
. *:+:

a
.

.

ii iii..-
, fl -

4......
..

Im‘H—f‘
-.-.u..,.

.

.3

FIILL..L..1.I|

.mzcms

main—n.

dxo34328
Stempel

PF-IP BASIC
" PROGRAMMIING

MANUAL

I
L

EDPYH IGHT

Copyright © 1933 by Multitech Industrial Corp. All rights reserved, Nu part
of this publication may be reproduced. transmitted, transcribed; stored in a
retrieval system. or translated into any' language or computer language, in any
farm or by any means. electronic, mechanicaf, magnetic. optical. chemical,
manual or nthemise. withuut the prior written permission of Multitech 1‘ndustrial
Corp.

DISCLAIM EH

Multitech Industrial Corp. makes no rewesentations or warranties, either express
or Implied, with respect to. the contents hereof and specifically disclaims any.r
warranties or'merchantabilitv or fitness for any. particular purpose. Multitech
Industrial Corp. saffinare described in this manna! is gold or licensed ”as is"
Should the programs prove defective folinwing their phrchase, the buyer (and
not Multitech 'lndustrial Chm" its distributor, or its dealenr) aSSUme-s the entire
cast of 3H [1 e servicing, repair, and any incidental or consequential} damages
resulting from anyr defect in the softWara Further, Muititech Industrial Corp.
[EBBWBS the right tn revise this publication and to make changes from time to
time in the content hereof without obligation of Munitech Industrial Corp.
to notify any person of such revision or changes. .

v MultitechLNODRfTR'“
UFFHIE! 315 Pu HSIN N. not, TAIPEI.TAIWAN_ FI.D.C.
FACTORY: 1 INDUSTRIAL E. an. m HSINCHU SCIENCE-BASED

Multltccll INDUSTRIAL PARK. HSINCHU, TAIWAN. 3.01:.

I":

Table of Contents

Chlptfit 1 Intzmiufit-iun t o BEE IC- I I». I ii In i I In t o I i l I I i- n n 1 ' 1

1.1_ spécial Keys..........L.a.........a.....a......l—1
1.2 Prompt Characters... ;4.. . ;1—2

1;3 Entry into and Ex i t from the BASIC system......1-3

1.4 Correction uf Errata While Inputing a Prugram..1—¢

1.5 BASIC Cammands and Statements..................1—4

1.5.1 Execution Hades. r i1 -5

1.5.2 Commands...a..1—6

1.5.3 Statements... i . . i . i i1-7

1:5.4 Correct or Delete a Statementi..........1-8

1.6 Listing o f a Program... .1-1E

1.7 Exetdtinn of a Programai...... i j1-11

1.3 Deletion of a whole Prfigram.. . . . i . . ia1—11

1.9 -Remark in a Fragram..11-12

1-1 “ [13393 a f i c - t o t t t i l t I r - u p } : 1 t i l - I v . . . i i i - u n i n i - I - I - l t l ' l a '

Chapter 2 l lp rflfl i innc- Iou i - I - l tan : t in . . . I i i -u -u ' lu ' i 1q -qz ' f '

2 . 1 ' c ' a n S t a r l t B - n l l l I I I I I I I I I I I I I I l l - I I I - l i l l l l i i l l l i - I i z - z

21.111 Hume: if: Cflhaital'lh51 I - I I - i 1 r ! - t - i - u g - o u l l l - l i l n u i z i ' z

2.1.2 Literal S t r ingsa .2—4

2 . 2 ' V . a t i a b l a _ 3 p . . . q I g t z fl l - l i l t l - l i g l g i t - ' [I J L I - I I I - Q I ' Z ‘ E

2-i3. F u n c t i o n s . . . - I I I i I - I I I - I I I I I g I I I I I - l l l l l l l l l i l l l fl j i - Q u i z - 6

2.4

2.5

o p e r a t o r ' s o l t I n u i t - t i n t I I I - p l i n t h . I ' I I I I - I I I J I I I I I I ' I ' l l - 2 ' s

Evaluating EK—PIEHEiDnst 9 1r 1 {In 1 I I [l- l- in It I l _I l i III I I l- I 2’9

Chaptir 3 cmwni i l I I I - I l - I I I t I ‘ - I I I I l l l i i i I I - I I I t - I i I l - I IF I

3.1

3-2

3- 3

Bad

Execution Commands..... . . .-.. ; . : .-.. : .3-2

3.1.1 RUN/XEQ/GDTD............................3-2

3.1.2 con t inue . ,13—5

3.1.3 QUIT.. . .-q..*3-7

Editing CommandS.1 - . .3-8

3.2.1 L15T...........;........................3—B_
'3 ;2.2 H E W / H E W * - . . g g - . . p . r . - . - 3 - i fl

3 . 2 . 3 E D I T , E [. B u l fl

Permanent Starage Gammands. . . , . . .g ; ,3—12

3.3 .1 SAVE. t r . . . { . . . y . . - .3 -12

3.3.25 L O A D } . - . n g . . . - - - 3 - 1 3 '

Auxi l iary Commands.+ ,3~14

314.1 FREE.. iJ . . .3-15

3 . 4 . 2 “ E x t - I l l . “ - I - l - l I I ' I I I I I i - ' I v l ' l i l l - I I I h i l l - I i - I i a i l s

Chaptfll " Gaflaral s t l tmnt ' l i I l l in l - l l i i l ' ln l ' l l l i l l j l i - I I4-1

4.1

4 .2

L E T I l - l l l l l l l l l i l I I I - I I I I I I I I I i i - I ' Q I ' I I I I I I I I ' I I I I I ' 4 * 1

E N D / E m p - I n . i - y t l ' i l l l - c l n a n - t i n n i _ ¢ - t n l l l t l i n i n g - 4 9 3

H

.4. .3

4 . 4

4.5

R m a n d I ' l l - I - I C I I ! . - I I I I - ' - I - I _ ' _ I I I I . I " I I I I I I I ' I ' I I I _ ' I I _ l 4 - "

R M D D H I Z E l l l fl fl i ' U i - I l i - I l ' I - I - I ' i t l l l fl ' l z l l l - l l l ' i I 'EI - I I IJ I4 ‘ I - l5

30H (Speed on} and SDFF (SPEEfl 0 f f } - - . - - 4 - 5

Chapter 5 Cantrnl Statement.........................5~1

5.1

5‘2.

III-ii 3

5.4

L O O P I I I I I i . . . - I . I I i . . . I . . . - I I I - I I I I I - ‘ 2 I I I . I I - I I I I I I I I I 5 - 1

5 - 1 . 1 m R - l l l l l l l l . I I I I ' I I l I ' I I I I - I I I I I I E I I I I I - I I I I I ‘ s - a - I -

5 ‘ 1 - 2 m x T I I I I ' I i I - i . I I I - I I I - I ‘ l l . - I l i i i fl i i i l i l l i l i i i i 5 - 3

51113 FOR/NEXT L O O P - n - u t w i ' u i t u n i t r c I o - r I i J I - I o ' s - a

‘ 5 - 1 u 4 same E x a m p l e s - ' o i - n q r - c t i r u c o n - i t - t u n - I L - i - g s - E

Conditiunal Cuntrol Transfer . .a. . i . . i .a. . .a. . . .54$

5.2.1 IF.. .TflEH... . . .-¢.. . .J.. i5—9

5.2 .2 Mfire on Leaps. .J . . .5»11

Uncnnditianal Control Transfer . . ;k . . .5*13

5.3.1 Gama.................;...;.............5-13
5.3 .2 Infinite Leap : 5 -14

Campnter-Cantral Transfar. .at - . ,_5.1§

5 . 4 - 1 - u H - - I G D T D I . I l i l I I I I I I I I - I l i i - ‘ I ' ! ‘ i ' . . . ’ . . . 5 - I I 6 I

Chaptfll fl “ w r i t : “writ-lunar. - III-91l- I I- I . I] _- I I . q- I i t hie-'1

The Notation af Numeric Valués in Memory.......5—1

“ m e t r i c F u n c t i - D n s l l i I I I I I C I O I I ' U - I Q I I I I I I - I I Q I I I I - B - I E

5 . 2 . 3 1 ABS.” - i r i - u - t u l .1 I I ' I n : - I _ C - . i j l - _ l ' i _ i " l i f . 1-:- I t i _ i . l - l - . _ I . . l - I I I - 6 " "2

, 6 _ I 2 I 2 A T H f . . I _ . I I - Q ' I _ I I I ' - I I I I I ‘ . I I " ‘ I . t - I j : - . - _ . ' I l _ fl l l . " ' 6 f - ' 2 '

3H

6 . 2 . 3 c o s i i ‘ l I I ‘ - i i i i i i I l l - i l l l fi l l l i l i l l l l I I I ‘ E — S

6 - 2 - 4 ' E x p l i i l l i fl i i i l l i ! i l l i i fi I i i - i t fl i i I I - i i l i l fi - ‘

6 . 2 . 5 I N T . . . - - - . - ¢ - - - - u ¢ . - . - . - - . ; fi - 5

6 .2 .5 LN - . 5 -5

fi.2.7 L O G u . . . 1 - m . - k . . . 6 - 6

6 .2 .3 R N 0 1 . g u - n n a - 6 - ?

6 .2 .9 SGN. ‘ . . . 1 ; . . . 6 -9

6 - 2 . 1 u _ S I G - fi - l q - l i l i i l i i l l l l l l l l { I l l fl l l l l l i l fl i l fi ; s

6 - 2 - 1 1 S Q R l l l l l l i ! i l l - i l l t l l l l l l I I I - I I I I I I I I i I E — l a

6 . 2 . 1 2 T E R I I ‘ l l i l l l l i i i i l i i l l l l i l i t t l l i l l l i l i i fi - l l

c h a p t e r 7 A r r a y } - I . - i I I I I ' - I I i i - I I I I I I J I I I I 1 I I ' I - I I ? - 1

7 .1

712

D I M ? - a t a u i I t i l t - l u - t l i t l t l i - i - l i - t i l i i t i i g t i - I i T ‘ E

Changing.the'nimansiann nf an A r ray7—4

Chaptfil a Str ing o p e r a t i o n - I I i l i fi i i I - I i - I - l l i i i u l i i a ; 1

a;1

5.2
3.3
344

String Li terals. , . ;Bi l

String Variable........................-....g..8¥2'
String Expression..a.fl—3-

Functians for Strings.........................;B-l

9.4.1 ASCII...........-................-.a.;..fi-5

q.¢.2 cans....................................a—7
g l ‘ i s I N S T R I I l I I I I I I I I l I i l l [I l i i l l l I I I I I I I I I I f B - a

8.4.4

R id -5

8.4.6

8.4.7

3.4.3

B:4.9

B.- ‘ l 1 “ ,

8.4.11

LEFTsi. . . i . i -flr lfi

LEN. u a t ¢ . . . fl -11

Hinfi...................................8—12

NHH$. . - . ¢ 8—13

Ricuws.................................fl-15

svacas.... .E—16

S T R I N G $; ¢ I ¢ ¢ o i i ¢ ' i I I I - I i i ' i - l l l I I I I I I I I I I I E - l a

V A L . - I I I l ' l i i i - I i i l i l i i l i l i l l l i i fi i i ' l - i I - O ' a - z a

3 . 5 CMPflIiflq S t r i n g s - r - t t i i r - n i t l - l i l a t t i o i l o o t o t t a ' z z

IHPHt/fl'u'tpu‘: {If S t r i n g s ! I II I l I I .l .1- I'l- I I I ‘- l ' i 'I-i I II- I 3 - 2 4

Chapter 9 1 / 0 s t a t m n t l i l l l l l l l l ' l l - I . O i l fl i i i i fl i i . . 9 - 1 ‘

B i l -1 P r i n t i - O I I ' l l - { I I I I I I I I I - I ' I I I I l I I I ; I I - I . I I I . I I C . Q Q - 2

9.1.1

9.1.2

9.1.3

9.1.4

9.1.5

9.1.6

9.1.7

INPUT

9.2.1

9.2.2

Dutput of'Numeric Data..................9-4

_Dutput of String Data...................9-5

The Usage o f ' , “ in a PRIflT Statement...9-fi

The Usage of " ; “ in a PRING Statement...9-T

Omission of “ ;". , . .9-7

PBS FUnct ion.. , ,9§3

T A B F u n c t ' i - a n i l i I l i i i i i i i l i i I I I - I I I ' I O I I O Q — g

S t a t e m e n t - D I I n u i t — I I Q I I I I I I I I ! I I I l - fl l l l t l g - l fl

InpUt of Numeric Data. . . . , ,9-12

“ I n p u t fl - f S t r i n g B l a t a I I I I I I I _ I I - I _ E I I C I I I I I _ I I I 9 - 1 2

913 D H T A / R E A D / R E S T O R E - i i t i i n I : i t I I . . - i l - f i l l i i t t i i l t i c i o g ' l s '

9 . 3 . 1 E X E M P I E E . . i - s - . - u n i - u a - i o i - + . - - - - - . . g ' . . ¢ 9 - 1 5

9 " INF F u n c t i o n - « I l l I i i - I ' l l i I I I - i l l - i l l i l i i i l l l l l - I g - l fi

9 - 5 OUT S ' t a t e m e n t l I I - l i l l t i l l l l i i i - . I i l - i l l - I l l l I - i l l ' l '9 '16

Chapter 1' s u h p r o g r m i I l l - I I I ' I I I I I . . . I l l i l i l i f i i l l i fi i i l i l i — l

13.1 Components of a suhpragyam...1fl-2

lfi.2 GOSUB.. t . ; lfl-3.

13.2.1 GDEUE.1 . . ;1fi-3

16.2.2 DN/GQSUB..................p..........13-4

13.2.3 RETURN.............;...-...........m.1fl-5

19.2.4 E x a m p l e s f l fl ; fi

. 1 9 1 3 32131115353? SUbPIDgrafl. I I II I a [I I: a I I I I I _I I I I p I 5| 1 up I. 13.38

Chlptar 11 “BHI‘MEined Functiflflgf.. . ‘ I l l - i l l i l i l l l l - l

11.- 2 UBEQE -Df User-D'Efied Fanation- I-I'I l I: I a I I! I " I 4| I c i l l ” ;

Chaptar 12 Combination with Han-nfifilc Program.....12-1

1 2 .] - C A L L s t a t e m e n t l l l l l I I l l - I I I I l l I I I - I I J - I I I I I I I ' I I I I I 1 - 2 - 1

1 2 . 2 P O K E X P E E . K I I I I I I I I I I I I I I ' I i I - i t ' l i l l i c i - FIIHI i I r - l l I ' I - I I I i l z - q

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

appendix

Appendix

ASCII Charactera.f......a...............n-1

ups-19 BMIC State-QM. ”u... ..=.-.B-1

HPr—IP BASIC Commands.........u....i....C-1

APE-1P BASIC Built-in Eunction.....;....n*l

HP?~IP BASIC Error Massages.............E—1

Fundamental Definitions.-...............E-1

Ways to Save Memory.....................En1

Library Conatant...................;.s..H-1

SOIIB 3013131599!“ in the. Hunitnr. 1'. a i n i n n u 1"]-

PREFACE
This bank is written for those who want to program an

NEE-1P in BASIC. In fact, there are quite a few
versions o f BASIC. each one with i t : own features
designed fur spacial considerations raquirad in
dif ferent fields.

HPF—IP BASIC. like other veraians of BASIC, consists
at a set o f instructions which you_cnmhine ta create
programs which in turn define the tasks you want the
computer to do.

In this manual. detailed descriptions are provided on
all the statements, commands and functions available in
HPF—IP BASIC. Ear novice Fragrammers this manual will
serve well as a tutorial. Readers who have had
experience in programming in other versions of BASIC
may read through this manual in a short period o f time'
to familiarize themselves with the special features at
MPF-IP BASIC.

This manual i s divided into 12.:haptera togetflbr with
an informative section o f Appendices. It is hapéd
that you learn and enjoy more and mare in prugramming
as yau'f inish each section of the hook.

Chapter 1'

Introduction to BASIC

In order to communicate with a couputer, an have ta
learn a language that the computer can understand. In
this manual, we will show to the reader: a camputer
language called “BASIC" — the abbreviation of
"Beginner's All-purpose Symbolic Instruction Coda“.
BhBIC was brought into being by Juhn Kemeny and Thomas
in the middle o f IBEE‘B. Among the numerous computer
languages currently in existenca. BASIC 13 mast widely
used by people because i t is easy to learn. and
versatile in application.

HPE-IP BAEIC has a number of commands in hand to
control the executian of programs as wall as a number
at statements to write programs. I t may well be
regarded as a dialect of the BASIC. I t is designed to
execute on the HPF—IP system and inputs pragrama and
data through the keyhnard. In this chapter, we will
show you how to make the HPE-IP go into the BASIC
aystem and leave i t , and how to input or correct BASIC'
cammanda and statements.

1.1 Spedol Keys
=

One has ta and each and diety-cnnnand--or statamant
by pressing this key.

1-1

<-- :
This is usad to cancel the character befure tha

cursor on the saws-line.

The HPF—IP Display is a Fluorescent Indicator Panel
(£1?) with a length a t 23 characters. but the length of
the Display buffer taachas 6E characters. with this
her one can see those after the 215k character.

— H =
This 2—key combination servaa_tha same purpaha' as

that of . '

— - C + =
This cafi interrupt the execution of a program.

EEEEEI:

fitter HEP—IP-System is startéd, a press an this Ray
at any moment will b r i n g _ a display of ***** HPF-I-PLUS
***** back on the Infiicatnr Panel.

