A
LD (HLI A
LD (HL),B
LD (HL).C
LD {HL].D
LD tHLI E
LD (HUH
LD (HL) L
LO (HLIN
LD (1X+d) A
LD (1X+d} B
LO t1X+d}.C

LD (1X+d}).0

007305
DD7405
007505
ND360520
FO7705
FD?7005
FD7105
FD7205
FO7305
FO7405
FD7505
FD360520
328405
€£D438405
ED538405
228405
D0228405
FD22840%
£0738405
OA

1A

7€
DD7EO0S
FD7E05
3A8405

7F

78

79

TA

FDAa605
47

40

41

42

43

44

45

0620
ED4RBA0S
018405

S
LD {IX+d).E
LD {IX+d).H
LD {IX+d). L
LO tIX+d} N
LD {IY+d}.A
LO (1Y d) B
LD (IY+a\ C
LD (1Y +d) D
LD (1Y +d)E
LD Y «d) H
LD (1Y+d) L
LD (1Y+d) N
LD INN}.A
LD (NNJ BC
LD-INN).DE
LO (NN) HL
LD (NN).IX
LD (NN) tY
LD (NN}.SP
LD A.(8C)
LU A IDE)
LD A (HU)
LD A (1X+d)
LO ANIYd)
LD A(NN)
LD AA
LOAB
LDAC
LD AD
LD AE
LD A.H
LD A/l
LD AL
LO AN
LD B.(HL)
LD B.{1X+d)
LD B.(1Y+d)
{tDB.A
LoB,B
LoB8,.C
LOB.D
Lo B8k
LD B H NN
LD B.L
tDB.N
LD BC.INN}

DDA4E 05
FD4EOS
ar

ED5B8405
g 118405
i 5E

B ODS5E05

LD C,(1X+d)
LD C,lIY +d)
LDCA

LD C.B
LbCC
LDCD

LD CE
LDCH
LbC.L
LDCN

LD D.(HL)
LD D,(iX+d}
LD DY +d)
LD DA

LD D.B
LDDC
LDOD.D

LD D.t
LODH
LOD.L
LODN

LD DE.(NN)
LD G¢ NN
LD E_(HL}
LD E.{1X+d)
LD E.(Y+d)
LD E.A

LD E.B

LD EC

LD ED

LD E.E
LOEMH

LD EL

LD EN

LD H.(HL}
LD H (1 X+d}
LD H,(1Y+d)
LD H.A
LDHB

LD H.C

LD HOD

LD H,E

LD HH
LDH,L
LD H N

LD HL,.INN)
LD HL,NN
LD {I,A

DD2A8405
0D218405
FD2AB405
FD218405
6€
DD6EO0S
FDGEDS
6F

69

60D
2E20
ED7BB40S

318405
EDAS
€oOBs
€EDAO
EOBO
EDA4
00

B6
DDB60S
FDB605
87

80

LD IX, (NN)
LD IX NN
LD Y (NN}
LD 1Y NN
LO L {HL)
LO L (IX+d)
LD L.OY+d)
tD LA
LoLe8

LD L,C

LO LD

LD LE
LOLH
LD L L
LDLN

LD SP.(NN)
LO SP HL
LD SP.IX
LD SP 1Y
LD SP.NN
LDD
LDDR

Lol

LOIR

NEG

NOP

OR {HL)
OR {IX+d)
OR (1Y +d)
OR A

OR B
ORC
ORD
ORE
ORH

OR L
ORN
OTDR
OTIR
OUT {C),A
ouT (C).8
ouT (C),C
OuY (C).D
OUT (C).E
ouUT (C)H
OuUT (C)L
OUT (N)A
ouTD

(=
EDA3
F1
1
D1
£1
DDE1
FDED
F5
C5
1}
ES
DDES
FDES
CB86

DDCBO586
FDCB0586
cBs87?
CB80
ced
CB82
cB83
cBs84
CB85
CB8E
ODCBOSBE
FDCBOS8E
CBEF
cB8s
€889
CB8A
csss
(¢1:2.199
cBsD
CB896
0DCB0596
FDCBOS5%6
cB97
CB890
CB91
CB92
CR93
CB94
cB9S
CB9E
DDCBO59E
FDCB059€
CBYF
Cce9s

ouTi

POP AF
POP BC

POP DE

POP HL

POP IX

POP IY
PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH I'Y
RES 0,(HL)
RES 0,(1X +d)
RES 0,(1Y +d)
RES 0.A
RES 0.8
RES0.C
RES 0.D
RES 0 F

RES 0 H
RES 0.L

RES 1,{HL)
RES 1,(1X+0)
RES 1,1V +d)
RES 1A
RES 1.8
RES 1.C
RES 1,0
RES 1.E.
RES 1.H
RES I.L
RES 2.(HL)
RES 2,(1X¢d}
RES 2.{1V+d)
RES 2.A
RES 2.8
RES 2,C

RES 2.D
RES 2.E

RES 2,H
RES 2.L
RES 3,(HL)
RES 3,11X+d)
RES J{1Y 1)
RES 3.A
RES 3B

CB939
cB9A
c8e9B
CB9C
CB9D
CBA6
DDCBOSAB
FDCBO5A6
CBA?
CBAO
cCBA
CBA2
CBA3
CBA4
CBAS
CBAE
DDCBOSAE
FDCBOSAE
CBAF
CBAS
CBAS9
CBAA
CBAB
CBAC
CBAD
CBR6
DDCBOSB6
FOCB0586
caB?
ceso
CcBB1
CBB2
c883
CBB4
cB8BS
CBBE
DDCBOSBE
FOCBOSBE
CBBF
CBB8
cas9
ceBA
cess
c8BC
o1:1:1)

cS

D8

FB

RES 3.C
RES 3,D
RES 3.E
RES 3. H
RES 3,L
RES 4. (HL)
RES 4,(1X+d)
RES 4. (1Y +d)
RES 4. A
RES 4B
RESA.C
RES 4D
RES 4.E
RES 4.H
RES 4L
RES 5,(HL)
RES 5.(1X+d)
RES S (1Y+4)
RES S5 A
RES 5B
RES 5,C
RESS.D
RES S,E
RES S, H
RES S5, L
RES 6,(HL)
RES 6.(1X +d)
PES 6.1V ¢d)
RES 6,A
RES 6.8
RES 6.C
RES 6.0
RES 6.E
RES 6 .H
RES 6.L
RES 7.(HL)
RES 7.{IX+d)
RES 72 (1Y +d)
RES 7. A
RES.7.B
RES 7.C
RES?DD
RES 7.E
RES 7. H
RES 7,L
RET
RET C
RET M

CBO9

0 RET NC
co REY NZ
FO RET P
£8 RET PE
EO REY PO
C8 RETY 2
ED4D RETI
ED4S RETN
CB16 AL (HL)
DDCB0O516 RL {I1X+d)
FOCB0516 RL (1Y+d)
cB81? RL A
cB10 RLSB
ce RLC
cB12 RL D
CB13 RL E
C814 RL H
cBts RL L
17 RLA
C806 RLC (HL)
ODCB0506 RLC (IX+d)
FOCBO506 RLC (1Y+d)
€807 RLC A
CB00 RLC B
cB801 RLCC
CB02 RLC D
CB8o03 RLCE
CBO4 ALCH
CBOS RLC L
07 RLCA
EDGF RLO
CBIE RR (HL)
DDCBOS1E RR {IX+d)
FDCBOS1E RR {lY+d)
CBI1F RR A
CB18 RR B
CB19 RR C
CB1A RR D
CB1B RR E
CB1C RRH
CB1D RR L
1F RRA
CBOE RRC (HL)
DDCBOS50E RARC (I1X+d)
FDCBOS0E RRC (1Y+d)
CBOF RARC A
CBO8 RRCB

RRC C

CBC6
DDCBO5C6
FDCBOS5C6
c8C7
cBCo
csC
€BC2
CBC3
cBc4
€BC5
CBCE
DDCBO5CE
FDCBO5CE
CBCF
cBcs
C8CY
CBCA
CBCB

'RRC D

RRC E
RRC H

RRC L
RRCA

RRD

RST 0

RST 10H
RST 18H
RST 20H
RST 28H
RSY 30H
RST 38H
RST 8

SBC A,(HL)
SBC A (1X+d}
SBC A (1Y +d)
SBC A A
SBCAB
SBC A.C
SBC A.D
SBC A'E
SBC A R
SBC AL
SBC AN
SBC HL,BC
SBC HL.DE
SBC HL HL
SBC HL.SP
SCF

SET 0,(HL)
SET 0.(1X+d)
SET 0.(1Y+d)
SETO0A
SET OB

SET 0.C

SET 0.0
SET 0.E

SET O M
SETO.L

SET 1.{HL!
SET 1.(1X+d)
SET 1.11Y+d)
SET 1A
SET 1B
SET1.C
SET1.D
SET 1.E

CBCC
C8CD
CBD6
DDOCBOS06
FOCBO506
CcBO7
c8D0
CBD1
CBD2
c803
csD4
CBOS
cBD8
CBOE
DDCBOSDE
FDCBOSDE
CBOF
CBDY
CBOA
cBDB
csoC
CBDO
CBEG6
DOCBOSEG
FDCBO5EG
CBE?
CBEO
CBEe1
cBeE2
CBE2
CBEA
CBES
CBEE
DDCBOSEE
FOCBOSEE
CBEF

§ CBES

CBEY
CBEA
cgeB
CBEC
CBED
CBF6
DDCBOSF6
FDCBOSFG
CBF?7
CBFO
CBF1

SET 1,H
SET1,L

SET 2.(HL)
SEY 21X +d)
SEY 2.{1Y+d)
SET 2,A
SEY 2B
SEY 2.C
SEY 2D
SET 2,E

SET 2.1
SET 2.L

SEY 3.8
SET 3,{HL)
SET 3.{1X+d)
SETY 3,(1Y+d)
SET 3.A
SET 3.C
SET 3D
SET 3.E

SET 3.H
SET 3.L

SET 4.(HL)
SET 4.1iX+d)
SET 4,(1Y +d)
SET 4.A
SEY 4.8
SETA,C
SET 4.0
SETAE

SET 4.H
SET 4L

SET 5,(HL)
SEY 5.(1X+d)
SET 5,11Y+d)
SETS5,A
SET 5.8
SETS5.C
SET 5.D
SET5.E
SET5H
SETS5.L

SET 6.(HL)
SEY 6,(IX+d
SET 6.{1Y+d)
SET 6.A
SET 6.8
SET 6.C

&

CBFE
DDCBOSFE
FDCBOSFE
CBFF

i CBF8

CBF9
CBFA
CcBrB
CBfC
CBfD
€B26
0DCB0526
FOCBO0526
CB2?
CB820
CB2
CcB22
€823
CcB24
€825
CB2E
DDCBO052E
FDCBOS2E
CB2F
cB28
CcB29
CB2A
cazs
cB2C
CB2D
CB83E -
DDCBOS3E
FDCBOS3E
CB3F
CB38
CB39
CB3A
cBeais
CB3C

