MPF-IP

Manual

COPYRIGHT

Copyright©1990 by Acer Incorporated. All rights reserved. No
part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Acer
Incorporated.

DISCLAIMER

Acer Incorporated makes no representations or warranties,
either expressed or implied, with respect to the contents hereof
and specifically disclaims any warranties or merchantability or
fitness for any particular purpose. Acer Incorporated software
described in this manual is sold or licensed "as is". Should the
programs prove defective following their purchase, the buyer
(and not Acer Incorporated, its distributor, or its dealer)
assumes the entire cost of all necessary servicing, repair, and
any incidental or consequential damages resulting from any
defect in the software. Further, Acer Incorporated reserves the
right to revise this publication and to make changes from time
to time in the contents hereof without obligation of Acer
Incorporated to notify any person of such revision or changes.

Preface

MPF-IP FORTH Manual is written for those whe wish ¢to
learn FORTH with MPF-IP, a production of Multitech
Industrial Corporation. Readers may better understand
this fourth generation cohputer language by [following
instructions stated in the manual. For those who do not
have MPF-IP, the manual offers an opportunity te know

FORTH.

You can start to practice by inserting a FORTH EPROM on
socket 03. Options such as printer and 1/0 M may be
connected to enhance its capability. In additien, an
independent and complete system may be set up by adding
EPROM WRITER to FORTH.

FORTH combines merits of both high level language and
low level language. It is a highly structured language.
You may define your own WORD (instructions are called
words in FORTH) if necessary. The system provides basic
words for arithmetic and logic operations and stack
manipuelation. However, users themselves may define
stronger and more adequate words for specific situation
without any restriction.

FORTH uses postfix notation to wreite programs.
Therefore, expressions 5 + 3, 5 * 3 in BASIC are
changed to 5 3 + , 5 3 * in FORTH. It is possible for
you to encounter a few difficulties in wusing this
notation at the very beginning. But, you can make the
best use of its function once you get used to it,

This manual is a helpful guide for FORTH beginners. We
hope you enjoy reading it,

TABLE of CONTENTS

CHAPTER 1 Introduction 1

1.1 The Source of FORTH-MPF-IP? 3
1.2 Essentials and Options 3
1.3 ASCI Codes in FORTH 3
14 Entering FORTH and Exiting FORTH-MPF-IP 4
1.5 An Overview of the FORTH Language 5
1.5.1 "Word" and "Dictionary" in FORTH 5

1.5.2 5tacks in FORTH 13
1.5,3 postfix Notation 15

CHAPTER 2 Stack Manipulation and Arithmetic
Operations 17

2.1 Number Input/Outpul 19
2.2 Words for Arithmelic Operafions 21

2.3 Stack Manipulation 25

CHAPTER 3 Constants, Variables and Arrays 29

3.1 Constanis 31
3.2 variahles 31

3.3 The Usage of Constanis and Variables 32
3.4 Arrays 33

Il

CHAPTER 4 Dictionary, Vocabulary and Memory

Map

35

4.1 Memory Map 37

4.2 Pseudo Disk in FORTH-MPF-IP 38
4.3 Print the Message 41

4.4 Define a New Word 41

4.5 Structure of FORTH Words 42
4.6 The Dictionary 44

CHAPTER 5 Structural Conditional Control

47

5.1 Conditional Branch 49
5.2 Compare Words 51
5.3 Loop 53

5.3.1 Finite Loop 53

5.3.2 Indefinite Loop 55
5.3.3 Infinite Loop 56

CHAPTER 6 Printing Strings and Numbers

59

6.1 Strings Manipulating Words 61
6.2 Single Character Input/Output 62
6.3 String Input/Output 63

6.4 Printing Format for Numbers 65

CHAPTER 7 Editor

69

7.1 Editing a Program 71
7.2 Line Editing Words 72
7.3 Editing a String 74

7.4 Compiling FORTH Words 77

CHAPTER 8 Interrupt Signal

79

8.1 Low level Words in FORTH 81
8.2 Low Level Interrupt Handler g4

8.3 Interpretive Interrupt Handling Process

85

CHAPTER 9 Application Programs

87

9.1 Using P@ and Pt 89
4.2 Developing Application Programs 90

Appendices

95

A MPF-IP ASCIl Codes 97

B MPFIP FORTH Glossary 29

C MPF-IP FORTH Error Message 141
D User Area RAM Map 143

Introduction

]

1.1 The Source of FORTH-MPF-IP

Trhe MPT-IP 1is a convenient instrument to learn the
FCRTH languade. It contains an 8K-bytes KEPROM. The
BEFROM records the FORTH language and can be inseried
inte the socket 03. The FORTH begins to werk by botk
turning on the machine and pressing CTRL-B. Press the
RESET key and zurn orn the machine again also help
initialize.

The programs for FORTH-MPF-IP are based on BHHE
programsg of FIG-FORTH. The FORTH has functiong as
an interpreter, a compiler and an editor. 1t also
contains the internatiodal FORTH-72 standard commands
foct., 1988). In addition, we provide other words
especially for MPF-IP which will be discussed later,

1.2 Essentlals and Options

The @ssentials tor FORTH-MPF-]IP are as follows:
fL) a system unit (4K RaM)
{(2) a FORUTH-MPF-1F EPROM
In additivn, some Utheﬁ opl_ans ndy beg used.
{l) printer: It prints data cutputr for permanent

record.
(2) I1/0 M: The expansion memocry strencthens the
edit function. 1Its [0 port makes
FORTH snow a strong control

capakility.

f21) FPROM WRTTRR: A full set of irdependent
applied system is used in accordance
with FORTH system.

fd} SCGB § SSB: They are used to produce sounds.

1.3 ASCII Codes in FORTH

The conmands in FORTH are composeé of a series of
characters, separazed by spaces., The characters include
a full set of ASCII codes, gxclugding Ttackspace,
carriage return, null, end space; and control codes,
excluding CTRL-P {(used tc¢ control printer) and CTRL-G
fused to control speaker). The following strings are
some examples:

-FIHD . BEGIM T2 (EMIT

-3-

Oon MPF-IP's keyboard, stands for carriage return,
< stands for backspace, [E3] stands for space., Null
is a self-produced code in the FORTH, 'which can not be
seen at the keyboard. Refer to Appendix A for the codes
generated by the other keys.

Three basic commands in FORTH [,], and [COMPILE] are
replaced by (*, *) and <COMPILFE> respectively, as [and
] can not be generated by the MPF-IP keyhoard.

1.4 Entering FORTH and
Exiting FORTH-MPF-IP

(A) Entering FORTH-MPF-IP

There are two ways to enter the system, if the screen
displays *****MPF-I-PLUS***** or 3 after you turn on
the machine.

l. Press and [B] simultaneously. The FIP
(Fluorescent Indicator Panel) will black out for a few
seconds, and the screen displays ****FORTH-MPF-Ip****
It enters the system and waits for commands. It is the
cold start which clears the commands outside the
system, and makes an initialization., Memory in the
pseudo-disk track becomes @.

2. Press [CONTROL] and [C] simultaneously, The screen
displays ****PORTH-MPF-IP****, and waits for you to
input commands. It is the warm start that is generally
used in reentering the system and keeping the
established dictionary commands before exiting FORTH.
Initialization is only made for few variables. No
clearing is implemented on the dictionary and the
pseudo disk memory.

(B) Exiting FORTH-MPF-IP
There are also two ways to exit the system.

1. Press the RESET key.
Wnenever you press [ﬁﬁ, MPF-IP returns to the initial

status. The screen displays *****MPF-]-PLUS*****

2. Input [MOR [=].

The MPF-IP is now under the control of the monitor. The
screen displays the monitor's prompt > .

1.5 An Overview of the FORTH Language

¥You may follow the steps listed below to enter inte the
FORTH-MPF-1IP syslLem.

a, Be suare to turn off the power, and then insert
FORTH-MPF-IP TPROM inte the socket U3.

b, Connect all options.

o. Turn on the power, and the screen displays
KkF X EWDPE T -PT.[IGEFERE _ .

d. Press and [B! simultaneously, and the
screen displays ¥*¥*¥FORTH-MPF-IP**wH,

e. Press , and the screen displays OKa, indicating
it is in the FORTH system.

16.1 “Word” and “Dictionary” in FORTH

Every kind of conputer language has its own nctation to
indicate what V.yill be executed, such as instructions LI}
A.B and aDD A,C 1in the Assembly Language; and
slalements For I=3 TO 255 auad PRINT &+B in BASTC.
In FORTH, we use "word" to execute a comnand.

A "Word" is compssed of one or more than one
characters., It is tho cede for an event or a procedurs.
In FORTH-MPF-IP, each "word" is related to an event.
For eyample, the ward * multiplies two nmumhers in the
memory and savesthe result back to the memnry. The word
EMIT takes bthe number in the memory &s an ASCII code,
and prints cr displays its corresponding ASCII
character., Primitive "WCRD"s supplied in FORTF-MPF-1IP
can ke illustrated by pressing VLIST . Consult
the fcllowing printout:

VLIST
E@09
3AF4
3AES
3ADD
3aD1
3AC4
3AB7
3aAl
3A88
3A73
3A60
3A2E
39D4
39C7
3946
398F
394D
393A
3934
391D
3969
38DA
38CF
38C1
3849
386D
3818
37D9
37¢9
37BC
3780
37A2
3791
376E
3756
3728
3715
36FC
36ED
36D0
36BF
369D
3686
366D
3656
3648
3634

TASK
MON

EI

DI

IM@

IM1

M2
NEXT
END-CODE
CODE
TREAD
TWRITE
.S

>

D<
DEPTH
ROLL

J

EXIT
20VER
2S5WAPD
.CPU
INTVECT
INTFLAG
; INT
INDEX
LIST
VLIST
u.

IF
REPEAT
AGAIN
END
UNTIL

361E
3608
35F5
35EA
35CF
35BD
35AB
356F
3555
3535
3581
34C2
34B7
349B
347D
346F
34586
3446

343B -

3439
34258
3414
33FB
3303
33AF
338D
336E
335C
33435
3338
332B
331B
336C
32E6
32CB
3286
3Z2A¢0
3292
3283
2271
325F
324B
1220
311DD
319¢C
316F
315¢C
314C

+LOOP
LOOP
DO
THEN
ENDIZ
BEGIN
EACK
FORGET
]

-

LOAD
CUNP
FLUSH
R/W
BLOCK
HUFFER
EMPTY-BUFFERS
UPDATE
+BUF
PREV
USE

Pl

PR
MESSAGE
.LINE
<LINE>
M/HMOD
*f
*/MOD
Mon

/s

Fdyle]»)

*

M/

Mt
MBX
MIN
DADSG
ABS
D+—
4
5->D
COLD
WaRM
ABORT
Q11T
<
DEFINITIONS

3134
3121
2DET
38CE
k1 2-1'1
305¢
3835
AglB
2FFC
2F76
2Fal
2F33
2F@9
2EBL
2E66
2El4
2E¥1
2DEY
20DAa
2DC9
Z2DAB
2D6C
2D54
2CDA
2CAB
2C92
2057
231
2C1E
2BE7
2BE7
2BDW
2BBA
2BA4
Z2BBE
2B7C
2B67
2BR58
ZB41
ZB27
2BBA
2ZAE7
2AEE
2ACE
2AME
ZAQRB
2ARA
2AT7d

EDITOR
FORTH
VOCABULARY
IMMEDIATE
INTERPRET
?STACK
DLITERAL
LITERAL
CCOMPILE>
ID.