1.2 Prompt Characters
HPF—IP ayatam uses a number of prompt characters to
keep the users aware at i ts present state of being.

< : The prasanca o f this prompt character indicate: that
HPF-IP is under the central o f the Monitor and a
Press an CONTROL B or CONTRGL C wi l l bring it intc'
the BASIC.

E : ibis prompt character tells us that HPE-IP is now in
the BASIC and we can-input any BAEIC nonmnnds a:
statements.

? : When an INPUT statement is executed in the use r ' s
Program. this prompt character will appear on the
Indicator Panel and MPE-IP is awaiting input.

1-2

‘l.3 EntIy into and En't from the BASIC System
After HPF—IP is turned on and a display of ***** HPF-I-
PLUS * * * * * a: the fundamental made i“ is shown. there
are two ways to enter inta the BASIC language:

{1) Press and n simultaneoualy {for name).
MPF-IP will respond utth

BASIC-1P, ORG : fl

and new MPE-IP is expecting the use: to enter
program storage starting address in hexadamical and
press , i f the use: press without
entering the starting address, the starting address
will autamatically he set to the default value (the
-default starting address).

NPR-IF wi l l automatically detect the RAM space, i f
there i s unly une RAM on the HPF—IP mainhoard, the
default value i s set ta Fflflfl. i f there are two,
then i t is set to 3339. i f an EPB-MPF-IP or Inn—
MPF-IP is cannacted, than the default starting
address is set tn 0866.

Once the starting_ address at the pragram is
determined. the BASIC prompt character '8'" is
displayed on the PIP.

(2) Press and C simultaneous-1y: {for REBASi—C) HPF-IP Wl l l enter into BASIC system flirectly and the prompt character a f the BASIC system Q" will appear an the indicator panel.

The most impurtant difference between 3331C and REBASIC
lies in their manipulation an the memory. In BASIC.
the contents of the memory wil l change as a'rasult of
the init ial ization. In REBASIC, however, there is nu
initializatian and all the data uriginally in the
memory are prutactad tram being Gastrayed.

Exit iron the BASIC langungc

There.ate two flags in: exiting tram tha BASIC language.

1-3-

(1} Press t h a - key

Whenever the key is pressed, the EFF-IE is
initialized to its start state. 1.2.. a display af
***** HPF-I-PLUS ***** will he seen .un the
indicator panel.

(2] when the BASIC prompt character is displayed on the
Indicator Panel. key in QUIT and . Then tha
control will be returned tn the monitor program and
the prompt character of the manitur program <“ will
be seen on the display.

After you have exited from the BASIC language,
reentry into the 3351c is achieved by pressing

[E] . This prevents your BASIC pragrm
from being damaged. ' _

1.4 Correction of Errors While lnpufing a Program
While inputing a program. the mistake in a ' line pf
statement can be corrected by pressing the BACKSPACE
key <- before the carriage return key is pressed.
Every press on the <- key deletes a character to the
13ft of the cursor and back-space 'the cursor one
positinn.

Example:

SPRIKT‘

If we press the.B&CK5PfiCE-key fut two tflmaa. théu we
have

EPRI“

Nfiw. we can key in the correct :haractara and fiat

@PRIHT

1.5 BASIC Commands and Statements
Befure discussing the BASIC command; and statements in
the HPF-IP, wE-Huuld describe the execution made: in
the “PF-IF; '

1—4

1.5.1 Execution Modes
In the HPF-IP, tun executinn modes are nfiailabla. fine
is called the immediate executiun made, while the.uthar
deferred executiun made.

1) The Inmadiata Mode

The immediate mode allows a use: tn execute a
BASIC command immediately after the command i s anterefl.

Try ta type on the keyboard as follows:

@PRIHT 44/2

and then press , the HPE-IP will .fliafilay.

22‘

Which is the quotient of 44 heing divided by 2.

From the example, i t i s obvious that after we entered
the PRINT statement and press . the HPF—IP will
exacflta the statement immediately to calculate the
expression after the PRINT cnmmand and display the
result an the indicator panel. In this example, " f" is
the divide operator.

Haw. try ta type in the following statement.11na.

EPRINT 447*2;9*65§+2*19

jgnfi press - . what will yuu 'see on'the display?

394 5433‘

Isn't it?

2} Th: l i r r n d and:

In the deferred mode. each BBSIC' statamgnt is
preceded by a statement number. Each statement is nut
executed immediately after i t is entered. In the
dgferrefl mafia, the statements contained in a BASIC
program is nut executed-until the RUN cammnnd in g iven.-

New yuu are suggested ta follow the example belnw 'tn
get a hands-on experience of how thE-dafafred nude 13;

019 PRINT 44?*2
923 PRINT 9*fiflfl+2*19

Don't furget to and each statement line with - .

A number of statements in this Deferred Mode
H111 constitute a "program“ which wi l l not he executed
immediately. Instead, they are stored in the memory.
In fact, BASIC Interpreter wi l l not execute this
program until the user enter the command in the
immediate made RUB. Then the execution of the pragram
will go on and will stop only after the whole program
is performed. “2 will ga into more detail on this
subject in 4 . 2 "END/STOP statements".

How type RUN m1! press the hay and we. will have

394‘ d '
Press the key again and'we will see

5433'

Haw if we pres; the key for another three times,
-we.w111 have the foliawing displays in séquence:

READY
9

For more details on the function of the in the
axaction at a program, see Chapter 9 ; : "Input/putput
statements".

1.5.2 - Commands
The main functiuns of EFF-IF BASIC commands are to
control the Editing, Executing and Hebugging in a
program.

Generally speaking. all the HPF-IP BAEIC commands are
executed in the immediate made. But they can be
executed in the deferred made on some occasions.
Similarly the deferred mode statements in HPF—IP BASIC
can ‘he converted to immediate made to faci l i tate
debugging.

1-6

One can enter any MPF-IP BASIC commands when the prompt
character is displayed an the Indicator Panel. I f
there is any arrnr while entering BASIC cammands, the
Indicatur Panel wil l show an arrnr message.

1.5.3 Statements

Every BASIC program is campused o f a set o f deferred
made statements alignéd in order. More precisely. the?
are aligned according to their statement numbers, Eran
the smallest to the largest. Statement numbers used in
a program are restricted ta integers between 1 and
9999. Leading zeros a t the beginning o f a statement
number wi l l be ignored in BASIC. For example, 912,
EBIZ and 12 wi l l all mean the same thing 12 in BASIC.
The users need not bother to enter statements in the
urder o f statement numbers for BASIC wi l l autumatically
align them in order. During the execution nf a program
BASIC wi l l proceed in the order of the statement
numbers unless one of the following situations develaps

{1) Commands related tn the f low o f the control are
executed.

[2 } Execution i s interrupted as a result pf errors.

(3) and C are pressed ai-multanenusly.

{4) Execution proceeds to STOP 0: END statements.

(5) a f ter tha statement with the largest statement
number i s executed.

During the entry of a program, i f a statement number
smaller than 1 at larger than 9999 is encuuntered, thn
Indicator Panel w i l l display

SH ERROR IN‘LINE

If we press the key three times. new, we will sea
the falluwing displays ahnwn in aaqnfincl

READY
E

and the £911aw1n9_atatamenta will not be acceptad.

1-7

For Example:

a: 1:9 _
an ERROR IN LINE
READ!
Elflfiflfl RIB
SH ERROR In LINE

READY
Enlfifla J=9
3H ERROR In LINE

READY
E

In the last example above. Blflflfl does not exceed the
allowed range c f statement number. but i t is regarded
as an error because the length of this number exceeds
four.

Eree format is adopted in the HPF-IP BASIC. statqnents.
For example, the fullnwing statements.all naan the.same
thing.

929 LET 31-25
EZBLET 37-25
926L3TE7=25
QZBLETB 7-25
EZELETB ?- 25

however,

EZHLBT 37*! 5

13 a atatamant with syntax error.

'11i4 Iaouectawlksemec:Sunnmnenm

*Corrnct a Itatlltnt

Correction is required on the fdllawing tau occasiona:

1. There in syntax error in thu Itatinant.

14a

2. The whole prngtam is requitpd tn be modified in: a.
certain purpose.

Hathods:

1. Before the. key is pres-sea, attraction can
Easily be carriad nut with the <- key,

'2'. If the key is already pressed:

(1) key in a new atatanant.

I f the statement number of the new statement
already exists aomefihere in the original program, tha
old- statemant will be camplataly raplauad by the flaw
ntatament.

READY
EZH 37-25
E26 37-12

(2) Use the EDIT command

I f only a minor paqt of the statement is ta. be
corrected and the atatament 13 a big one. {13 will take
much time and efforts. In this case as can do i t as
falluwa: ,

939 FOR 1-1 TD 15 STEP 3
EBflIT 39.3.5

19o: more detail about thi- mm command. nine 3.2.3.
*DaI-tn a stat-mint

I f you want to delete a statement. :11 you have to do
in to key in it: Itatamant number'and plan: tbs _IIII
kiy.

'39: example:

Ell

L-9

1.6 Listing of a Program
Af t - r HPF-IP entered the BASIC, as can use the LIE?
command to l ist the statements stored in the computer.

The LIST cammnnd is used to l ist a program after
correction or daletiun of statanantl to IEB ' i f
the modification is done successfully as required.

Fa: example:

813 INPUT BIB
923 C=A+G _
923 C=A+B:REH A CHANGE '
939 PRINT
946 PRIHT 3:" +';B:" :!;c
ELIST

13 IHPUT E.B
26 CIA+B:REH A CHAHGE
33 PRINT
43 PRINT 5 3 ' + “ 3 B i ' l ' 3C

The LIST command will l is t the statements starting tram
the statement with the smallest statement number to
that with the largest statement number even i t tha
statements were not entered in this order.

Fa: example:

€49 PRINT 1;" +“333 ' -';c
629 C~A+B
939 PRINT
913 IHPDT 3.5
ELIST

19 INPUT A.a
23 CIA+B
33 Palm? _
4a PRIHT n 3 " +"3B:' - '3c

REED!
8

1-16

1.7 Execution of a Program
After a program is entered, we can type in Run to
request the execution of the program. THE LIST command
can be used to see i f the program is correct before
execution.

For example:

euzw:nan CLEAR paocann
@193 PRINT "5*1en';5*1a
anon
5*19-55
READY
9

@NEW
610 INPUT “YOUR NHMB:'.H$
929 ? "HELLO! ";N$
ERUN
Iona NAME:?CHEEG
HELLO! CHENG

READY
E

In the above proqram, the REM statement is used.as a
remark, these stateMents are ignored in the execution
of a prdgram.

The INPUT statement is a statement which asks for
entry (1 ,e . . the use: is expected to type in something
through the keyboard) '7“ is one of the output
statement functioning exactly in the same way as PRINT.
we wi l l look over these statements in more detail
later.

1.8 Deletion of a Whole Program
I f an entered program i s not to be used any 'mnre.
the NEW command wi l l delete them once and for all. In
fact, the entry of the NEW command wil l nullify all the
programs in the BASIC system. We have shown the usage
of the NEW command in 1.7 though we did not go into
details about i t .

1-11

flow. try the falluwing pragtan:

EHEH
E150 PRINT '5*1I-';5*19
9RD“
5*1I-SE

READ! ' '
Ell INPUT "Iona Haul:'.n$
Q29 ? "HELLO! ":38
ERUH
IDUR HAHE:?IIH-Hwn
HELLO! YIB-Hfll
5*16-59
READ!
e

In the shave example, you wil l see tha.reanltl.aa shown
i f you did not use the NEH command after the execution
of statement 1H9. i . e . . following the execution of
statement 13 and 29. BASIC will proceed to the
statement 133. Now, let u: use the LIST command ta
examine what is stored in thl camputar.

ELIST
19 INPUT 'YOflR unua:',u$
29 ? "HELLO! '3us .
199 PRINT “5*16-"35*1l
REABY
E

1.9 Remark In a Program
In a program, as can use the REM statement to explain
a: interpret the faction of the statements. When a
program is displayed with a LIST command, the REM
statement 1: also shown, but their presence will make
nu differanca at all to the exacutiun uf a program.

Lulz

Fat-example:

81¢ INPUT A,B
EEG C'h*B
933 PRINT
64! ? 5 : " *“3B:- “:C
ESREH...THIS PRDGRAH
@7333 HULTIPLY 2 HUMBERS
GISREH 2 VALUES MUST BE
EITRBMINPUT
@35REH..C CONTAINS TflE
@3?REH.-. . .PRODUCT
E

As far as the execution of a program is concerned, the
results wi l l al l be the same before and after the REM
statements are added. Incidentally we would l ike to
call your attention to " I " . In fact, " I “ is another

' k i nd of the REM statements functioning exactly in the
same way as REM. This is just the same case with '?"
and PRINT we mentioned earlier.

1.10 Usage of:
Earlier in 1.7 we have explained how to use “ : ' 1n the
immediate mode together with the REM atatament. Hera
let us look at i ts real power in-praétice more closely.

Except for i t s presence in a s t r ing, " : “ denates the
and of a command or atntamant. followed by the
beginning o f another statement or command. This makes
i t possible far us to put Bavaral statement: after a
single statement number.

FD! BIMPIE 1

El i -FDR- I I 1 T fi ' i : ' ? I : NEXT I
1
2
3
4

HEAD? H
913 EUR I a 1 r0 4
E23 ?I .
939 max? I

mhe above twd prdgtams will have the same'reault.

1-13

Gropter 2 Expression

An expression 13 compased o f constants, variables.
functions and operators. An expression is expected to
produce a certain value after evaluation. I t can be a
numeric value or a string. For that matter, an
expression i s called a numeric expression at a string
expression according to the antenna to be prnduced by
the expression.

Constants, variables and functiana all denote a certain
value. In an expression, the operators tell the
camputer what to do with these values. we will go intu
mare detail on the evaluation 0E numeric values and
strings in chapter 6 and 7 . The folluwing is an example
of expression.

(A+Bl *C+D

Here 3,3,0, and D are variables, each one must be
assigned a value in due course. In an axpgaasiun,
thus: included in parentheses are given top priority
for execution, fallaued by multiplication and diviaiun,
and lastly addition and subtraction are executed.

I f A36. 3:4, C-Z. 0-1. the value of this expreaaiun 1:
21.

Sea the next expressinn:

(x*(!-2)J+z

'Here. x.!.2 are variablaa supposedly assigned certain
numberic values. * ,+ , - , are symbols of multiplication.
addition and subtractian respectively. 2 is a
constant. Those nested in the innermost parentheses
are evaluated f i r s t . followed by those in the outer
parentheses and lastly the operation of additiun. I f
x . 2 . z are 7 . 4 . 3 reapactivaly, the value at this numeric
expression is 17.

' 21 Constants
fi-conatant can either be.a numeric value a: a-string.

2.1.1 Numeric Constams

A numeric constant can be a positive number, or a
negative-number. or zero. In HPF-IP BBSIC. a numeric
constant can be a real number or a number expressed in-
-5cientific notation. Both are expressed in floating
paint system in HPF—IP BASIC. As a result. during the
execution o f a program. the number displayed an the
indicator panel after PRINT or '? ' statements as wall
as those stated in the computer memory are subject tn
the following limitations.

Inside the computer. real numbers and numbers expressed
in scientific notation are the same in essence. In
fact both are expressed in floating point system, and
can be considered the same thing. But in the design of
HPF-IP BASIC, the precision i s restricted to 6 digits.
Therefore, any number greater than the 6th power c f 16
or lean than the -6th power of 16 can not be expressed
with 6 d ig i t precision. In this case, the scientific
digit precision. In this case, the scientitic
notation i s used as the key to salute to this prublem.

A real number can be any one between 999999 and —
999999. with or without a decimal point, but the number
af d ig i ts shall not exceed 6 . I f the exponent o f a
number is larger than 6 or smaller than -6. BASIC H111
autnmatically express i t in scientific natatiun.

The scientif ic notation makes i t easy to deal with.
numbers with very small or very large expnnent. The
format at tbs scientific nntntion is ahuwn below:

2—2

Rumba: - Kantian: * 19 Exponent

Etamyles:

Canvantiunal Scigntific Notation HEP—IF BASIC Fdrmlfi

3:254 * 16 3.25434

9.99 * 1fl17 9.9931?

5.691 * II-s 5.6913—5

-2.47 * lfl-la —2.47E-13

I f _ the absolute value nf a_numbar in graatar than
4.99993+lfl a: less than -9.999SBE—23, than the number
can not he expressed in scientific nntatiun.

Eur example:

@PRIHT 4.5624E5
456246

SPRINT 234.5613l5
2.3456?E+11

GERIHT 33?
3.GEEGGE+B?

underflaw:

When a small number falls betwaan —9.999933-23 and
9.999983—23, that: will he underfluw altar with the
following error message dislayad:

UH ERROR 1“ LINE nnnn

and the program will go on.

_Ovarflow:

If a large number goes above 4.999993+18 a: fall:
below -4.9999£+18, there will be Dvarflou error with
the fallnwing massage displayed: '

0V ERROR 1H LINE nnnn

and the program will an an.