SEY 6.E
SET6MH
SET 6.L
SET 7, (HL)
SET 7.(iX+d)
SET 7.(1Y+d)
SEY 7 A
SET?78B
SET7C
SET?7.D
SET 7 &
SET 7.H
SET 7L
SLA (HL)
SLA (IX+d
SLA (1Y +d)
SLA A
SLAB
SLAC
SLAD
SLAE
SLAH
SLA L
SRA (HL)
SRA (1X+d)
SRA {1Y+d)
SRA A
SRA B
SRAC
SRA D
SRAE
SRAH
SRA L

SRL (HL]
SRL (I1X+d)
SRL (1Y +d)
SRL A
SRL B
SRLC
SRL O
SRL E
SRLH
SRL L
suB (HL)
SUB (1X+d)
SUB (1Y +d)
SUB A

SET 6,0

suB B
SuB C
sSus.D
SUBE
SUBH
SUB L

SUB N
XOR (HL)
XOR (IX+d)
XOR (1Y+d)
XOR A
XOR 8
XOR C
XOR D
XORE
XOR H
XOR L
XOR N

Example Values

nn EQU 584H
d EQU 5

n EQU 20H
e 30H

780 CPU Register Contiguration ® ASCIl Character Set

MAIN REG SET

280 CPU Regisier Configurahon

ALTERNAYE REG SEY

TN
ACCUMULATOR FLAGS ACCUMULATOR FLAGS |
A F A P
B C r— B (ol
—_ —4 — GENERAL
(i} 3 o E' PURPOSE
REGISTERS
H L H U
INTERRUPT MEMORY 3
VECTOR REFRESHK
| f
INDEX REGISTER IX SPECIAL
PURPOSE
INDEX R ISTER 1Y
OEX REGISTE REGISTERS
STACK POINTER SP
PROGRAM COUNTER PC
ASCI] Character Set (7-Bit Code)
mso| o [+ 23| a]| s |6 |2
LSO 000 | 001 010 | O1¢ 100| 101 110 | 111
o |oooo [NuL|oe|se | o | @ | P | . | p
1 |ooot [sorlpcr|r [v | Ao fs |a
2 | ooso | sTx|oc2| - 28| R | |
2 |oos1 |emx|oca| =12 | c | s |e|s
¢« |otoo |eotjocal s { 4 | o | T |4 |
s [o101 |enc[Nak| % | s [e | v]| e | u
6 |omo|ack|[syn| e | 6 | F | v | €| v
7 Lo |BeLlere| * | 7 |6 |w | g |w
8 1000 | 8S CAN| (8 H X h x
o 1001 | AT [EW |y |9 | 0 | v | 0 |y
A lwwo|r [sva| - | - | oz |y |z
g |sovr |vr JEsc|+ | ¢ | k| (| % |1
Cc |voo|Fr [Fs | " | < | L |\ | |
D |1 |crR[GS |~ | = | M [1 |@ |1
€ |wofso|as | .] > | ~N]| 0 | n |-
F 1111 | SI us 1 ? o - o |[DEL

Summary of Flag Operationg

0; Dp
Instruction s 2 N PIV N C Comments
ADDA s ADCA s) X 1t X v o0 1 B D1l 300 O 200 WIIN CaNly
SUBs SBCA.s.CPs NEG 1 [S| X v 1 1 B D) SUDITACY SUDIIACY wilti Calfy COMDale 3nd NeQale accumulalor
AND s 1 1 X 1 X P 0 4]
OR's XOR s | 1 X o X P 0 0] LOgICAl Opetalions
INCs 1 X 1 X NV 0 s 8 w1 Increment
OEC s !)X X Vv { » 8 bn decrement
ADD DD, ss « ¢+ X X X = 0 16 bil ado
ADC HL, ss | 1 X X X v 0 16 D1} add with canty
SBC HL, ss)] X X X v 1] 16 bil subtac) with cary
RLA RLCA, RRA, RRC/. e ¢ X O X ¢ O | Rolale accumulalos
RLm RLC m, RRm, 1 1 X 0 X P 0 Rotate and shill localions
RAC m, SLA m,
SRAmM SRL m
RLO. RRD 1 1 X 0 X P g Rolale digil lefl and nghi
DAA 1 | X] X P . { Decwmal adjusl accumulalor
CPL » 0 X \ X e 1 0 Complemen) accumulatos
SCF e » X 0 X & 0 1 Set cairy
CCF s 2 X X X e 0 I Complemeni cairy
IN 7 {C) 1 | X 1] X P 0 . input tegister indiecl
:ﬁ:a"fﬁogué'hg“é?oa ; : : ; : : \ -} Block inpul ang ouiul 2 = 0 d B = 0 onervise 7 = O
tg:h.LEgDH)’: ; ; g : Z) g :} Block Lransled instiuctions PiV = 11 BC » O olherwise PiV = 0
CP). CPIR. CPO, CPDR X ¢ X X X 1 . Block search instrucions 2 = Y A = (KL) aherwise 2 = 0
PV = 10l BC = O, otherwise PV = ¢
DA ILLDA R H ! X 0 X IFF 0 . The content ol Ihe nlefrupl enavdle tip-lop (IFF) 1s comed into the PV
taa
8ifo, s X | X 1 X X 0 - Tne siale ol DIl b of (6calion s s copied nfo Ine 2 flag
Symbol Operation Symbol Oparation
S Sign ftag § = V.l the MSB of the resull 15 1 ! Tne fiag 15 aflecled 3ccoiding 1o Ihe 1esull of Ine
2 2era llag Z = 1 d (he resull ol Ihe pperalion 1s operahon
0 L] The (tag 1s unchanged by (he operabon
Piv Panily or ovetliow flag Paidy (P) and overliow (V) 0 The flag 1s 1esel by Ine operahion
snare Ihe same flag Logical operahons alfect 1 The llag 1s set by the operalion
this tlag with the panty ol 1he result while X The llag s 8 “"don L care ~
aranmenc operalons aflecl IS fag win (he v PIV lag allecied gccoiding 10 Ihe overllow resull
ovelllow of Ihe result (1 P/V holds panty PIV = of 1he operalion.
11l the resull of Ihe operauon s even. PV = 0 P PiV llag alfecled according (o the panly resull ol
it tesult 1s oda 1 PIV holds overtlow, PV = 14l lhe pperalion
the cesull ol Ine operalion progduced an overllow (Any one ol lhe CPU registers A, B,C. 0. E.H. L
H Hall catry tlag H = 1 the add o subltacl s Any B-bil tocalion Sor all Ihe adaressing moges
operation proguced a canty 1610 of barigvs (1om 3ltewed (or (e patliculat nslruclion
bit 4 ol Ine accumulaior SS Any 18:011 locauon lor all Ine agaressing mooes
N AdaiSublract lag N = 1 1l the previous opera- - aliowed 1o thal instruclon
110n was a sublracl n Any one ol Ihe Iwo iIndex regisiers 1X ot 1Y
H&N H and N 1ags are vsed in conjunclion with the R Relcesh counler
decimal adjus) nsicuclion {DAA) Lo pioperly ¢or- n 8-Dil value in tange < 0. 255 >
recl 1he result into packed BCD tormat foliowing nn 16-0l value in range < 0 65535 >

3dGHI0N of SUbIraclion using Ope!ands with
packed BCO lormatl

c Canryiting Dag C = { i the operalon produced
a cariy liom the MSB of 1he oparand or 1esull

8-Bit Load Group

DESYINATION

SOURCE
REGISTEA EXT.
IMPLIED REGISTER INDIRECT (NDEXED | ApDR, | IMME.
| R A B8 [} D E H L [{HL) [(BC) | (DE) (X + D)|(1Y +d)| (nn} a
0o | fFO 3a | 9
A |ep |ep |7F |78 |79 | 7a [1B [7Cc | 7D | 7€ | OA | 1A | 7E 7€ n n
57 | 5F d] n
DD FD
8 a7 |40 |41 | 42 |43 | 44 | 45 | 46 16 46 06
d d n
[+]0] FO
c F |48 [49 | 4A | 4B | 4C | 4D | 4E 4E 4E 0E
d é n
oD FO
REGISTER | O 67 | 50 | &% | 52 | 53 | 5¢ | 55 | 56 56 56 16
d d n
DD FO
E 5F 58 59 SA | 5B 5C | 50 | SE 5E SE 1E
d d n
oo | Fo
H 67 &0 61 62 83 &4 65 66 66 66 26
d d n
[v]] FO
L 6F [68 |69 | 6A | 68 | 6C | 60| 8E 6E 6E 2E
] d n
(HL) rrjro | |23 ralas 36
a0
AEGISTER .
INDIRECT | (BC) 02
|
(DE) 12
| oo |ob |ob| ob| oo 0o DD 7 0D
(X +d) 144 70 71 12 7 24 75 36
d
INDEXED N S T i n
FO | FD | FO | FO | FD | FD | FD)
(1Y +6) 17 (10 |10 |12 |13 1| s 36
d d |d [d [d | d ¢ n
EXTERNAL| z?
ADDRESS N
| ED
Y
IMPLIED |
ED
R 4F

8-Bit Load Group

Symbaohic Flags Opcode No.ol No.ol M No.ol T
Mnemonic Opetralion s 2 H PV N C 76 543 210 MHex Bylas Cycles Siales Comments
L [. L SR S D [CE ' 1 \ 4 (17 R
Do - LI S A R wor g 2 z 7 000 B
-t - 00+ c
LO» =11 to— (ML L T N Oy o1t 1 2 ? 010 o]
L0 X s ¢y P— {IX vy . . X . > . 2 . YEO0Y 10 [>]6)] 3 5 19 0 €
o1 100 H
-0 - 101 L
LD « (Y +0) - Y e . « X v X e » » \ARRERER TR FD 3 5 V9 11 A
2y 1 110
-0 -~
LO (HL) ¢ (HLy — ¢ [O I S 0V 110 ¢ 1 2 7
WO (IX+0) ¢ (X+0@ - ¢ ¢ e X s X v e e 110N 0 OD 3 5 19
01 110 ¢
;d—
LOHIY ¢) ¢ (1Y + 0y — 1 « v X e X = e s 1o a0r FD 3 5 '8
01 V10)
- g -
LD (HL) n (HL) = n L S S . 00 110 110 36 2 3 10
-0 =
LDoXsg)y n (IX3d)—n ¢ s X s X s s . 1101t 10y 00 4 5 18
00 10 V10 36
-0 -
- n =
WaYsadr n {iY+d) —n [S 1oyt FD 4 5 19
00 130 110 36
-0 -
-_ N -
LD A (8C) A — (BC) ¢ e X v X e e e 00 00V 010 OA 3 2 7
LD A (DE) A — (OF) Ve X e X s 4. 00 01 010 1A 1 2 7
LO A {nn) A — (nn) Poa X e X s e w 00 Y1 00 3A 3 4 13
- -
—a -~
LO (BC) A (BC) — A ¢ s X s X & = « 0DO0OOW 02 i 2 7
LD (O&) A (OE) — A e X e X v v s 00 010 010 12) 2 7
LD (nn). A {om) —~ A R L 00 1o 00 32 3 4 13
—-n -
- n =
LD A ¢ A—1 L1 X 0 X IFF 0 . 11101 207 ED 2 2 S
0t 010 111 Y
L0 A A A-R 1 1 X 0 X IfFF ¢ - 110y 0y ED 2 2 9
01 011 Y11 5F
Lot A |~ A L SR S (1 101 101 ED 2 2 g
01 000 1 47
LDA A A-A ¢ o X & X e 4 e 1130y 10y ED 2 2 9
01 00V Y1y 4F

