

Data Systems

# PHILIPS

Field Support Manual Mini Flexible Disk Drives X3111/12/13/14

.

A PUBLICATION OF PHILIPS DATA SYSTEMS APELDOORN, THE NETHERLANDS

PUB. NO. 5122 991 32191

DATE April 1982

Great care has been taken to ensure that the information contained in this handbook is accurate and complete. Should any errors or omissions be discovered, however, or should any user wish 'to make a suggestion for improving this handbook, he is invited to send the relevant details to:

PHILIPS DATA SYSTEMS SERV. DOC. AND TRAINING DEPT. P.O. Box 245, APELDOORN, THE NETHERLANDS.

Copyright © by PHILIPS DATA SYSTEMS. All rights strictly reserved. Reproduction or issue to third parties in any form whatever is not permitted without written authority from the publisher.

# SERVICE MANUAL STATUS RECORD

TITLE : MINI FLEXIBLE DISK DRIVES X3111/12/13/14

# PUBLICATION NUMBER : 5122 991 3219X

|       | UPDATE<br>PACKAGE | SI.NO.    | PAGES<br>AFFECTED          | DATE           | REMARKS       |
|-------|-------------------|-----------|----------------------------|----------------|---------------|
| <br>1 |                   |           |                            | 8204           | ' Issue Date. |
| 1     | 1                 | 8         | ·<br>1-17, 2-6,            | 8211           | 1             |
|       | 1                 | 1         | 7-2, 7-3, 7-5,<br>7-7, 7-8 | 1 0211         | Corrections   |
|       | 1                 | -<br>1    | /-/, /-ð                   |                | ·<br>·        |
|       |                   |           | 1                          |                | •             |
|       | 1                 | 1         | 1                          | 1              | 1             |
|       | 8                 | 1 · · · · | 1                          | F 1            | 1             |
|       | 1<br>1            | ı<br>1    | 1                          | ı .<br>1       | і.<br>І       |
|       | 1                 | 1         | 1                          | i :            | 1             |
|       | 1                 | 1         | 1                          | i :            | 1             |
|       | 1                 | ı         | 1                          | 1              | 1             |
|       |                   | I         | I                          | I I            | I             |
|       | ĩ                 | ,         | 1                          | ,<br>I :       | 1             |
|       | i<br>i            | 1         | 1                          | 1 I            | 1             |
|       | i<br>T            | 1<br>1    | 1                          | 1<br>1         |               |
|       | 1                 | 1         | ı<br>I                     | 1<br>1 · · · · | 1             |
|       | 1                 | 1         | 1                          | 1              | 1             |
|       | 1                 | 1         | 1                          | I              | I             |
|       | F                 | 1         | 1                          | 1              | 1             |
|       | 8                 | 1         | 1                          | 1              | 1             |
|       | 1                 | i<br>1    | 1                          | 1<br>1         | 1             |
|       | 8                 | 1         | 1                          | ı<br>1         | 1             |
|       | 1                 | ł         | e<br>1                     | 1              | 1             |
|       |                   |           | I                          |                | i             |



# TABLE OF CONTENTS

| CHAPTER | 1 | GENERAL DESCRIPTION    | PAGE | 1-1 thr. 1-18 |
|---------|---|------------------------|------|---------------|
|         | 2 | FUNCTIONAL DESCRIPTION |      | 2-1 thr. 2-20 |
|         | 3 | DETAILED DESCRIPTION   |      | 3-1 thr. 3-11 |
|         | 4 | CIRCUIT DIAGRAMS       |      | 4-1 thr. 4-9  |
|         | 5 | PROM CONTENTS          |      | 5-1 thr. 5-2  |
|         | 6 | PARTS LIST             |      | 6-1 thr. 6-24 |
|         | 7 | MAINTENANCE            |      | 7-1 thr. 7-15 |