Fa: example:

EPRIHT 13-19
9.999933—23

@PRIHT 1E-za
UH ERROR IN L133

7.999983-Zfl
SPRINT 5:13
_4.999993+1a

SPRINT 1:19
av ERRUR 1» LINE

¢.999993+19
EPRINT 3319
av ERROR IH LINE

3.749995+1a
@NEH
91a 1-2
929 T-I*I
@33 PRINT I
€49 ao 2a
Enuu

4
16
256
65536
4.294963+fl9

0v ERROR IN LINE 2n
2.395845+1a

0v ERROR IH LINE :0
2.395343+1a common c

READ! '
E

121$! Uuflulfifings
Literal strings arer strings at ASCII characters
enclosed by two quotation marks. In a literal string,
a space does mean sumething. In fact. i t is considered
as a character. This is especially important for those
who are accustumad to free format.

We can put any of the characters that can he entered
through the keyboard into a literal string. Due to tha
limited size c f the key-in buffer. the number of
characters in a literal string is restricted.

In fact. the size of the key-in buffer in 53
characters, but the number uf characters in a litaral
-string can he as large as 255 in actual operations.

Example:

“CBABC'
'HflhT A HAHII' _
'CHEHG IIH-Hflh TEL 894—5&33'
l m m fl

Due to the requirement of the system design. there are
occasions we have to appeal to special ways tn hate 3
character displayed. #5 will go into mare detail in
this respect in chapter 8 an CHR8. Fur nan, let us try
the following exampla:

avatar "ABC—+cnn${13}+-Hnua'
ABC
HAHA

2.2 Vofiables
A variable is a name with an assigned value._ During
the executian at a program the assigned value is
-suhject to changes on request of the programmer.

The variable accounts for a major part in a program.
Each time the name of a variable is referenced. it is
the contents (a constant} a! that variable that is
accessed.

The name of a numeric variable can he a letter of the
alphabet (3-3) or an alphabet fullawad by numeria-
letter (3-9} . The value of a numeric variable in .a
floating number. Here are some examples:

A an
E 35
a ‘23

2-5

The nan: of a string variable can he obtained in the
same way an a numaric variable except that i t must be
added with a '3' at the and. Here are same examples:

A3 his
38 £53
36 £93

Usually, the value Of -a -a t r i ng variable is a string a!
characters. In an extreme case, i t can be a null
string. 1.9. . the length o f the string i s zero.

I f the name of a variable is to represent an element uf
an array. the variable is expected tn be added with a
subscript. A variable with a subscript is the same as
a common constant in essence. The number uf subscripts
to variables can be one or two. I f there at: 2
subscripts. they must be separated by a commat.) . In
both cases. subscripts are enclosed by parentheses.
Usually, the subscripts are numeric cuntants or numric
variables. but there are chances that they are numeric
expressians. As the value of a numeric expression is a
fluating number. they will be rounded up during the
evaluation when they are used as aubscripts. Here are
some examples:

3(1) Aflth2.13}
Et l .2 l 35tc4.x/4J
ntu+11 astli.1fll

A string variable cannot be an i lanént-af_au array.

2.3 Functions
5 function is an operation in which a single value in
abtainad through a series of evaluations of one or mare
parameters. A numeric function has the same notation
91th a numeric array. But the number of parameters in
a numeric function is not restricted to an: ar tun.
The parametara are also separated by cummas. The
number of parameters and type are different from one
function tn another.

2-5

For the simple reason that the outcome at a function
after evaluation i s a certain value, a function can be
used anywhere in expressions just l ike variables and
constants. In practice, a function is present in
expressions in the format of a function name follauad
by an actual parameter encluaed in parentheses.

Let us look at some examples.

INT IX} :

Here x is a numeric expression. The antenna after
evaluation from this functian is the greatest integer
smaller than or Equal to x. For instance:

SGHIX}:

Again. x is a numerin exprasaiun. Ht will have-the
uutcame accurding to the follnlwing definition:

1, i f x>l
E , i f EBB

Far instance,

SGH{4 * -3)--1

HEP-1P BASIC provides the use: with quite a number of
built-in functions. such as the sine function, the
square root function. the function to get the absolute
values, etc . In Chapter 6 . we wi l l examine these
useful numeric functions in great detai l . They are
listed in Appendix D . 1 I n addition, i f one has to nae
the same series at operations to get a value
frequently, i t is paaaible for him ta rasurt ta use:-
dlfined functions. For more detail please see chapter
11.

So far HE have {nausea our description on numeric
functions. When the outcome of a function after
aperntion turns out tn be a string of letters at the
alphabet. i t is called a string functian. Sea chapta:
B for mare detail. again, some built-in string
functiona.are listed in Appendixti.

2.4. Operators
The operators will work arithmetic, log ic-o: string
apatations on ane or two values to yield an outcome.
Usually, an operator comes between twu operands, and is
called a Binary Operator. There are. however, “nary
operators as well. For instance, the ' — " i s binary in
A-B, but is unary in -A . The cumbinations of operands
and operators bring about expressions. The operands in
an expression can he constants, variables. functions,
or another expression. The operators can be classified
according to their characteristics intu tun categuries:
[1) arithmetic and { 2] relational operators.

(1) Arithmetic Operators

(A) Unary
+ the positive sign +3
- the negative sign -3

(Bl Binary
+ Addition A+B'
- Subtraction A-B-
t Multiplication 5*3
/ Division A/fl
Q Expanentiation n+3-

l2} Ralational Operators

I equal to LIB
< smaller than ACE
> larger than H)B
{I smaller than or aqual'to A<IB
fi- larger than or equal to A>IB
<> unequal to A<>B

In an operation with relational operators. 3 lugical
value will came out as the result. In practica. all
relational operators are binary and relational
expressions can he used only in 1! statement.

Operation of strings

In HEP-1P BASIC. there is an operator for the strings
used to combine 2 strings. The corresponding operation
is called concatenation.

2*3

natatinn meaning example

+ concatenatiuu as + B$

Here, as and as are combined to form a new string. In
the new string. the part of the original as is
immediately falluwed by B$. For instance, i f
BSI"ABC':B$='DEEG' then A$+B$="ABCDEFG". {IL more
detailed discussion concerning the operation of strings
will be fauna in Chapter 3 .

2.5 Evaluating Expressions
In essence, to evaluate an expreaaiun in tn obtain the
value of each part of an expression and get the final
value after the aperatiuns by the operators. Following
is the outline far evaluating expressions:

{1) Substitute the value of a variable for the variable.

(2) Implement the operation as defined by the functiund
to get the result value of the functiun.

{3) Implement the operations indicated by the operator:

In evaluating expressions. operators are evaluatad
'according to their priorities.

Higher priority *nary +,-

* r /
binary +,-

none: priority relational operators -.<.>.<-,>-.<>

The evaluation of expressions starts with operations
with higher priorities and praceedn to those with'
lower priorities as shown in the above l ist . should
there he tHD operators of the same priority, the
evaluation will he in the order from le f t to right.
But the operations enclosed i n ' parentheses will be
carried nut in the f i rs t place. overriding all the
alder: described in the above. In other wards,
operations enclosed in parentheses are always evaluated
earlier than those outside of the parentheses. In case
there are multifulda of parentheses, the innermost
nested parentheses is given the top priority.

Lat 's luck at same examples:

?+5*6 and ?+(5*6) -37 are the same thing.
612*4/3 is equal to ((6f2*4] /B=1.5
Provided fi=4, B=5. C=6.1, D=B, E=4.3
then A+B*C=4+(B*C}-34.5

A'B-CIIA‘B}-CI13.9
A—B-C=(A-B}—C=7.l
(h+B]*C=54.9

In a relational expression, relational operators are
used to -nbtain 1091: value (True or False} nf an
expression. I f h,B,C,D,E are assigned the same values
as above, then the 1:91: value of the axpreasinn

(5*B]<(D+E]*c

is true. Here {5*31-29. {D+E}*Cu26.23

Zulfl

Chopter 3 . Commands

Sb far we have described the usage of the commands
LIST. RUN and NEW. Parameters can be put after the
LIST command, which was not mentiOHEd in earlier
-chapters.1n this chapter, we wi l l present to you all
the commands used in HPF—IP BASIC and you can find a
l ist of them in Appendix(:.

The commands used in HPF-IP BASIC are classified
according to their characteristics into 4 categuries.
1.2.. (1) Execution Cammanda, and (2) Editing Cnmmands
and { 3) Storing Cammnnds and (4) Auxiliary Commands.

Execution Commands:

RUN
XEfl
GDTD
CflHTIHUE
QUIT

Baiting Commands:

LIST
HEW
HEH*
H51!

Storing Cummands:

Loan
sava-

Auxiliary Commands: +

FREE
HEX

3.1 Execution Commands

The execution bf a BASIC program could be suspended
through program design (E.g.. by setting break points
in the program) or by pressing CTRL—c 0 1 - . What:
the execution o f a program i s suspended, we can examine
the executiun state using some commands Dr statements.
In pract ice, we can debug a program a t the break point.
9 .9 . . retrieve the value o f a certain variable, change
i t and then continue the execution frnm the break
point. This is also the case wi th the whole program.
tau can l is t the whole or a part of a pragram. change
i t and then continue the execution.

3.1.1 RUN/XEQ/GOTO

RUN - Execute-a Program

Earmat:

RUN

Execution Made:

Immediate l daferrad

Description:

The RUN Command is used to execute an HEP-IE BASIC
program.

Usually execution of a pragram starts from the smallest
statement numbars.

Remark:

RUN is used to execute a prdgtam. anfi prior tn. the
anacutian, the BASIC wi l l "clear“ the contents o f all
the variables. 1.2.. the numeric variables _are
initialized with the value fl . and the string variables
are reset to be null strings.

3'2

—
_

_
-

.
.

I
_

_
_

_

xaq - The-exacxutinn hf a ptngrhm;

Enrmat:

KEG

Execution mode:

Immediate a deferred

-Deaqription=

KEQ is also used to execute an HEP—1P BASIC program
somewhat the way the EUR cannand is used. ant they are
different when i t comes to the initial values of tha
variables in a ptogram.

Ramark:

x30 is different from any in that xEQ will execute a
prugram without incurring a “clearing" of the canteutl
of variables prior to the execution. In other words.
the values of the variables sat earlier wi l l not be
affected by the execution o f the KEQ cummand.

GDTD — Changing the starting point uf execution of a
program.

Farmat:

GOTD statement number

DBacriptian:

GOTD command is also used to Execute a program. But
the starting point of executiun is the statement number
specified in the command, not the smallest atateflant
number in the program.

Hate:

I f the statement number specified in the command is
npt to be found anywhere in the original program, gnu
will flee the following errur message displayed in the
inflicato: panel:

UL ERROR IE LINE

3-3

and the-execution of tha prugram is suapqndfid.

Remark:

Comparaa with nun. SOTO i s similar to the x39 command
to a greater extent for the exacutian o f GDTD does not
-af£ect the value of the variables in a program. In
other words. the SOTO command dues nut cause
init ial izat ian. For this reason, GOTO 15 used mostly
far debugging.

To sum up, when we make comparisons among the three
commands RUN, XEQ and SOTO. we wil l find that RUN is
used in regular execution. 330 is used when a specific
purpose in a program i s ta be achieved in mind and GOTO
is used mostly fur debugging. As you have noticed. the
starting paint of execution in a program in not
necessarily frum that with the smallest statement
number. Let us t ry the fulluwing examples:

@16 PRIHT'A-“:a;“B$-':B$
629 IFA<>HTHEN49
836 B$=“HAIHAI"
€43 c=29:n-2:a=c*n
ESE STOP
96a 35-“: AH FINE“
973 PRINT as
eafl Aflfi
ERUH
Ann 33: _
STOP AT LINE 5!
@330
3-399.993 33-taal
I AM FINE

REED!
EKEQ
A-fl B$II AH FINE

swap AT LINE 59
.BXEQ .

n=399.993 B$lflnlfifil
I an FIHE
READY
ecuwuva
I an FIRE

344.

READY
0x30 _
n-fl 23-: an EIH
STOP 5? LIHE 59
GRHH
3-3 33'

STOP 5? LINE 53
QGDTD 55
UL ERROR 1H LINE

READ!
.9

In the above example. RUN is usefl twice and RED four
times. As to the usage of GDTO, one is correct, but in
the uthe: one,the specified atatanent number 65 i s net
found in the program, an an error message is displayed.
You may have noticed the implementations of the RUE
commands have resulted in the same outcume. This is
because a t the beginning o f the execution of the
prugram al l numeric variables are cleared ta I and
strings variables null. In the case of KEQ. hawaver.
different antennas are obtained because the value of h
and as are not cleared to a or null.

You wi l l notice during the execution that after the
f i rs t Run command, we get AIC‘D-399.998 (h-26*2-20 * 2%
Idfifl. Far more detail please see chapter 6) . therefore
by the f i r s t x39 you have a different outcome with that
of the RUN command. Later, after the implementation of
statement BB 3-H, the outcome of the second xaq is
obtained.

:1152 Conflnue

CDH - Beauma execution at an interrupted Fragram.

ratnat:

CDNITIHUEI

Execution node:

Immediate

345

Descriptian:

CON is used to resume executipn of_ a prpgram
interrupted aa- a result Of a simultanénus grass -¢h

5-1115! C an: a STDP statement.

Let us look at the following examples:

Example 1.

819 EUR I = 1 Ta a
926 PRINT I,:IFI=3THEN?
636 NEXT I
646 PRINT:PRINT"*DONE*'
€59 STOP
$56 PRINT '**RESUHE**“
@RUN
1 2 3
4 - 5 6

DONE

STOP AT LIHE 56
ECUN
RESUHE
READY
@

E IMF-’13 2:

916 FOR I I I To 169:?1 next I
ERUH '

1
2
4
I C
STDP AT'LIHE 13

@603
E 7
B
‘ C . .
STOP 5T LIHE lfl

3w6

3.1.3 QUIT
QBIT - Return control to monitar ptoqram

Ffirmat:

QUIT

Description:

QUIT i s used to exit BASIC language and return
control to the manitnr programu The QUIT cfimmanfl can
he executed either in immediate a: in defarrefi mode.

READ!
@139
3'3 35‘! AH FIN

STDP AT LINE 59
GRUB
A'B BS”

STOP AT LINE 59
EGOTD 65
UL ERROR 1H LINE

READ!
@

In the above example, RUN is used twice and KEfi four
times. as to the usage of GUTU. one is correct. but in
the other one,tha specified statement number 65 is not
found in the program, so an error massage is displayed.
You may have noticed the implementatiuns c f the RUN
commands have resulted in the same outcome. This is
because a t the beginning o f the execution o f the
program all numeric variables are cleared to G and
strings variables null. In the case af xno. hauaver.
dif ferent outcomes are obtained because the value of A
and 33 are not cleared t u ' fi or nul l .

ion wil l notice during the execution that after the
f i r s t RUN command, we get A=C‘DF399.998 (3-20'2-23 * 26
'4fl9. For more detail please see chapter 5) . therefore
by the f i r s t KEG you have a different Outcome with that
of the RUN cummand. Later, after the implementation of
statement BB h=fl, the nutcome of the second XEQ i s
.dhtained.

3-?

3.2 Editing Commands
Editing commands are used to modify or praceaa the
program current ly stared in the BASIC system.. There
are 3 editing commands: LIST, HEW[*].and SHIT.

3:11 INST

LIST - Listing a program.

Format:

LIST [[n l [.ml]
{n,m are atatnment numbeta)

Bescription:

There are a va r ie ty -a f derived Sotms ampng the LIE?
commands as fo l lows. ‘

LIST L is t the whole pragram
LIST n L is t the statement with statement number-n
'LIST n,m List the statements with statément numbers-

from n - t o m.
LIST .m L is t the prugram from the beginning to the

statement to that with the statement number m.

Execution node:

Immediate execution mafia.

Hflte:
1-

. In LIST film, no statement: will be listed i f nfim;

Remark:

LIST ,m, an equivalent b f -L IST firm, dan be considered
as a special case of the LIST n,m farm. This is an
implication o f the fact that a l l statements with
statement number larger than n and smaller than m wil l
be l is ted, even i f n i s nut found in the current
program. We do nut g ive you the LIST m , form becasue
no _statements wi l l be l istefl as i t is equivalent to
LIST m , fl .

3-H

e13 n-4a
923 3-25
939 c-A*B
€43 paxuw c
ems-r
1aa=4a
zasezs
39c=a*a
4apnxnm c
READY
@LIST,3G
lea-49
263*25
39C=h*B
READY
ELIST 36,4fl
30C=A*B
49 PRINT c

READY
9L15T11,25
ZHB=25

READY
CLISTZB,

READY
GLISTSB
3ac-A*a

READY
G

3-9

I125! NEWflWfifiV*
NEfi/NEW* - .c19ar 'a program

Furnat:

NEW[*]
naacription=

There are two farm: of the NEW conunnd as. fo lLaws=

t1) NEH —c1ears the prugram as H911 as all the variables

(2) NEH*-c1ears the ptngram anly;

'Executipn node:

Immediate & deferred

Remark:

Hhen~ HEW* is executed. qnly the pragram is cleared,
all the variahls are lait.with their
upaffected.

_T:y the following example:

@19 I=5
@RUN

READ!
@NEW*
616 PRINT
6x30

5
HEAD!
@NEW'
819 PRINT
9x39
fl

3.2.3 EDIT
EDIT -.Hndify a statement.

3h1§

Driginal 'valuea

Earmnt:

EDIT n/atrtng-l/htring-z

Description:

Replace string 1 in atatamant n with string 2.

Executian Mode:

Immediate execution made.
Hate:

When statement number n is nét found in the
program. the execution of EDIT will canae the
display of the following arrar message:

UL ERROR IH LINE

similarly, i f string 1 is nut fauna in statement n gnu
will 'obaerve:

DA ERROR 1H LINE

Ramark:

We have used tun slants "f“ as delimiter: to
saparate the tan strings. In fact. any two identical
characters can be used in pair as delimitars. The
character. however. must net b e _ a space.