EREOR
<ABORT>
~EFIND
NUMBER
CONVERT
WORD

PAD

HOLD
BLANEKS
ERASE
FILL

QUERY
EXPECT

"

<.m>
=TEAILING
TV DPE
COONT
DOESY
CREATE
;CODE
<:CODE>
DECINMAL
HEX
SMUDGE
*>

<*
COMPILE
?LCADING
2CSP
?PAIRS
2EXEC
2COMP
TEEROR
lCsp

DEA

NFA

2A62
2352
2A42
241D
2A¥6
29F7
29E1
29C2
29C4
2904
2982
2976
2968
2951
2948
2334
2924
2915
22088
2BFB
23EE
28R4
2399
28940
2887
287E
2875
2860
2863
2854
2851
2846
2833
283D
2825
281B
2811
28¢7
27FD
27F3
27E9
27DC
27D1
27CT
27BB
27B0
279F
2792

CFA

LEA
LATEST
TRAVERSE
?2DUP
S5PACE
PICK

ROT

o<

UKEY
U?TERMINAL
UB/SCR
UB/BUF

-G

2785
2778
2768
2760
2756
274D
2743
2739
272F
2724
2718
2784
26FC
26EF
26E5
26DB
2601
26C7
24B4
26AF
2623
2695
2689
2€7F
2676
2669
26585
2649
26389
2629
261F
2616
260E
2606
25FE
25E8
25D4
wiy:13
2590
2575
2562
2555
254§
252C
251E
250F
2581
24ER

UL IMIT
UFIRST
UC /L
HLD

Ril

C5P

FLD

DPL
BASE
STATE
CURRENT
CORTEXT
QFFSET
SCER

ouT

>IN

BLK
VOC-LINK
DP
FENCE
WA RNTNG
WICTH
TIH

RG

s

B/ SCR
B/BUF
LIMIT
FIRST
C/L

BL

3

2

1

a

USER
VARIABLE
CONSTANT

r
»

21
o2}
1
2@
ca
@

TOGGLE
+1

-lg~

24DB
24C9a
24BB
24AE
249F
2491
2482
2464
244D
2429
241C
24¢B
2404
23F0
23E9
23D4
23EE
232A
2393
23978
236D
2356
2347
2334
2321
230F
22C2
228C
2276
2264
2255
223F
2229
21DE
2154
2166
2152
2136
2122
20F1
24pc
20C4
20B%
20R0
OK

BOUNDS
2D0P
DUP
SWAP
2CROP
DEROP
OVER
DNEGATE
NEGATE
B+

+

a<

NOT

a=

RA@

R>

>R
LEAVE
HES

RE!

REG

spl

SP@

XAOR

OR

AND
U/MOD
[
CMOVE
CR
Z2TERMINAL
KEY
EMIT
ENCLOSE
<KFINDZ>
DIGIT

I

<CO>
<+LOCE>
<LOQP>
BRRANCH
BEANCH
EXECUTE
LIT

-11-

Sometimes, one word alone is not enough to complete an
execution. Several words are then composed to form a
program. The program is regarded as a new word, which
may be used as a unit to form a more complex execution.
This 1is exactly the process to write a program in
FORTH: to put several words together to complete the

purpose.
Examples:

The unit price for a fountain pen is U855,08. The total
price for n feountain pens is :

TOTAL PRICE = n * UNIT PRICE

We can define a word 5* which combines 5 and *,

54 * 5 =2

Input 5
5* 5 * ; OKn

Display

- ww

The word . (DOT) is used to print the result.

The following table 1lists words related to number
output:

Words Stack Manipulation and Action

D.R (d n ===}
Print double number d in an n~-character
field, right justified.

D. {d ——)
Print double number d and leave a
space to its right.

0. {un ---)
Print unsigned integer number un and
leave a space to its right.

.R (nl n2 ——=)
.Print signed integer number nl in an
n-character field, right justified.

(n'===)
Print signed integer number n and
leave a space to its right.

-12-

“J

{addr ——-}) :
Print sicned integer numbesr in address
addr and leave a spzce to its righk.

We can define a new word FOUNTAIN-PEN both to print the
result and to count the total price.

Input : FOUNTAIN-PEN 5% , ; [~
Display : FOUNTAIN-PEN 5% . : OKa

Example: the total price for 7 fountain pens

Input 7 FOUNTAIN-PEN
Jisplay 7 FOUNTAIN-PEN 35 OKa

Example: th= tctal price for % fountain pens

- Input 9 FOQUNTAIN-PEN
pisplay 9 FCUNTAIN-PEN 45 OK~

All words in the system are storsd in the dictienary.
It is a one-directional serial table. Every word is
different in length,. However, they are definsad
completely or contain all necessary data for execution.
The dictionary may be expanded toward the higher end of
the memory. The dicticnary may also be divided into
several vocabularies. Each vocabulary contains related
words.

1,52 Stacks in FORTH

The system uses two stacks to save temporarily data and
addresses. One 1is the Data Stack, the other 1is +the
Return Stack. The stack generally refers to the Data
Stack urless otherwise specified.

The stack is a certain area in memory used to save and
retrieve the data. We may call it a last-in first-out
memory. If you input 1 3 5 7 [=], the display of
. 3 B 7 OEa means all words have been axecnted,
Four numbers have been stored in the stack. The first-
in number 1 1s placed at the bottom of the stack, Aand
the last-in number 7 is at the top of the stack.

The following 1is a conceptual diagram of stack in
memory. The first-in number 1 is at the highest end in

=13=

memory and numbers input later are lined up through the
lower end.

top in memory top in memory top in memory
> 1 1
3 3
5

bottom in

botton in

7
bottom in
memory

memory memory
'po}nter’ |pointer' lpofnter!
The following is a conceptual illustration of the
stack. That the stack extends upward is the same as
that plates are piled in a restaurant. The firstasset
plate 1is at the bottom, sc that the last-set ones are
taken first, When you add a new number on the stack,

it is pushed on the top ¢f the stack. When you take one

off the stack, you pop the number away.

— 7
3
3 3
1 1 1

bottom of bottom of bottom of

the stack the stack the stack

lpointer']pointe?I lpcinter

- There are four numbers on the stack.

Use the word
{Dot) to print the numbers,

Input s 4 4 (Do not forget to leave a
space between the dots.)
Display e« s s ¢« 7531 OKa

Data used in FORTH words are mestly taken from the data
stack. Data are placed onto the stack in any of the

-14-

three ways listed below:
1) words keyed in from the keybeoard;
2) words in the source program;
3) values resulted from execution of words.

The return stack stores the address for the word to be
executed next. Its function is like that of the stack
in a general computer system, that is, to save the
address of the next instruction in the main program
when it calls subroutine. The return stack is mainly
used to control calls among words and return action.
However, under specific condition, the return stack
does additional work, such as:

a. the index and the limit used in the DO...LOOP;

b. some numbers which are not easy to manipulate on the
temporary data stack.

The return stack is closely connected to the system's
operation. Be sure to use it carefully . Any misuse
may cause an irrevocable result to the entire system.

1.6.3 Postfix Notation

Arithmetic operations for most computer languages are
as follows: 5+3 which is familiar to most people. FORTH
uses postfix notation, and the expression in the above
will be: 5 3 +, The reason for the adoption of this
peculiar notation in FORTH is that all words take
necessary data from stack and put result onto stack.
Interactions among words are greatly reduced in this
way. Words of different levels may exchange data
provided by the stack in a rather complex operation. In
the operation 5 3 + , 5 is placed on the stack
first, followed by 3., Addition operator + takes out and
adds 5 and 3, and saves the result 8 on the stack.
After the operation, 5 and 3 are removed from the

stack.

-]5

2.1 Number Input/Output

Wwe mentioned lo the previous chapter that many FORTH
words need data on the stack, and the number of data
it=ms needed 1s different from one word Lo anether.
Before you execute a word, you have to know the data ¢n
zhe stack and in what order, FORTI data may have
different types, you have tc choose +the right onc
acgeording to the words. The following table lists the
main types of data, togather with their codes and
ranges.

TYPE CODE RANGE

Flag f ¢ or non-@

Character C - from B tc 127

Byte 2} from P te 255

NUmDer ~In from -32768 =0 32/67

Unsigned Nunber un from & to 65535

Double Humber d from -214748B3648 to
2147433647

Unsigned CDouble ud from 8 to 4294967295

Number

address a from @ to &5535

Primarily arithmetic operations deal! with integers.
Most o©f them are presented as 16-bit rumbers. When
FORTH receives a number {either from the keyboard, or
from the source program)}, >t transfers tke number into
& Dbinary one, and pushes it on the stack. The input
nunber may be a 16-bit single number or a 32-bit deubls
number. Numbers wlth a decaimal point will be regarded
@s a double number by the decoder, otherwise they ares
regarded as sioygle numbers, The word, (dot)removes the
single number at the topmost of Lhe stack and change it
into a string and display it. Single numkter is
Presented by 2'scomplement. If it is larger than 32767.
We regard it as s ncgative number. For example:

=19~

4

Inpuk 5 .

nisplay 5 . 5 OK

Input -3gs . {Press tne shift key and "IV
letter simultaneously to
¢et & minus sign.)

Display ~308 . ~380 OKa

Input 32762, =

Display 32769 . -32767 OFa

In the 1laskt example, 32769 exceeds 32767, thus the
system regdrds it as a negative one. You may avoid this
as shaown nelow:

Input 32769 6 D,
bisplay 32763 @ D. 32769 OFKa

That 15, you may push a 0§ above 327692 on the stack and
make it a double number, D, is wsed to print the
double number stored on the top of the stack.

1f there 1s a decimal point, FORTH regards it as a
dcuble number. For example, 32769 1s regarded as a 32-
bit double number. FORTH ounly recognizes the dJdecimal
point and its place, but the decimal puint dves not
affect the conversion. Try the following sxample;

Input 32769. D.
Display 312769. D. 32769 OKa
Input 327.69 n. -~
Display 3127.69 D, 32769 OKa
Input 3.276% D,
Display 3.2769 D. 32769 OKa
Input 3.27.69 D,
Display 3,.27.69 D. 32769 OKa

The number of digits following the decimal pcint are
recorced 1in the system variable DPL. It you want to
identify it for related numeric orerations, you may use
DPL.

As described carlier, vyou may place a § above a single

number to get a deuble number. Similarly, a double
pumber may be divided into twe single numbers, If a

w20

double number is divided into a higher 16-bit and a
lower 16-bit, the higher one will be on the top of the
stack.

Such as:

Input 6553.6 . .

pisplay 6553.6 . . 1 @ OKa

Input 398. .+ .

pisplay 306 . . @ 3868 OKa

2.2 Words for Arithmetic Operations

The following table lists the arithmetic words used in

FORTH, 1including single number words, double number
words, and mixed operation words.
Words Stack Manipulation and Action
+ (nl n2 - n3)
nl + n2. Leave the sum n3 con the stack.
- (nl n2 - n3)
nl - n2. Leave the difference n3 on the
stack.
1 o (n - n + 1)
1 - (n = n - 1)
2 + (n - n + 2)
2= (n - n - 2)
e (nl n2 - n3)
£ (n1 n2 - n3)
nl is divided by n2. Leave the guotient n3
on the stack.
/MOD {(nl n2 - n3 néd)
nl is divided by n2. Leave the remainder
n3 and the quotient n4 on the stack.

-2]l=

W

fnl n2 N2 — nd})
nl multiplies nJ and then the product is

divided by n3. Leave the guotient nd on
the stack.

¥ /MQC

fnl n2 n3 ~ nd4 ns)
It is the same as */. Leave the remainder
n4 and the gquotient n5 on the stack,

Ut

(unl unZ - ud}
multiply two unsigned numbers unl aznd unz.
Leave the product (double number} ud cn

the stack.

:U/MOD

{ud unl - un2 un3)
The double number ud is divided by unl.
Lecave the remainder un2 and the guotient
un3? on the stack.

MAX

inl n2 - r3)
Leave the _arger one of nl and n2 on the’
stack.

MIN

inl n2 - n03)
Leave the smaller one of nl and n2 con the

stack.

ABE

{nl - n2)
Leave nl"s absolute value 5n the stack.

WEGATE

fnl - n2}
Change the sign of the toomost value ¢n
the stack.

LND

in_ n2 - n3i}
Leave the resultant value from leogical
AND.