NOTES "« ¢ (neans any ol the (egislers A B.C 0. € H L
FF 1ne content of Ine interruot enabie Hio Noo (IF F11s copied inio the PIV hiag

Flag Novation * = hag not 31ec1ed O = hag iesel 1 = 130 sel X = 012G ¢ unxnowe
1 = hag s altecieg acCoOrang 10 INE resuil O the gpe' anor

C-14

16-Bit Load Group

DESTINATION

PUSH
INSTRUCTIONS

NOTE: The Push % Pop Instructions adjust the SP afier every axecution,

SOURCE
IMM. | EXT. | REG.
REGISTER EXT. | ADDR.|INDIR,
AF | BC | DE | RL | sP | 1x | 1y nn | (an) | (SP)
AF Ft
ED
8c 01 B | Cf
n n
n n
ED
DE 11 s8 | ot
n n
n n
21 24
REGISTER | HL n n €1
n n
ED
sp F9- oo | FO | a1 78
FS | FO | » o
n n
DD ob | oD
X 21 A | €1
n n
n n
FD FD | FD
Y 21 24 | €
n n
n n
eo | Ep ED | DD | FO
EXTERNAL | (o O [s3 |22 [r3a | 22|22
ADDAESS n n n n n n
n n n n n n
REGISTER oo | FD
{ND. (spy| fs [cs | os | ES s | es

16-Bit Load Group

Symbolic Flags Opcodp No.ol Noot M Nool T R
Mnéemonic Operalion s Zz H PW N C 76 543 210 MHex Bytes Cycles Stales Commeanis
<D oa nn dd ~ on » o« X s X e s » 00 gad oLV a 4 0 da Pae
-~ 00 BC
—a - ot 23
L0 I1X, nn IX — nn s « X o X e o 11 011 10t DO 4 4 14 10 HL
00 100 00y 21 " sp
-n -
—n -
LOIY on IY - nn s« X » X & a » 11 1 0y FO 4 4 4
00 160 00! 21
-0 -
—n -
LD HL {nn) H - inn4+1) e 2 X e X v o 00 10y 010 2A 3 S 16
L ~ (pn) -n —
-n -
LD ca (nn) a0 — (N0 1) e = X & X & s 2 11 101 104 ED 4 [20
0gL — (nn) 01 ddr 01y
-n -
—n -
(D IX (nn) IXH — (0o + 1) ¢ o X & X s & & 11 03 101 00 4 6 20
XL — (ha) 00 101 010 2A
—n-
—n-
LD I¥Y (nn) Yy = (a0 y 1) e ¢ X e X » s o« Moty 1Y FD 4 6 20
1Y(= (nn) 00 101 010 2A
- n -
—n -
LD (nA) HL tnn4 1) — H e » X & X 2 s 00 100 010 22 3 5 16
tnny — L -0 -
—n -
LD {nny od ("\n 4 1} — doy e & X e X &« & 1 10 10y ED 4 6 20
(nny ~ do 01 980 0114
—n -
—n -
LD (nn) X N +1) ~ 1X)y v X e X v e . 11 01y 10y OD 4 6 20
ony ~ X 00 100 0\0 22
- - .
—n -
LD (pny 1Y (nn4 1) = 1Yy e 4 X s X » e 1oy 10y FD 4 6 20
(nn) — 1Y 00 100 00 22
- h -
- N -
LD SP HL SP — HL s o2 X e X v v 11t 00 Fg i 1 3
L0 SP X SP — IX s ¢ X e X » & 3 11 0 10y OD 2 2 10
1 00y FY
LO SP 1Y SP — Y « v X e X s s e 1Ly 10y FD 2 2 0
Ty 00y P9 qa Paw
PUSH aa (5P -2) — oa LR SR O 11 Q@0 101) 3 11 00 8C
(SP-1) — QaH a1} DE
SP — §P -2 10 RU
PUSH X (SP-2) - IX(« v X e X 2 e » 101t 10 oD 2 4 15 1 AF
(SP = 1) — IXp 11100 101 ES
Sp — SP -2
PUSH IY (SP -2y — 1Yy e e X v X e e e 1oy 10y fD 2 4 15
SP-1) ~ Y 13 100 Y0 ES
SP ~ §p -2
PCP qq qaH — (SP+ 1} e a4 X & X e« s e 11 gqd 001 1 3 10
qq - 5Py ’
SP — SP «2
POP IX Xy — (SP+ 1) « v X & X » e & 11 01 00 0D 2 4 14
IX_ = {SP) 11100 00 En
SP —~ SP 42
POP 1Y Yy = (S5P+ 1) s e X & X v e & Mmooy FD 2 a4 14
1YL ~ (5P) 11 100 00V £
SP — SP 42

NOTES 201y sy OF e icaisied Dors BC OB HU 5P
aa 15 anv of tie recister pans Af BC OF HL
(PA(Ry (PAIRI (eler 10 PN 0IGe! 3N 10w Or0e! EIgni DS Of INE 18QISIe1 DAN TeSpeCinen
eq BCL:CAIH:A

Foaa NO1AYTION vz hag nol atrecteG O = UAg 1esel 1 = hag 5l X 3 143 s umoas
| = lag 's alfecled 2¢L010:NG 10 (R€ Tesu Ol 1ne 0P (%"

Exchange, Block Transfer, and Search Groups

Exchange Group

IMPLIED ADORESSING
AF'] BC.OE &KL | ML | IX | I¥
f AF | os
8C.
mpueD D€)
HL
oE €8
REGISTER |(SP) £ | oo| Fo
INDIAECT €3 | E3

Block Transfer Group

SOURCE
REG.
INOIR,
(KL)
ED ‘LDI'—Load (DE) — (HL)
A0 Inc HL & DE, Dec BC
ED ‘LDIR'—Load (DE) — (HL)
AEG 80 Inc HL & OE, Dec BC, Repeal until BC =0
DESTINATION * | (DE)
INDIR £D 'LDD'—Losd (DE) — (KL)
A8 Dac HL & OE, Dac BC
EO ‘LODR’—Losd (DE) — {HL)
88 Oec HL & DE, Dac BC, Repeat until BC =0
HL points 10 source
DE poinls to destination
BC Is byls counter
Block Search Group
SEARCH
LOCATION
REG.
INDIR.
(HL)
ED 'CPI
At la¢ HL, Doc BT
(39 *CPIR'—inc HL, Dec BC
B1 repeat unili 8C =0 or find malch
ED 'CPO'~Dec HL & BC
AS
ED *CPDR"—Dec HL & BC
RS Repent untll BC =0 or find mateh

HL poinis 10 localion in memory
1o be compared with accumulator
contenis

BC is byte counlar

Exchange, Block Transfer, and Search Groups

Symbaolic Flags Opcode Noo!l No.olM Noof T
Maamonic Operalion 3 2 H PV N C 76 543 210 Hex Bytes Cycles Siales s Commeants
Ex Ot hay Ot — #3, . » X e X e . . 1110y O 8 1 1 4
I Al At Al —~ Af = e X 2 X e » e 00 00' QUO 08 1 ' 4
EAX BC ~ BC . . X . X e . . Y1 DYV 008 DY [l 1 4 Regisier bany ano
DL - OL durlligly 1€QsIc:
HL - kL bank erehange
EXx ISPy HL K —~ (SP+ #} « e X 2 X e s . 1Y 100 Ot €3) 5 19
L - (8P
EX (SP) IX Xy - (SPa 1) » s X & X . . 0t 0 D0 2 £ 23
XL - (SP) 11 100 o111 E3
Ex (SPy 1Y (Y —~ (SP 4 1) e X s X & e ARERRRER)| FD 2 -3 23
Y| - (SP) Y1100 Oy €3
- ®
LDI (DE} — (HL) s s X 0 X 1 0 s 1N 0 10 (o] 2 4 V6 Load (KL) nio
DE ~ DE 41 10 100 000 A0 (DE). ncremen
HL — HL 41 \he poinlers ang
8C - B8C -1 deciemenl the
pyle counter (BC)
LDOIR (DE) — (181 « ¢ X O X 0 O 1 100 1Oy ED 2 5 ral WBC = 0O
DE - DE » 10 110 000 80 ? 4 16 nNBeC =0
HL — HL+ 1
8C ~ BC-~1
Repeal unld |
BC =0
®©
LoD (D€ — (HLY e o X 0 X 1 0 M0y 100 €0 2 4 16
OE — DE -1 10 101 000 A8
HL — HL =~
8C - 8C -1
LODR (DE) — tHL) s+ &« X 0 X 0 0 1110 101 ED 2 5 0 HBC = 0
D€ — DE - ¢ Y0 111 000 88 2) 6 a8t = 0
HL ~ HL -1
BC - BC-1
Repeat until
BC =0
@ 0]
cPl A - (KL { X oy X 0 . 1101 00 ED 2 4 16
HL — HL+ 1 10 100 001 At
8C - 8C -1
@ ®
CPIR A — (HL) t X X LY 11 10 104 €D 2 5 21 (tBC 2 0 anc
A 2 (HLY
HU ~ HL 4 1 10 110 001 B1 2 Ll 16 N8t =0
BC - BC~1 A = (HL
Repeal untl
A = (HU) o -
8C =0
® ©
CPD A - (HLY [D S R L 13101 101 €D 2 4 16
HL - HL -1 10 10) QO A9
- -1
8C 8Cc ® .
CPDR A~ (HO)X 1 X . 31101 101 EO ? 5 21 1tBC + 0ang
A x (ML)
HL — HL =1 10 113 001 89 2 4 16 nec = 0o
BC — BC -~ A = (RL)
Repeat unhl
A = (8L)or
BC = 0
NOTLS ({)P.‘v 014G i Ol e @8l ot BC - 3 = 0 Ohewnse PV =)

@Z e s 1A = ML) othercea 2 = ¢

f1a0 Notaron ¢ = haonot atlected O = llao «esel Y = hag sel X = hag 15 unknown
1 = U308 Allecled 3CCOraNg (6 INe 1esull of 1he Operalon