For instance:

€13 A=7*5/4+3
EEDIT 19/7/6
ELIST
153-6*5/i+3

'READY
BEDIT la?5/?3~
QLIBT
lfln=6*3—4+3

READ!
EEDIT 15vev3 _
UL ERROR IH LIHB

3-11

READY.
BEDIT 13 3 4
SH ERROR IH'LIHE

READ!
EEDIT lav1--H_
on ERROR IN LIHE-
READY
9

3.3 Pennonent Storage Commands
After a prugram is cumpletad, i t can be stored onto a
magnetic tape for use in the future. After thl :taraga
operation, the program is still available in the
system. It wi l l nut be cleared o f f until the a HER
command is implemented.

Tn store a program onto a magnetic tape. can must use
the SAVE cummand Eulluuad by a ahchnraatet program
name.

3.3.1 SAVE

SAVE - Store a program ontn a Iagnatic tape.

Earmat:

HAVE aaaa
(a rapralantn any charactu: except space)

Description:

To permanently store a HPr-IP BASIC program. WI can
ula the SAVE command in conjunction with a recurding
device ta state the program ontn tha magnetic
tape. In the format. sun: in the program nuns.

Blacutiun mode:

Innadiata Execution and:

3412

flute:

Any character following SAVE must nut be a space.
otherwise, the prugram will he read only with extreme
difficulty. The program name must he composed of
exactly four characters.

Suppose we have the following program:

ENE?!
819 I32
920 I I I ‘ I
93¢ PRINT I
945 GOTO 29

First, set the recording device ready for use. i}:..
cannect one and of the recording cable tn thfi HIE jack
cf the recorder and connect the other end tn the HIC
Jack af HPF—IP. Then type in:

@SAVE PGWR

Be sure to leave roam Ear a space after SAVE. Haw
press the REC anfi PLAY an the recordar fallnwad 'hy a
press on t h e - key. As this is done yen will sea:

9

3d12 IIJAD

Lulu - Read a program from the magnatie tape.

Farmat:

LOAD aaaa
{ a in any character except space}

Description:

The LOAD command is.uaed to read a program which was
previously written unto the magnetic tape by-tha SAVE
cummand hack to the BASIC system.

Execution mode:

Immediate executiufl made

3-13

Natl!

All the 4 characters follawing LOAD are expafltad tn
be nun-space characters.

Let us see how the LOAD command Harka.

.First, type in

SEEN

Haw _cannact the EAR jack o f - t ha recorder and that at
the MPF—IP with a connecting cable. Then type in

@LOAD POWR

And now 91:35:: the Ray and the FIJI! button an the
recorder in sequence. You will see thE' fallawing
display an the indicatnr panEI.

PUWR

@LIST
19 I=2
IE I=I*I
3G PRINT I
4E GDTO 29

READY
B

3.4 Auxiliary Commands
In HPF—IP BASIC. two auxi l iary commands are available
to provide useful infurmatiun as needed. fine of the is
used to tell the user how many memory locatinna are
st i l l usable, and the other can convert the hexadecimal
into the decimal representation.

.3stai FREE
Farmat:

FREE

Description:

After the execution of the FREE command, two
hexadecimal number: in 2 line: will be displayed. Th1
one in the f i rs t line sham: the start address o f frat
memory location: and the other shows how many memory
locations are st i l l frae. I t in always a
good practice to guard against using t h a - memory
locations in an unaffective manner, especially when ane
is to enter a long program. Fur instance. yuu may well
use '? ' instead of PRINT and " I “ instead of REM in a
program.

Let us look at some examples n£.tha PRES cummnnd.

ENER-
EEREE
FEE!
639E
£19 FOR I . I we 4
E29 A I I) - I
639 PRIHT 1.311}
940 NEXT I
EFREE
Fflflfl
3365
Guam

1
2
3
‘. h

d
u

h
ih

-

READY
Eran:
page
n97a

3-15;

3.4.2 HEX
HEX - Convert tha_haxadecima1 numbers into decimal.

Format:

HEX nnnn

Descriptinn:

The flux command is used to convart -a hexadecimal
number into a decimal number and display it.

Execution mode:

Immadiate executian made.

Ramark:

The auxiliary command HE! is quite often used in
conjunction with the CALL statement. For mare detail
on the CALL statement, please see Chapter 12.

A Blviaw on Execution Hod:

In order to facilitate debugging. HPF-IP BASIC 15
designed so that all commands and statements can be
executed both in immediate and in deferred execution
made. In this manualIr we have classif ied the commands
and statements by execution mode in a canventian that
most other 3551C adapted. I t is true that all commands
and statements can be executed in both modes. However.
for some statements, i t is only when they are executed
in immedate made in conjunctian with Other statements
that we can make the best of them. For this reasan, we
have assigned each command and statement with their
optimum execution made.

Let us give a defibriptiun of than as follows:

{1} Immediate Made: In HPE-IP BASIC, when the -p:umyt
character "9- ia displayed, any entry without a
statement number will 'causa an immediate execution.

3-Lfi

[2} fleferrad Made: In HPF-IP 3331c, any command at
statanent with a statement number will not be executed
immediately. They wil l nut he executed until the
canmanda Run/KBQ/GDTD is entered. Usually a BASIC
program in couposed of a number of deferred statements.
When we run the program. BASIC will ignore the
statement numbers and all statements are in a. sense.
executed in the humediata mode.

3Q17

Chapter 4
General Statements

we wi l l describe the various types or statements naed
in BASIC pragrams in the subsequent chapters. In this
chapter we wil l Show you the general statements. In
1 .5 .2 we have given you a rough description of
statements, and you knew a statement begins with a
statement number and ends with a press on the key.
And in 1.1a we have told you that following a statement
number we can put several statements separated by
colons (" : " l . A program campused a t statements will
not run until the implémentation o f execution command.
In order to facilitate debugging, mast MPF-IP BASIC
statements can be executed either in immediate or in
deferred made.

4.1LET
LET - nasignment statement.

Format:

[LET] Va: = Expr.

Description:

With this statement. you can assign the value a t Exp:
tu - the variable var. -Usually the types_o f the variahls
on the two sides o f the equal sign must be the same.

Executian mode:

Deferred mfide.

-Remnrk:

If the types of variables on the tug sides -of the
equal sign are different. the following errot message
will be displayed

SN ERROR IH LINE
”Remark:

In this statement, the equal sign can be considered
as an operator. I t is, however, different from the
equal sign used as a relational operator in that ' i t
assigns the value of the expression to the right of the
equal sign to the variable on the lefesie of the equal
sign rather than denotes equality.

In case the lefthand aid? variable happens to be an
element o f an array. the subscript of the variable will
be evaluated in the f i rs t place and than the righthand
side expression is evaluated

The following i s an example:

913 LBTF-3.4
92a 3-555 _
Gan ASI'DINGDONGDINGF
84B 31 (2)=2
€53 A l (A l (2)) - 4
969 ?F;R:A1(2)
Q73 ?A$
E83 A$=R
enun

3 . 4 555 4
DIHGDONGDING .
su ERROR 1H LINE an

READY
e

4.2 EN D/STOP
END and STOP statements are naed to terminate the
execution o f a program. As far as the program
execution is concerned, you can do with both of them or
withOut either of them. As a matter o f fact, in HPF-IP-
BASIC, there i s implicitly an END statement at the end
o f the statement with the largest statement number.

END — Terminate the executian of a program.

Format:

END

Description:

The END statement is used to terminate the executiah
of a program. After i t is executed, the following.
message wil l appear on the display:

READY

Exacutinn mode:

Deferred mode

Remark:

. The END atatement_does not necessarily appear at the
last line of a program, i t can be anywhere in the
program.

STOP - Suspend the program execution

Foremat:

STOP

Description:

The STOP statement signifies a break point in -a
program, after i t ia-executed, the following message
will appear on the display:

STGP RT LIflE

Execution mode:

deferred node

Remark:

STOP is used to suspend the program execution in much
the same way as END. I t is however, different from tha
END statement in that after being axecuted, ans can use
the CON command to resume the program executon. Thus
in a str ict sense. STOP is merely a break point in the
program.

How try the follauing.examplez

913 C-l:Cl-C
923 FOR I I 1 TO 19
930 C=C+C1:C1'C
949 NEXT I
959 PRINT 'C'l '3C
969 STOP
870 PRINT "CDNTIRUB'
589 END
RUN
C=1924

STOP AI LINE 6'
BOOK
CONTINUE
READY
9

4.3 REM and '1"
The REM statement can he used anywhere ii a program to
insert remarks with a View to making the program easier
to read. In a big program, the readability is of great
importance. A program difficult to read wil l result in
extreme impediment in program documentation and
maintenance. Even the anther nf a program will
understand h is own pragtam only with much pains i f i t
was pragtammad long ago and written without sufficient
remarks.

4-4

HRH — Remarks in a prpgram.

'Format:

REHIIIfCHARBCTER}!
_Descriptian=

Any character in a REM statement will nut affect the
program execution in BASIC in any way.- In other wards,
REH is a non-execution statement. The character “ I “
have exactly the same function as that o f "REM". As
any character in a REM statement i s ignared by the
BASIC, even " : “ (As mentioned in 1.13. i t is used to
separate statements.) will nat function as i t does.

Sea the following.example=

913 REH:HERE snows
e2fl REM Au EXAMPLE
€39 REM 0F REM STATEMENTS
@4fl REM-ANY CHARACTERS
@5a REM—MA! FOLLGW REM
969 HEN-REM STATEMENTS
@?fi REM-ARE NOT EXECUTED
EBB PRINT “REMARK"
693 :HERE Is ANOTHER REM
995 PRINT “BEE Ion Learn“
ERUH
REMARK
SEE Inn AGAIN

READY
a

4-.4 RANDOMIZE
The RAHDUHIZE statement in used-ta change the initial
value of the random number functidn RED. (Sea chaptar
6}

RAHDUHIZE - Change the initial value of Iandam numbers.

Format: 3

'RBH(DDHIZE}

4-5

Description:

The RAN statement is used.ta renew the initialization
of a set of random.nnmbers. '

Execution mode:

Daferred mode

Ranark:

For mare detail please see the sectian on the RED
function.

4.5 SON (Speed On) and SOFF (Speed Off)
In the Basic mode. MPE-IP supplies users with tun
-extra optional instructions to control the speed of
execution of a program, with these two instructions,
you can choose to execute your program at a faster
speed or normal (built- in) speed. The rate o f execu-
tion of "SON" is about four or f ive times of that of
“SOFE”. Default is “SOFF”.

The reason why you may feel your program executes
slower when using the instruction "50F?” is that MPF-IP-
has to spend time scanning the keyboard and the dis-
play, even though no.6ata is to be output to the dis—
play.

Description:

If one intends to speed up the execution of a certain
ihlock o f instructions in a program (such as a block
with arithmatic calculat ion), put the instruction ”SON"
with the statement number in f ront o f that block o f
instruct ions. On the contrary, i f one intends to 99
back to the normal (bui l t- in) speed to execute a cer-
tain block o f instructions in a program (such as a
block sending information out to the printer or display
of MPE—IP), put the instruction “SOFF” wi th the state-
ment number in front of that block of instructions.

4-6

flaweVEI, the Speed of Executian wi l l be affected even
.with .“SDN”, i f you intend to print something out
through the printer which i s in "PET-DH“ Status and
cannects to MPE-IP.

Farmat:

BDHXSGFF

Execution Mode:

Defer red Mode

Please type in the fallawing programs. and you wil l see
what i s the difference between these programs- through
the display of MPF—IP and timecunting.

1) A Do Luup preceded by a - " SON ".cummand:

19 sun
25 FOR :21 Ta same
33 HEKT 1
@ RUN

Hate: I t takes ZE-Eecunds to axacuta the above pragram.

2] A Do Leap preceded by a ' SGEF ' command:

19 SDFF
23 FOR 1'1 TO Sflflfl
3H NEXT I
E" RUN

Hate: I t takes 1 minutg and 46 Bananas to axeeute. the
above program.

3) Two Du Loops w i t h _ “ PRINT' “ statement Preceded by a
“ SflN “ and ' SEFE “ cummand raspe:tive1y:

lfl nnw
29 503
33 FflR 1-1_Tn 33:?RIHT 1::nsxw I
43 SDFF
53 Fan 1-1 Tfl 33:9n1nw 1.:uaxT-I
@. Run

Remark:

I f 'the "PRINT .“ or "PRIRT : “ statement ia-pteceded by
a SON command, data is only printed on the printer
baard i f i t ex is ts and nut displayed an the 29—digit
FIP (Fluorescent Indicator Panel). I f “ , “ . 0 : ' ; “ is nut
in the PRINT statement, data is printed on both
the printer and the display (RIP) .

##3

Cho pter 5
Control Statement

In this chapter. we shall investigate the control
statements used' in MPF-IP BASIC. The control
statements are used in the following four applicatiuna:

.LDOP
gCunditianal Central Transfer
finncanditipnal Control Transfer
.Computed Cantrul Transfer

5.1 Loop
The loop in an indispensable tool in programming. The
size of memury of a computer i s restricted by physical
and cast consideratiuns. The aim of programming is tn
make the most out o f this limited memory. For that
'reason. the recursive uti l izatinn o f memory in, in a
sense, the best way ta extend the mamary.

All that is stored in the computer memory -can_ be
classified into the following tun categurias:

(1) Data and (2) Procedure.

The util ization af variable was-developed out o f tha'
consideration ta repeatedly utilize the data memnry.
This is again the case with the utilizatiun of loop and
procedure memary.

centrally spanking, the program execution follow: a
normal order. 1.3., executed tram thn beginning tn the I
last as indicated by the stutumant number: one after
another. In actual practice, however, must computer
programs are not executed this way. Many problem:
require changes of execution aaquanca whenever
necessary. On some occasions, some statements are
skipped ova: while on other accusiona certain
statements are requested to be repeated. These in all
bring the loop into existence. Usually a loop is
compaaad of four components. However. not all leap:
consist of the {our parts. The fun: components are
described baluu:

(1} Setup

The setup of a leap require: at least tha
initializatian of a cantral variabli.

{2) Body of the loop

By 'Budy o f the lung" we_naan all the statements in
the 1009 in general. Naturally, i t may as wall inclufll
the nested luup or loops.

(3) Hudificatiun o f the control variables

The execution times of the whole leap is decided by
the value o f the central variables. As a cahnequdnca,
i f one cannot modify the control variables, the loop
will turn into an Infinite loop.

{ 4 } Test/Exit

Test/Exit is provided tn determine i f a loop is to
carry on repeated execution. The cuntenta of Test in
the execution factur controlled by the central variable.

In the section on Loop. we wi l l describe FDR/HEKT. In
the aection on Conditional Control Transfer. we will
investigate the recursive loops formed by IP/GOTO. In
the section on Unconditional Contrul Transfer, we will
use a special form o f loops — the Infinite Loop. In
the last pages we wil l show you the application: at
Computed Cuntrul Transfer.

5.1.1 FOB

FOR - the FOR loop

Format:

Fan avar - aaxprfil To aaxprez (STEP nixprna)

Descriptian:

The FDR statement is used tn farm a laup. In
analysis, we find avar aexpr—l farms the Satup
component. (STEP aezpr—BJ i s used to modify control
variable, the control variable is avar. and To axpr—z
in the TEST part o f TEST/EXIT.

Exacutian mafia:

_ Deferred Mode
Remark:

To ensure the campletensess nf a loop, a FDR
statement has to .be accompanied by a NExT statement,
In this case. the NEXT statement functans as the EXIT
part uf TEST/EXIT. All that is incloaed by FDR and
NEXT farms the Body of the loop. 35 is seen in the
furmat, the part STEP aexpr-S can be nmittefl, in this
case, there is implied STEP 1.

5.1.2 NEXT
HEXT - the-next axecution Iaptition at the FER loap.

Format:

NEXT swat-2

Descriptian:.

The FOR statement is the start point at a Fan lnnfi.
while the NExT statement ia . the and paint a f i t .

Execution mode:

Deferred moda-

Remark:

The FOR statement and the HEX? statement are combined
to form a FDR loup. In this case, nvar-l in FDR'must
hE identical with aunt-2 in NEXT. In 1.16, we
described the usage o f ' : ' . here we would l ike tu_te11
you that i t is illegal to use “ x “ fullnued by anathe:
statement after the NEXT statement.

5.1.3 FOR/NEXT LOOP
The luop made up of the cambinatiun of FDR/REIT in used
to repeatedly execute a gnoup of statements. The
statements group starts with the FUR statement and and
at the NExT statement. The number of repeated
execution is decidefl by other parts in the FDR
statement. A: a review. please refer to 5.1.2. I n .
this section we wi l l continue the description in more
detai l .

During the execution of the FOR statement. awn: serVea
an the central variable of the Innp. The lunp setup is
accomplished when aexpt-l is evaluated and assigned tn
the control variable -as its initial value. The
subsequent process-is described below:

(1) F i r s t a comparison between control variables aunt
and expr-Z is mafia, when aexpr-B is pasitive. i f
avar>aexprd2 the program execution wi l l jump to the Due
immediately following the HExT statement. When aexpr-3
is negative. i f avar<aexpr-2 the exacutian wil l ga an
from the one immediately following the FOR statement.

(2) The Execution o f the statements group specified by'
the FDR and the NEXT statement wi l l then continue.