OR

{nl n2 - n3)
Leave the resultant value from logical OR,

XOR

{(nl n2 - n3)
Leave the resultant value from logical

Exclusive-0R.

—22—

e

{dl 42 — d3)
Add double numbers d1 and 42, Leave the
sum 423 on the s+tark,.

NDNEGATE

{(dl - 42}
Change the sign of topmost double number
en the stack.

DABS

{dl1 - 42}
Leave the absclute value of the topmost
double number on the stack.

M*

{nl n2 - d)

Multiply two siagle rumbers nl and nz.
Leave the preduct (double number) d on
the stack.

{d nl - n2 n3}

The deuble number 48 nl is divided by a
singiec number nl, Leave the remainder n2
and the guotient n3 on the stack. The sign
of the guotient 1s the same as that of the
dividend 4.

M/MOD

{udl un2 - un3 ud4)

The unsigned double number udl is divided
by the unsigned number wu2. Leave the
remainder u3 and the unsigned double
number quotient ud4.

MCD

{fnl n2 - n3)

nl is divided by n2. Leave the remaindet
n3d on the stack. The sign of n3 is tha
same as that cf nl.

Exauwple;

Input
Display

Example:

Input
Display

Find the product of 35*7

s 7 = . [=J]

35 7 * ., 245 OFa.

Find the quotient of 31/4

31 4 s . [==]
31 4 / .7 OKa

-23-

You nay use the word MOD to display the remainder.

Input 31 4 MOD .
pDisplay 11 4 MOD . 3 OKe

The word ¥/ 1is orovided in FORTE for calculation of
ratio. The following example car be used to calcutate

percentage.

Input i % 188 */

Display i 0% @@ /S ; OFa

Input 675 15 % .

Display 675 15 % , 161 OK.

So far, we have used the number base of 18 {decimal) in

the examples. However, the system variable BASE may
convert ths hase numbor.

We have defined the following words in the FORTH-MPF-
IP.

: HEX 16 BASE 1! ;

: DECIMAL 1¢ BaASzs ! ;
lnput 6 .
Display e . 16 OKa

In the following example Lhe base number 1s changed.

Input 16 HEX .
bisplay 16 HEX . 10 O«

Once you have cenverted a base number, the system will
keep it as changed nnkil you set a3 new base number or
tarn on the power again.

Inpat 3¢ CECIMAL .
Display 3¢ DECIMAL . 48 OKs
Input 255 HEX .
Display 255 HEX . FF 0OXa

If you wish to use the base 8, you may define a word as
follows:
H QCTARL 8 BASE ! H

—24_

2.3 Stack Manipulation

FORTH i5 & well-designed, versatile and effective
language. It always input/output numbers in last-in
first-out ordcer., FORTH alse provides a sct of useful
words for stack manipulation, =zo¢ that you may search a
speccific number from a certain place in stack. See the
following tzble,

T words Stack Manipulation and Acticn
COP Copy the tcpmost value on the
fn - n n) stack.

CROP Remove the topmost value on
ftn -) the stacx.
SWaP Change top two values on the
{nl n2 - nZ nl) stack.
CVER Copy the second value of the
{nl n2 - nl n2 nl}) stack.
ROT Rotate top three valucs on the
{nl n2 n3 - n2 n3 nl)|stack, 2Bring the third cne te
top.
?DUP Copy the topmost value 1f it
{n - nin}) is nan-zero.
PICK Copy the nlth value oF the
(nl - n2) stack,
ROLL Bring the nth value of the
fn -) stack to the top.
DEPTH Place the numbers of current
{ - n) value on the stacx.
ZBVWAP ‘Chance two double numbers on
{dl d2z - dz dl) t.he stack.
2DUP Copy the topmost double number
(d - 4 4 on the stack.
2DROP Remove the topmost doubla
fd =) number on kthe stack.

-25=

Capy the second double nuinbier

20VER

idl dz2 - 41 42 dl} on the stack.

i Print the countenls of the

(-} stack without altering or
cemcving the numbers from the
stack.

Before you set oot to learn how to use the words
copcerning the stack manipulation, vyou must understand

how the word .8 worxs. In short, the word .5 will let
you obssrve changes in the stack. Try the following
example:

Inpuk 1 2z 3 [=

Display 1 2 3 OKa

Input .s =7

pisplay 1 2 3 OKa

Execute .5 does not change Lthe data in the stack at
all. In zontrast, try khe following:

Input . . .

Display + 2« 3 2 1 OFRs

The first . takes the topmost numbar 3. The second anc
the =hird take 2 and 1 respectively. Na data remained
in the stack after 2xecubion of the word . (dot).

You may practice the stack manipulation wikh relatec
words and use .§ to examine its current status.

Input 1 2 3 DUP
Display 1 2 3 DUP OK.
Input .5

bisplay 1 2 3 3 UKa
Input URGP .5 |
pisplay 1 2 3 OKa
input SWAP .S
Display 1 3 2 OKa

-26=

Input OVER .S

pisplay 1 3 2 3 OKa
Input EOT .5
pisplay 1 2 3 3 O0Ka

n PIC¥'allocws you to copy_nth rumber and place it on
the top of the stack. Continue the last example again:

Input 3 PICK .§ [
cisplay 1 2 3 3 2 0K

1 PICK has the same result as DUP. 2 PICE has the same
result as OVER.

n ROLL allows yous to gqove the nth number ¢n top of the
stack., 3 ROLL has Lhe same result as ROT. 2 ROLL has
the same result as SWAP.

Input 4 rory .c [=H
Cisplay 1 3 3 2 2 OK.

-27-

RE

<

we use ‘the data stack to save the information to
transfer and manipulate in FORTI., It is neceassary to
get constants and variables if some data is used
frequently.

3.1 Constants

[f a value is used frequently and related to a special
function, we may define a word with a name for the
value. The word is called a constant,

It is casy to set a constant. All you have to do is to
input a value First, and then key in the word CONSTANT .
tinally, give the word a name.

Tnput 7 CONSTANT D/w [==]
Display 7 CONSTANT D/W OKa

tiow, wa have added a constant word ©o/%W to the
cdictionary. Its value 1is 7. Whenever you necd the
value, give its name and the value will ba placed on
the stack.

Input DSwW .

Lisplay DA o 7 OKa

3.2 Variables

w2 call a value that is changed frequently in a pregram
a variable, Key in the wore VARIABLE, and then its
nivne,

Toput VARIABLE Scorr [=)
Disvlay VARIABLE SCORE OKa

The value of a variable is undefinite. You should give
1t a value before using 1t.

Input 66 Sscorp t [==]
Display 60 SCORE ! OKa

=

3.3 The Usage of Constants and Variables

The Following table lists words for memory rYead/write.

Words Stack Manipulaticn and Action |

a (a = n)
pu=sih the wvalue n at address a on the

stack.

(na -)
Save the value n in address a.

c@ {a - b)
push the byte b at address a on the
stack.,

cl (ba -)
Save the byte b in address a.

2@ {a - 4d)
Pushh the double number d at address
a on the stack,

21 (d a =)
Save the double number d in address
a.

+1 (na =)

Add n to the number at address a.

)

(a =)
Fetenh the value at address a and
print it.

When you point out the name of a variable, iks address
is pushed on the stack. You should use @ to take its
value out.

Input SCORE @ . [=
Display SCORE @ . 60 OKa

The word ? is composed of two words @ and , (dot).

=32

input SCORE 7
nisplay SCORE 7?7 69 OK.

The woré +! 1is derived from the word |

Iaput Z80 SCORE +!
pisplay 28 SCORE +! 0%

e nave added 2@ to the original number in the SCORE
and save the result back. The number is changed [rom 6@

L 84.

Input score 7 =
pisplay SCORE 7 B8 OX
The word ! makes things easy for you to chance the

value of & varlable. Tt also helps you ahzange the value
of a ceonstant once you know its addrzss. The word !
{tick) may find cut the address of a word.

Input OD/W .
Cisplay " DSW . -4B77 OK.

To chaage the value of a constant :

lnput 5 N B YAl 1 [=—]

Display 5 ' D/ ! CHEa

Input OD/% .

bisplay D/W . 5 OKa

3.4 Arrays

The parameter field addrsss is saved on the skack upon
the execution of a variable defined with VARIABLE. We
may enlarge the varameter field for more numbszrs and
bytes, which become arrays. The main purpcse is to save
the memory spaces.

Suppose we would like to build an atray with 20 bytes:

VBRIZBLE DATA 18 ALLOT
Lacda 23 LRASE

18 ALLOT weans that we add 18 bytes, storaye to the
reserved 2 byles in the paremeter field, As illuslrated
below:

[

T VARLADLE 2 18 {ALLOT!} ’

DATA BYTE TiE BREST BYURS .
] _ |
divection for rflictionary exteasinn - next wors

NATE 20 IERASE is5 to clear the 20 oykes in the
paramcEer Field into zeroes.,

The [ollowing words help you to rotrieve the data in
the array.

CATA) Feten the vatue of the first
nunber.,

T3A'TE 2+ 4 Foeleh Ly value of Lhe scoond
muastier,

mt e e and 50 @D saesann

They fellnwing wards help you to save the value in this
array.

18 DATA ! Save the value of the firs:
number.

29 DATA 2+ ! Save the value of the scoond
nuaber,

—34-

Dicti nary,
Vocqbulary and
Memory Map

4.1

The
map-

FFFT
FRBS

FrRes

rpad
FDI#
TyER

FdBE

AYEF [

2690
1Frr

Memory Map

fcllowing chact 1s the MPF-IF's 64 K [emory
SygiTnM USE
voRTH USER VARIABLE |
ap
r—Rﬁ RFEE
FOCRTH RITUERN STACK LPE RAH
' DRAE
TERMIVAL INPUT DUFFRRl R7EFE
il I1/C M RAM
rSﬁ Ccapy
FORTH DATA STACK BFFF
I/C M ROM
TORTH USCR DICTIONARY nigy
t—ap
TASK
77FF
OPTION
EXTENSION PRT
MEMORY tEna
57FF
E5R
5028
FORTE-MPE-IF
49499

MPE-1P
HAOHTTOR

-37-

FORTIH-MPF-IP usces a memory space of 8k bytes, {ron
5286¢ to S2FLFF. Th2 system will insert the word TASK at
FEEQ af-cr the machine i3 turned ar or the execution of
the cold start ({using the word COLD). The iser's
dictipnary drows npward from FO@B. TFor more destails
about TASK, please see Chapter 9. SEEGJ through SFERE
is &l located for user variables, ccnsult appendix).

The exteansion memory ranges from 54860 toe SEFFF. You
can insert different kinds of additional option boards
when necessary. The gprinter enables you to better
anderstand the functions of some words. ‘'The 1/7C &
extension board increascs the memory, facilitating the
FURTH fo accomplish its editing features, ard control
the 1/G ports directly., FEPB makes a full set of
applicalion sysles possible, in addibon Lo increasing
memor y .

4.2 Pseudo Disk in FORTH-MPF-IP

In a standard FORTH system, in crier =o store programe
and data the disk is used as a virtual memory. Tn this
way, the system uses the disk memory to simulate the
nz2in memory. The user may use the read/write words
available in the main memory te manage information on
the disk. The disk is divided into blocks in FORTH.
Fach block has a sequential ordinal number. The system
use the ordinzl number to .nput and cutput the entire
block of information. When you input, the informaticn
is read inte a disk% buffer :n the main memory. The user
can then fetch the infcrmation or change the contents,
Wwhen this disk buffer is required to store other
intormation, the updated block will be ocutput teo its

original location in the disk. Therefore, you can get
the data reguired from anywhere on Lhe disk, and need
nal worry about the details of the read/write

-3 =

operatio

ns. The following tshle lists the words for

disk menory.

Twords Stark Maripulation and Action

BLOCK (fn - a)

Load the nth block data to a disk
buffer, and oplace the start address on
the stack.