8-Bit Arithmetic and Logical Group

SOURCE
REG.
REGISTER ADDRESSING INDIR INOEXED [IMMED.
A [¢ (o] E N L (RL) |(1X e dhf(1Y+)| a
DD FO
‘ADD’ ar 80 & 82 8] L. 88 86 86 86 cs
d d n
00 FD
AOD w CARRY "ADC' &F 89 1] 8A [-1:3 8c 8D 113 L13 BE CE
d d n
DD FD
SUBTRACT ‘Sus* '} 80 [']] 92 3 94 s e6 98 98 06
d -] n
00 FO
Su8 w CARRY ‘SBC’ 9F o8 o9 A 9B ac 8D € SE 113 DE
d d n
oD fFo
'AND’ AT A0 Al A2 A A4 AS A6 A6 Ab Eé
d d n
DD FD
'XOR' AF A8 AS AA AB AC AD AE AE AE EE
d d n
oD FO
‘OR* B? 80 [:3] B2 B3 B¢ s B 86 Bé Fé
d -] n
oD FD
COMPARE 'CP’ BF B8 B® 8A 88 BC 8D BE BE BE FE
[d n
DD FD
INCREMENT 'INC’ 3c 04 oc 14 1 24 2C 34 M N
d d
DO FO
DECREMENT ‘DEC’ 3D 05 oD 15 1D 25 20 35 38 KH
d d
Symbdolic Flags Opcode No.of No.ol M No.ol T
Mnemonic Oporation b4 H PNV N C 76 543 210 Hex Byles Cycles Stales Comments
ADD A 1 A=A+ y X vV 0 1 IO 4 1 1 4] Reg
ADD A, n A-A4n X 1 X Vo0 11 [ooo] 110 2 2 7 000 B
- n - oo C
00 D
ADDA. (HL) A — A + (RL) bX & X V0 1 10 [000] 110 3 2 on €
ADDA (IX+0) A— A ¥+ (IX+0) y X ot X V0 1 11 0) 101 00D 3 5 19 W00 H
10 110 00 L
- d - YA
ADDA.IY+d) A— A + (IY+q) 1 X 1 X vV 0 1111y 08 fO 3 5 19
10(009) 110
- 0 -
ADC A s A~ A+s+Cy: X 1 X v 0 1§ any of (. n
SuB s A~A-s X o0 X vy HO). (X + @),
. (1Y + d) @s showia
SBCA s A— A-s-CV% X 4 X Vo9 | ior AOD nsliyclion
AND s A~ A s 1 X v X P 0 0 The indicaled bits
OR's A-A s I X 0 X P 0 0 replace ine (000) in
XOR s A-Aes I X 0 X P 0 0 the ADD sel above
CPs A-s X 1 X Vo
INC 1 [I X 1 X V 0 00 3 1 4
INC (HL) (HL) — (HL) 41 I X 1 X V 0 00 3 3 1"
(NC (IX + d) (IX+0) — 1 X 3y X vV 0 » " oD 3 [23
(X +3)+1 00
- ms any of 1, (HL).
INC (IY 4 0) Y + g) — t X 1 X VvV 0 « " FO 3 6 23 (X +4). (I + 0
Y+ 00 as shown 10r INC
- OEC same lormat
OEC m ma—m~} X 9 X Vo e and stales as INC
Aeplace wilh
n opcode
NOTES The V symbol in the PV Thag Lot ot ates Wt e PV 12g contng e ovetliow of [he tesull OF the eperalwn Simiarly (he £ Lymbdl maicaler panls
V = 1 mean< ovediow V = U awnar, ool uvinow P = | megns panty of Ing resutl 15 pver. P = 0 Means Datdy of ine result is 060
Flag Nolauon {12g nol altecled U = Nzgieser 1 = Dagsel X = DBag & unknown.

= ligQ «§ altecled ac.cordig 10 ine (cxull D! the Opeialion

Cc~19

General-Purpose Arithmetic and CPU Control Groups

General-Purpose Arithmelic

Decimal Adjust A:c '-OAA' 27 §|
Complement Acc, 'CPL" F
Neagate Ace. "NEG' ED
{2's comglement) 44
Complement Catry Flag, 'CCF" IF
Sel Catry Flag. 'SCF’ 37

Miscellaneous CPU Control

‘NOP’ 00
'HALT' 76
DISABLE INT (O F3
ENABLE INT {EIY B8
SET INT MOOE 0 ED
‘MO 45 8080A MODE
SET INT MODE 1 ED RESTAAT TO (OCATION 0038y
‘M1 56
INDIRECT CALL USING REGISTER
T 2 ED
SE IN"{MMSDE SE 1 AND 8 BITS FROM INTERRUPTING
DEVICE AS A POINTER,
Symbaolic Flags Opcode No.of No.ofM No.ol T
Mnemonic Operation s 2z H PIV N C 76 543 210 Hex Byles Cycles States Comments
DAA Converlsacc comtemt 1 X | X P s 1 00100 111 27 1 1 a Decimal a0usl
inlo packed BCO - accumuialor
follawing aca ot
Subtract with
packed
BCD opetangs ,
CPL A=A e o+ X v X = 17« Q010" tn 2F) 1 q Complement
accumulator
(one s
complemeniy
NEG A-0-A 11 X 1 X vy 1101 10y €D 2 2 8 Negale 8t (w0 s
_ 01 000 00 44 complemenl;
CCF CY — CY . . X X) . U) 00 1)1 V14 aF 1 1 4 Compiement carr
1|ag
SCf CY -1 e X 0 X » O 00 110 111 37) 5 N Set ¢any Ndg
NOP No opeiaror = ¢« X e X » & « DDOOOOGOO 00 ' ! <
HALT CPU hallea ¢ ¢ X & X &« &« 01 110 110 76 1 B 3
Dl « IfMF - Q0 - . X o= X e . . 10 o F3 1 ¢ -
£) e WHF - . . X e X = . . N1 0N B 1 1 o
M0 Set inteciupt e s X e X o a s 11 100 YOy ED D \ B
mode 0 0y 000 Y10 46
A1 Sel wlenupt . . X o X . . . 100 10 ED 2 N 8
mooe | 01 010 Y10 S6
M2 Set inlernopt . . X o X s . . 1101 10Y €D 2 2 [
mode ? 0y 0vi 110 SE
NOTILS 1) aqmicdtes ing inlvinyol wmm;:;n:m
N gicahes the iy 1ap Niop
& Igw dles PIRTIUOE e 0T SR al 1e g o' B o Dy
Fiag Notanon . 1ap not aflecled O = flagreset ' = 113¢ se1 x = hac ¢ unsnown

1= 13g 45 3118C188 ACCOrdINg 10 Ine result OF Ihe 0P alion

16-Bit Arithmetic Group

SOURCE
-] DOE HL sp 1X 3 4
HL [»] 10 2% 3¢
1X oD Do [o2\] DD
‘ADD" 09 19 39 28
Iy FD FO - FD FD
09 18 ag 29
DESTINATION | ADD WITH CAARY AND RL ED €D ED ED
SET FLAQS "ADC’ 4A 5A 8A 7A
SUB WITH CARRY AND HL ED ED ED ED
SET FLAGS ‘SBC’ L ¥4 52 62 72
e D | FD
INCREMENT INC 03 13 23 1 27 23
DEC DD FD
DECREMENT ‘DEC o8 1B 2B 18 2B 28
Symbolic Flags Opcode No.of No.of M No.of T
Mnemonle Oparatlon z H PV N C 76 543 210 Hex Byles Cycles States Commenis
ADO HL, ss HL - HL +ss » X X X e 1 00 ss) 09 3 n ss Reg
' 00
ADC HL. ss HL — HL+s5+CY X X X v o0 11101 10 ED 2 11 0v DOt
01 ss)1 010 10 HL
1 5P
SBC HL. ss HL — HL -85 -CY (X X X Vv ! 1101 101 E0D 2 , 18
01 550 010
ADD IX. pp X = IX + pp vX X X e 1 17 011 1 b0 2 15 op Reg
0% ppy 00Y 00 BC
o1 Dt
10 (X
1 sP
ADDIY, 1t I —=1IY + 1 X X X e 1 19 11y 101 FO 2 15 tr Re
00 ry 001 00 §l§
01 DE
10 1Y
11 SP
INC ss $s — 85 + 1 ¢ X 4 X » . 00 ss0 011 1 6
INC IX IX = IX 4 1 ¢ X o X . 10V (O o0 2 10
00 100 0N 23
INC)Y 1Y — (Y + 1 « X s X e . oA a0 FO 2 10
00 100 011 23
DEC s8 $§ = $s -1 s X e X . 00 sst 011 1 6
DEC IX X = X =1 LD G] 11 01y 101 DO 2 10
00 101 O 2B
DEC Y Y — ¥ -1 s X s X » . AR RNAR IR} D 2 10
00 104 011 2B
NOTES s515 3ny ol Ine regsler pars BC DE KL SP
PO 18 30y O) the cegister pairs BC. OF. IX SP
1015 3ny of Ine cegister paus BC DE 1Y §P
flag Nolanon « = (1ag not allecied. 0 = hag «esel } = 13g sel X = 113g s unknown

1 = lag s alleclad ac¢ording 16 1he resul of 1ne operalion

Jump Group

CONDITION
UN NON NON |[PARITY[PARITY| SIGN | SIGN REG
CONO |CARRY |CARRY| ZERO | ZERO | EVEN | ODD NEG POS 8/0
ci DA 02 CA C2 EA E2 FA F2
, IMMEDIAY
JUMP *JP EXYEESS':OEJ nn n n a n n n n n n
n n n n n n n n n
NI~ N E—— I : SN S — —
. 18 38 30 28 20
JUMP *JP RELATIVE pC4+o0le-2 |e-2 |lo-2 |e-2 |e-2
JUMP P ! HY) E9
Cio- AEGISTER 1%
JUMP "JR INDIREGT (1X) oD
€9
MP P (04} FO
Ju J £9
DECREMENT B.| T T
JUMP IF NON RELATIVE PC-e ‘O,
2EAD 'DJNZ e -
Symbolic Flags Opcode No.o! No.ol M No.of T
Mnemonlc Ogperation S Z H PIV N C 76 543 210 Hex Byles Cycles Stales Commenls
P PC—nn « + X « X e s s 1100000 C3 3 3 10 - -
- n -
- 0 -

JP cc. nn W conailion cc IS ¢ e X e X e s 1 occ 010 3 3 10 49 Condition
true PC = nn, - A - 000 N2 non-2ei0
olherwise - n - 00y £ ei0
conhnoue 010 NC noncatry

01y C carry

100 PO pacty 000
10V PE pariy even
110 P sigo positive
"1 M sign
neqatbve

JRe PC — PC+e s X e X e 4 00 011 000 18 2 3 12

~ -2 -

JRC. e He = 0. e ¢ X o X & s 0D 111 000 28 2 ? ? I congion nol met
conlinue - e-2 -

e = 1, : 2 3 12 H congion s mel
PC - PC+e

JRNC. e 1C = f, . - X ® X e a . 00 110 000 30 2 2 7 1l condiion nol met
conhinue - e-2 —

C =0, 2 3 12 Il congition s met
PC — PCare

JWPZe Wz =20 e o X o X s e 00 101 000 28 2 2 7 I cond«aion not met
conlinue - e-?2 -

Wz =1 2 3 12 It conoaion 1s me!
PC — PC+e

JRNZ e Nz = s s X & X e+ 00 100 000 20 2 2 7 It congilion aol met
conlinue - e-2 -~
Z =0 2 3 12 If congon s mMet
PC ~ PC+e

JP (HL) PC — HL e ¢ X e X ¢« s 11 101 001 €9 1) 4

JP (IX) PC - X ¢ 2 X & X s s 11 011 101 [3]0] 2 2 8

11 101 001 E9
JP (1V) PC — IY s & X & X e+ & 1 0 FO 2 2 8
11 101 00! £9

DINZ. e B-—B-1 v e X v X e 00 010 000 10 ? 2 3 B =0
B = 0. —e-2 —
continue
B = 0, 2 3 13 WB s« 0
PC — PC+e