{ 3 } The control variable is upflated. I f Step aexpr-J
in the FOR statement is omitted, the cantnol variable
-is incremented by 1 . ‘ otherwise, i t is incremented by -
the value specified by aexpr—B. '

5-4

{4)~ The prugram'executiun again goes back tn {1).

Each time a FDR loop begins execution. the "PF-1P
BASIC wi l l f i r s t examine i f there is another FDR loop,
I f so, and i f the central variables of the FURIHEKT
lungs are identical, than the Fan loop originally in
existence wi l l be ignored and disabled, and the pragtum
executiun wi l l go an as stated befare.

I t '13 a quad practice during programming to avoid
making program execution directly jump td tha body of
the loop‘withnut an appropriate setup o f the FOR lamp
beforehand. Gtherwise some unpredictable results may
accur.

Thare can he E03 loops in nested structure. An Inner
Loop 13 one that is completely cantainafl in the body of
the Duta: Laup. Overlapping o f two ldbps i s nut
allowed.

In order to make ynu understand the correct usage uf
loops in nestéd structure and control tranfer (for more
detail on this topic see the follauing page: of this
chapter) and FOR loop, some examples of legal and
illegal structure are liatefi below for your reference.

Legal Loops in Nested Structure:

.____—— Han-atatanant-

_ . 33x1- statement

Legal Cantznl Tranafar

I
L

|

l I
v

1113931 Control Transfer

5.1.4 Some eatomples

EHEW
E13 FOR I . 1 TD 6
943 PRINT 1/:
933 NEXT 1
ERUH

1
. 5
.333333
.25
. 2
.156666

SE

.5éfi

Ram . . _
EEDI BE?I?I:?“EHD"
ERG“

1
SH ERRBR 1H LINE 19

READY
@LISBG
BEHEKTGI:?"END‘

REED!
E

“ x “ fallawad by anathe: statement is not allpuad tn
immadfiataly fullaw the NEXT statement.

@EDIBE:?"EHB"
@EDIIH;6.G=?I}
GRUH

1
. 5
.333333
.25
‘ 2 '

.165665 'fl
‘t
tfl

II
I-

J
H

H
I"

READY _
enxsw 1a
1a ran 1 a 1 T0 §=?r;
READ!
@EDI 3E?I?K
ERUH

1 1
ux ERROR IN LINE BE

READY
@LIS SE
SE NEXT K

READ! 1
9

The Cuntrfil Variahla in the.EDR statément is '1 While
tha t - in the NEXT statement is K .

EEDIBE?K?I
933 roar-1rossrnp.5
GRUH

1 .142957
.133333
.125
.117647
.111111

READY
E

The FOR loop formed by statament 19 is disabled whan
statement 3! is Executed. .

@EDI 1E?I?K
999 NEXT K
@EDI 13?6?55TEP-1
QRUN

H
READY
@LIST
15 FflR K I 1 T0 6 5TBPH1:?II
39 FOR I I 7 TD 9 STEPI5
4E PRINT 1/!
EH NEXT I
BE NEXT K

READY
E99
869 NEXT a
GED! 15?6?-6
@RUH
0 .142857
7 .142357
7 .142357
7 .142357
1 .142857
7 .142357
7 .14285?
7 .14285?
x H ERRDR IN LINE 33

5—9

HELD!
ELIE!
19 FOR x - 1 T0 -6 STEP-1:?I:
39 FOR I - 7 TO 9 sr:v.5
49 PRINT 1/:
an NEXT I
an NEXT I

HELD!
E

In this exampla, there is an illegal nested-FOR leap.

———-EDR K

FOR I

‘--—-REIT I

REIT I

5.2 Condilianol Control Transfer
Cunditiunal statements are used to examine a specific
candition during prugram -executiun so as. tn change
order o f execution as required. The condition in the
conditional statement is a relational expression. The
truth value o f the relational expression i s tested 30
as to determine whether program execution is to he
changed.

5.21 ‘IFn-THEN
Furmat:

I f rexpr THEH anum|statament

Description:

When rexp: is true. program execution will go on tram
the statement fallowing THEN. I f a statement number
(anum} follows THEN. the program execution wil l jump to
that statement number. When rexpr i s false. prugrdm
execution wil l go an frm the statement immediately.
folluwing the IE...THBH statement.

5-9

Stacution made:

Deferred made.

As program execution ages on from the -statamants
following THEN when £319: is true, i t is pnasibla to
find a group of statements separated by " : ' put after
THEN. However, fine should not place “ = ' statement
after THEN snum.

Let us look at the fallowing example:

EHEW
€19 INPUT H.H
826 IF H>H THEN 5a

.933 PRINT .H
Eifl END
856 PRINT n
963 Bun
@RHN
?12.49

49
READ?
anun
?13,5

1E

READY
gnaw
Elfl INPUT a,“
62¢ IF H)H THEN ?H:EHD
839 PRINT ,H:Eun
enuu
?12,49

49

READ!
ERUH
?19.5

15

READ?
ENEW
€19 INPUT n _ w
625 IF u<1ua THEE uhu+1:aowu4a
.933 PRINT 'u>-laa'

5&13

84E PRIHT 'nr';u
ERUH
?49
n=5a
READ!
anus
?129-
u>=1aa
u-129
REED!
9

5.2.2 More on Leaps.

The conditional cuntrol transfer statement I? and -tha
unconditional control transfer statement GOTG can be
paired to form a powerful type of loop.

In this type of loop, there can be more than one
-control variables, and the creation and madification of
the control variables can be designed by the
programmer. However, in the FORIHEKT leaps described
before, the control variable can only be incremented or
decremented as specified by the STEP acxpr-B. Hence,
in a s t r ic t sense, the FOR/NEXT loop can be canaidered

'as a special case of the IF/GOTD loop.

In an IF/GDTO loop. the control variable can be
modified through addition, subtraction, multiplicatian.
divisinn at other more camplicated operations, {Eur
mute detail on the GDTD statement. see 5 . 3 } which can
hardly be acne with the FDR loop. The SOTO statement
is an unconditional control transfer. each time i t is
implemented the program execution H111 jump to the
statement number specified in the SOTO statement.

For example,

CHER
919 PRIHT I 1 T0 5
823 PRINT 1/1
833 NEXT I

5-11

is the same as the {allowing one:

ENE“
613 1'1
920 IF I>6 THEN 53
@3G PRINT 1/:
94a 1-1+1:coroza
eso nun
Egan
1
.5
.333333
.25
. 2
.166666

READY
G

as mentioned earlier, in an IP/GOTO loop. the
modification of control variables can be accamPlished
through addition, subtraction, multipicatiou. division,
or other more complicated operations. sea the
.following-examples:

BREW
610 1-1
923 IF I>9E THEN 59
@33 PRINT 1/: .
943 I=I*2:GOTDZB
959 END
BRUN

1
. 5
. 25
.125
.3625
.93125

READY
QHEW
616 1-2
923 IF I>999999 THEN 59
933 PRINT I
94B I=I*I:GOT026
953 END

5-12

Saw I.
2
4
16
256.
6553fi

man!
9

5.3 Unconditional Control Transfer
As you know. normally program execution starts with
that of the least statement number and ya on in the
numeric order o f statement numbers one after anuther.
In case at cer ta in points of a prugram, you want to
override the normal sequential order so as to transfer
control to a certain statement number and go on program
execution therefrom, you can use the unconditional
control transfer. the-GDTD statement.+

5J11 136"!)

GDTO - Transfer n f exgcfltinn order.

Farmat:

GDTD Baum

flescription=

Aftar this statemnt is exacutad. the next statement
to be executed is the statement whale statement number
is specified by anun.

Note:

If Enum is not to he found anywhaia in the pragxam,
the following error message will be displayed:

UL ERROR IN LINE

5‘13

Remark: .L

Ha have described the corn command in Chapter 3, from
the viewpoint uf execution mode, Hfi can any that the
SOTO cammand is of the immediate execution mode while
the GOTD statement i s o f the deferred mode.

When the GOTO statement is executed, the next state-
mant to be executed will he that specified by the
statement number snum. _Thara£u:e, the GOTO statement
should not be followed by the statements gruup preceded
by I":"'.. This is because the statements group put there
will never be executed.

Try the following example:

SHE“
913 I u 15
@23 PRINT I/2+3
93% IF I) ! ‘ THEN END
@ifl I-I+3:GflTOZE:I-fl
anun
13.5
12
13.5
15
16.5
18
19.5

READY
E

5512 Inflnmalxxn:
In Section 5.1, we have mantianed that the cuntrol
variables are an indispensable part o f a loop for i t
cuntrola the number of times that a loop is to ba
executed. In practice. there are infinite loops without
control variables either due to the specif ic require-
ment o f a program a: simply because a! incarract
programming.

5‘14

In an infinite loop. there is nu TEST/EXIT. owing tn
the: absence nf the cuntrol variables. Thus, i f the
pragram execution happens to fal l into the body o f _ tha
infinite loop. i t will cause the luup ta execute in-
finitely because theta is no exit. In this case thfi
loop execution wi l l not and until there is an error or
an external interrupt.

See the fulluwing example:

euzw
Eli 1-1 _
929 pnxur 1x1
939 1-1+5:snwnza
Baum
1
.166666
.399999
.9525
.547619
.533461

council. 6
HEAD!
aunw
919 PRINT"HELLD"
929 GDTOlfl
BRUN
HELLO
HELLO
HELLO
HELLD
HELLG

cannon c
3330! '

5-15

5.4 Computed Control Transfer
as mentioned earlier. exaqutian of the uncanditiunnl
auntrul transfer statement GOTD will transfer cuntrnl
tn the statement specified by the statément number snum
regarélass of the number at times of execution on any
occasluna.

In this Sectiun, we wi l l discuss the computed SOTO
statement which can transfer control to one o f several
statements. specified. The statement to which the
control is to he transferred wil l be determined by the
numeric value evaluated from an arithmetic expressian
in the ON aexpr GOTO Snum statement. ‘

5.4.1 ON- - -GOTO
afl...GDTO... - Camputed Control Tranafer

Format:

On aexpr GDTD snum-{tsnuml}

Description:

Suppose the statement number l is t following GOTD read
as anum—lr anum—Z..... snumpn, than i f the integer part_
of aexpr is evaluated td he i , the cuntrul o f program
executian wi l l be transferred ta snum-i.

Hate:

I f the value af aexpr is less than 1 or Larger than n
{n is the number o f snum's {alluring GflTfl). the
fullawing error message wil l be displayed:

SN ERRDR IN LINE

and execution names to a stay.

Remark:

As with GGTO. ' : " statement group is 'no t allawed tn
follow the OH/GOTO statement. In'practica. OH/GGTU is
often used as a select switch.

5-16

Sea the fullnwing examale:

GHEH .
Eli nfl=fl:Bfl-B:A1-B:Blu
@20 INPUT 3,2
E39 ON C GOTO 45.63.33
643 h3=hfl+h=h1lhl+1
€ 5 3 GOTG 2H
@6 U BO=BO+A : Blflflli-l
GTE GOTO 26
SEE PRINT“IGROUP : " :
ESE PRINT“SUH=';AE;“AVG';
€ 9 5 PRIHT"=':AG/Al '
Elflfl ?"EGRDUP :SUH-“gafl:
9119 ?“AVG-“:Bflf31
GRUH
?19r1
?Sfl.2
$17,2
?13.1
?12.1
?45.2
?34,2
?11,1
??9.1
?1€E.1
?55 .3
IGRDUP :SUH= 23! AVG 35
ZGROUP :SUH- 146 AVG 36.5

READY
G

HPE—IP BASIC often uses floating numbers in arithmetic
expression. Floating number may be the value of
variables. array, canstants. expressiuna,'ur functions.

5‘1?

Chapter 6
Numeric Operation

In HPE-IP BASIC numeric operation i s done in floating
number systaa. Expressed in fluating number are the
-va1uea df variables. arrays. constants. expressions and
functions.

6.1 The Notation of Numeric Values in Memory
In HPF—IP BASIC. all numeric values are expressed in
floating number notation. In memory, each numeric
value takes up four Bytes, i . e . , each floating number
is expressed in 32 bits. 24 hi ts are used to-expraaa
mantiaaa, 7 b i t s are for exponent.

| BYTE 1 I BYTE 2 I BYTE 3 | BYTE 4 I
u — v — r t " V .‘

Exponent Hahtissa
Sign bit

flfi+
1 . -

fllBflflflnfl.5x2-1
Eflfiflfifi'fl.5!4=2
Bififlflflflifl.5+fi4125)!2 IIU
BEFFFF=-fl.999999

As all numeric values are expressed in f loating number
natation, we can not expect abanluta accuracy (The
deviations are usually negligible though). In
operations on some built-in functions, only ayproxiMate
results can be obtained.

6.2 Numelic Funcfions

The HPF-IP BASIC provides fiha users with a variety' of
built—in functions, in this sectiun, gun will see sunn-
numaric functions.

6.2.1 ABS

has - absolute value function

Enrnat:

has {aexprj

Description:

ABS returns tha absolute value o f - tha Expraflaian.

Hate:

In practice, the argument of the ABS function should
be a nufiaric expression, i f a string expression is
used, the result will he an unpredictable positive
number. .

E?ABSl—1G.6}
19,6 .

E?ABS(A$}
.641962

@?ABSIA$J
.513916

E?ABS{-22312}
2.1999SE+13

6.2.2 ATN

ATE - Arctangant functian_

format:

awn {aexpr}

Descriptian:

ATE returns tha arctangaht a f . an arithmetic exptéssififi.

5-2

1

Hate:

The value bf ATE (aaxpr) is in radians. I f the vulva
in degrees is required} the following equation-will do
the canvarsion:

Degrees - Radian: * 133/?!

‘ . PI PI:
"The range of BEE is - ———— < ATE < -—__

2 2

see.the following example:

Esau
e?px,awut11/91

3.14159 .
@?awnt1a/pxi1sa

45
@?ATH[fl}/PI*IBH
«2.57839E-fli

@?ATN(1.?32)/PI*133
59.9993

9
6.2.3 C05
'065 - Cosine function

Farmat:

'cOsitaexpr}

Description:

805 returns the canine of an arithmetic expresaian.
h

(EBE_Fig. where cos {9): —-- 1
c

Hate:

aaxpr i s in radians.

Degrees I Radiana * lBfifPL

See the fallowing example:

@flEW
E?cos(9fll

- . ¢48162
@?C05(PI/2)

- .999997
@?C05{PI*2)

.999997
@?CGS{PI/31

.499999
a

6.2.4 EXP
EXP --Hatural Exponentiatiqn Function

Ebrmat:

Exp (anxpr)

Description:
:

EXP returns a . where e in the Hapierian
2171827. EXP is the inverse Df the antaral
function.

See the fulluwing example:

@?Etl}
2.7182?

@NEW
61a FOR I = 2 - ? 9 5
EZG'?EKP{ I)
939 NEXT I
@RUH

7 . 3 8 9 6 5
2fl.fl855
54.5981

148.412

—
_

_

—
-

_

—
_

‘
_

caflfltant 1r
“lagarithm

REID!
9?IXP(hfl{2}}
1.99999

6.2.5 INT
IE? - Integer Function

Ebrmat:

IN! {altpr}

Description:

IHT raturns the largaht integer lulu than at equal to
nexpr. .

fa fact. In! works a: a Gaussian Function.

Sea the following a:umpla=‘

E?IHT(3.EJ

E;IHT(-3.6}

8;:23.4567EB:IHTI123.156758)
1.234563+13 1.23456E+1fl

Q?IHT(B.4]

EgIHTtflri}
fl -1

6.2.6” LN .
LH — HatuEal Lagarithn lunatinn

Format:

LN (nary!)

unscription:

BB returns tha natural.1ngarithn of aaxpr. It is ' thn
inverse of 3x9.

Hate:

aaxpr must: be greater than zero. otherwise. the '
following error message will be displayed:

DE ERROR IH LINE

Sea the fulluwing exampla:

E?LH(EI
OF ERRDR IN LIHB
E?Lfl(-12)
OF ERRDR IN LIFE
E?LN[EKF[5)}

4.99999
E?LH(123456)
11.7236

E?Lfl(19)
2.3fl256

65L? lIXE

LDG - Common Lugarithm Function

Furnat:

Lac (aaxpr)

Description:

LOG returns the common logarithm of nexpr. The: L9G
laglfltaexpr). I t is the invarna a! 1B: function; Hate
the following relation:

LOGlfl)lLH{X)/Lfltlfll

flats: _

A: with LN function. aaxpr.mult be graatar than zero.
ntharwine the following arror message will be
diaplayad. .

an ERRGR_IH LINE

6-5

see the following eapla:

@?LOG(B)
OF ERROR IN LIHB
9?LOG(19‘B)

7.99999
E?LOG(7)

.845397
E?LH(7I/LN(10)

.345997
-@?LOG(1)

B
9

6.2.8 RND
RHD - Random number functian

Ebrmat:

END [(aexpr)]

Description:

When omitted. aexpr can be considered as 1. Run
.returns a random.va1ue in the current random number
cycle. The value is greater than or equal to zero and
less than aexpr. The value of aexpr can be negative.
In this case, the resultant value will fall between
zero and aexpr.