BIFFER (n - aj 7 ’ T
Allocate a baflfer to store the new
data of the nth block. Place :the hufler
address on the stack.

UPDATE { -)

Mark the updated daza in “he lest
used buffer.

SEVE (-

BGUFFERS Save the updated buffer data back to the

' disk.

EMDTY t -

BUFFERS Clear all the data in haoffer, thos avoid

[heing savad back in the disk.

LIST fr - 1
Lecad -hz nth block character to a buffer
ard print it.

LOAD {r - | T
i.cad the nth block character and compile
or ex¥ecakte.

5CR [- a] -

The system-variable contalning current
21nck nomber .
FORTI=MEF-TIP does not have a real disk. The:sofore, a
part of memery [(2Bk bytes) is used as a pscudo <isk.
The length Efor cach pscudo digk is limited to 512
hytes. In practice, many disk commands c¢an not be used
Without proper wmod:fication.
Memory SR@GG ko STFFF is divided into 56 blocks, The
ordinal number is from € to 55. Usually, an extension

-39~

memury is required (LEPD or I1/0 Mi for the use of pseudo
disk memory.

The word BLOCK is defined as follows:
BLOCK R5E MOD OFFSET &+ 512 * FIRST + :

56 MOD limits the block numbers to thz range @ through
55. OFFSET is a user variable, 7ts initial wvalue is @.
FIRST 1is a constant ased to szve the starting address
of the pseudc disk. Its initial value is $8808. FIRST +
enab_es you to obtain the address of the {irst byze . of
the block.

The user may change the values ¢if OFFSET and FIRST to
adjust the location of psewde disk buffer in
coordination wilh the rceal meinory address of the
system.

1f you nave only the system unit of MPF-IP zvailable,
then the RAM covers SFH38 to SEFFF, which dees not fall
within the range of the psewdo disk. In this case, you
may change the value of FIRST, =0 that the pseudo dizk
start wich address you need.

Input HEX

Display HEX OKa

Ingput 8§ BLOCK U,
Display ¢ BLOCK U. 8080 OKa
Input F208% UFIRST |
Display F2¢8 CFIRST | OKa

UFIRST is the user variable for FIRST. Save the value
into UFIR3T and you can fztch the value from UFIRST
upon execution of TIRST.

Input ¢ BLOCK 0. (=

Display # BLOCK U. F238 OK

The dictionary graws upward from SE@EF. The data stack
qoes deown from SFDE@. The pseudo disk 15 between the
two. avoid any overlap, otherwise the system's
cperation may be affected,

IF I/0 M board ig implemaented and its RAM address is
from $SC@EE te SDJFF, then the ordinal number of pseudo

-4 =

disk blocks will range from $20 (hex! to $2C , you may
use these crdinal numbers cirectly, or charge QIF5ET 50
that SC@8E becomes a pseudo disk block with an ordinal
number of E. You way do it with FIRST as well,

1nput coLd =

pisplay *% % S FORTH-MPF-TPX***
Input NEX

pisplay HEX OKa

Input 20 BLOCK U.
pisplay 26 BLOCK U. CAE0 O
Input 26 OFFSET 1 [
pisplay 20 OFPFSLT ! OKs

Tnput p BLOCK U.
Display g BLOCK U. CfE0 OKs

Amonr the disk commands of FORTH=-MPF-IP, the word BLOCK
place the start address of the corresponding block on:zo
the stack. BUFFER works the same way BLOCK does, while
EMPTY-ROFFERS clears the pseudo disk memory f{ranging
from $8F0E through $REFFF). The reraining words, such as
UPDATE, +BUrF, PLUSH and R/W has nc effect.

4.3 Print the Message

The word . (dot) 1s used to print a number on the

stack. It is necessary t> use another word to print &
messaqge.

Input cE ." I AN MPF-1P "

Display I AM MEF-IF OKa

Separated from ~he fellowing messages by a space, e

(dot—aquote) i3 used to print the message, until
{delimiter) is encountered,

4.4 Define a New Word

The pQRIH system allows ycu tv deline your own words.
These words work the same way as those primitive words
supplied by the language. The naves of the user defined
word can countain up te 31 characters., All ASCII
charactesrs can be used, eoxccpt space, dack-space, HNull
and Cx,

-] -

A new word is defined as follows: start with a colon
(:), which is followed by a space, and then the name of
a new word, followed again by another space, after
that is the events to be executed, finally a semicolon
(;), which indicates the end of the new word.

Input : TEST 3 * . ;
Display : TEST 3 * . ; OHK
Input 8 TEST [=

Display 8 TEST 24 OKa

Input 5 TEST

Display 5 TEST 15 OKa

4.5 Structure of FORTH Words

All FORTH words has the same structure, whether it is a
high-level word, a low-level word, a constant, or a
variable., The following table illustrates the structure
of a high-level word.

84 1 ’ [| '] |] ’] 1 1 ’ @ 1 @

NAME FIELD

w
(#5)
_Huma

7 LINK FIELD

87 CODE FIELD

26 3 ADDRESS

33 * ADDRESS PARAMETER FIELD

AE
37 . ADDRESS

21

23 ADDRESS

-

-d2a

gach word has fouar ficlds: name field, link Field, code
field, and parameter field.

The first one is the name field, :ts length vwvaries
according to the length of words name. The first byte
specifies the number of characters of th2 word's name.
it 7 (MSB) of tha first as well zs the last bytes of
the name field are set to 1 to mark the rarge of the
name field. We call bit 6 of the first byte the
precedence bit, which is used to control compiling. The
precedence bit is sekt to 1 if compiler directives
should be executed immediately to carry out a specific
compiling. However, precedencz bit is usually set to
a. In this case, iks address is compiled into
dictionary and becomes a part of high level words

quring compilicg.

Bit 5 of the firskt byts is the smudge bilk. Before the
word is well defined, +the smudge bit can prolect the
compiler froem compiling the unfinished word. The
smudge bit is cleared to te § when a high leovel word is
defined, =so that it can be compiled or interpreted for

gXa2riikion,

The 1link field saves an acdress, which is tke name
field address of the previcus word in the dicticnary.
Name field and link field combines all words in the
dictionary. Wher you wish to find out a specific word,
FOXTA follows the sequential stream, and compares the
:nput name with the nams field of sach word, If they
are different, jump to the neme fi=ld of ths previocus
wozrd from the link field and make comparison withk the
next word.

The code field saves an address, which pointed te a
machine code rvutine. The machine-code are execlted
before executing this word., Different code fields
corregpond to different machine-code roulines. These
machine-code routines are called inlLerpreter or iaoner
interpreter for the FORTH words.,

Tie lazt one is the parameter Field., 1Its length varies
with different words. When exectting inner interpreter,
the inner interpreter makes uce of the data in the
Parameter field to acconplish the task defined by the
word. The values of constants and variables are saved
In this field. The high level parameter fie.d saves a
series of code field addresses of other words. The high

-43-

level word interpreter finds out the addresses in order
and executes the words. That is why we call high level
word interpreter the address interpreter.

The parameter field of low level words contains a
series of machine codes, The code field address
contains the parameter field address. Therefore, when
executing a low level word, you execute the machine
code program in the parameter field directly. The
program is the code interpreter of the low level word
itself.

4.6 The Dictionary

As described in the previous section, all the words in
FORTH are connected one after another by name field and
link field. Its structure is illustrated as follows:

the previous word

name field|é——
1ink field __,

name fileld|é——

in ie

the last défined word

&——— HERE
(the next usable address
for words)

—-44-

WERE is a FORTH word. It places the next usable address
on the stack. Its value will change with the increasing
number of the words,

sfter you have defined new words in FORTH, there are
rimes that you would like to erase them. In this case,
use the word FORGET. FORGET erases the word and the
words defin=d later than that.

vou may define a dummy werd before the words for the
rest.

Inout : DUMMY
pisplay + DUMMY ; OXa

Then, cxccuting FORCET DIMMY will erase everything
defined later than the word DUMMY.

TEST1I 5 + . H

[nput H

Display + TEST1 S + . 3 OCKa
[nput : TEST2 5 * . ; (=
Display i TESTZ2 5 * . ; OX
Input FORGET DUMMY ——|
nisplay FORGET DUMMY OKa

TEST1 and TESTZ are also erased after execatlrg FORGET
DUMMY .

Struetural
Conditional Control

<

The structural proyram means tha: in the program the
logical E_ow zhould follow cne of the three ways listed
below:

o) Conscecutive Process: operating step by step. Th:is is
regqularly used in high level worcs.

7z} Conditienal Branch: I1f the condition is true, da

event A, olhzrwise do event B; cvent I follows B of By
as illustrated below:
I i

condition
false true

1) Loon: Repeat event A until a cendition is true, and
then do svent B, a3 llustreted below:

false

conditiaon

FORTF provides the use with words of all these threa
types, which enable youn To write structural programs.

5.1 Conditional Branch

The condi tional branch gives the computer the
Capability to make decisions. Ip FORTH, it is used to
test the value on the top of the stack and decide if it
Is necessary to change the order of execution.

=49

Eelow we will show vou how it worlks.
DEFINITION Define a new word.

CONDTTTON Produce a logical flag
{zero or non-zere) and
place it on the stack,

Ir Fetch tne flag and Etest
Te18 it, if 1t is non-zero,
execuze THIS.

ELSE Execuze THAT, if the flag
TEAT is 5.

THEN Continue willh Lhe following
CCHNTIHUE words.

; The end,

Condiciorn = 8 Condizion = €

[this]

IF} ELSE and " THEM are used 1in hlgh level word
definitions., All words between IF and THEN combine to
make a "structure", IF tests the walue on the top of

the stack. If it 1s not zero, the words tetween IF and
THEN will by executed. IL it 1s zero, execullon «ill
juamp Lo .he words belwssn ELSE and TIEN, and <coatinue
with words khat follow.

IF includes a test value B=, which will use wuo the
topmost value (logical flag). 1IZ this flazg is to be
used aqain betuveen IF and THEN, vou have to doplizakte
anc save 1t before execobting TF.

The Zollowing 1s anocther conceptual diagram fFor
conditional ©branch. ELSE mzy ‘be omitted in the
structure 1IF...ELSZ...THEN, if the test result 1is
false, program flow skips the words between IF.,.THEN
to execute the words after TEEHN.

=5 =

TR

5.2 Compare Words

Compare words are usually diviced i1nto thres kinds.

-} Words ased to test the topmost value on the
stack, scuch as #=, B>, cnd 2<.

2) Words used ta test the two taopmost vslues on the
stack, such as =, >, and <.

3) Words used to test 37 bits double number on the
stack, such as D¢.

All compare words remove the value they reguire from
the stack and return a flag. If the result is true, 1
Istands fo:r true) is returned to the stack. If the
result 1s false, £ (stands fecr false} 1s retuvrned to
the stack., The word NUT reverses the flag, that is,
change ¢ to 1, and 1 to @,

Suppose you wish to test a ceondilion which is not
Smaller tharn 8% {largsr than 0 or equals te @), you may
define it as fcllows:

y= @< MHOT ;

=-h]l=

Results from compariscn may be vrocesswed wilh logical
eperators such as BND, OR and XOR. Flags as the results
of compariscn can be treated as regular numbers and
processed with arithmetic eperatsrs sueh as +, -, * and

I

The - (subtractinn) aperator may be used as ocompare
wnvd as well. Tae result of subtracticn between two
egual numkbers is definitely zero. Otherwise, the result
will be non-zeros (which implies a true flag). The
result is not necessarily "1", though,

The follcwing zasle lists compare words in FORTH-MPP-
IP. These words are usually used bafore IF and UNTIL
and give them a flag, which is wused to select the
executlion sequence thereafter.

Words Stack Maripulation and Rction

< {nl n2 - f}
If nl<n2, f=1. Otherwisc, f=0.

= fnl n2 -)
If nl=n2, f=1,

> (nl n2 -)

TF nirn2, f=1,
B< h - 1)

I1f n<g, f=1.
B= (o - 1)

IL n=@, t=1.
B> n - 1)

If n>@, £=1.