| SECTION | 1.1                                                                                                                         | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PAGE | 1-2                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 1.2                                                                                                                         | PHYSICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 1-2                                                                                                                                                   |
|         | 1.3<br>1.3.1<br>1.3.2<br>1.3.3<br>1.3.4                                                                                     | TECHNICAL DATA<br>Performance Data<br>Power Requirements<br>Physical Characteristics<br>Environmental Conditions                                                                                                                                                                                                                                                                                                                                                                                                      |      | 1-6<br>1-6<br>1-7<br>1-7                                                                                                                              |
|         | 1.4<br>1.4.1<br>1.4.2                                                                                                       | INTERFACE<br>General<br>Control and Data Line Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 1-7<br>1-7<br>1-7                                                                                                                                     |
|         | 1.5                                                                                                                         | APPLICATION NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 1-12                                                                                                                                                  |
|         | 1.6<br>1.6.1<br>1.6.2<br>1.6.3<br>1.6.4<br>1.6.5                                                                            | Compatibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 1-12<br>1-12<br>1-14<br>1-15<br>1-18<br>1-18                                                                                                          |
|         |                                                                                                                             | LIST OF ILLUSTRATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                                                       |
| FIGURE  | 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7<br>1.8<br>1.9<br>1.10<br>1.11<br>1.12<br>1.13<br>1.14<br>1.15<br>1.16<br>1.17 | X3114 MINI FLEXIBLE DISK DRIVE<br>PHYSICAL ARRANGEMENT<br>X3111/2/3/4 INTERFACE CONNECTION<br>POSSIBLE INTERFACE CONFIGURATIONS<br>CONTROL LINE AND DATA FUNCTIONS<br>STRAP AND TEST POINT LOCATIONS<br>INTERFACE FUNCTION STRAPS<br>HEAD LOAD STRAP SELECTION<br>DOOR LOCK STRAP SELECTION<br>TEST POINTS AND CONFIGURATION STRAPS<br>CHASSIS MOUNTING DETAILS<br>6mm UNC 6-32 THREAD OPTION<br>INTERCONNECTION DIAGRAM<br>I/O CABLE AND CONNECTOR<br>DC CABLE AND CONNECTOR<br>SYSTEM GROUNDING<br>WIRING LOOM MFDF |      | $\begin{array}{c} 1-3\\ 1-5\\ 1-8\\ 1-9\\ 1-10\\ 1-11\\ 1-12\\ 1-13\\ 1-13\\ 1-13\\ 1-13\\ 1-14\\ 1-15\\ 1-17\\ 1-17\\ 1-17\\ 1-17\\ 1-18\end{array}$ |

1-1

#### 1.1 INTRODUCTION

The Philips X3111/2/3/4 Mini Flexible Disk drives are designed to provide low cost, random access storage, with high performance and reliability.

Reliability is enhanced by the simplicity of both electronic and mechanical design.

These 'slimline' drives  $(^2/_3$  the height of standard mini flexible drives) are fitted with a screen which makes them less susceptible to noise from external sources.

All drives are capable of single density (FM) or double density (MFM) recording modes.

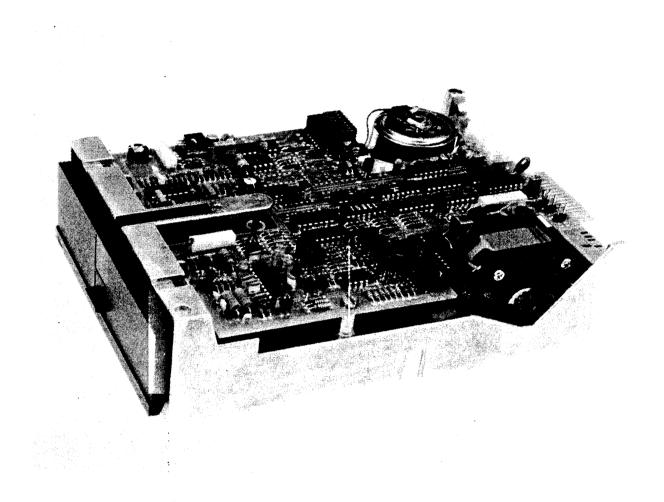
Unformatted data capacities are from 125K bytes to 1M byte, depending on the drive type and the recording method.