See the following examples:

@NEW
@19 INPUT A _
82$ FOR 1:1 TO 3 STEP scuta;
eaa PRINT INT(RND(A))
643 NEXT I
-@RUN
?7

h
b

H
B

H
h

nanny
GRUE

n
b

w
a

w
m

n

READ!
GSRANDOMIEE
@RUN
?7

MWH
@RDR
W

m
m

a
fi

m
u

m

READY
arm ?-3 -1

*2

READY

54

65L? SEHI

SSH - sign function

Format:

SEN [aexpr)

Description:

SEN {x1- 1 i f X}E
SEN { x) = E i f KEG
SGN {x)=-1 i f x<fl

See the following tun examples, which have the same
effect.

@NEW
819 INPUT A _
923 PRINT SGH{A)
836 GOTG 10
ENEW
filfl INPUTA
926 IF A<>a THEN urn/nasiax
639 PRINT a
943 SOTO 1n

6&L1CI Sfli

SIN — Sine functian

FQIMat:

SIN [aexprJ

Description:

The SIN funétiun returns tha sine at an aaxpr.
a.

See Fig. uhere Sluts): -—-

flute:

aexpr must be in rafiians.
Use the fallawing aquatian far canvarsibn.
Degrees - Radians * lag/PI

She the following example:

@HEW
@?SIH{BB}

.89395
@751NtPI /2)

.999997
@?SIN{PI]

1.19zagnva7
@?SIN(PI *2 }
-2.334133-fl7
@?SIH(PI/3}

.866325
9

6.2.11 50B

393 - Square taut functian-

Format:

SQR {nexpr}

Description:

EUR (aexprJ- l aaxpr{1/2)

Hate:

The value o f naxpr must _be pusitive_ p : _ zeta,
otherwise the following Error message will he dislayed:

QE ERRGR 1H LINE

Jase the-tollnwing example:

8?SQR(91:9'{1/1)
2.99999 2.99999

E?SQR£7J
2.64575

e?suata)
fl

@?SQR(-E} _
OE ERROR I N LINE
@?(-8)".5 ,
0F ERROR IN LINE
@

6&112.'LAN

TAN a Tangent funfitinn

Farmat:

TAN {asxpr}

Description:

TAN returns-the tangent of an aexpr. See Fig. wheré
_ a

TANIBJ‘ -_ -
h

flute:

aexp: must be- in radians. TAN is-thExinverae of the
3TH functnn. Use tha following equation in: canuetaian.

Degréea n Rafiians * lflflfPI

fiwll

see the following example:

CHEW
G?TAN(PI/4}

.999999
E?TAN(PI)
—1.19299B-fl7
E?TAN(45)
1.61988

@?ThN(PI/2)
8.3885BB+IG

@?TAN(PI/3)
1.73235

9

6-12

Clmpter7 Array

An array is also called a Matrix which is composed of a
group cf variables with the same name. For
identificatiun of each variable, a subscript is added
tn the common name. For instance, 3 (5) represents the
f i f th to: sixth in a str ict sense} element o f the array
H.

An array can either be one—dimentional at twa-
dimenaiunal. A one—dimensional array is composed c f 3
single column with a number of runs. In practice, a
subscript is added to specify the run. The numberng a t
culumns and rows starts tram zero. A tun—dimensional
array can be conceptualized as a table with multiple
calamaa and rows. For instance: DIH A (3 , 4) can be
tabulated as follows:

Columns

9 1 2 3 i

B htfl.fl) htfl.1} htl.2) Alflp3) A!fl.4)

ms 1 1:41.91 “1.13 “1.2) _ “1.3) “1.4)
2 ' A t 2 , fl) ht2,1] 1(2.2) h(2 ;3} n t2 ,4)

-3 At3.fl) At3.1) hi3.2} hi3.3) At3.4)

In a two-dimensional array, tun subscripts separated by
a cnmma are used for each element. As shown in the
-abova table, the first subscript is used to specify the
row number. and the second thE'column number. '

?-1

In HPE-IP BASIC, that: are tun nathnda to define an
-array.

{1}

{2}

Explicit Type:

In this method, an array is declared by a DIM
statement [see next section]. In the ltltflfllflt,
the name of the array. the number of IflHB and the
number o f columns are specifiedg

Implicit Type:

It is possible for you to use the elements hf
an array without declaration by a-DIH statamant
beforehand. In this case, i f the array i s one-
dimensional, the system will automatically set the
variable name as that of an array with 11 elements
(subscripts range from zero to 15).

I f the array is two—dimensional, the system will
set the variable name as the name of a tun
dimensional array with 121 elements {subscripts
range from E to 13 for bother row and cnlumnl.

In HPF-IP BASIC, you can nu use an array for string-
variables.

7.1 DIM
-DIH- Daclaratan nf an array.

Furmat:

DIM awn: subscript [{.name subscriptlj

-Dascriptian:

DIH.ia used to declare an array

Note:

The number of auhficripta fur an array variable _can
only be one or two, i .e . . anly one dimensional and tun
'dimenaional arrays are alluwad in practice.

Ramark=

The array is most often used to formulate a table.
During the program execution, on: can easily find any
item on the table with the help of the subscripts.

There in a great variety of npplicatians of tables on
the computer. For the simulation of the advanced
applications such as stack. queue, order l is ts, table:
together with subscripts are widely utilized and are
found powerful.

During the program executian. i f the value of a
subscrit anceeda the range either in explicit a: 1n
implicit mode, the fallawing error message w i l l b-
displayed:

SN ERROR IN LIHB

and the pragrlm execution will halt. Try the ffillowing
examples:

sum
EDIHZ(ZB.5]
antln.4J-e=32(19.¢}

B
e ? 3 { 3 r fl l i z [2 3 l 9 }

B H
E? 3 (Z fl i l fl }
5N ERROR IN LIKE
READY
E?fi(11;11)
SH ERROR IN LINE

READY
B?h(1§;13)

l

BREW H
919 REM PRIME NBHBER
€23 DIM PISS)
93H P t a l - z
84E PRINT 2 :
956 90-9
E63 91-3
B7! FGR I=B TE 93'

-BBF 2F P(I})SQR(P1}+1 THEN 12%
999 J*P(I} .
9139 IF IHTCPIXU)*JIP1 THEN 153
@113 NEXT I
8125 PHIPE+1:P(PBJIP1
@139 IF PDS(B)>=23 THEN ?
5143 PRINT P1;
@159 PllPl+2
9169 GUTD7B
ERUN

2 3 5 1 11 13
17 19 23 29 31
37 41 43 47 53
59 61 67 71 ?3
79 83- 89 97 191
133 IE? 139 113
127 131 137 139
149 151 157 163
167 173 179 131
191 193 19? 199
211 223 227 229
233 an ERROR IN LINE 12a

7.2 Changing the Dimension of on Anny
When the DIM statement for an array is executed. each
aha every element of the array 15 given a default value
of zero. With the execution of a DIM statement, the
maximum Storage S ize for the array variables i s f ixed,
and i t is impassible to change the Maximum Storage S ize
until the exacution a f RUN or NEH statement. In
response tn the second, third....DIH statement for the
array variables, the system will check i f the Maximum
Storage Size of the new DIM statement is greater than
that of the f i r s t DIM statement. I f so, the fallowing
Error message will be displayed:

SH ERROR IN LINE

and the program execution will come tn a halt.
Btherwisa, the system will only change the dimension at
the array and retain the cuntents at the staraga.

Try the following examples:

QNEW
916 DIH 5:16)
329 FOR I=E TO 19
93G ?L [I) ; :A { I) - I : ?A (I J
9 4 3 NEXT I
ESE DIH h (1 .d)
aaa rqn Ina TO 4
873 FOR J-U T9 1
EBB PRINT h tJ . I)
39B HEKT J
3153 PRINT
Elli NEXT I
ERUH

h
u

u
w

fl
l

a
fi

a
fi

n
u

n
n

a
n

n

w
m

u
m

m
n

w
m

q
m

m
n

u
M

H
n

nanny _
enIH ntz.4)
su ERROR 1H LINE
READY E

In HEP—IE BASIC. the one-dimensional arrays in
cansidarad as a special cyan uf' the 'twn—dimanaional
array. Ear instance. A l l) is considered an equivalent
to A (I , fl) .

Try thi falluwing akanplat

ENE“
Ell DIH 3(13)
929 FOR I-E I'D 1B
33! M i l - I
849 NEXT I
E59 FOR 1-! 1'0 1!
95: PRINT htI I}h(! .H)
979 HEIT I
enuu

B
1
2
3
4
5
6
7
B
9
1

m

.

3

1-6

Chapter 6
String Operation

HPF-IP BASIC prawides the use: with a variety o f
functions to deal with strings. In operands there are
string l i tera ls , string variables and string functions.
In statements. there.are assignment statements, conca-
tenation statements and I/O (input/output} statements.

The main purpose to provide the capability o f
processing str ings in to make HPE-IP a programmable
numeric calculate: as well an a documentatian
processor.

8.1 String Literals
A string l i te ra l is compaaed o f characters. The number
at characters in a string can range from zero to 255.
In HPF-IP BASIC. any character corresponds t o a number
between E and 255 accarding to the ASCII convention.
(See Appendix A) . We are familiar wi th some of the
characters such as let ters of the alphabet, numbers 3
to 9 . and special symbols in general use. Others
include figures or symbols not given in standand ASCII
code. These characters {some are i r regular graphics)
are peculiar tn the MPF—IP system and are entered
through the keyboard in combination with t h e - CONTROL
key. In pract ice. al l the characters stated above can
be used in a str ing l i tera l .

3 string l i tera l is a group o f characters enclosed by
a pair o f quotes or apostrophes as shuun below:

'CHARBCHER STRING"
'AHDTHER STRING'

Examina the fallaung examples:

" I 'M BASIC“
"ABC“
'QUOTE HARE [' 3 '
'HPF-IP'

-fihan quotes or apastruphaa are Inquirad within a
string literal, he EflIE— to use the other as the
-anclosure as shown above.

623 String Voflable
The string variable is used to stare a string of ASCII
characters. The length o f a string variable can he
changed as required. which can be evaluated by thh LEN
functiun. The length of a null string is zero.

In theory. the maximum length of a string variable cafi
reach 255. In fact , hawever, due tn the limited size
of the memory, there are some restraints.

In Execution, a string variable is given a default
value o f null string by the HPE-IP BASIC. ‘

The name of a string variable is a latter of tha
alphabet followed by a dollar sign “3 “ , or a latte:
fullnwed by any of the numbers from zero ta 9 which is
again folluwed by a dollar Sign.

In practical application of string variables, the name
of the string variable is used tn represent the whole=
string variable. To use a subatring, however, string
functians such as HID$. LEET$. RIGHT$ are required. In
HPE-IP BASIC. the notation of pseudo variable i s not
accepted, thus i t is more or less inconvenient ta
change a subatring. Notwithstanding, i t in still
possible to change same aubatringa of a string with the
help at string functions or string expressiunh.

See the falluwing examples:

9h$"THIS IS AN EXAMPLE"
@?h$
THIS IS AN EXAMPLE
@?LEFT$(A$,7}
THIS IS
@?MID${A$:BI3:}

AH
@?RIGHT$(A$.11]

EXAMPLE _
€?A$=“THESE ARE"+RIGHT$(A$.11)
@?A$ '
THESE ARE EXAMPLE
GAS-A$+"5"
@?A$
THESE ans Eiaupnns

8.3 String Expression
an str ing expression is composed uf a single string
{including string l i teral, string variable and string
function) a: tun strings combined by a concatenation
operator “+ “ . The concatenation_nperator functions to
combine the two strings in the order from le f t to right
to form a new str ing. A string expression i s used to
be assigned to a string‘ variable a: tu form a
relational expression (For more detail refer to 5 . 5 on-
the comparison of strings).

The format of string expressiun in as fallaws:

string

string + string

Here the string can be a string l iteral, a string
variable, a s t r ing variable or a string function. In
application, i t is a good practice to avoid combining
many str ings a t a time as shown below in utfler to avaid
undesirable results.

gtring + string + string

'H~3

Examples o f string literal. string varinfila. and
string function are “finale“. “HEP-1P“. 13. 293. and
CHR$£65). Numstlflfl} respectively.

The length o f an evaluated string expression is also'
restr icted to zero to 255.

See the following examples:

a? “ABC“+“ COMPUTER“
ABC COHPUTER
GC$="BASIC"
@?C$+"—HPF—IP“
BASIC-MPF—IP
B?CHR${9E)+C$
ZBASIC .
@?CHR${66) “halo"
BASIC __
ECHR$(65)+CHR$(BHJ
AZ .
@A5=“ COHPUTER'
E?C$+A$
BASIC CDHPUTER
@

8.4 Functions for Strings
A number o f built-in functions for strings are
available an HPF-IP BASIC. Amang them, same are used
for conversion between numeric values and str ings. In
this section, we present the functions in alphabetical
order. Below i s a l i s t o f them in four categuries:

(1) For the operation of substringa:

LBFTS (3.4.4)

HID$ (8 l 4 l 6 1

mam-s (a . 4 . a)

(21 Eat the formation af new strings:

spacaa (3.4.9)
STRINGS (9:4:19}

3-4

{3} Far the conversion bétwean numeric valuas and
strings:

ASCII 3.4.1
CHR$ 5:4.2

Nuns 3,4,7
VAL 3.4.11

(4) Others

INSTR t ,3
DER 3.4.5

'flut1 JASCH
ASCII - ASCII cade:functibh

EOIMIt :

53:11 (9219:)

Discription:

ASCII (American Standard cude for Infurmatiafl
Interchange) i s a net o f codes devised by the nuarican
National Standards Institute for effective interchange
of informatian between dif ferent campnters.

Every character I letter o f alphabet, number, or
symbol) is given a corr23punding ASCII code. Accnrding
ta i ta definition, 'every ASCII code i s cumpnaefl of 7
bits ranging tram {Bfiflflflflfl} to {1111111} in binary
representation a: zero to 127 in decimal.

The ASCII function returns the corresponding aSCII
value o f the f i r s t character at the string expression
sexpr. [Eur the table of nSCII values. please refer to
appendix A .)

Ramark:

We have mentioned in the above'that Each standard
ASCII code i s composed o f 7 bits. 35 the CPU (Central
Processing Unit} of HPF-IP processes the data an a has:
of 8 h i ts , i t is conventian to regard the must
significant b i t (HEB) as zern. The CHR$ function is in
a sense the invarae of the ASCII function, in the
discussion an CHR3. we wi l l examine the problem o f
carraspondence when a numeric value i s larger than 2TB
(-2561.

SEE the following examples:

E?ASC("E“] :ASC['BI 'J
4B 4B

@?fi5€("1 “ } ; n3fl { ' 9 ')
49 5?

@?asct"ax"3;nsct"zz"5
65 9 3

@NEW
91a INPUT as .
92$ PRINT A5CII(K$J
933 GOTO 13
@RUH

?UJG
as _
?+++
43

vill i

B
?<

53- .
?"GG

gCV ERROR IN LIHE 13

READ!
@RUN
?“fihh"

65
? I I I I

3%
‘iflll'll

39
?IIFEi

CV ERROR IN LINE 15
READY
@

.
_

_
d

In the above examples, the error message CV ERROR
occurred twice becasue the input string did not
properly adhere to the " “ or ' " ' rules. For the input
of a string, the use of "o r ' will make no difference
provided i t i s in legal form. (For more detail on the
input of strings, please tefa: to chapter 9 .) -

114.2 CHM
CHR$ - Character function

Format:

CHR$ (aexpr)

Description:

cans is a' string function which returns a one-
character string which contains the: alphanumeric
equivalent of the argument. according to the conversion
table in.hppandix.a.

The ASCII code i s formed by 7 hits while 2-805 is based
on 8 bits. Consequently, for any value of the numeric
expression aexp: between zero and 2 5 5 , the
corresponding character w i l l be displayed according to
the ASCII conversion. In case aexpr is greater than
127. the value wil l be subtracted by 128. Displayed on
the printer wi l l be values between zero and 127. I f
aexpr exceeds 255, unpredictable characters wil l be
displayed.

Try the following-examples:

GNEW -
€10 INPUT A
92¢ PRINT can$&31
G33 GOTO 19
ennu .
?65
A
5234
ll

?7H
H
'?Eli
H
i193
h
? CDHTRflL C
3T0? AT LINE 10

READ!
€?BSC(CHE$IGS))

65

@2350 (CHR3I1222)!

e?cnnathsct'nac'))
A

6.4.3 INSTR
133mg - The position of a string in anuthazratring.

Format:

INSTRtaatpr, aaxpr-l. aexpr-Z)

Dascription:

The IHSTR function i s used to ting the position at
BEIPI—Z in sexpr-l. where the starting pastiun for
search and comparison is controlled by .239: which must
he a positive number.

INSTR Returns:

(1} fl - when sexpr-z in not to be found in sexpr—l
af.tar the aaxpr—th character.

(2} 1 — when aaxpr-z in a null string

{3) n - when sexpr-z is.£uunfl starting tram the n—th
character in aaxpr-l.