NOTES e tepresents Ine extension in Ine ielatwe aoddressing moae
€)5 3 3:9ne0 1wo s Lomplerment numper in Ihe 1ange < — 26 129 >
e - 2 in Ine opcode piovides an efleciwvp address of pc 4 e as PC v inciemeniva
by 2 p1Ot 10 e 30di1on Ol ¢

F1aa Notation o= haanol alected ¢ = 620 165€1 1 = tag set X = Lag i< unknms
I = Pag s MIeTea acemiong 10 IR 1ol oY INP operalion

Rotate and Shiit Group

TYPE
OF
ROTATE
OR
SHIFY

SOURCE AND DESTINATION

A B c o 3 H L Bu | oxsa |y g A
0o Fo
‘ALC’ | CB ch c8 ce cB cB cB ce c8 cB ‘RLCA' | o7
or 00 o1 02 03 04 05 06 6 d
06 06
) FO
‘RRC' | c@ cs ce ce ce cB ce ce ce cB ‘ARCA' | OF
oF 08 09 0A 08 o 00 OE ¢ d
o€ o€
oD FO
‘RL cB ce cB cB ce cB ce ce cB ce ‘RLA’ 17
) 10 1" 12 13 14 15 16 d d
16 18
: oD FD
‘AR’ cB ce cB cB ca ca cB ;] cB cB ‘RRA" | 1F
\F 18 19 1A 1B 1€ 10 1€ d d
1E 1E
0o FO
sta | ce cB cB ce ce cB ce cs cB c8
27 20 7 22 23 24 25 26 d 4
2 26
00 FO
"SRA* | C8 c8 cB c8 cs ch :) cs cs cB
2F 28 29 28 28 2 20 2E d d
26 2€
oD FD
'SRL' | ¢B c8 ce c8 cB cs ce ce c8 ce
aF T 39 3A 3B 3C D 3E 4)
3E 3k
RLO" - €D
6F
‘RRD' €0
67
ROTATE
LEFY CIRCULAR
RIGHT CIRCULAR
ROTATE
Heol—(—+H &
L- —_) ROTATE RIGHT
i SHIFT
9 LEFT ARITHMETIC
L E SHIFT
- RIGHT ARITHMETIC
e] SHIET
["L == RIGHT LOGICAL
0
————
N » . AOTATE DIGIT
b3-bg {br-dgb3-bg] (HL) LEFY
ACC —
@ ROTATE DIGIT
— HL
HY - aienr

ACC

Rotate and Shift Group

Symbolic Fisgs Opcode No.of No.ol M No.ol T
Mnamonlc Operalion s 2 H PIV N C 76 543 210 Hex Bytes Cycles Slates Comments
RLCA 7T =) e 4+ X 0 X v 0D 1 QUOO YT O7 1 [¢ Rolate fel cucuwar
Loy el accumuaior
A

RLA ”c_v?--c—rﬁ] e+ X 0 X e O 1 00DO0WIN V7) ! 4 Rotale lelt
ey e accumutalor
A
QRCA i e+ X 0 X s O 1 0D OQ0Y 111 OF !) 4 Rolate fghl cueular
accumutator
A

RRA ¢ ¢ X 0 X ¢ 0 1 000" 1yt \F \ \ 4 Rotale «ghi
accumulalor
RLC ¢ 1 X 0 X P 0 1 001 0Vt ce 2 2 8 Rotale lell cincotar
00 ‘ tegisier |
RLC (HL) T X 0 X P 0 11 001 O1Y CB 2 4 15 ¢ Req
00|0Cof 110 000 8
- 00} C
acoxea LT —0J 1 x 0 x P 0 1 1o 0D 4 6 23 010 D
CHO{IX + A1OY + o) 11 001 01y ce o 3
- 6 - 100 M
101 L
001000] 110 o A
RLC (IY +O) 11 X 0 X P 0 1 1111 108 fO 4 6 23
11 001 011 cB

- d -
oo[ooo] 110
m Instruction lormat
and siafes are as
snown 1or RLC s
RRC m Lol 1+ xo0oxvPe o1 - Yo lorm ocw

opcode replace

Mmm (ML) (IX + WY + @)
clRLCs
will showa code
RR e {7—o] I 1 X 0 X P 0 1

mm ¢ (HL)(IX +) (Y + 0)

am e

mm e (HLLUIX + Q)Y (1Y + O

>

(=]

>

h]

(=4
B EB

SLAm

mmr (HL)(IX 4 D)UY +0)

SRA m IlXDXPOI 0

mmr (HL)(IX 4+)Y +d)

SRL @ of{T—0o}—fcY)] 1 1 x 0 X P 0 I

ma ¢ (HL)X 4 d).(LY + d) -

RLD 1 1 X 0 X P 0 - o010t ED o [B Qatate Jieit @h ano

E

[— 01 Y0 1Y &F Nt pefwean
A {HL) Ihe Accomulatol
] ANG (©OCALON (ML)
RRD 7-430 0 X 0 X P O v 11101104 ED N “ I~ The conient of 1ne
e 01 100 1%y 67 ueDRs N3N of
A (RLY the accumulalor s
unattecied

NOTES e represents the exiensan w tne tglalive acdressing mode
1S 3 $IgNeY 1wo § complement NUMDer Hd he (ange < -126 329>
e-2 In (he occoae provides an eflechive aodress of pc + € 85 PC 15 incremeniad by 2 priof 16 1Ne 3o on o+

Flag Nolanon 1 = hag nol atiecied. 0 = tagieser, 1 = Hag sel X = Mag s ynkaowa
1 = Nag s ailecied according 1o 1ne resull ol Ine aperaon

Bit Manipulation Group

== 7
REG.
REGISTER ADDAESSING I$§R INDEXED
a1 A 8 [o E K L ML) X | (1Y +q
oD FO
0 cB [o]:] cse cB [o:] [of:] CcB ce CdB CdB
a« 40 a9 42 43 45 48 8 8
DO FD
cB [%:] csa ch cB ce co ce CDB Cdﬁ
1
4F [%:] 49 4A 4B 4C 4D 4€ 4E 4€
00 FD
- , cB cs cs cB CcB CB ca CB Cdﬂ Cdﬁ
s7 50 51 52 53 54 55 £ 58 58
00 FD
3 ce cB [of:] B cB [of:] CcB CB CdB Cda
5F £8 59 5A 58 5C 30 5E 5E SE
TEST "'8(T" oD FD
. CB [of] [o:] CcB ce ce ce cB ch ch
67 60 61 62 63 &4 85 (33 66 &6
o]0} FD
s CB ca CcB cB ch CB [«:] ce Cda Cde
6F 68 69 6A 6B 6C (3] 5? 8E 8E
oD FO
5 cs (o) ce cB CB CB ca ce CdB CdB
77) 70)A) 72 A 74 15 76 76 18
00 FOD
’ Cch cs cB ch (o] :3 cB ce cB Cda ch
1F 78 79 1A] M:3 _ZC 70 7E TE TE
00 FD
o c8 CB cB cB cB CB c8 cB ch Cdﬁ
87 80. 81 82 63 84 as 88 86 86
00 FD
' CB ce CcB ca cB cB [ol:] Cc8 CdB Cda
8F a8 89 8A [:]:}]+ 3D 13 BE 8E
0D FD
2 c8 c8 cB [o):] cB cB8 cs8 ca 068 CuB
397 90 91 92 a3 92 95 96 _795 496
(o1 FD
) CB cB CcB ce ch cB ce cB ce CdB
d
oF <9 93 SA 98 9C 9D 9E 9E L]
RESET DD FO
BIT 'RES’ . ce cB CB ce ce cB CB [»:] Cdﬁ CdB
A7 A0 Al A2 A3 Ad AS Ab A6 A6
0o FD
s CB cB cs8 c8 o] co ca ce cda CdB
AF AB A9 AA AB AC AD AE AE AE
DD FD
6 ce CcB ce cB CB ce c8 cB CdB Cdﬁ
87 BO 81 B2 83 b4 BS Bé aé 86
DD FO
) ce ce CB cB ch cB CcB (o] ch CdB
BF 88 B9 BA 8p 8C B0 8€ BE BE
oD FD
o cB [of] ca CB cB ca ce CB Cdﬂ CdB
cr co [c2 (o] [} Cs C6 Cé cé
00 FO
s ca c8 cB cB [o1:] c8 ca ce ch CdB
cf c8) ca | c8 cc ¢o ce CE cE
[a]n] FD
) cs cse ch cB CB cB CcB CcB CGB CdB
[s}4 DO [} 02 D3 D4 Ds 113] D6
DD FD
3 [of:] cB cs [v1:] Ch cB Cc8 c8 C;B ca
d
OF 08 D9 DA D8 oc Do 313 DE DE
SET BIY (2]) FO
‘SET! . CcB ce cB8 c8 [:) cB CB cB ce ch
4
E? E0 Et E2 (%] E4 (33 E& E6 E£6
DD FD
5 [o1:] ca ce cB ce cB [o1:] ca CUB Cda
EF ES E9 EA (1] EC ED €E £E EE
[]») FO
6 ce ce ce ce ch ce cB cs8 CdB CdB
Fr Fo £y F2 F3 Fda F5 F6 Fé (33
DD FD
; cB CB ce ce CB o] o] cBh ch ch
FF [} F9 FA FB FC FO FE FE } FE

C-25

Bit Manipulation Group

Symbolic Flags Opcode No.ol No.of M No.ol T
Mnamonic Oparation s 2z H PIWV N C 76 543 210 MHox Byles Cycles Siates Commenls
Bl o v PAETY X 1 X v X X 0 11 001 OV cB 2 2 & I o
_ 0y b« OUG 6
8IT o (HL) 2 — Hu)y X 1 X v x X 0 11 00V Ot cB 2 3 12 [l C
o' b V10 010 O
B D IX+0p Z - (X +dip X (X 1 X X 0 = 14 0 100 oD 4 5 20 o1 3
11001 Oy cB 100 H
- a - 100 L
0! b 10 (RS A
b Bil Tested
BIlb.(IY+d)yp 2~ 0Y+dlp X 1 X Y oxX x 0 « 1m0t FO e 5 20 000 0
11 001 01 [9:] 004 1
- g - 010 2
01 b 110 011y 3
100 4
o0 k)
"o 6
m 7
SET b ¢ -1 ¢ 2 X s X & e« . 11001 Ot s 2 2 8
o «
SET b (HL) (Hipp ~ ¢ v X e X w2 e 11 001 011 CB 2 4 15
[©] 6 10
SETD (IX+4d) (XeQp— L G S 11 011 108 DO 4 6 23
11 00t 01y CB
— d -
() o o
SETb aY +d) (IY+0)p — 1 . s X & X e s e 113y 0 FD 4 6 23
11 00% Oy cs
- a -
(1) b o
AESD m my ~ 0 ¢ = X e X e s » 0] To lorm new
m a1 (RU), opcode replace
(1X + 0}, [otsero s
Y+ d vath [10) Fiags

ano ume s\ales lor
SET instruction

HOTES The noIaton My inO.Cales DI D (010 7) 01 10Ta1an M

Fiag Notgnion » = flag nnl allecled O = hagreser 1 = llag seb X = 3Q s UnRxnowr
L2 gy s ADELIEC 5CCOQrAG 10 the (c3ull Of tne opesation