D< {dlL dz - £)
If dl<d2, f£=1.

U< {un]l un -}
If the double number unl<un2, £=1.

NGT (£1 = £2)
Reverse the va_-ue 5f the flag on the
stack.

-

5.3 Loop

oop h&s two basic types: t:inite and indefinite., The
finite loop is set to repeat a certain numder of times.
rhe indelinite luovp continue to circulate cuntil a
condition is mel ur a specific event develops. Amoag
+ha incefinite 1loops, you will find one that will
reoeat endlessly until an exlernal force is
apblied. This 1is generally called an in iuite logp.

some FCRTH words can contain different kinds of loops
in the word definitiong, in order to handlc a seguence
of commancs ko he executed repeatedly. These structures
cran only be defined in the nevw words. Trey must not be
input from the keyboard, and exacnted immediately,
otherwise an error wil. develcp.

5.3.1 Finite Loop

The finite loosp can be c¢lassified inte two kinds
according to the way the loop irndex increments:

1} limit index DO words LQOP

Eachi time the words between DO and LOOP are exscuted,
the index incremenis by vne, and then ex=zcution
continues urtil the index equals tu the limit.

The loop index and the limit are saved in the return
stack tempcrarily te avoid problems arising from using
the data stack when executing weords betweoen DO and
LOOP.

2) limit index DO words inecr +1.0OP

The index increments by incr for ezch loop until the
index equals to is equal than the limit.

[f the INCR is negative, the limit should be smaller
than the index. The index decrements by INCR for each
loop until the index is smaller than or equal to the
limice,

DO, ©Loop, and +LOOP should ke used in the definition.

They must not be executed immediately. Otherwise, the
System will send back an error message.

=h3-

Defina tke fellowing word in your system:
TESTL 5 ©® DO I . LOGP ;

The two numbers before DO are used to ccntrol the loop.
@ is the initial walue of the index. 5 is tha limit, 73
and 35 will be saved in the return stack upon execukbion
of DD. The word I will copy the index on the data
stack, and¢ the word prints it. When executiorn cones
to LOCGE, the current value ot the index incrzmerts and
compares it with the limic. 1f 1t exceeds or equals to
the liwmit, the loop stops, the limit and the index on
the return sblack will be rTenoved, and execution
continues with the words after LOOP, If the index doees
nokt exceed the limit; execution will jump to the word
DC and, executecsthe words bpetween DO and LOOP again,

Input TEST1
Display TEST1I G 1 2 3 4 OKa

IThe loop stops immediztely when the limit eguals 5.
Try the following wcrc:
TESTZ 14¢ Do I . 3 +L00P ;
When using the wore +LOOP, 1f the INCR 15 not a

negetive number (in this dsfirition, the INCR is 3},
the index should be smaller than the limit.

*

Input TEST2
Display TEST2 B 2 6 9 OKa

When the index equals 9, another increment at the +LOOP
will make the amount 12, which exceeds the 1limit and
ends the loop.

Define the following word:

TEST3 =4 @ DO I . =1 +L3OP ;

If the INCR is negative, the index should bhe larcer
than the limit.

Input TESN3 [
Display TEST3 B -L -2 -3 Ok

The loop stops when the index is smaller than or eguals

=54~

the limit.

The return stack saves the limit and the index’ betwcen
the words DO-LOOP. They will be rervoved automatically
upon completion of the loop. The systen will lese
control if there are operations affecting the return
stack during execution of the DO-LOGP. The words EE,

>3, and Ry may access the return =stack for data
reguired, Be careful when you use these words. R2
should follow >R, fo that the contents of the return

stack will not change.

The fellowing are two imperkant rules to remember when
you use DO-LOCE.

13p0 should be followed by LIOP or +LOOF in a
definition.

2) The words between DO and LOOP can not change the
contents of the stack, that is , the stacks should
remain intact against the executior. There might be
exceptions 1in specific occasions, but they snould b
aveided if there are other ways.

532 Indefinite Loop .

1ne indefinlite loop has also twc tEypec: one 1is
NGECIN... .UNTII,, anether is DBRGIN...WHILE...REPEAT.

1) BEGIN words ceondition OUNTIL

Exectte the words continuously ontil condition produces
a true flag on the stack.

7) REGTN wordsl condition WHILE words2 RE?EAT
Ewecute wordsl at least once, then if the condition is
true, execute words2 and jump back to execute wordsl at
REPEAT. If the condition is false, the loop ends and
jumps to the words after REPEAT.
Try to define the following words:

: TEST4 BEGIN KEY DU?Z EMIT 63 = UNTIL g
KEY reads +the ASCIT code 6f a character from the

keyboard, and EMIT prints the character., The loop ends
when Lhe character is A {(ASCII code of A is 65).

w55=

Input rEsT4 == BKCFA
Display 115574 BKCFA OF

5.3.3 Infinite Loop

BEGIY...UKTIL may be used tn ser up an infinite locp.
Consider the following structure:

s BEGIN .esevu.. @ ONTIL ;

The flag (@) that UKTIL examines is always false,
thersfore, the loop will never come to an end. We have
an infinite loop structure unigue to FORTH-MFF-IP.

: wese+a. BEGIN AGAIN ;

The words between BECIN and AGARIN will be executed over
and over again.

The infinite loop is usually used in a complete set of
operatiry system as a maip program. The input device
reads the data firsk. The system then processes it, and
sutputs the datz. Finally, execution starts from the
veginning anew.

- .
ag descrihed in the section of the indefinite locp, the
atack must not be changed, or the system will run out
of order.

In the following list, you will finé the words used to
set up the loop and control the return stack.

viords Stack Manipulaticn and Action

IF XXX IF = E =)

ELSE YYY | 1If f deues nel equal 3, execute
THEN ZZZ XXX, otherwise execute ¥Y¥Y and then

ZZ%. ELS3 YYY may not be uased.

DO XXX cO ¢ (nl n2 -)

LOOP Loo?P : (-)

Set up a loop structure. The index 13
incremented from nZ2 to nl-1.

DO XXX DO : (nl n2 -}

+LOOP +LOOP : (N3 -)
25 D0...LOOP, n3 is the INCR of the
index.

-56-

LEAVE

{ -

Set the limit equal to index.

The loop ends at the next LOOP or
+LOOP =ncountered.,

BEGIN XXX
UNTIL

CNTIL ¢ (f -)

Set up an indefinite loop. If the
flag is ¢, start the loup all ouver
adain at UNTIL.

BEGIN XXX
WHILE ¥YY

WHILE : {f -)
Set up an indefinite 1lecp. If the

REPEAT flag i=s @ when executing WHILE,
jump to the words after REDPEAT and
ene the loop, otherwise earerute
Y¥Y.

REGIN XXX Set up an Infinite loop.

ACAIN

END Same as UNTIL. o

ENDIF Same as THEN.

>R (n -}

Remove the topmost valae on the
stack, and save it on the return
stack.

R> { - n)

Remove the wvalue from the return
stack, and save 1t to the data stack.

RE@ (-

Copy the topmost value on the retuorn
stack to the data stack.

I { -)

As RE, ucsed in DO-LOOP and put the
index on the data stack.

J { —)

Used in DO-LOOP, and copy the index
of the outside 1lo0p te the data
stack.

-57-

Printing Strings
and Numbers

a string is a set of characters and symbels, saved in
memory as ASCII codes. The string is the only way that
the computer input/output the message to communicate
with the operators. Words and data are input as
strings. The computer interprets them as instructicn
codes. It also transcribes the data into strings when
outputting the results.

Users are reguested to contrel the printing formats and
locations for the numbers. In FORTH, we may use the
string combination to control the conversion of numbers
and printing format.

6.1 Strings Manipulating Words

1he following table lists some basic string commands,
They are used to set or move the string data.

Words Stack Manipulation and Action

CMOVE (al a2 n =)
Move n bytes from address al to address a2.

FILL la nb =)
Fill memory beginning at address a with a
sequence n coples of b,

ERASE (a n -)
Erase n bytes starting from address a.

BLANKS |(a n =)
Fill an area of memory beginning at address

a with n blanks (ASCII code = 32).

DUMP {a n -)
Print n bytes starting from address a.

The following example shows the result obtained by
using DUMP,

gl

HEX OK

306¢ 20 DUMP
3gee FC 25 C 2A
3084 BF 24 68 2A
jggg 3B 29 91 3
368C C7 4C 49 54
3g1e 45 52 41 CC
3¢l4 EE 2F 87 25
3els 22 27 D 25
231C pA 2@ 8)

OK

We wusuvally use a string buffer to handle strings. The
word PAD can get the address of the string buffer.

: PAD HERE, 68 + ;

PAD is a memory range in the dictionary. It moves as
the dictionary changes. The data in PAD should be used
before defining a new word, otherwise we can not be
sure if the original data still exists.

6.2 Single Character Input/Output

KEY is a basic input gommand in FORTH. When KEY is
executed, the system will wait for you to input a
character, and then push its ASCII code on the stack.
You may use the ASCII code when necessary later.

Input KEY
Display KEY

The cursor is displayed on the screen while you can not
find OK. This is because the word KEY is not yet
fipished. The syslem waits for you to input a
character.

Input A
Display KEY OKa

The character A is not displayed, but the ASCII code
for the character A is placed on the stack.

Input . EEE

Display « 65 OKa

The word EMIT removes the ASCII code from the stack and
prints its corresponding character.

-62=

Input 65 EdIT [==
pisplay 65 TMIT & OKa

6.3 String Input/QOutput

The word TYPLE may output a whole string, It needs two
parameters: one is the adiress <f the string in memery,
the other is the string lzngth (number of characters).
Example: PAD 16 TYPE

prints 16 characters stored in the pAD buffex.

The Following tasle contains words for string ocutput.

Words Stack Manipulation and Acktion

LUaxx® (=)
Print the string XXX, the last " is
used as a delimiter,

TYPE a n =)
Print the n bytes starting from
address a.

-TRAILZING ra nl - a n2)
Remove Llrailing ULlanks io the

stzing ¢f nl character sterling from
address a. Reducz nl to n? for printing
by using TYPE,

MESSAGE in -

Print the characters on the nth line
in the 4th hloeck. n may he negative ar
larger than 15, so as to print
characters cuk of the 4th block., If
WARNING contains (0, this command only
prints n, If WARMINS contalns 1,
prints characters stored in the disk.

PAD - a)
Push the starting addrzss of string
buffer a on the stack. The string
buifer moves with top of the dictionary,
Input and output strings are saved in
the strinc buffer for future use.

-53=

TcounT (a —a+1 n)
Place the string length n steored in

the address a on the stack, and add
one to a. The results may be used by
word TYPE for printing.

EMIT (e =)

Send a character to terminal whose

ASCII code 1is on the stack to
terminal,

CR)
Position the cursor to the beginning|
of the next line,

The basic word for inputting a string is EXPECT. It is
used in the form below:

addr n EXPECT

As this word is executed, FORTH will wait Eor the user
to i1nput n characters and save the string in memory
starting from addr. We may use thet word to store the
input string anywhere we want in the memory.

Input HEX

Display HEX OEa

Input F4@0 2 ExeecT [«
Display F468 2 EXPECT

Same as KEY, OK does not display on the screen. This
indicates the execution of EXPECT is not finished yet.

Inpukt A
Display F4gB 2 EXPECT A
Input B

Display F408 2 EXPECT ABOKa
We can use DUMP to examine the content in the memory.
F400 4 DUMP

F4B8 41 42 0 @
OK

-64-

the FORTH nas a special memory range f[or saving input
-haracters for text interpreter.It is called a terminal
input buffer (TIB). The starting address is saved 1Iin
the systen variable TIB. The word that ianputs string by
using the buffer is QUERY.