Try the following example:

EHEH _
35 ?"INPDT HAIR STRING"
91! INPUT 51$
915 ?'IHPUT SUBSTRIHG'
925 INPUT 32$.
£25 ?“IHPUT STARTING POINT"
E33 INPUT A
943 ? Insrntn.51$.32$)
e45 ?'IHPUT SELECTIflH"
953 INPUT x
969 on K 6010 5.15.25
anus
INPUT HAIR STRING
7ABCDEFGHIJKLHH0
INPUT SUBSTRIHG
?EEG
INPUT STARTING POINT
?1

5
IHPUT SELECTIDH
?3
IHPUT STARTING PDIHT
?6

3
INPUT SELECTIHH
1'2
IHPDT SUBSTRIHG
?2
INPUT SUBSTRIHG
?'"
IHPUT STARTING PDIHT
?1

1
INPUT SELECTIDH
?2 '
:HPUT BUBBTRIHG
?ADDGY
IHPDT STARTING POINT
?1

3
INPUT SELECTIoH
?1
INPUT HAIR sTRIflG
?ADDCGADDGI

INPUT suaswalus
vnnn
INPUT STARTING PDIHT
?1
1

INPUT snLacwxnu
?3
INPUT STARTING PflIHT
?3
6

?conwnun c -
are? AT LINE 53
READY
E

fluh4 lEFTS

LEFTs - Left subatring'functiun

'Format:

LEFTstsexpr, aaxpr}

-Descriptian=

LEFT$ returns a string campased of the leftmnst aexp:
characters nf sexpr. when aexpr is larger than the
length o f sexpr. the LEFT$ functiun returns the whale
a f 5339:. I f 3239: i s negative. the follawing error
-maasaga wi l l display: .

.DV ERRDR IH LINE

?:y the fullnwing exampia:

anew
€19 INPUT ss
@23 FOR I=1 TD 15_ _
933 PRINT LEFT$(S$.I)
840 NEXT 1
ERUH
?CHEHG-YIfl-HHA

.c
CH
can
cuss
CHEHG
canna—
CHEHG-I
ensue-21
CHEHG-IIH
CHEHG—YIH-
CHENG-YIH-H
CHENG-YIH-HW
CHEHG-YIH-HWA
cuaus-yxu-Hwn
CHEHG-YIH—HWA
READY
G?LEET${S$:-1)
0v ERROR IN LINE

As you will find in 8 . 4 . 6 on thd Mina function, .LEFTS
_can be expressed by HID$ as shuunin the _follaw1ng
equation.

LEET$§aexpr,nexpr) I Hlnstaexpt. 1, aaxpr)

and in a later aectifln you wil l find

aexpr-LEFTsiaexpr, aaxpr) + RIGHT$Iaexpr, nexpr+13

-fiuL5 [EN
LEN - string length functiun

Earmat:

LEN {aaxprl

_Deacriptinn:

The LEN functiun returns an integer equal tn the
number of characters in the string argument. The value
may range frum Earn to 255, i .E. . a string can Contain
255 characters at most.

fl-ll

_Try the {allowing example:

EHEW
€15 INPUT S$
926 FORI-l mo LEH(5$)
93a PRINT LEFT$ ($$.I)
G43 NEXT I
@RHN
?BABIC

B
BA.
BBB
BEE!
BBEIC

READY
3

8.4.6 MIDS
310$ - Middle part of a String_

Furm§t=

M105 (saxpr. aaxpr-l, aezpr-z)

Description:

The HIDS function -returns a aubatring af 5219: '
campused nf aexpt-z chazaeters starting than the
(aexpr-llth character.

Remark:

Be sure you understand the folluwing equatiuns:

{1) HID$’{sexp:, 1. H) = LEFT$ (sexpr, u} . i

{2) HID$ (3919:. N, LEN(saxprl—N+1)=RIGHT$(sexpr.H1

Eu: gmbre detgil an the RIGHT$ function, please see i
. ._— i

|

3_12

EHBW
91a INPUT 3$ _
923 FOR 1-1 Tfl LEHIS$}
£39 A$=HID$Is$.I.1)
949 ?A;ASCII(A$)

?BLSIC-MPE—IP
66
65
33
?3
67
45
T?
BE
79
45
73
BE

”
F

i
l

'
fl

fi
l

l
l

'
n

h
fi

fl
l

l
fl

f

READY
9?HID${E$:5:5)
-HPE- _
8?LEFTIS.5)
315 1C

BaSIC
a

fish? lflflfii
nuns - Conversion f rom-a number to a string

Earmat:

HUM$£aezpt)

Description:

The HUH$ converts the resultant valun of the numeric
expressian aexp: ta 3 string rqpresentation.

Note:

I f a fitting expression is entered as the argument cf
the NHH3, the NHM$ H111 return zeta.

3-13

nescription:

The usage of the nuns functiun can he considered as a
special method of input/autput. In fact. i t is called-
an Internal Output Function while the usage of PRINT
statement is usually referred to as an External Output,
In 8.4.11 on VAL function, we wi l l examine the relatiun
between Internal and External Input.

In fact. there i s a canversion step contingent tn all
output execution. When we use the PRINT statement, a
nuMeric expression is f i r s t evaluated and than the
result i s displayed on the screen or printed an a
printer. When the NUH$ function i s used, however, the
result i s stored a t a specif ied address in the memory.
That i s , the programmer can reuse the result o f the
conversion as a s t r ing or assign anfl stare the str ing
to a s t r ing variable. 'Simi lar ly, the resultant str ing
can be used to form another string expression or ussed
in the compariscn o f s t r ings . In shar t , the result u f
conversion can be reused in the case 9 f NUMS while the
result can anly be autput to a display screen or
printer in the case c f the PRINT statement.

Note the {allowing equation:

PRINT aexpr n PRINT NUH$ (scant)

The NUM$ function is the inveerse.of the VAL function
which is decribed in 8.4.11.

@?5:"BAA“
5 AAA

@?HUM$(5};“AAA"
5 AAA

@NEw
@13 INPUT 3.3
E23 A$=NUH${A)
@25 IFh$-“ a “ THEN END
33B B$=NUH${B)
@49 5$=NUM$£A+BJ _
559 L$=h$+"+":L1$-B$+'-“
Eaa L$=L$+L1$=LSIL$+S$
@?fl PRINT LS
939 GDTDIB

'8—14

ERUH
?12,78

12 + 13 = 90
?5E?. 6E6* _

5.BGEBBE+BT+E.EBHEEB+EE'5.SHHGEE+ET
?123.5;-57.3

1 2 3 a S I P - 6 7 . 3 . 5 6 o 2

?1.fl,lflflflflflfl
1+1.BHHEEEE+H6=1.EHEEEE+GE

?1E-lfl,9E-lfl
_9.99999Ew11+8.999993-10l9.999993-19

?fl,fl

READY
3

5.4.6 RIGl-I'I'S
RIGHT - Rightside substring function

Fermat:

RIGHTSIBEIPI. 3219:)

Description:

RIGHTS returns.a substring which includes the aexprth
character to the and a t sexpr. when the value o f aaxpt
turns out greater than the length of 5239:, RIGHT$
returns the whale str ing. I f aexpr i s negative. the
follnwing error message wil l be displayed:

0V ERRDR 1H LINE

In 8 .4 .6 . we have described the following relatiuns
among BIDS. LEFT$ and RIGHT$, test the falldwing
examgles to see i f the relatiuns are true.

,RIGHTstsexpr. N}=HID$(sexpr, H, LENtaexpr)~H+1)
sexpr-LEFT$(5expr, H}+RIGHT{Bexpr, n+1)

3—15

Examples :

euzw
en$="HPF-I-PLUS'
GERIGHTIA,7}

PLU5 .
E?HID$(A$,7,LEH[A$J-7+1)

PLUS
a?LEET$(A$.7)+RIGHT$(A$.15}
_HPP-I-PLUS

ENE“
Elm asn'MPE-I—PLUS'
E20 FDR 1:1 TO LEHIA$J
933 PRINT RIGHT${A$,I)
@4H NEXT!
@RUH
HPF-I-PLUS
PF-I-PLUS
E-I-PLus
-I-PLUS
I-PLus
-PLUS
PLUS
LBS
US
a

READY
9

5.4.9 SPIRES
SPACE - Space functiun

Format:

SPACE$ (aéxpr)

Description:

SPACEfi returns a numbar of continuuus blanks.

81-15

Ramark:

In practice. whenever yau want to save manory, ya&
can use the SPA function instead of a string of blank:
provided the number of the cantinunus blanks ia-graatar
than of the bytes used for EPA (aaxpr) .

In 8.4.13 on STRING$. you will see

SPACESIaexpr) = STRIHGIIexpr.32)

as the ASCII nude fur a blank 13 32.
See the following examples:

@?"',SPACE$(19],':‘

@?" ' “ .SPA(16 } : " “
I

'EHEW
31a INPUT u
929 FOR I-B TO N
@3fl ? svntu- l) ; ' * ' ;srat1*21;"* '
Bin NEXT I
653 FOR I - N—l TDSTEP-l
EBB ?SPA{H—1};"*" ;SPA{I*21; '* '
@7fl NEXT I '
@RUH
?5

'READY
exam
?3

8-17

READY
Enuu
n
it

I i t

READ¥
E

3.410 STRINGS
STRING$ - String at iflanticai'éharactars

Earmat:

STRIHG$ {aexpr-l, aexpr-z)

Daacriptiun:

STRING$ returns a string of aaxpr-l iflantical
characters with an BSCII nude of aexpr-Za

Remark:

As described in 1.11. ybu can use- the STEIHGE
functian in i ts abbreviated farm. i .a. . -

STRIHG$ = STRlaexpr)

As a result, whenever you want to save memory, you can
use the STR function insteafl of a string of characters
provided the number of the reiterated characters is
greater than that of the bytes accupied by STR{aexpr) .

fi-lfi

Take note that swnlnsataaxpr. 32y-3Pncnstaexptl. a: tha
ASCII code for a blank 1: 32h

In the program listed in 3.4.11. try name mndificationa
as ahuwn below:

@HEH
810 INPUT N
aza FOR Ilfl TO N
939 ?5?A{N-1):5TR(1*2.42)
949 max? I
esp FOR I = n-1 TU a STEP-l
E63 ?SPA{H-1};STR{I*2,42)
€73 flax? I
@Ruu
?5

i t
i t i i

t t i i
l i i i i i i i

t i i t t t t i t i
* t i t t i i t
t i l t i i
*fi t *

i t

READY
GRUB
?4

i t
* i ‘ l ‘ i

t i t t t i
t i t t i i i t
* t t t t i
* i i t

it

READY
@RUN
?2

i t
t i**

1*

READ!
9

”5.4.1 1 VAL

VAL - Value at nuhatiq_string functiOn

-Fdrmat:

VAL (sexy!)

Description:

_ The van function returns the value at a string in the
farm o f numbers.

'Nate:

I f there is any illegal character in the argument,
the following errar message wi11_ba displayed a a ' i n the
case of the executiun of the INPUT STATEMENT.:

.flV ERROR IN LINE

Renark=

VAL can be candidarad as the inverse of Runs. I t is
regarded as a special I/O farmat 1.3. . an Internal
Input Functian. In comparison, the INPUT statement
cammonly used is called an External Input Functian.
Earlier in 3 . 4 . 7 . we have described the relationship
between Internal/External Output.

In all forms at input. there i s always a converaiun
involved. This is mare important with the input o f a
string. As mentioned in Chapter 5 . in HPF-IP BASIC. a
numeric value i s stored in memory as a fan: byte
floating point number. What is enterefl through the
keyhaard i s nothing but individual ASCII codes.
Therefare, the process of conversion carries much
significance.

Later in chapter 9 , we will. describa the READ
statement. I t 15 a form a t internal input just like
the VAL function.

8-26

In campariaon, the INPUT statement converts the ASCII
codes entered through the keyboard inta numeric values,
while the VAL function treats a string in the program
a: an entry through keyboard and operate on i t just
like an INPUT statement, and the READ statement fetch a
data from a Data Buffer in the program and then operate
on i t in a way similar to INPUT and VAL. To sum up. we
can cansider the VAL functiun as an indipandant
function, while the execution of INPUT and READ request
that the data be placed at a definite address and than
prucasa cf the VAL function is implemented.

In the following example, we will show you how to use
the VhL function, and a pragzam is used-to canvart a
positive integer.

anew
G?VAL{'1E7I
1.3nnafln+a7

e?a¢"93-7")
3.999993—37

9?VAL(“ 123"}
123

31a INPUT us
623 u-n
93a FDR 1-1 Tn Lnutus)
949 ulsnMIDtn.I,1)
€59 IF H1$=“ " THEN 9
86! IF N1$>“9' THEN 12a
975 IF H1$<'fl“ THEH 12¢
ean'u-N*19+nsctulsl-Is
€99 nzxr I
Elflfl PRINT fl$:'-";H
911a GDTO 19
@129 PRINT us _
@13fl PRINTSPhCI—l)3'*CBHVEREIOH ERHGR'
€143 GOTfl 19
Guam
2" 45"

45- #5
?67
67: 67
??6543
76543- 76543
2‘44: 23'_ _
44! 23- 44423

3-21

?123L9
123L9

*CDHVERSIDN ERROR
?1#953 1:993

*CDNVERS I OH ERROR
?RRR
ERR
*CDNVERSION ERROR ?-4 a 5 n 4 s 5- 455 ?"4 $ 577" 4 s 677

*CDHVERSIDN ERROR ?|c
STDP AT LINE lfl

READY
fl

6.5 Comparing Strings
Comparisons of str ings are possible with the relational
operators. The result is a truth value which is ofta
used in an IF statement {For more detai l , please see
1 . Listed below are the relational operators: -

QEEIanr Meaning

. equal to

<> not equal to

< less than

> greater than

<. less than or equal ta

>I granter than or equal to

8—22

Two strings are equal only i f they have the same
lagical length and each character matches. a string is
less than another i f i ts f i rs t character that does not
match the other i s numerically less than (accurfling to
the standard ASCII codes for characters] or i t i s an
initial proper subset of the uther.

The detailed description of the nthe: relatianal
nperators are omitted since they can be easily figurad
out from the above discussion on ' I ' and '< ' .

Try the fllawing example:

@NEH
E13 INPUT as
92a INPUT as
ESE PRINT
943 PRINT h$:
35a IF asnas THEN ?':';
=GOTO 83
ESE IF A$<a$ THEN ?' ' 3
:GOTO EH
E73 PRINT “>";
933 PRINT as
sea GOTD 1a
@RUN
?hBC
?ABE

ABC>EBB
?K
?IX

'x<xx
?
'2!"
?G

{G
?AAAA
?AAAA

fihhh'fihfih
?ASRF
2333

3—23

ASRE>ASB
?56
?57
56(57
?136
?19

186(19
? G .
5 OP AT LINE 19

READ!
E

6.6 Input/Output of Strings
Detailed description on input/output of string: will be
presented in Chapter 9 . Topics on PRINT. INPUT, and
READ/DATh/RESTORE statements will be found in that
chapter. Special emphasis must be given to the " , " and
' 3 " in the PRIHT statement.

'fi—24

Chapter 9
|/O Statement

1/0 plays an 'esaential part in the operation at a
unmputer. In HPF—IP BASIC, tha- fundamental I/fl
statements EIE' PBS and IE? functions and the OUT
statement.

Information processing i s undoubtedly the major
function of a computer system. In preceding chayters
we have described the functinns of HPF-IP BASIC in
connection with the uperation on numbers and str ings .
A computer system has to communicate with the outside
Hurld, 1.3. . the information tn be pracesaefl must be
input unto the computer system, and then the proceaaad
information i s expected to be output to the outside
world. The SAVE and LDAD cammands on HPE-IP BASIC are
used together wi th a tapa-recurder. The LORD cammand
will cause the information stored an the magnetic tape
transferred to the computer. The LIST command wil l
have the program displayed on a screen or printed on a
printer. The SAVE command wi l l have the program
entered through the keyboard tranferred to and stored“
on a secondary storage such as a magnetic tape.

For a computer system, there are a number of peripheral
devices in the outside world. For HPF-IP, we have the
keyboara, magnetic tapes, the printer.. In future. the
peripheral devices wi l l include a widen uutput and diak
drive. In each case, different methaas o f I/Q
operations are required for different peripheral
devices.

'9-1

Tn make the most of a computer system, the use: must
cammnnicate effectively with i t . One can enter the
programs and data by the different methods o f
communication into the computer and get the results.
In an application system. the use: can do without the
I/D operations. Certain devices wil l automatically
provifle the system with necessary data, and the uutput
of the system wi l l instruct the peripheral devices to
do the subsequent procedures.

On a general-purpose computer system, the use:
communicates direct ly with the compute: through the I/O
aperatlnns which are the principal tdpica o f this
chapter. As described in the section pn parmanant
sturage commands, there are devices called auxiliary
storage which the computer-can accaaa directly.

9.1 PRINT
'The PRINT statement i s used ta haVE same valuaa
displayed an the indicate: panel. I f a printer is
attached ta the PRT-MPF—IP system, i t can be printed
on the printer. To know haw the printer operates,
please see the PRT-HPF-IP Printer Operation Manual.
Before the system enters the BASIC mode. yuu can press
CONTROL P to pawar ON/GFE the printer. In practice,
when the printer i s act ive. CONTROL P wi l l turn i t o f f .
otherwise, i t is turned an.

PRINT - Display on the indicator panel;

Format:

PRINT [{expr i t i . : I iexpr i l l l l l . :1
? [{ e x p r l t t . : I { a x p r } l }]] [. :]

Description:

"?' can be used in place c f PRINT.

The PRINT statement ia-uaefl tu_uutput the values- of-
axprassiana to the indicator panel or thE'printar.

Execution made:

Immediate E deferred mada-

9H2

Remark:

In practice, there are several fundamental types of
the PRINT statement as twn helpw:

[11 PRINT

{23 PRINT exp:

{3 } PfiINT expr,-expr

(41 PRINT expr; exp:

{53 PRINT expr,

{61 PRINT expr;

Bafore we examine the above type: in detail, we would
l ike to give a fan Wards concerning-the concept of a
LINE.