Commonality of components is achieved by using one basic drive ordered with the four possible combinations of 48 or 96 tracks per inch stepper motor, and single or double sided head arrangement. Door lock, disk ejector and electrical head load options are available for all 4 drives.

A single PCB carries all the electronic components. Only the heads, motors, sensors and indicators are mounted on the chassis.

Moving the heads to a required track, loading and selecting heads, writing and reading are all controlled via signals from the host system, therefore the operation and formatting are completely flexible within the limits imposed by the disk drive specifications.

The interface is based on the industry standard and is compatible with current major OEM drives. A number of plug-in straps allow the interface to be configured in several ways.


Operator features include an activity LED to show that the disk loading door is, or is not locked, an optional, disk ejector and a facility to run the motor temporarily each time a cartridge is inserted, thus correctly centreing the disk.

# 1.2 PHYSICAL DESCRIPTION (FIGURES 1.1 AND 1.2)

The drives, which weigh 1.3 Kg, are based on a 20cm x 14.5cm x 5.3cm alloy casting on which are mounted the spindle, spindle motor, head carriage, stepper motor and head load mechanisms. Head assembly, stepper motor and head load mechanisms vary according to the model and the factory option.

In the mechanical head load version, a spring-loaded, hard plastic moulding holds the head(s) away from the disk when the disk loading door is open. When the door closes, a push-rod operates a lever which compresses the spring and allows the heads to load. The same push-rod operates a switch which indicates that the loading door is closed. In the electrical head load version, the head(s) are loaded by the action of a solenoid.

The door lock/unlock function is decided by the mounting position of the solenoid (figure 1.2b). Reversal is a simple matter.



X3111/2/3/4

The spindle, which is belt driven by the spindle motor, has a stroboscopic disk on the underside. This provides a visual guide to spindle speed (assuming the local mains frequency is reliable).

The head carriage assembly is mounted on two steel bars which are positively located against the casting. Connection to the pulley of the stepper motor is by a spring-steel bit.

A 4 phase stepper motor, which is mounted on a sliding bracket, drives the carriage in order to access the required track or cylinder. The sliding bracket is used during radial alignment of the heads.

All electronic circuits are mounted on a single PCB which is fixed on top of the frame by 3 screws. Connection to the chassis-mounted components is via 4 plugs and sockets at the rear of the board.

Connection to the outside world is via ST1, thirty four-way interface plug and by ST2, four-way power plug. These items are mounted at the rear of the board. Write protect and index LEDs, track 0 detector, and a socket for the activity LED loom (MFDF), which connects these items to ST5. The "door closed" and "door lock/unlock" elements can be easily soldered to connection points on the loom.