GUERY TIE @ 30 DXPECT @ >IN

~

QUERY receives 8¢ characters or all the chsaracters
coning before Ck, and ipnput then tu TIB. It sets Lhe
character pointer »I¥ to @ for interzreting, The
folluwing table contains some basic words for inpuk im
ths system.

Twords Stack Manipulation and Action
KEY (- <)
Read the data and push its ASCIT code to
the stack.
?TERMINAL (-)

1 is put on the stack if a key 1s
pressed; @ is put on the stack if no key
is pressed.

EXPRECT (an -)
Input n characters Irom Keyboard and save
it in the memory starting from address 4.

OUERY [-3
Bead a line of characters (88 at most),
and save it in the TIDB.

6.4 Printing Format for Numbers

The fundamental word for printing nunbkz2rs 13 D.R.
Farlier in this book, we have introduced some words
such as D.R, D., U., .R, ., and ?, Hcwever, these woIds
can prinot numbsrs in the form of integer, they cao nokt
insert special symbols such as decimal point or cowwa.

Scmetimes w2 have to insert a specific symbol, such as,

the dash (-),the dollar sign (5}, the slqsh {(/y, and
the coclon (:}. :

-55—

FORTH orovides words for printing numbers as
illustrated in the following table.

Words Stack Manipulation and Action

<t <t
Begin conversion of a value to a numeric

string.

§ {(udl - ud?2)

Evaluate the number following udl, the
result ud2 is placed on the stack. The
number 1is added to the output numeric
string,

#S {ud - @ @)

Convert all the ud until the remainder is
a zero, The number evaluated is added to
the output string.

HOLD (c =)
Add the character ¢ to the output string.

S5IGN (n =)
1f n<@, add a wminus sign to the

output string.

#> {(d === a n)

Drop the double npumber 4. Place the
address of output number string a and
number of characters n on the stack.

FORTH converts the saved values to the number string
according to the following procedure.

1) The numbers are converted in the order from the
right to the left.

2) The wvalue For conversion on the stack must be a
double number.

Consult the following table which describes a number of
ways to arrange data in printable format,

~66-

Tvalue _Steps to take beforo <§

to print

16 bit Add # to make a 32-nit double numbezr.
nusaber

15 bit DUP BBS §

single Save the signs !plus or minus) on the
nurber 3rd position of the stack, to be used

latar by SIGN.

32 hit Nonz. T
double

number

31 bit SWAEF OVER DARES

double Save the signs.

nambsr

nefine the following word:

r D, SWAP OQVER DABS < 4§ # 46 HOLD
8 16 HOLD SIGH E>
TYPE SPACE

Save & 31 bit double rnumber on the2 stack before usirg
5D.. SWAP OVER DADS convert the value on the stack to a
double pumber, and reserve the sign. <¥ sets a buffer
to save the bytes converted from the number you want to
print.

f uses the current base +to convert a digit to a
character, and saves it in the buffer. Tha digit will
be removed froum the original number. ¥or example,
suppose 782 is in the stack. Alter executing 1§, the
character 9 will be put in the buffer, and 78 is sLill
on the stazk. :

46 HOLD inserts a decimal peint in the buffer (46 is
the ASC11 eade for . (dot)).

+5 converts the numbers remaired on the stack to the
bytes in the buffer and remains a double number B on
the stack.

36 HCLD adds a "S$" (dellar sign) in the buffer (36 is

-67-

the ASCII code for "§").

If the 3rd value on the stack is negative, the word
SIGN puts the character "-" (minus) in the bulfer and
removes the sign of the value.

#> ends the conversiovn, The double numbsr @ 15 reamoved,
but the starl address in the buffer and the length
al Ller conversion remaln on stack,

TYPE uses the addrsss and length left 2y #> to output
the result of convzrsion in the buffer,

Try the following examples:

Input 3456, SD.
Display 3456, §0. 834,56 OKa

Input . =123. S$O.
pisplay -123. $D. -§1.23 CKa

—-68=

7.1 Editing a Program

under the interpreter, we can key in a proaram to
define new words. However, the completed definition can
not be called back for modification, Editing words
allow us to save the program's contents in a magnetic
tape for later compiling and modification.

we discussed the pseudo disk memory in Chapter 4. The
program's contents is saved in the pseudoc disk memory
as blocks. Each block contains 512 characters in 16
lines with 32 characters in each line. We allocate 28K
bytes in system as pegeudo disk memory, which is divided
into 56 blocks. Its serial number is from & to 55.

pefore editing a program, you have to know the RAM
range in the system. The initial value for pseudo disk
memory starts from $808¢. You can set the wvalue of
OFFSET and UFIRST to assure that the program is edited
in the effective RAM range.

You have to call EDITOR before editing. EDITOR is a
vocabulary word. It sets the context vocabulary as
editing vocabulary, so that we may use the editing
words in the system.

If an I/0 M board is installed to the system. Its RAM
range 1is from $C@@Q to SD7FF. Use the word LIST to
select a pseudo disk memory for editing.

Input 32 rist[=d]

Now, the 32nd block is selected for editing (starting
from the address $C@¢E), and prints the characters on
32nd block on the screen, (It will print the data on
the printer,if there is any). 32 is saved in the system
vartable SCR, that is, it is set as the current block.
All editing words change the data only in this block.

The word . fetches the serial number of the block from
SCR and usecs the word LIST to print it, Key in the word
L to display the characters in the current block.

-7l

7.2 Line Editing Words

The editing words input strings to the current block or
modify its characters. Most words are used te handle
strings. Editing words usually save strings in a
special string buffer. You obtain the starting address
of the buffer from the word PAD.

The characters saved in PAD can be used repeatedly so
that you do not have to key in each time you use them.
PAD saves temporarily the strings for input, insertion,
deletion, and search.

The editing cursor is used to point out the current
editing byte symbolized with a on the screen, and 4 on
the printer. 1Its wvalue is from @ to 511, saved in’
system variable R#, which records the line number and
character number under editing. Many editing words use
the cursor for subseguent editing,

We call words T, P, U, X line editing words, which are
used to manage an entire line of data (32 bytes).

The word to set the nth line as the current line is :
n T =

n is from # to 15, which indicates the line number
currently under editing and prints the line. At the
same time, Lthe entire line of characters are saved in
PAD. Editing cursor {value in R#) is also placed before
the first character of the nth line.

The word T is usually used to move the cursor to a
specific location for subseguent editing.

The word to iﬁput a line of characters on a specific
line is:

P XXXX

(XXXX represents a string, with a length of up to 32
bytes). The string XXXX is input in the line that the
cursor is 1located and replace (overwrites) the
original characters. XXXX is also saved in PARD buffer.
If you input the carriage return ([=J]) immediately
after P, the characters in PAD are moved without
changes to the line currently under editing. If you

-72-

insert two spaces bzbween p and , characters in
pap and Lhe curient line will all be cleaced tu spaces.

as the word P i3 an independent command, it has to bae
delimited from ths strings with a space, while the
second space will be regarded as part of the string.
The word P hag the fallowing threse usages:

1y P XXX Pk X¥¥X in the current line,

2} P F‘fl Move characters in 2aAD to <he
{No space in current line,
betwean)

3} P 2lear PAD and current lire.

{Two or mare
spaces in between)

The word U is wusad to input a 1lire of characters

immediately wunder the c¢urrent line, and push the
subscguent lines down one line.

U XYKX
Characters op the 15¢h line will be erased.

The word 1T has also btarse vsAages:

1Y) U EXXX Inpuk XXXX inmediately under ths
current linz. Lines move the
subseguent down one line and

clear the 15th line.

2y u Move string in PAD immediately
under the current line. Mcove the
sabscguent lines <own ane line,

Y v Clear PAD and the current 1line.
Move the subsequent lines down

ane line,

To delete thz current line, type

X
Tbe werd X deletes the current line. The subsecueant
lines '"scroll™ up one line. The last {15th) line is

filled with spaces. The characters on the deleted 1ine
are saved in PAD huffer,

[ot

7.3 Editing a String

String editing words include F, D, TILL, I. To modify a
eamall section in a line, they can effectively search,
add, or delete a section of characters or strings.

F o XXXX

The word F searches for the string XXXX starting from
the cursor's current position. If it finds the target,
it prints the entire line containing the string, and
moves the cursor positioned after the string., If it
does not, it prints an error message, and moves the
cursor to the beginning of the ®block.

p xxxx [=7]

The word D searches for the string XXXX from the
characters after the cursor and deletes it. The cursor
is placed after the deleted string. If the target
string is not in the block, it prints an error message,
and moves the cursor to the beginning of the block.

TILL XXXX

The word TILL deletes data in the range from the cursor
to the XXXX (inclusive).

I XXXX

The word 1T inserts the string xXXX after the current
position of the cursor, and moves the cursor positioned
after the string.

The following table lists editing words in the FORTH-
MPF=1P.

Words Stack Manipulation and Action

T (n =)

Print the nth line and move the
cursor to the beginning of the
line. 2

=Gl

3

B XXX (-
Place the string XXX on the current
line.

0 XXX (=)
Insert XXXX under the current line.
Move Lthe subsequent lines down one
line.

X (=)
Delete the current line, Move the
subsequent lines up one 1line. The
deleted characters are saved in
PAD.

F XXXX (=)
Search for the string XXX from the
cursor position. The curser 1is
placed after the target skring. 1
the string is not found, the cursor
moves to the bedginning of the line
a.

D XXXX { -
Delete ° the string XXX found
somewhecre after the cursor position.

I XXXX (-
Place the string XxXXX after the
cursor.

TILL XXX (-
Delete characters in the range from
the cursor and the string
{inclusive) .

COPY - (nl n2 -}
Copy data in block nl to n2.

CLEAR n =)
Clear the nth block.

TOP { -)
Move the cursor tc the beginning
of line 9.

-5

L (-
Reprint the current block.

LIST {n -)
Print the nth block and set it as

current bleock.

INDEX (nl n2 -}
Print characters on line @ of each
block starting from bleck nl

through block n2.

0

ONTROL TI|(n =)
Move the cursor n bytes. CONTROL I

is the TAB key.

Execution of a cold start on the FORTH-MPF-IP will
clear the memory from $886@ through SEFFF to zeros
(ASCII NULL). You have to edit data lipne by line
starting from line @. FORTH stops compiling when it
encounters an ASCII NULL, and no compiling will be
executed after a null line 1is encountered.

If the block you are editing is not cleared (e.g. move |
the editing block ocutside of $80€¢ - SEFFF by the use
of OFFSET or UFIRST), the last line should include the
word ;8 or EXIT to stop editing. ;S and EXIT have the
same effect that ASCII NULL does.

4
After editing, you may use the word TWRITE to save the
data in pseudo disk to the magnetic tape. The procedure
is as follows:

Suppese you want to save the data in block 1 through
bleck 5 to the tape with a filename of TEST.

Input 1 5 TWRITE
Display < NAME ">=a
Input TEST

Display < WNAME >=TESTa

Set the recorder ready and press the RECORD key, and
finally press EEEH; the MPF-IP sends out a sound and
begins to transmit the data to the tape until the
screen displays:

M,

L HAME >=PLEST O
which indicates the end of transmission.

The word TREAD reads the data on the tape to the pseude
disk. Remember that the value of OFFSET and JFIRST rmust
be the same as belore to avoid loading the data to
incorrect locations,

Input TREAD
Display < NAMD »=a
Input TEST

Display < NAME »=TES5Ta
Ingut

Display P -

which means the system is waiting {for inpul of dJdata.
Please refer to MPF-IP operation manual on saving o
ard reading from the tape, andc the format fnr Fhe
stored datsz.

7.4 Compiling FORTH Words

If the program is written in Ehe memory block of the
pseudo disk, be sure to compile the words in the bleock
to the dicticnary hefore vou perform the test,

Suprose you want to compile the wards in the first
block,

Input 1 LOAD

dords in the first block will be executed in sequance.
any newly defined words will be added to the
dictionary after compilation. :

Very few application programs can be written and f£it in
one mewory block., FORTH-MPF-IP has a word = , which
carries the conpilation ahead into the next consecitive
oleck until it meets i85, BXIT, or ASCII NULL.