In hardware structure, HPF—IP is equipped with a 2n-
character green Fluorescent Indicator Panel. with the
software cuntrol, the buffer o f a display line can
contain up to SE characters. In other words. in HEP-IE
there are a maximum a f 6% characters in a l ine. During
the program execufiiun when the output requires a
linefeed, the program execution will came to a halt and
i t will not resume until the user: presses and al l
characters on the indicator panel are cleared n f f . In
cuntraat. suppose a printer i s installed to MPFHIP and
the printer i s in act ive state. Then when the data
displayed an the indicator panel requires a linefeed,
the system wi l l instruct the printer to get a hardcopy
af that line. get a linefeed automatically and the
program execution wil l go on. Fur this reason, 'we
recommend that the use: o f MPF-IP have a printer
installed an as ta enhance the performance of the
system.

In type (1) thraugh (4) , neither “ , " nu: “ g “ i s present
at the and of these statements. When their execution
is accumpliahed, a linefeed is invnkad. HE will give
gnu a detailed description an the usage of " , ' and ' 3 '
in 9.1.3 and 9.1.4.

9bL1 (Duqmnnafhhunewctkne

In a PRINT statement. except for some control factors
{See 9.1.3. 9.1.4. 9 .1 .5 . 9.1.6. 9 .1 .7] . numeric data
and string data [See 9.1.2] are the principal
components for nutput. Numeric data can be categorized
intu (1) numeric constants (2] numeric variables (3)
numberic functions [Including built-in functions and
user-defined functions). In spite o f the different
-categories, the final result in practice is a numeric
value in any case. The PRINT statement is used to
display the value an the indicator panel in a certain
fnrmat.

In 8 .4 .? an the nuns function. we have described he
output format uf numeric values. In fact. the HUH$
funcian can be considered as a conversion routine which
can convert a numeric value into a string in a
specified farmat and than the string is displayed on
the indicator panel. To understand the conversion
format, try the fullawing examples.

9??
7

G?123.456?
123.456

8?+2345.?89
2345.78

9?-78.a
-7a

@?+34.fll
34.31 _

E?789789?89
1.897393+Ea

G?-3645.7653
-3645.?6

E?1£6
1.BEEEHB+GG

9?1E5
1.aaflfla

E?1E-5
1.93aannéas

E?1E-4
9.99999£~95
fi?1£18
9.99999:+1?

@?-131fi_
-1.uaaaas+1a

E?-1.319 _
av ERRGR IN LINE
4.99999n+1a

9

9.1.2 Output of Stflng Dom
String data can be classified into string l i teral.
string variable and string function (including built—in
function and user-defined function). Upon the
executiun of a PRINT statement. the structure of a
string data Can be canceptualized as follows:

where each [:3 stands for a hyte_in tha'manury. Stfitfid
in the f i rs t byte is the length of the string CH} ,
fdllowed by n bytes in each is the Code far a character
of the string.

During the output a t str ing.flata, i f the length af the
astring i s zero. the output painter will not move. {The
length o f a null string i s zero.)

Try the following example:

@?'1273'
1213
a ? ! I II

I

a? I II I

ll

6?“-

@?'$FVGR“
$FVGR
e

9.1.3 The Usage of ‘2" in a PRINT Statement |

In HPF-IP BASIC. the maximum length allowed in: a l i n é -
is 32 characters, and every 8 characters farm a field.

‘In connectinn with output, there- i s an‘ impartant
indicatUI-the output painter which points to the next
output pointer is " “ “ i called cursor) . In a P R I N T .
'statement. the execution of “ , “ w i l l cause the output
pointer ta jump tn the beginning o f next f ield and the
subsequent output wi l l star t from there. In the usage
uf “ . " . when output requires a linefeed, in Other
words, when the output pointer is in the last field of
a l ine, the subsequent appearance o f " , “ w i l l cause an
automatic linefeed, and the output pointer wi l l jumy to
the beginning uf the f i r s t field o f the next line.

1H NEW
26 INPUT J
an FDR I '1_TD 3
4n PRINT I+J.
59 NEXT I
a Run

11 12 13
15 15 17

. 18
READY
6

I f the “ i “ DI “ , " symbol is embedded in a PRINT
-cummand. the BASIC'Interpreter wi l l send a linefeed
nude to the PRT-HPF—IP when the number of characters tn
be printed Gut exceeds 32.

9.1.4 The Usage of ':' in u PRINT Statemem'
Upan the execution of a PRINT statement, both numeric
data and string data are converted into the same format
which can be considered as string format before they
are uutput. In 9.1.3. we have described that " , ' is
used to central f ield. In contrast, “ ; " cause the data
ta be output one immediately after another after thfi
various data is canverted into the same furdat.

13 PRINT 'H“;:GOTO 13
ERUN
HHHHHHHHHHHHHHHHHHH
HHHHHHHHHHH
HHHHHHHEIHHHHHHHHHHH.
HHH HHHHHHHH
HHHHHHHHHHHHHHHHHHH
HHHHHHHHHHH
HHHHHHHHHHHHHHHHHHH
H l C
STOP AT LINE 10

9.1.5 Omission o “5'

In HPF-IP BASIC, data is classified into numeric flata
and string data. which are in turn classified into
numeric constants. str ing constants. numeric variables,
str ing.variab1es, numeric functions. str ing functions,
numeric expressions and str ing expressions. A s
mentioned ear l ie r , a variable name begins with a
alphabetical letter which may be followed by a numeral.
The dollar sign "3" is added to a str ing variable. The
f i r s t two characters at al l reserved wards used by the
NPF—IP BASIC are restr icted to letters of the alphabet.
which leaves out any possibil i ty o f ambiguity in
identification. As a result. for a PRINT statement; an
condition that the output o f data i s clearly
identifiable. “ , “ may be omitted.

6?“1234““56?B"
12345678
@?1234“5618"

1234 567a
Ennla
@?1234A

1234 10
@?A"5673“

15 5613

In fact . omission of “ . ' is a-apacial feature of Hpfi-IP
-BASIC. i t is ant necessarily allnwed in other BBSIG.

9.1.6 P05 Function
pus - Pasitipn pf autput Painter

Farmat:

-pns {a}
Description:

The 905 functiun is used to indicate the current
position o f Output pointer in the nutput buffer a: in a
line. tau may use this function to prevent the usage
at " ; “ from invoking overflow which destroys other
memnry contents in the system.

EHEW
619 PRINT
923 INPUT J
€39 FDR Iul T0 25'
943 IFPOSIGI>=2E THEE ?
€59 PRIHT 1+J:
969 uExT I
ERUH

?a _
1 2 3 4 5 E 1
s 9 19 11 12 13
14 15 15 17 13
19 29

READ!
enuu

9*3

?193
1H1 192 1a3 1n!
1H5 106 197 1a:
139 119 111 112
113 114 115 116
117- 118 119 129

READY
9303

?1a
11 12 13 14 15
_15 17 13 19 29
21 '22 23 24 25
25 27 23 29 3a

READY
E

‘RAJ? [Afllfiuuflbn
TEE - benignatibn uf output pasitinn

Format: ' *

TAB (aaxpr)

flescription=

The TAB function is used togathfir with a PRLHT
statement tn specify the start position of the neat
autput.

Ramark:

The TAB function may he considered as a generalized
usage nf ' , ' . I t is used to npecify the start paint of
the next field in a line. In comparisan with " , ' . tha
length o f a field is not restricted to B (or 4 for the
last one) i f the TAB function is used.

In practice. the TAB function moves the output pointer
to the posititinn specified by aexpr. ha a result. i f
the value at aaxpr is less than the current pasitiun at
the autput pointer in the line, a linefeed will occur.

Try the following exampolea:

BREW
913 FOR I B 1 T5 lfi
E29 ?TAB(I*3):I ;
93¢ NEXT I

1 2 3 4 5 6
7 B 9 13

READ!
9 BEN ' ,
.eln FflR I=1 we 1a
923 ? Tha t i l g l
a36_NExT I
@RUH

1

-EELDI

9.2 INPUT Statement
The INPUT statement allows the use: to enter through
the keyboard the required data during thg program
execution. In ather wards, the INPUT statement enables
a pragram to get data from the outside world during the
program execution. In additionIr the programmer can
print a “prompt statement" before the use: i s requested
by the INPUT statement ta enter data, this enables the .
use: to acknowleflge what he i s expected to hay in.

INPUT - Input data through the keybuard

Farmat:

IHEUT [stringrl-vnr [{.var}l

9+19

Deanription:

The INPUT stfitamént enables the programmer to. enter
data-through the keyboard during the program executi¢n1

Execution made:

Immediate and fiefertéfl made

Remark:

The fundamental types flarivefl Erhm_the Earmat are
listed below:

[1) INPUT string, war

{2) INPUT war

{ 3) INPUT var , var

{4) INPUT string. wit. 1::

In {1) and (4] . the striné will f i rs t be printed upqn
the execution of program and than the éystam-waits for
input. In fact they are equivalent to the fallqwing
statements.

11') PRINT str ing:: INPUT var

(4 ') ?string : : INPUT var. var

As shown in { 3 } and (4 } , when two ar'mnre itEms 9f data
are to be input. “ , " can be used as a delimiter.

If the type of the entered data apes not match that at
var. the follawing error message wi l l be displayed:

cv Hanan IN LINE

9_11‘

9.2.1 Input of Numeflc Dam
we have described the canversion of numeric data under _
the topic on the VAL function in 8.4.11. When yau
enter a numeric data through the keyboard, the entered
item, which is in the form uf a string, is f i rs t ‘
converted into a numeric data thraugh the canveraion of
the VAL function and then stored onto the specifiad
numeric variable.

EINPUT"HUHBER'.A:?A
HUMBER?—lflfl
-1flfl
@IHPUT c ,n
2a,45
@PRINT C.D;C:D

29 45 23 45
ENEN:IHPUT A,c=?a.c
12.59

12
@INPUT'“ ' .A
“93¢
a

9.2.2 Input of Suing Dam
. .The format of string data input is an the whale the

same ta that o f string literal. Simplied fnrmat is
allowed as shown in the fallowing examples:

EIHPUT"STRIHG',A$:?A$.
STRING?“QUIET“
QUIET
_eIHPUT h$:?A$
?DDD
nun .
GINPUT"TWO'.A$.B$:?A$,B$
THfl?“GGG',HHH
GGG HHH
@IHP A$,B$:?A$.B$
?JJJ.GGG
JJJ GGG .
@INP A$.B$:?A$.B$
?"JJJ,GG',HH

9-13

9.3 DATA/READ/RESTOBE
DATA/READ/RESTORE - Stack of constants in a pragram

Constants are required in almost all programs. The
attempt to relentlessly use the LET statement wil l make
the program aver—aizefl and a lat of memary spaces
wasted. In practical applications such as those for
industrial and commercial purposes, a net of numeric
data a: alphanumeric data are required.

In HPF-IP BASIC. the statements DhTfi/READIRBSTDRE are
provided to 62:1 with these constant values. we will
start with UATA/READ.

In any program, the statements DATA and READ work as a
complimentary pair. Either uf them can be placed
anywhere in a program. DATA and REM are similar in
nature, i . e . . both of them are nan—executable
statements. They are di f ferent in that anything
following REM is ignored by BASIC while those appeared
in DATa have actual significancej In_ fac t . the urder
of statement number of each DATA statement is crucial
in program execution. All the DATA statements in a
program can he considered as a single UATA statement
with the contents of each statement combined in the
under a f statement numbers.

Upon the execution of a READ statement. there is a
conceptualized Data Painter in the DATA statement
painting to the individual items. The DATA palate:
will specify the next itan to be read. Each time an
item in the DATA statements is read. the date painter
will wave to the next one. '

The RESTDRE statement is used to bring the data painter
back to the f i rs t item in DATA statement.

READ - Read an item from DATA

Format:

READ var [{ .var}]

9‘13

Description:

The exacutiun of tha*REfiD at.atam&nt will get an itEm :
from the 'DhTfi statements.

Exacutinn mode:

Innediafe and defertefl mafia

Nate:

I f the number of remaining items in the D-ATA
statements i s - less than that requested by the READ
statement. tha~ following altar massage wil l bé
displayefl:

DA ERROR IH LINE

Remark:

In practice, the numeric constants and string
canstants can_ be intermingled in one DATA, atatament.
The data conversion related with DATA is the same as
that of IHPUT.

DATA - Stuck of data

Farmat:

DATB string-l number [{,atring|number}]

Dascriptiun:

The DATA statement is used to.:aaarva numeric snafu:
string canatanta to he used later in the program.

Execution made:

Deferred made

Ramark:

At tha time of programming. -all data in the DATA
atatamnta are considered as atrifig constants prior tn
canneraiun opetatinn; Upnn the execution of the READ
statement. each item in DATA is converted into a
numeric canstant a: string canstant as required.

9—14

In the- execution a t the READ atatamant. i f a han-
numetic data is assigned to a numeric variable in the
READ -atataments. the following error message will be
displayed.-

CV ERROR 1H LINE

nzswaaa - naaet the data painte:

Format:

RESTORE

Description:

The executiun of the RESTORE statement will move the
data painter tn the first item in the first DATA
statement.

Executian mode:

Immediate and daféztafl Mgda.

9.3.1 Examples
anew _
919' DATE. 1 ' 2 f 3 f " 5 f 6 _
ens DATA 7.3.9.1a J
639 FDR I ‘ 1 To 1‘
949 REED J
95“ PRINT J}
969 NEXT I
@RUH

1 2 3 4 5 6 7
a 9 19

READ!
GGUTO 3“
DA ERRUR I“ LINE 4%

READY
ennswons
@6010 as _
1 2 3 4 -5 E 1
a 9 .19

3359!
9

9—15

EHEW
BIG DATA 1.2.3.4;5;6
926 DhTfi 7.3.9.19
93E FOR I = 1 TO 1a
943 READ as
353 PRINT J3:
36E NEKT I
ERUN
12345678919
R330!
935 RESTORE
BRUN
1111111111
935 DATA n.31c,n
945 READ K
955 PRINT K:
aka“
1 2 3 4 5 E 7 a 9 10
CV ERROR IN LINE :5

9.4 INP Function
INP ~‘Read a data from input port

Earmgt:

INF {nexpr}

Description:

The IHP function in used to read a-data frnm- input
port aaxpr. where the range to: the data is from :arn
tn 255.

9.5 OUT Statement
our - Send a data to output part

Format:

our aaxpr-l. aexprez

9-16

Descriptiané

The flur,statemant is used to sand netpr-i tn output
port aexpr—l, where the.ranga far aaxpr-Z is preferably
zero to 255.

Execution mods:

Immpfliata'andgdeferrad-mnda-

9-13?

	Preface
	1 - Introduction to BASIC
	Special Keys
	Prompt Characters
	Entry and Exit from the BASIC System
	Correction of Errors While Inputing a Program
	BASIC Commands and Statements
	Execution Modes
	Commands
	Statements
	Correct or Delete a Statement

	Listing of a Program
	Execution of a Program
	Deletion of a Whole Program
	Remark in a Program
	Usage Of:

	2 - Expression
	Constants
	Numeric Constants
	Literal Strings

	Variables
	Functions
	Operators
	Evaluating Expressions

	3 - Commands
	Execution Commands
	RUN/XEQ/GOTO
	CONTINUE
	QUIT

	Editing Commands
	LIST
	NEW/NEW*
	EDIT

	Permanent Storage Commands
	SAVE
	LOAD

	Auxiliary Commands
	FREE
	HEX

	4 - General Statements
	LET
	END/STOP
	REM and '!'
	RANDOMIZE
	SON/SOFF

	5 - Control Statements
	Loops
	FOR
	NEXT
	FOR/NEXT Loop
	Some Examples

	Conditional Control Transfer
	IF/THEN
	More on Loops

	Unconditional Control Transfer
	GOTO
	Infinite Loop

	Computed Control Transfer
	ON/GOTO

	6 - Numeric Operation
	The Notation of Numeric Values in Memory
	Numeric Functions
	ABS
	ATN
	COS
	EXP
	INT
	LN
	LOG
	RND
	SGN
	SIN
	SQR
	TAN

	7 - Array
	DIM
	Changing the Dimension of an Array

	8 - String Operation
	String Literals
	String Variable
	String Expression
	Functions for Strings
	ASCII
	CHR$
	INSTR
	LEFT$
	LEN
	MID$
	NUM$
	RIGHT$
	SPACE$
	STRING$
	VAL

	Comparing Strings
	Input/Output of Strings

	9 - I/O Statement
	PRINT
	Output of Numeric Data
	Output of String Data
	Usage of ',' in a PRINT Statement
	Usage of ';' in a PRINT Statement
	Omission of ';'
	POS Function
	TAB Function

	INPUT
	Input of Numeric Data
	Input of String Data

	DATA/READ/RESTORE
	Examples

	INP Function
	OUT Statement

	10 - Subprogram
	Components of a Subprogram
	GOSUB
	GOSUB
	ON/GOSUB
	RETURN
	Examples

	Recursive Subprogram

	11 - User Defined Function
	DEF Statement
	Usage of User Defined Function

	12 - Combination with Non-BASIC Program
	CALL Statement
	POKE/PEEK

	A - ASCII Characters
	B - MPF-1P BASIC Statements
	C - MPF-1P BASIC Commands
	D - MPF-1P BASIC Built-in Functions
	E - MPF-1P BASIC Error Messages
	F - Fundamental Definitions
	I - Some Subprograms in the Monitor
	PRT CONTROL
	BEEP CONTROL
	CLRBUF

	G - Ways to Save Memory
	H - Library Constant