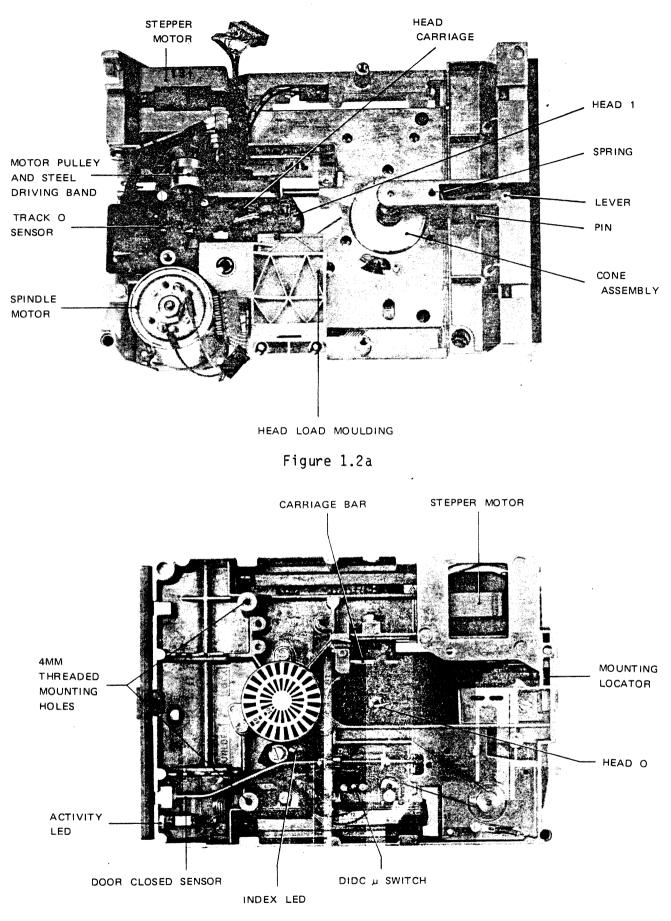



Figure 1.2b

Figure 1.2 PHYSICAL ARRANGEMENT

1.3 TECHNICAL DATA 1.3.1 PERFORMANCE DATA Cartridge size : 133.35mm (5.25 inch) No. of disks : 1 No. of surfaces : X3111/3 1 2 X3112/4 Tracks/inch : X3111/2 48 X3113/4 96 Tracks/surface 40 : X3111/2 X3113/4 80 Data Kbytes/track : 6.2 (MFM), 3.1 (FM) Data Kbytes/surface : X3111/2 250 (MFM), 125 (FM) 500 (MFM), 250 (FM) X3113/4 Total capacity (K bytes): X3111 250 (MFM), 125 (FM) 500 (MFM), 250 (FM) X3112 500 (MFM), 250 (FM) X3113 1000 (MFM), 500 (FM) X3114 Bit density (MFM) : 7958 flux transitions/radian : X3111/2 5676 flux reversals/in (TK39) Bit density max. X3113/4 5876 flux reversals/in (TK79) Data transfer rate (MFM): 250 K bits/sec. Rotation speed : 300 rpm. ± 3% overall : 100 msecs. Latency Track/positioning time : 5 msecs/track, plus 15 msecs. Ave positioning time : 80 msecs. (X3111/2) 147 msecs. (X3113/4) : 210 msecs. (X3111/2) 410 msecs. (X3113/4) Max. positioning time Spindle up to speed : 500 msecs. Head load (option) : 30 msecs. (max.).

1-6

1.3.2 POWER REQUIREMENTS less than 0.55 A.  $+ 5V \pm 5\%$ +12V  $\pm 5\%$ : current dependent on the factors as listed below: No write Heads loaded Less than .9A Stepper stationary Spindle motor on Door lock solenoid de-energised) Spindle motor switch-on surge : Less than 1.7A for 50 msecs (at 10° C) 500mA (48TPI) ) at 10°C Stepper motor max. current : 550mA (96TPI) Door lock Less than .2A ٠ Total dissipation Less than 12 watts • 1.3.3 PHYSICAL CHARACTERISTICS Dimensions : 21.6 cm x 15 cm x 5.75 cm Weight : 1.3 Kg. 1.3.4 ENVIRONMENTAL CONDITIONS Operating Environment : Temperature : 10° to 45° C : 10° C/hour Temperature change : 20% to 80% Relative humidity Max. dewpoint temperature : 28° C Providing that no condensation forms on any part of the drive or media. : -40° to +70° C Storage Environment : Temperature Relative humidity : 5% to 95% Max. dewpoint temperature : 28° C Providing that no condensation forms on any part of the drive or media. **1.4 INTERFACE** 

# 1.4.1 GENERAL

This section describes the interface between the mini flexible disk drive and its control unit. Pin assignments are tabulated in figures 1.3. Drives with which this interface is compatible, are tabulated in figure 1.4. All interface signals are TTL compatible. Logic true is +0.4 V maximum and logic false is +2.4 V minimum.