Printing the original program on the printer helps the
1ser examine its contexts to facilitate modification
and test during compilation. The werd LIST printe a
oleck's data on the printer in an area of 15 lines with
32 chzracters on each line.

-3 =

For example: 3 LIST

The word nl n2 INDEX prints the characters in line ¢ of
each block from blocks nl through n2. Therefore, line
@ is usually used as a remark to explalin the content of

the block.

-78-

8.1 Low Level Words in FORTH

FORTH allows the user to define new words in high level
as well as low level languages. Tt provides a primitive
Assemblzr: words , and Z,. They can rove a 16-bit
number or an B-bit number or the stack to :the upper
pert of the dictionary. These two words enable us to
establish every low-level word, .

Low -evel words in FORTH start with CODE and end with
ERD-COD=. Below are- their definitiens:

i CODE ZEXEC CREATE !CGE

END=-CODE CUREENT @ CONTEXT | PNKEC ?CSP
SMUDGE

The last word in a low-level word must jump tn the word
NEXT so as to erxecute the next woerd. Take a laak on
this word:

HEX
NEXT ©@C3 C, 2078 ,

AC3 is 2 JP instruction code of %-8¢ Cru, {refer to 2-
39 Assembly Language Programming Manual) 2078 is an
enlry address of FORTH-MFr-IP Iinner interpreter (HEXT) .

The word WEAT puts the instructicn JP 286Y8 on the
dictionary.

MPZ-IP-FEQRTH provides the preceding three words, «nd
yon may use them as you start the syskem,

In the following example, we will define a wvariabie
COUNTS and a low-level word COUNT-DOHN. COUNT_DOWN
decrements COUNTS by one corsecutively until COCNTS
becomes g. The word can be used as a delay subroutire.

Encleosed in the parentheses are the Assenbly
“Quivalents of the FORTY definitzion. For details,
Please consult Z%-8¢ Assembly Language Programming
Manual,

-gl=

HEX
VARIABLE COUNTS

CODE COUNT-DOWN

2A C, COUNTS (LD HL,{COUNTS))
2B C, { ODEC HL)
T, (LD A,H)

BS C, { OR L)

26 ¢, FB C, { JR NZ,FB)

NEXT END-CODE

Set the value of COUNTS first, and then execute COUNT-
DOWN .

Input 7JFFF COUNTS ! [=]

Display TJFFF COUNTS ! OKa

Input count-pown (=3
The FIP will black out for a few seconds
and then

Display COUNT-DOWN OKa

The user should find out all machine codes before using
, and C,, and compile them one by one into the
dictionary. The procedure to find all machine codes by
the Assembler is as follows:

1) Execute the word MON to enter inte the MPF-IP
monitor program. 4

2) Execute the Assembler under the monitor program and
write down the machine codes (refer to MPF-IP
Operation Manual).

3) 1Input CTRL-C to execute a warm start, and®use , an
o= to compile the machine codes into the
dictionary.

FORTH-MPF-IP supports a word CALL, which allows the
user to call machine language subroutines in high leved
words, and system variables to save registers, such as
RA, RB, RC, RD, RE, RF, RH, RL, RAF, RBC, RDE, RHL:

pix, RIY, RAF', RBC', RDE', and RIL'. The word CALL can
use Lthese variables to transmit paramckers and results
of executior, C@ and C! are used to Fstch and store E-
bvit registers., @& and ! are used to fetch and store 1€6-
bit register pairs,

rhe system f£irst fetchs numbers from RAF, RBC, RDE,
pHT., RIX, RIY and stores numbers in registers AF, BC,
p¥, HL, IX, 1Y, before the word CaLL is executed to
enter machire language subroutire. In other words, Iif
the called sub-routine needs scme parameters saved in
reqgisters, the user can save the parameters iIn the
register wvariablz first, and then execute CALL. ‘'ihe
system saves the values in rzglsters aF, BC; DE, HL.
1X;, IY to thc variavbles RAF, FEBC, RDE, RHL, RIX, RIY
hefore the sub-routine returns to the FORTH, so as to
transmit the results ol execution,

The moniter prodram hzs a s>und cencration subroutine.
1ta address is $874. Two parameters are related to this
subroutine.

1) Register C period = 2% (44+13*C) clock states

2) Register HL number of periods (times of
exegcution)

The larger the value in € is , the lower the Zrequency
it has; the smaller vzlue, the higher freguency. The
larger the valus in Regist=zr HL is, &the longer tre
sound continues.

HZX

: TONElL 160 ERHL ! 7FF RC Cl 874 CaLL,

: TONE2 6¢¢ RHL | 18 RC C! 874 CALL

-

You will get two different kinds of sound when
eXecuting TOMEL and TONEZ.

—-F 3

8.2 Low Level Interrupt Handler

The following words are provided in FORTH-MFF-IP to
handle interrupt sigmnals,

lords Stack Manipulation and Action

EI [=}
Enable interrupt

D1 =)
Disable interrupt

M0 { =)
Set interrupt mode 2

Ml (=)
Set interrupt mode 1

M2 { =)
Set interrupt mode 2

INTVECT |(- addr)
System variable, which saves
interpretive interrupt vector.

INTFLAC |(- addr)
Svstem variable, which saves
interpretive interrupt flag.

;INT Ends an interpretive lnterrupt word.

For interrupt handling i1n low-level words, we can use
EI, DI to control IFF (internal interrupt flip-flop imn
Z-80), and use IM@, IM1, IM2 to select interrupt mode.
The other steps are Lhe same as Lhe Assewbly. Pleasé
refer to Z-8¢ CPU manual. 1

MPE-IP sets a vectox address, which can save the entry
address of the interrupt handling subroutine to handle
interrupt mede 1.

Examples:
pI (Disable interrupt)
IM1 (Set interrupt mode 1)

-84~

HEX HERE {Reserve entry address of
the program)

F5 , {Push HL)

21 C, INTFLAG , {LD HL, INTFLAG)

FECB ., (5et 7, (HL})

EI C, fPox HL)

4DED , (RELT)

FFdl ! {save entry address of the

program inko vecter address)

EI {(Enable interrupt!

8.3 Interpretive Interrupt Handling
Process

The so-called interpretive interrupt handling is the
defini-ion of the interrupt handl:ing process in hignl
leve. words. FORTH-MPF-IF has set two system variabiles
INTVECT and INTFLAG. Hkvery word must reluran Lo the
inner interpreter after execution and proceed to the
next word. The inner interpreter examines the INTFLAG
to handle ntecrupkt signal properly.The INTFLAG uses 2
bits in one byte. Its fcrmat and significance are as
fullows:

X x‘x|x|x|x

I—— bit 6 ¢ 1 —-- inhibited interpretive interrupt
g —- not inhibited interpretive
interrupt
biz 7 ¢ 1 -- interprative iaterrupt request
¥ —-- interpretive interrupt not
request

When the inner interpreter exanines INTFLAG and handles
ilnterrupe silgnal, it fetches CFA {code field addrcss)
in INTvECT and begins to execute the interrupt handling
Program,

=-g9=

The interpretive interrupt handling takes the following
steps:

1) Set interrupkt mode 1;

2) .save CFA of the interrupt handling word in INTVRECT;

3) Set INTFLAG bit 7 to 1 when producing interrupt
signal develops.

Be sure the interrupt handling word in {2) should end
with ;INT. Step in (3) should be executed in low-level
words,

Suppose we have saved the previous examples in the

dictionary. The following example explains the usage of
interpretive interrupt handling.

D1 (Disable interrupt)

: INHANDLER ." INTERRUPT !ANDLER" ;INT
(The word ;INT ends the
definition of interrupt
handling words).

' INHANDLER CFA INTVECT !
(Save CFA of the interruption
handling word in the
INTVECT) .

BI {Enable interrupot).

: TEST DBRGIN " X" 2TERMINAL UNTIL ;
(Define a test word).

When executing TEST, you will see X's displayed on the
screen continuously. Wwhen interrupt signal develops,
the machine outputs INTERRUPT HANDLER and then goes on
to output X continuously until you press any key. '

Application
. Programe

ranen g
G

9.1 Using P8 and P!

The words PU and P! in FORTH-MPF-IP are similar to IN
and OIT in Ass=rbly langrage, Ceonnect the I/0 M board
te the machine 1f you wanb -6 usce thoem, yon will find
these two words make ik aasy fto control the I/0 naorbs,

please refer Lo JOM=WMPF-IP Op=sration Maowzl on hew o
cennect the ZOM-MPP-I7? bto the MPF-1F. There is a FIO on
ICM-M2F-IP, tne addresses are from GEN Eo 6BH. Cennoct
scckets TR1, TR2Z, TR3 of J3 to the sockets PAE, Fal,
pr2 o. J6 respactively. Type

HEX
gr 6a p! (52t FPIC poOrt A as output)

and you will see the red, yellow, and green lizhls on
I0M-MIPE-1IP orc QF . A2 fred) , P&l {(yellow), AR
{yreen} of pork A controls tho threo LFDs. 1{ the
output ig 1, the LED turne off. If it ig @0, ths LLD
turrs on. .

Inpuk FE 63 P! tha green light on
Innut FD 68 T©! tha yellow light o)
Input FE 6B P! all lights off

Input F& 68 P! [= the red and the greoo

_ights on

The following table shows the stack manipulations for
PE and pl.

Words Stack Mapipulalion and Aocbiug

g {addr--n)
Input dats n from I/0 port a:ddr.

P! (n addr--)
Outrput data n to I/0 port addr.

-B0—

9.2 Developing Application Programs

This seclion discusses the process for developing
application programs. Baglically, we nced EPR-MPE-ID, If
it is used togetner with IOM-MPF-IP, we can write

programs on EPB-MPF-IP and produce EPROM and then move
the EPROM to the socket with the same address on ICGH-—
MPF_IP. Refer to the EPI-MPF-IP operation manual to
connect the EPB-MPF-IF t¢ the MPF-IP, The addresses
where the application programs 1% to be located must
have a RAM available. Suppose the starting address for
application program is SD§60, the general process is as
follows:

1} 3e sure the addresses for applicaticn proegram have a
RAM avallable and does rot intermix with other units.

21 Turn on the machine, and enter inte FORTH-MPF-IP
{CTRL=B) .

3} bDelete the word TASK.

TORGET TASK
4} Move the system variable DP {dicticnary peinter) tao
the location seven bytes above the starting address of

the anplicsztion program. The added 7 hytes will be used
to stoare mechine codes Jater.

HEX
peegg ¥ + DB I

1f the starting address is different from the example
above, you need only change DBBJ.

5} Compile the application program to the dicticnery,
and use the word VLIST to verlfy.

6) Mowve the DP to Lts original address and restore the
word TASK.

EFgfEd DF !
t TACK H

7) Input the machine codes {(boot progran for the

application program) to the 7 bytes zbove the starting
address of the applicatien program.

- 1, [

21 D8o Cl (.0 YL, LAST)
FE#s & DIl |

22 D8@3 C! (LD (¥@95), HL)
FO0@5 DBO4 |
C9 DBEe C! (RET)

g) Save the application program onto the recorder,

9} Use FPB-MPF-IP to input the application program to
the EPROM.

1) Turn off the machine. Replace the RAM of the same
address with tne TFEROM.

11} Turn on the machine, and enter into the FORTH-MPP-
1P (CTRL-B).

12) Execute the boot program of the application
pTogram.

HEX DBEHU CALL DICIMAL

13) Use the word VLIST to examine 1f the applicatioen
program is in the dictionary.

In step 5), ©he sure tc compile the application program
within the range o[the RAM. All variables in the
application program must be user variables.