Input and Output Groups

Input Group
PORT ADDRESS
[T res |
IMMED.| INDIR.
n (]
OB ED
A n 78
€0
8 I
€0
c 48
. REGISTER €D
INPUY 'IN ADORESSING | © 50
ED
€ 58
INPUT " £0
DESTINATION €0
€D
L 68
I—
‘INF=INPUT & Inc HL, €0
Dec 8 A2
INIR'-(NP, (nc HL. ' ED
Dec B, REPEAT IF B 20| penisten B2 ﬁ:f?uﬁ"
{HL)
IND-INPUT & INDIRECT €0 COMMANOS
Ll:)ec HL, Dec B AA
‘INDR*-(NPUT, Dec HL E0
Doc B, REPEAT (F B0 BA
Output Group
SOURCE
REG.
REGISTER IND.
A B c D E H L (RL)
mmeo. | o | O
our
AEG. c ED ED €D ED ED ED €0
o, | © | 75 41 a9 51 59) 69
“OUTI*-QUTPUT Inc HL REG. E0
Oec b ino. | © A3
-OTIR™-OUTPUT, fnc HL, REG. c ED
Dec B, REPEAT IF B £ 0 ino. | @ B3
‘OUTD -OUTPUT Dec HL REG. ’ o BLOCKY
Dec B INO © AB OUTPY
. ’ | COMMANOS
‘OTDR’-OUTPUT, Dec KL | REG. o T ED
Dec &, REPEAT IF B+ 0 wo. | ! B 88
o
~————_—
PORT
DESTINATION
ADORESS

Input and Output Groups

Symbolic Flags Opcode No.ol Noof M Nool T
Mnemonlc Qperation s 2 3} PIV N C 76 543 210 Hex Byles Cycles Slaies Commenis
IN A, (n) A~ (n) ¢ 2 X » X s e e 110y OV [3):3 2 3 n nioAg ~ Ay
- a0 - ACC 10 Ag ~ Ayg
(N1 (C) r —(C) X 1 X P 0 e 110V 30 ED 2 3 12 ClohAy ~ Ay
e = 110 only Ine 0y ¢ QU0 8 loAg ~ Arg
flags will be altecied
d ®
(NI (HL) — (C) X toX X X X 1 e 1110y 01 ED ? q 16 CloAg - Ay
B-B-1 10 100 010 A2 B10Ag -~ Ays
HL - RL 4+ 1
INR (RL) - (C) X oy X X X X Ve 110y V0 ED 2 5 21 CloAg ~ A7
B-B-1 10 10 000 82 {1 B0y BloAg ~ Ay
HL — HL + 1 2 4 16
Repeat unin (18=0)
8=0 o)
(ND (RL — (©) X 1 X X X X 1 e Vo100 0y £ED 2 4 16 CioAp - A
B~B -1 10 10V 010 AA B1oAg - Ay
HL - RL~-
INOR (HLp ~ (C) X vox X X X b e 1y 101 0y ED 2) 21 Cl1oAp ~ Ay
8-8B-1 10 1Y 0V0 HA (B2 0) BloAg - Ayg
HL ~ HL =1 2 4 6
Repeat until (1 3=0)
B =0
OuT (n) A (0) — A « e X s X e s e 11 010 ON 03 2 3 1 N0 A) - A
- n - ACC 10 Ag ~ Ayg
QUT (C). ¢ (Cy—¢ e o X v X e s e Vo100 10] 2 3 2 CloAp ~ A7
01« 00! BioAg - A
® 8 15
ouTi (C) — (HLy X |1 X X X X . oo 101 €D 2 q V6 C1oAp - A7
B-68-1 10 100 O A3 Blo Ag ~ Ay
HL — HL + 1
OlR (C) — (RL) X 1 X X X X 1 o« 110V 10 ED 2 5 21 CloAg ~ Ay
8 ~8-1 10 110 Oy 83 (it B« 0 B1oAg - Arg
HL — HL 4 2 4 16
Repeal unii (1r8=0)
B8=0
0]
outo (Cy = (HL) X 1 X X X X 1 e 1110 10 ED 2 4 6 C1oAg ~ Ay
8-~-8-1 10 101 01V AB B10Ag - Ay
HL ~ H(-1
OTDR {C) - (HL) X 3y X X X X v e 1101 0 ED 2 5 21 Ciohp - 47
8-B8-1 10 111 0N (11 820 B 10 Ag ~ Ayg
HL — HL -1 2 4 16
Repeal unil I 8=0
8=0 -

NOTE OAI the sesull of B — 1 15 2010 Ine 2 (13Q «5 3€t OINEIwSE 111 185el

F1ag Nolahon » = llag nol allected O = lzg reset 1 = hag sel X = {lag 15 vnkncwn
1 = flag s alleCled aceorang 10 Ing result of {ne operanon

Call and Return Groups and Restart

Call and Return Group

CONDITION
UN NON NON | PARITY| PARITY| SIGN SIGN REG.
COND.| CARRY|CARRY | ZERD | ZERO| EVEN | ODD | NEG. | POS. | B=z0
co oc 04 cc (1) EC £4 FC F4
‘CALL! IMMEDIATE nn a n n n n n n n 0
EXTENSION a o n o n n o o n
RETUAN REGISTER {SP)
RET" INDIRECT sp+y| 9 08 Do cs co €8 €0 F§ Fo
4
RETUAN FROM AEGISTER (SP) ED
INT ‘RETI' INDIRECT (SP+1)| 4D
RN oM e | recisTEn sp) | eo
INT "RETR' INDIRECT (SP+1)| 45

Note: Cartain [lags have more 1han one purpose.
Refer 1o the Z80 CPU Technical Manuat loc delails,

Restart Group

or
CODE

0000y | C7 | RST O’

0008y | CF | "AST &

0010y | D7 |'RST 16

0018y | OF |'RAST 24’
CALL ADDRESS —‘
00204 | €7 [‘RST a2

0028y | EF |‘AST 40°

—
0030y F7 |'RST 48’

0038y | FF |'RST 36

Symbolic Flegs Opcode No.o! No.ol M No.ol T
Mnemonic Operslion S 2z H PN N C 76 543 210 Mex Bytes Cycles Siasles Commenis
CALL nn {SP-1) = PCy s s X e X ¢ s 11 g0 YWy COo K 5 17
(SP-2) — PC -0 -
PC — nn -~ n -
CALL cc. nn 1l congilion + o X e X e = 11 cc100 3 3 0 i ce s (alse
CcC Is lalse - n -
continue, - an - 3 5 17 i ce s lrue
olheiwise same as
CALL nn
REY PCL — (SP) e a4 X & X e & 11 00Y Q01 C9) 3 10
PCH — (SP 4 1)
RET c¢ If condiion e« 4 X v X s« e 11 cc 000 1 1 5 I c¢ 1s lalse
¢c s lalse
conunye, 1 3 " It ec s e
olnerwise cc Condion
same as 000 NZ non-zero
RET 00y 2 2er0
010 NC non cany
RETI Relurn (rom e o X e X » e e 110t 100 ED 2 4 14 0 C cany
nlerupt 0y 001 (01 40 100 PO panly odo
RETN! Reluin (rom A e X e X = e 1301 0V €D 2 1 14 101 PE panly even
non-maskable 0y 000 \O0 45 110 P sign posiive
nierupl 111 M sign negalwe
RST p (SP—1) ~ PCy s X 0 X e s e N1 i 3 N “W—%ﬁﬁ
(5P -2) = PC 00} O8H
PCH - O 010 10H
PCL ~p 031 18K
100 20K
101 28H
110 0H
11 38K

NOTE ALIN 10308 FEy - IFEy

Flag Nowaven ¢ = N3g Aol allected 0 = hagresel) = (lag Se(X = NaQ 1S ynrnown
1 = Daqg s allecied acco/ang 10 (Ae result Bl (Re ooeldlion

280 CPU Interrupt Structure

MASKABLE (INT)
MODE 0

PLACE INSTRUCTION ONTO DATA 8US DURING INTA = Mi - IORD LIKE 8080A
MODE 1

RESTART TO 38, OR 56, (RST 56')
MODE 2

USED BY 280 PERIPHERALS

{
INTERRUPT

NETUCE LOW ORDER | REGISTER 8-B17 VECTOR

STARYING * CONTENTS FROM PERIPHERAL

ADDRESS HIGH ORDER

TABLE
\
NON MASKABLE (NMI)
RESTART TO 66,, OR 102,,
INTERRUPT ENABLE / DISABLE FLIP-FLOPS

ACTIOIN; IFF, IFF,
CPU RESET 6 0
Dl o 0
El 1 1
LD A1 S IFF, - PARITY FLAG
LD AR - IFF, - PARITY FLAG
ACCEPT NMI 0 .
RETN IFF, « IFF, - IFF,
ACCEPT iNT 0 o0
RETI PO

“»™ INDICATES NO CHANGE

Appendix D

MPF-IP Schematic

8 7 | S | a] 3 [2 _ .
Al
SHT2) 29—
5
vV
358MHZ 5v sy o
! 2 1 wa Bl 2 21 N%.
" 3 ﬂom KQ ob_ﬂm v wwwﬂm v 0
02K 1316 13152 02 502
. 6212 55 03 Slo3 0%
: bs 05 765 B o
_umd 06 19 wjm :Om
> ! 7 7 nenie) o’
Q 1015 al.) —
Ul »w,w 3l U2 EIARRE T ue 730 s
280 429 73 9900 2 2000 gl Fooo 2 74
EM CPU Alf Elp, tFFF 1 Py 2, FIFF 173 FRFE
»mT& 5he 3 oo o
Rl ﬁ Agp3 A6 (HNZ76L) $P6(HN2752) A6) ne (HMENE)
i Al FARA =tA7 a7 4FFs A
RS | 10K A A3 A8 ~¢>m Pl Ag C
RAX? agld 2349 2009 20,8 (N 2732) FEIR:
T 77 por 73 (0 o
= . _N M
C17== LyF Al72 Al2 & 2 = d.mﬁg = o
I i e q 0liz) ®12[20
- 3 %.» = = |
10K X3 o—)
24 NATT
o |2
3 e SE £
5V INT s
—_ 76L5907s 71,504 .
BREAR
] 10 __ CE5(A 1v0
3 DﬂC.W,P U 2 T A5 S 3 8 o2 = 6
So ol J_wrm%pw LA ﬁ =G SStsse | e o 7
2 02 AnPA s 18 [20 5) Y7 Mé)
= 70 R o) Ul
T s e, :
SHT2 RST: R o0 —o— ﬁ
330 107 s 17 Hugo »
741504 48 Y0 = N
2N9Q15 v
01 TINJQ 24
L B Vi L) m %
= 32 ;
¢ MULTITECH |~
ﬂﬂ 74L5138
SHT?2({ C52 TITLE
m MPF-1 Plus
SHEET 1 OF 5 | DATE | REVISIONS
DRAWING No. Toﬂmu A
8 [7 1 6 | ” 1 3 I 3 i _

8 6 5 3 2 [1
5y
ﬂ/«) D
26 26
RAZ W W L i 7o
L EEEE s —1 Pa0ls 2]
Y > s
0o Spg PA? E *{png m»ww =
o1 A33 < £ PO v, Q = L
02 \32 N PO S - w—
03 €l N oail P T——3h isum
paofif — 5
0« 20 Woe pai @Hd 57
s pes | A .ww
\28 nmn.mk.‘lw.& c
D& V|~.J0m Vmwulu[lr Tn
sH1 { D7 27 o NS AVRTE LS ———
8255 BREAK SH1
RST 39) Bl 29 e _T sv
RO \mﬂs ocall 9 %ﬁ: Vvlw RO o =
. 36 pCyd 36
R [WR WMM 3 SV bsHrFTY 7 [WR
A0 Nao pcA w 10R |»_,. 91n0
kY 8
Al 8 Al DDM“X@ Al
. AL L
&2 81 L.T T 8 5
Qo_um_. GND - g C3
H8 Y 3L o~ MIC (Aud
= = onr 108 = 05 S o Quiput)
e Too!
Joow R8s
F—@EsR (0udio rDut) —
RO Qu2uf
LA MULTITECH |-
1 “TITLE
= MPF—T Plus
SHEET 2 OF S DATE | REVISIONS
DRAWING NO_ dS@@N A
8 | [6] 5] { 3 2 [!