| DIRECTION<br>(controller) | SIGNAL FUNCTION                     | SIGNAL NAME   | P1 PIN NO.       |
|---------------------------|-------------------------------------|---------------|------------------|
|                           | Ground                              |               | 1                |
| to                        | Unit ready status*                  | URDY-N        | 2                |
| from                      | Load head(s)*                       | HLD -N        |                  |
|                           | Ground                              |               | 3                |
| from                      | In use (door lock/unlock)<br>Ground | DUN -N        | 3<br>4<br>5<br>6 |
| from                      | Unit select 4*                      | US4 -N        | 6                |
| to                        | Unit ready status*                  | URDY-N        |                  |
| from                      | Spindle motor on*                   | MTRN-N        |                  |
|                           | Ground                              | ·             | 7                |
| to                        | Index pulses                        | IND -N        | 8                |
|                           | Ground                              |               | 9                |
| from                      | Unit select 1                       | US1 -N        | 10               |
|                           | Ground <sup>-</sup>                 |               | 11               |
| from                      | Unit select 2                       | US2 -N        | 12               |
|                           | Ground                              |               | 13               |
| from                      | Unit select 3*                      | US3 -N        | 14               |
| from                      | In use (door lock/unlock)*          | DUN -N        |                  |
|                           | Ground                              |               | 15               |
| from                      | Spindle motor on                    | MTRN-N        | 16               |
| _                         | Ground                              |               | 17               |
| from                      | Stepper direction in                | DIR -N        | 18               |
|                           | Ground                              |               | 19               |
| from                      | Step                                | STP -N        | 20               |
| ~                         | Ground                              |               | 21               |
| from                      | Composite write data                | WRDA-N        | 22               |
| fuer                      | Ground                              |               | 23               |
| from                      | Write gate                          | WREN-N        | 24               |
| + -                       | Ground                              |               | 25               |
| to                        | Track 00                            | TK00-N        | 26               |
| to                        | Ground                              |               | 27<br>28         |
| LO                        | Write protect<br>Ground             | WRP-N         | 28               |
| to                        | Composite read data                 | RDA-N         | 30               |
| 10                        | Ground                              | RDA-N         | 30               |
| from                      | Select head 1                       | HDS-N         | 32               |
|                           | Ground                              | 105-11        | 33               |
| from                      | In use (door lock/unlock)*          | DUN-N         | 33               |
| to                        | Disk change*                        | DISK CHANGE-N | <b>U</b> T       |
| 50                        | brok chunge                         | DION UNAMUL-N |                  |

Note: One only, of functions marked \* may be strap selected at a time. See strap settings section 1.6.1.