-91-

Example:

kR ARAUPF-[-PLUS* A k%%
<

k% Ak PORTI=MPF-TP*** %

FORGET TASK OK
HEX OK
pa3se 7 + 0P ! OX

: TESTL 5 * . ; OK
: TEST2 5 + . ; OK
VLIST

Dg25 TEST 2

D811 TEST 1

3AF4 MOM
3AE8 EI

Ox

Fg63 DP ! OXK
¢ TASK : OK
VLIST

PgI9 TASK

D825 TESTZ2
Dp8ll TESTL
3AF4 MON

3AES BI

OK

21 D8gy CT! OK
Fogs @ pBgl ! OK
22 D343 C! OK
rggs pdgd ! CK
29 pBYe C! OK
MO

<D>=D8G0

<

P8G9 21 LD HL,D8LEB
D893 22 LD
D836 C9Y9 RET

save the application proygram onto thne recorder

{F@85) ,HL

Turn on the machine.
(CTRL-B to
enter into FORTH-MPF-1P)

Compile the
program.

application

Make sure the application
program has been compiled into
the dictionary

Load the boot program
of the application program

Enter into the monitor program.
Use the disassembler in the
monitor program to examine

if . the boot program 1is
right (be sure to connect the
printer) .

(refer

to MPF-IP operation manual).

Input

the application program to EPROM (refer to EPB-
MBF-IP users' manual)}.

Turn off the machine and replace the RAM with the

EPROM,

-92-

Ex N EMPL =T —PLIS¥* ¥ &

o
Ax*FPORTH-MPE-IR*¥* &k
yLIST

rEr9 TASK

3hF4 MON

3AE8 BIL

oK
HEX D86F CALL OK

JLIST

FA@? TASK
D§25 TESTZ
DBll TESTL
3AF4 MON

3AE8 BI

3ADD DI

O

NECIMAL 0K

3 TEST>. 15 OK
5 TEETZ 1¥ QK

Turn on the machire,

{CTRL-B %o

enter into FORTU-MPF-IER)
Trspeck the conditbion after a
cold start,

Execute the boot programn of
the applicat.on program.
Verify the application
program 1is linked to the
Jictienary.,

Test the applicaktior program.

- -

A MPF-IP ASCII Codes

EE0)) T 2 3 g g 6 7
L&D gyl gol| Big | 911] 16@) 1p)| 11al| 111
¢ 3¢50 space| D @ P T
1 3EaT|T I 1 F T
7 9618 T 2 i3 K
T R 3 C S
175180 g i o T
5 B101 P g T]

6 GLLO & 3 F v

T @111 1 7 G W

8 16p0 { g H X -
9 1091)) T ¥ '
L 1LY * J Z

B LAI1 + ; i

C 1156 : < L

D 1121| CR - = M

L 1110) iy 3

F 1111 7 3 0 -

-9%—=

B MPF-IP FORTH Glossary

B.1 Stack Notation
Tke Zirst line for each entry describes the execution

of the definition, .
{5tack parameters before executlicn --- Stack parameters

after execution)

[this notation, the tup ol the stack 1s Lo Lhe right,
B.2 Attributes

*

The word can only he used in the celsn definition.

It is an immediate word and will be executed
during compilation unless special action is taken.

User variable
In the FORTH standard definitions, ea‘ch word lis
assigned a seridl number in the rarge 18§ through 322,
B.3 EStack Pararnctor Definition
* addr, addrl,.... {@....65535)

Represent the value for one characte:r's address,
* byte {3....255)

Represent the value of an 8-bit byte,

-99_

L

&

ch

d

£l

n

ud

un

ar (€....127)
Represent the value of a 7-bit ASCII code.
{—=2147483648....,2147463647)

32-bit signe¢ double number.
aqy

Rooclean flag has two logical states: zero = false,
noen-zero = true.

(-32768,...32767)
16-bit signed number.
{Fue..4294Y67295)
32-bit unsigned number.
(Faeesf3535)

16~bit unsigned number.

B4 Words

]

H

E

fc

#>

n addr ~--- 112
éave n in an address; pronounced "store".
sp

Save the stack positien in CsP; pronounced
"store CSP".

udl --- adz2 18
Unsigned double number udl generates the next-

output ASCII code. ud?2 is the guotient from
division of udl by BARSE and reserved for further

pProcess. Used between < and #>. Proncunced
"sharp".
d -=- addr n 184@

Terminate numeric output conversion. It drops d
and leaves the string address and character count
n required by TYPE. Pronounced "Sharp-greater".

-log-

* &5 ud ~=- @ € 209

Converse all digits of an unsigned double rumber,
add it to the numerie output string until the
remainder ecuals #. If the number is originally &,
a € will add to the output string. The word is only
used between <4 and #>. Pronounced "Sharp-s".

* ! -—~- addr
Used in the fcrm:
! {name)

Leave the parameter field address of the next word
accepted from the input string waen executing. 1In
compilation, the address is regarded as a literal;
the wvalue will ke placed on the stack in later
execution., An error will occur if the word can rot
be found In CONTEXT and FORTH vucabularies, 1ID &

colon definiticn, ' <name> is identical to (* °
<nmamc> *) LITERAL. Fronounced "tick".
LI I,212

Use in the form:
{ cceco)

Accept and ignore the input string until the next
right parenthasis. As usual, left parenthesis
must ke followed by a blank. It can be used in
either execution or compilation. An error message
is displayed if the input string terminates before
the right parentresis. Left parerthesisg is
pronounced "paren'; right parenthesis is proncunced
"close-~paren".

o 1, 125
Terminatc compilation mode, &and execule .input
string centext. Proncunced "left-bracket". Refer
tn ¥*) .,

* (+L0O0?) n --- c

A run-time procedure, compiled by -T.00P.

-1g1-

(") &
A run-time procedure, compiled by ."

* (;CODE) c
A run-time procedure, compiled by ;CODE.

* (Do) c

A run-rime procedure, compiled by DO; it moves
loop control parameters te the return stack.

* (ABORT)
Execute when error occurs and the WARNING is =1.
Usually, the word executes ABORT. The user may
change it by a procedure. Refer to ABORT.

* (FIND)

addrl addr2 --- addr3 byte flag (found)
addrl addr2 --- flag (not found)

Search the text at addrl in the dictionary from
name field address addr2., 1If a match is found,
return the parameter field address addr3, name
field byte length and a Boolean true, If not
found, leaves a Boolean false. .I

* (LINE)

nl n2 --- addr n3

Convert line number nl and block number n2 tq
pseudo disk buffer address. n3 must equal 32
indicating length of the entire line.

* (LOOP) c
A run-time procedure, compiled by LOOP.

* x nl n2 === n3 138

Leave the product of nl times n2; pronounced
“times".

-1@2-

*) 176

Set a compilation mode. The input string text is
executed immediately. Pronounceé "right-bracket".
Refer to (*.

* 7 nl 02 o3 —--- n4 204a

Multiply nl by n2 and divide the result by ni.
Leave quotient nd4. n4 is the rounded number., I-s
precision is higher than that of nl n2? * n3 /. The
product of nl times n2 is an intermediate 22-bit
aumber. Proncinced Ytimes-divide™,

¥/MOD nl n2 n3 —-- n4 nS 132
Multiply nl by n2 and divide the result by n3.
Leave remainder n4 and gquotient n5. As */, the
intermediats result is a 3Z-bit number. The sign
“or the remaincer s the came as nl. Pronounced
"tlues-divide-modr.

+ nl n2 —=-—= n3 121

Plus nl by n2 and leave the sum n3 on the stack.
Pronocunced "plus™,

+1 0 addr -—- 187
"

Add n to 16-bit number at addr. Proncunced "plus—
store’,

+— nl n2 --- n3

assign the sign of n2 to nl to procuce n3,
Pronounced "pius-minus™.

+BUF

Execute notring. Pronounced "plus-buf",

=183~

* +LOOP 00 ——~ I,C,141

Add 1loop index to the signed n, and compare the
result with the limit. Retutn to DO te execute
until the new index is equal to or larger than
the 1limit (n>@), or until the new index is equal
to or smaller than the limit (n<@). When existing
loop, drop loop control parameter and continue to
execute. Index and limit are singed numbers in
the range -32,768 through 32,767, Proncunced
"plus-loop". (As conventionally, a negative upper
limit is not used.)

* o i 143

Reserve 2 bytes in the dictionary and save n.
pronounced “comma".

* - nl n2 --- n3 134

Subtract n2 from nl and leave the difference n3.
Pronounced "minus".

k> I

Continue to interpret next screen. Pronounced
"next screen".

* —FIND

——- pfa b tf (found)
m——— ff (not found)

Accept a next text word transferred to HERE from
the input stream. Search the same input chazacter
in CURRENT from CONTEXT. If found, pfa, 1length b
and true flag are left on the stack; otherwise, a
false flag is left,

+ ~-TRAILING 148
addr nl =--- addr n2
Adjust the character count of a text (starting from
addr), and remove the trailing blanks, that Iis,
blanks from addr + n2 to addr + nl -~ 1. 1If nl 1is

negative, an error message is displayed. Pronounced
"dash-trailing".

-194-

. n —-- 193
Display n converted £rom BASE as a single
number, follcwed by a blank. Print a minus sign
if it 12 a negative number. Pronounced "dot".

i 7,133

Interpreted or used in a colon-defipition in the
form:

n cccc"

Accept following text from the input string,
terminzted by ASCII " (double - guota). In
executing, move the ¢text to a selected output
device. 1n compiling, compile it so that the later
executiun may move the text to a selected output
device. Al least 127 bytes are allowed for the
text. An error message is displayed if inpul slrean
stops before the kecrminating " . Pronounced Mdot-
quote .

-CpO
Print the name of CPU (zZ88).

.LINE 0l nZ --—-

Display the text of line numter nl and block number
nz,

.R nl n2 ———

Print number nl in a field of width n2Z right
Justified. No following blank is printed.

A non-destructive stack printing word usad tc
print currant conternts of the paramster stacx.

/ nl n?2 —-—- n3 178

Divide nl by n2 and remain guotient ni. n3 is
rounded toward zero. Pronounced "divide.

=1g5=

/MOD nl n2 --- 03 nd 128
nivide nl oy n2 ard leave the remainder n3 and

guotient n4. The sign for n3 is as same as nl.
proncunced "divide-mod",

g 12 3 -—— 1n

These small numbers are used frequently. It iIs
necessary to deflre them as cvonstants.

< 0 --= flag 144
If n ¢ B, return a true flag. Pronounced "zere-
less".

f= n -—- flag 180

1f n = 3, return a true -flag. Pronounced "zero-
equals”.

> --- flag 118 -

i1If n > 3, return a true flag. Pronounced "zZero-
greater".

YBRANCH flag -— C
Execute procedure branches conditionally. 1I1f the
flag 1is nut true, the parameter will be added to
the Interpretive pointer, and branches towards or
backwards. Compiled by IF, UNTIL, and WBILE.

1+ n ——— n+l 187

add 1 to n according tn + operation. Pronouncad
"one-plus'.

1- n -— n-1

Subtract 1 from n according, to - operation.
Pronounced "one-minas",

-1l06~

* o 114
A definition word, used in the form:

I SNnamary ... §

select CCNTEXT vocabulary <¢ be idenlical to
CURRENT. Duild a word <rame’ in CURRENT and set a
conplle mode. We call it a colon-definition. The
compiling address of suksequent words (excluding
immediate words) is saved in the dickionary. When
<name> 1ig executed , the words in the cefinition
will ©be executaed. The immediate word is executed
immediately. If a word can net be found in CONTEXT
and FORTH vocabularies, it ig ragarded as a litaral
for conversion and compllation (using the current
base). An error message is digplayed if failed
again. Pronounced "colon™.

x - I,C,19%6

Terminate a colon-definition and stop the
compllation. An error message is displayed if inpat
stream terminates belore encourntering ; .
Pronounced "semi-colon”. :

% ;CODE C, 1,286
Uge in the form:
r Cname>» ... :CODOFR
Stop conpilation and terminate the definition of
the word <mame>. It is used to define the new word
{namex> when <name> is later executed in the form:
{name>, <namex>.