8 7 | 4 2 h 1
= 1 16
uis 15
== £ i
= & Pagoc|! VF1
3e 5 —w
s > K vF2
59 lGND_ SV
SH | 1] L6 _|
mw_, 7] ule 5 I NEC
L 3
wu_, Z)UPASOC 17 ;
S V4
£l g 1
k) Ao
>0 GND 5V
4 _
mmum 7 w7 T
dg
nmmlﬂ_, ncgm.oﬁ 5 Qpb RI12 5 s G V2= 56Y
2L 5 @327k s
SHT2q G4 uu”w 2N2722A 1
GND 5V @] 8 5 =
3 03 3220
P! R2Y 4 5 9N\ = > +lcs
— q| Lo 2
< 1 P
V8 m o Qounwdoo 2 ﬁ
UPABOC m 3 «00P R13 = o3 (™30
11 [
ot GND_sv
1 7805 | TOP VIEW
2] uUl1d
k) _N T
UPAg0C
5 =g @
7 o~
GNO SV
L 8 3 5 @ z
TITLE:
MPF -1 Plus
SHEET 3 OF S | DATE | REVISIONS
DRAWING NO. ,_o\w_\mm. A
_ — - 2 T 2 T _

D
o)}
N
o
wn
EY
w
olu «1‘
NOD(T o
207
I
180 =
5 S
> -—
_@ﬂ =
= N an)
1>=g &2
j =
AN
>

| o | 0 o
w
L
N
I'_*__"—_"'ﬁ
5 = =
N
o
g
> -
NI NN a
W N
-] B &
-t | N
[°] Lo
s
-— - ~
: &
) -
w N &
En 5
[o] I —
Q a
o [a)
x) N
<& g
. B — (¥ad
m
| - 8l
o
&
NEREh o e :
Q [«¥
Q,
» 2
Q.
Q,
el " - :
|m a
- < |=» S
a
~ g
gld 2
[N a
=y
=z =< w
o]~ &|
v g
- i 3
B : L
I_‘I “ _ » Q) [’
o] :
v &,
[v 1o 1 3
o) :
3 8
3| O
2]
z & B
~ >
L BB
2 £3 &8
(85 ut wn
< < <
1 i} T 0 [v]

'
1
1
'

s

~
o

Fm e e e e e e e mm - -
100000000 0C00C0O00O0D0V0O00O
1000000000600 O00OOO0OOOCO

J2?
12 3 L 05 6 7 1
31 PIN FUNCTION J2 PN FUNCTION ST m e 8. ..o::._
PIN NO | SIGNAL | PIN NO | STGNAL PIN NO | SIGNAL A, ” o © 6 © 06 6 0 0 06 ©o 0 _.
] A 2] A1 1 0s-C | e e meeo— !
? A2 A9 12-4
22 ? 2 U4.US Detaull connection 15 destinea for 6116
3 Al3 2 A8 3 | w2 T2: PIN 1.L$ Short
¢ AlL 2 A7 4| =20 PIN 3.5 Short
5 AlS 25 A S u us—8 PIN 6.6 Short
6 3 26 A5 & A WR PIN1Q.1} Short
[27 AL 2 an
| 04 H | A If user's want to change 6116 into 5516 conmeciion
| 03 A3 uL-21
_ 8 28 8 tor lower power baltery back GP
| 9 D5 29 A2 9 U5-20 |
first . Cul J2 PINT,4.9 OHO¥0
10 06 30 Al 10 US-1€ PIN 3.5 323
Al SV 3 A0 11 u12=-9 PIN Q.71 JﬁYwToO 9
12 U2 32 GND Second " Connect PINT, S 10
e AN 3 &
13 D7 33 RFSH PING. 11
14 00 3L Ml
15 D1 35 RESET vee vCe vee vCC Sw Description
— 12
16 T 3 | BUSRO PUBSYTEM 4 us v oN | Auto battery back wp
17 NI 37 WATTY OFF | Mo battery back up
18 FALT 38 BUSAK ac
19 MREQ 39 WR Adaplor
20 TORQ 40 RD

MULTITECH _

MPF-T Plus
SHEET 5 OF § DATE | REVISIONS
DRAWING NO. ._§N A

| S—

jim.

7 6 [B [4 I 3 I 2 []

Appendix E

MPF-IP Monitor Commeind Summenry

Registers

Bl [<w

Category Command Function
* Major RESET Enter and initialize the monitor
Function '
Entry
0 Re—-enter the monitor
E Enter and 1initialize
the text editor
R Re~-enter the text editor
A Enter two pass assembler
L Enter one pass assembler
D Enter disassembler
B Enter the BASIC language
C Re—-enter BASIC
Fill in Data | F Store data in the RAM buffer
Jump Relative| J Calculate the relative address
Insert Data I Insert the contents of a memory
block into the RAM
Delete Data D Dalete one byte of data from
the memory
Execution G Execute a program which starts
from a specified address
Step S Single-step a program
(Execute a program instruction by
instruction.)
Display/Alter Display the contents of registers

Display the contents of the next
pairs of registers

Display the contents of the
register pairs that precedes the

registers currently displayed

Change the contents of registers

Display/Alter| M Display the contents of
Memory specified memory locations
Display the contents of the next
four bytes
Display the contents of the four
bytes that precede the current
displayed location
Alter the contents of specified
memory
/ Move the contents of a memory
block to another location
Manipulate B Set or clear breakpoint
Breakpoint
— -
Load/Dump L Load data from rape to memory
Memory W Write data from memory to tape

* Note: Any of the major functions are entered by
typing the related control character while holding down
the CONTROL key.

Appendix F

Editor Commeanmd Suwmmenry

Appendix F: Editor Command Summary

A. Editor Operation Sequence
I. Enter into the input mode of the text editor

1. CONTROL E

2. F: [nnnn} T: ([nnnn}

3. INPUT ({Flash for a few seconds.)

4. Type in a source program.

5. After typing in the soure program, type the
carriage return key twice and the "Quit"
command to exit to the monitor.

"n" represents a hexadecimal digit. The value enclosed
in the square parentheses is optional. If a programmer
does not want to set the starting and ending addresses
for the text buffer, he may type the carriage return
key when prompted by F: and T:. This will set two
default values for the text buffer.

I1. Enter into the edit mode of the text editor

. CONTROL R

. F: [nnnn)] T: [nnnn]

. Edit (Flash for a few seconds on the display.)

. $ (Display the prompt of the text editor in
edit mode, The line pointer is pointing to
the top of the file in the text buffer.)

5. Use editor commands to revise the source

program, After finishing editing the source

code, type carriage return key twice and the

"Q" command to exit to the monitor.

LoV)

B. Summary of the Editor Commands

Category

Editor Entry
and Exit

Text
Manipulating
Commands

Commands
Enter {(CONTROL)

Re-entey (CONTROL)
Quit

Delete
Insert

Print n
Read/filename/
Write/filename/
Z

Function

Enter the editor from monlitor
Enter the editor from monitor
Quit the editor and entey the
monitor
Delete a line
Insert a line

Print n lines

Read data from tape

Write data to tape

Print all the data In text buffer

8otton

IMove the line pointer to the
bottom of the file

Move the line pointer to the nth
line in the text buffer

Print the line number of the line
pointed to by the line pointer
Move the line pointer to the next
n line

Move the line pointer to the top
bf the file

Move the line pointer up n lines

Line Pointer
Manipulating
Commands Gn

Line numbey

Next n

Top

Uup n
String Change/old string/
Handling new string
Commands |

Find/string/

Fhange a string in the current line

Find the line with the
specified string

Other Commands | Space
and the memory space used to store
the current text file
X

Carriage Return

‘Pisplay the next line

Control the prnter (a toggle switch)

Appendix G

Assembler Operction Sequence

Appendix G: Assembler Operation Sequence
I. Two-Pass Assembler Operation Sequence

CONTROL A

ORG:

ORG: [nnnn)

. SYM>F:

. SYM>F: [nnhnn]

. SYM>F:[nnnn) T:[nnnn)
. OBJ>F:

8. OBJ>F: [nnnn]

9, OBJ>F:[nnnn] T:[nnnn]

NN B W N

"n" represents a hexadecimal digit. The value enclosed
in the square parentheses is optional. If a programmer
does not want to set the starting and ending addresses
for the text buffer, he may type the carriage return
key when prompted by F: and T:. This will set default
values for the memory space for storing source code,
Symbol table, and object code.

II. One-Pass Assembler Operation Sequence

1. CONTROL L

2. ORG:

3. ORG:[nnnn}

4., OBJI>F:

5. OBJ>[nnnn]

6. INPUT

7. The display of the MPF-IP will show the value of the
reference counter,. The user may begin typing in a
source program.

Appendix H

MPF-IP ASCII Code

MPF-IP ASCII CODE (CALL SCAN)

MSD 0 1 2 3 4 5 6 7
LSD 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
0 0000 sSpace 0 @ P
1 0001 ! 1 A Q
2 0010 " 2 B R
3 0011 # 3 C S
4 0100 $ 4 D T
5 0101 % 5 E U
6 0110 & 6 F %
7 0111 1 7 G W
8 1000 (8 H X —
9 1001) 9 1 Y l
A 1010 * J 7
B 1011 + ; K
C 1100 , < L
D 1101 | CR - = M
E 1110 . > N f
F 1111 / ? 0 i

Appendix |

MPF-IP Keyboard Position Code

Position-code (CALL SCAN1):

00 1 t 01 LA! 02 'space’
03 2 et 04 'S 05 e
06 '3 ! 07 'D' 08 o
09 4t g OA 'F! OB ool
oC '5' '%! 0D 'G! OE U I
OF '6' '&! 10 'H' 11 ' CR
12 rgr 13 'J! 14
15 '8 (! 16 'K' A 17
18 9t 'Hy! 19 'Lt e’ 1A
1B ‘oY ! 1C it 1D
1E 'Q’ 1F 'z 20
21 'w! 22 'X! 23
24 'E! 25 'C! 26
27 'R' 28 v 29
2A ' 2B 'B' 2C
2D 'y! 2E 'N' 2F
30 ‘U 31 ™' 32
33 Tt 34 o< 35
36 o' =t 37 o> 38
39 'PY T4t 3A ey v 3B

Appendix J

The Display Paitems for Alphanumenric
Letters and Special Symbols

Character Segment name dpnmlkji hgfedcba. 2nd 1st
byte |byte

A a,b,c,e,f,g,h | 11111111 | 00001000 | FF 08
B a,b,c,d,k,i,3,| 11111100 | 01110000 | FC 70
C a,d,e,f 11111111 | 11000110 | FF Cé
D a,b,c,d,i,] 11111100 | 11110000 | FC FO
E a,d,e,f,g,h 11111111 | 00000110 | FF 06
F a,e,f,g,h 11111111 | 00001110 | FF OE
G a,c,d,e,f,h 11111111 01000610 FF 42
H b,c,e,f,g,h 11111111 | 00001001 | FF 09
| a,d,i,] 11111100 | 11110110 | FC F6
J b,c,d,e 11111111 | 11100001 | FF El
K e,f,g,k,m 11101011 | 10001111 | EB 8F
L d,e,f 11111111 | 11000111 | FF C7
h,m 11101111 | 01111111 | EF 7F

& a,b,d,e,g,h,e,;m |11100111 | 00100100 | E7 24
M b,c,e,f,k,1 11110011 | 11001001 | F3 C9

b,c,e,f,1,m | 11100111 | 11001001 | E7 | C9
a,b,c,d,e,f |11111111 | 11000000 | FF | co
a,b,e,f,g,h | 11111111 | 00001100 | FF | OC
a,b,c,d,e,f,m 11101111 | 11000000 | EF | CO
a,b,e,f,g,h,m 11101111 | 00001100 | EF | OC
a,c,d,f,g,h | 11111111 | 00010010 | FF | 12
a,i,j 11111100 | 11111110 | FC | FE
I b,c,d,e,f 11111111 | 11000001 | FF | C1
(e,f,k,n 11011011 | 11001111 | DB | CF
b,c,e,f,m,n |11001111 | 11001001 | CF | C9
k,1,m,n 11000011 | 11111111 | c3 | FF
ik, 1 11110001 | 11111111 | F1 | FF
m,n 11001113 | 11111111 | CF | FF
n 11011111 | 11111111 | DF | FF
a,d,k,n 11011011 | 11110110 | DB |Fe
dp 10111111 | 11111111 | BF |FF

i,3 11111100 | 11111111 | FC | FF
a,b,d,e,g,h |11111111 | 00100100 | FF | 24
a,b,c,d,g,h |11111111 | 00110000 | FF | 30
£,g,h,1i,3j 11111100 | 00011111 | FC | 1F
a,c,d,f,g,h | 11110111 | 01110010 | F7 | 72
a,c,d,e,f,g,h| 11111111 | 00000010 | FF | 02
a,b,c,f 11111111 | 11011000 | FF | D8
a,b,c,d,e,f,g,h [11111111 | 00000000 | FF | 00
a,b,c,d,f,g,h{11111111 | 00010000 | FF | 10
a,b,c,d,e,f,k,n[11011011 | 11000000 | DB | CO
g,h,1i,3 11111100 | 00111111 | FC | 3F
b,c,d,g,h,i,j|11111100 | 00110001 | FC | 31
a,b,c,d,e,g,j|11111101 | 10100000 | FD | 40
g,h 11111111 | 00111111 | FF | 3F
X, m 11101011 | 11111111 | EB | FF
e,n 11010111 | 11111111 | D7 | FF
k,n 11011011 | 11111111 | DB | FF

sk g,h,i,j,k,1,m,n 10000000 | 00111111 | 80 | 3F

; o f,1 11110111 | 11011111 | ¥7 | DF
' k 11111011 | 11111111 | FB | FF

= d,g,h 11111111 | 00110111 | FF | 37

? a,b,h,j 11111101 | 01111110 | FD | 7C

% c,f,g,h,k,1,m,n 11000011 | 00011011 | C3 | 1B

< d,k,n 11011011 | 11110111 | DB | F7

> d,1,m 11100111 | 11110111 | E7 |F7

$ a,c,d,f,g,h,i,3 (11111100 | 00010010 | FC |12

! a,j,k,1 11110001 | 11111110 | F1 | FE

M lt't INDUSTRIAL e
UICIC@CNcorr, :
OFFICE/315 FU HSING N. ROAD. TAIPEI 104, TAIWAN R.O.C.
- TELEX: 19162 MULTIC™ AND 23756 MULTIIC™
Muiltitech FAX: (02) 7136001 {(G3 TYPE)
TEL: (02) 7134022

FACTORY/1 INDUSTRY E. ROAD IIl.

HSINCHU SCIENCE-BASED INDUSTRIAL PARK.

HSINCHU. TAIWAN 300 R.O.C.

DOC. NO.: MIP04-8305A

	1 - Overview and Installation
	Introduction
	An Overview of MPF-1P Specifications
	Installation Procedure

	2 - MPF-1P Specifications
	Hardware Specification
	Central Processing Unit
	ROM
	RAM
	Memory Expansion Area
	Input/Output Port
	Display
	Keyboard
	Speaker
	Audio Tape Interface
	System Clock Rate
	System Power Consumption
	Main Power Input
	Physical Characteristics

	Software Specifications
	Reset Cycle
	Keyboard Scanning
	Display
	Audio Tape Interface
	Display and Alter Data in Memory
	Clear/Set Breakpoint
	Debugging (Breakpoint/Singlestep)
	Calculate relative Addresses
	Text Editor
	Line Assembler
	Two Pass Assembler
	Disassembler

	3 - System Description
	The Functions of the Monitor
	Battery Backup
	RAMs
	Address Decoder

	Keyboard Familiarization
	The Monitor Commands
	The TAB Key
	Input Line Buffer

	PRT-MPF-1P
	Addresses Related with System Expansion
	LED Lamp
	Speaker Voice Volume Adjustment
	When the Monitor doesn't Respond
	Software Break - RST 30H
	Number Systems
	Audio Tape Interface
	Control Q or Q
	Control P and Control G

	4 - Operating the MPF-1P
	The Major Monitor Commands
	Major Function Entry and Exit
	E - Enter and Initialize Editor
	B - Enter and Initialize BASIC
	R - Re-Enter Text Editor
	C - Re-Enter BASIC
	L - Enter the One Pass Line Assembler
	A - Enter and Initialize the Two Pass Assembler
	D - Enter and Initialize the Disassembler

	Basic Operations
	System Initialization - The RESET Key
	Printer Control - Control P
	Software Escape - Control Q
	Bell Control - Control G

	Support Functions
	M: Display/Alter the Contents of Memory
	M: Display Memory
	Display consecutive Memory Locations
	Memory Dump (with Printer only)
	Alter Memory Contents
	Move Contents of Memory Range

	F: Fill data into a Memory Range
	R: Display/Alter Register Contents
	W: Store Data on Tape
	L: Read Data from Tape to Memory
	J: Calculate Relative Address
	I: Insert Data Into Memory
	D: Delete Data from Memory

	Program Debugging
	B: Set and Clear Breakpoint
	S: Single Step
	G: Execute a Program
	Exercises

	5 - Useful Subroutines
	System Parameters
	Input/Output Parameters and Summary of Subroutines
	BEEP
	CHK40
	CHRWR
	CLEAR
	CLRBF
	CLRDSP
	CONVER
	CR
	CR1
	CR2
	CR3
	CURSOR
	DECBIN
	DECIMAL
	DEC-SP
	ERROR
	GETCHR
	GETHL
	HEXBIN
	HEX1
	HEX2
	HEX4
	HEXX
	LDA
	MSG
	MTPPRT
	ONE
	PLINE
	PLINEFD
	PRINTT
	PRTMES
	PTEST
	PTESTT
	RAMCHK
	READLN
	SCAN
	SCAN1
	SCAN2
	SHIFT
	SKIP
	SPACE1
	TONE
	TONE1K
	TONE2K

	6 - The Text Editor
	Text Buffer
	Line Pointer

	Enter and Re-Enter the Editor
	E: Editor in Input Mode
	R: Editor in Edit Mode
	The TAB Key

	Summary of the Editor Commands
	Editor Entry and Exit Commands
	E: Enter and Initialize Editor
	R: Re-Enter Editor

	Text Manipulating Commands
	I: Insert Lines
	D: Delete a Line
	P: Print a specified Number Of Lines
	Z: Print whole Text Buffer

	Line Pointer Manipulating Commands
	B: Move Cursor to Bottom of File
	G: Move Line Pointer to Specified Line
	U: Move Line Pointer Up
	N: Move Line Pointer Down
	T: Move Line Pointer to Top of File
	L: Print current Line Number

	String Handling Commands
	F: Locate a String
	C: Change a String

	Other Commands
	S: Display Editor Default and Current Values
	X: Printer Toggle
	W: Write Data from Memory to Tape
	R: Read Data from Tape to Memory
	Error Messages

	7 - The Assembler and Disassembler
	Two-Pass Assembler
	The Use of the Two Pass Assembler
	Assembly Language Pseudo-Ops
	DEFB
	DEFW
	DEFM
	DEFS
	END
	EQU
	ORG
	LABEL
	Summary of Pseudo-Ops

	Pseudo-Ops Usage Examples
	Example 1
	Example 2
	Example 3

	Line Assembler
	The Use of the Line Assembler
	Calculate Displacements for Relative Jumps

	Error Messages
	Assembler Errors
	Instruction Errors

	Disassembler
	Summary of Text Editor and Assembler Parameters

	8 - System Configuration
	System Memory Organization
	Input/Output Addresses
	Interrupt
	Stack
	Reset
	Power-On Reset
	Warm Reset

	Tape Data Format
	Bit Format
	Byte Format
	File Format
	Audio Cassette Tape

	System Clock
	Reset
	Audio Tape Interface
	The Display and Keyboard
	Principle of Operation
	The Driving Modes
	FID Buffer Driver
	FIP Structure

	A - Z80 Pin Configuration
	B - Z80 Instruction Set
	Introduction
	The Assembly Language
	Operands
	Operand Notation

	Rules for Writing Assembly Statements
	Alphabetical Mnemonics List

	C - Z80 Programming Reference
	Instructions Sorted by OpCode
	Instructions Sorted by Mnemonics
	Z80 Register Configuration
	ASCII Character Set
	Summary of Flag Operations
	8-Bit Load Group
	16-Bit Load Group
	Exchange Group
	Block Transfer Group
	Block Search Group
	8-Bit Arithmetic and Logical Group
	General Purpose Arithmetic
	CPU Control
	16-Bit Arithmetic Group
	Jump Group
	Rotate and Shift Group
	Bit Manipulation Group
	Input Group
	Output Group
	Call and Return Group
	Restart Group
	Z80 Interrupt Structure

	D - MPF-1P Schematic
	E - Monitor Command Summary
	F - Editor Command Summary
	G - Assembler Operation Sequence
	H - MPF-1P ASCII Code
	I - MPF-1P Keyboard Position Code
	J - Display Patterns