Figure 1.3 X3111/2/3/4 INTERFACE CONNECTIONS

|     | ther Selecteble Options | Salect Line<br>Hhad iond with | Mutor On Line              | Salect Load<br>Meter (h with | Mutor On Line              | In the Head Load with:1. Head Load<br>Diak 2. Salect<br>Overge 3. Head Load + Salect<br>Drange Load with:1. 1. June |                                  | Select Line                | Httor On Line              | thread load with Calant    |                            | Head Load with:1. Ready<br>2. Mutor Dh |                            |
|-----|-------------------------|-------------------------------|----------------------------|------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------------------|----------------------------|
|     | 34                      | 1                             | I                          |                              | ı                          | In Use<br>Disk<br>Orenge                                                                                            | In Use<br>Diek<br>Change         |                            | ı                          | ı                          | 1                          |                                        | 1                          |
|     | 32                      | 1                             | Head<br>Select             | ı                            | Heed<br>Select             | I                                                                                                                   | Head In U<br>Select Diek<br>Chen | 1                          | Head<br>Select             | ı                          | Head<br>Select             | 1                                      | He ad<br>Select            |
|     | 30                      | Read<br>Det a                 | Read<br>Det a              | Read                         | Read<br>Date               | Read                                                                                                                | Deta                             | Read<br>Data               | Read<br>Det a              | Read                       | Read                       | Read                                   | Read<br>Deta               |
|     | 28                      | Mrite Read<br>Protect Data    | Mrite Read<br>Protect Date | Mrite Read<br>Protect Date   | Mrite Read<br>Protect Data | Mrite Read<br>Protect Data                                                                                          | Mrite Read<br>Protect Data       | Mrite Read<br>Protect Data | Mrite Read<br>Protect Data | Mrite Read<br>Protect Data | Mrite Read<br>Protect Data | Mrite Read<br>Protect Data             | Mrite Read<br>Protect Deta |
|     | 26                      | 1KDD                          | 1400                       | 1400                         | 0001                       | 1KDD                                                                                                                | 1KOD                             | 1001                       | 1K00                       | 1000                       | 1001                       | 0001                                   | DOX1                       |
|     | 24                      | Write<br>Gate                 | Write<br>Gate              | Write<br>Gate                | Write<br>Gete              | Mrite<br>Gate                                                                                                       | Mrire<br>Gate                    | Write<br>Gete              | Write<br>Gate              | Mrite<br>Gete              | Write<br>Gate              | Write<br>Gate                          | Write<br>Gate              |
|     | 22                      | Mrite<br>Date                 | Mrite<br>Deta              | Mrite<br>Dete                | Write<br>Data              | Mrite<br>Deta                                                                                                       | Write<br>Dete                    | Mrite<br>Date              | Write<br>Data              | Write<br>Data              | Write<br>Deta              | Mrite<br>Deta                          | Mrite<br>Deta              |
|     | 20                      | Step                          | Step                       | g ep<br>Ster                 | Step                       | Step<br>St                                                                                                          | Step                             | Step                       | Step                       | Step                       | Step                       | Step                                   | Step                       |
| PIN | 81                      | Direc-<br>tion                | Direc-<br>tion             | Direc-<br>tion               | Direc-<br>tion             | Direc-<br>tion                                                                                                      | Direc-<br>tion                   | Direc-<br>tion             | Direc-<br>tion             | Direc-<br>tion             | Direc-<br>tion             | Direc-<br>tion                         | Direc-<br>tion             |
|     | 16                      | g, Mator                      | Pt or                      | ь<br>ф                       | E E                        | B et or                                                                                                             | P tor                            | Motor<br>Dh                | Mator<br>Dh                | Motor<br>Dh                | Hotor<br>D                 | Motor<br>Dh                            | B to                       |
|     | 4                       | Select<br>J                   | Select<br>J                | Select Motor<br>3 Dh         | Select<br>J                | Select Motor<br>3 Dh                                                                                                | Select Motor<br>3 Dh             | Select<br>3                | Select<br>3                | Select<br>J                | Select<br>J                | Select<br>J                            | Select<br>3                |
|     | 12                      | Select<br>2                   | Select<br>2                | Select<br>2                  | Select<br>2                | Select Select                                                                                                       | Select<br>2                      | Select<br>2                | Select<br>2                | Select<br>2                | Select<br>2                | Select<br>2                            | Select<br>2                |
|     | 2                       | Select                        | Select<br>4                | Select<br>1                  | Select<br>1                | - Relect                                                                                                            | Select                           | Select                     | Select<br>1                | Select<br>1                | Select<br>1                | Select<br>1                            | Select                     |
|     | 80                      | Index                         | Index                      | Index                        | Select Index<br>4          | Index                                                                                                               | Index                            | Index                      | Index                      | Index                      | Index                      | Indxex                                 | Index                      |
|     | <u>ه</u>                |                               | 1                          | Select Ir                    |                            | Ready                                                                                                               | Ready                            | In the Select Index<br>4   | Select Index<br>4          | Select Index<br>4          | Select Index<br>4          | lbe Select Indxex<br>4                 | Select Index<br>A          |
|     | 4                       |                               | 1                          | <b>1</b><br>1<br>1           | l ri<br>Bel                | 1                                                                                                                   | 1                                | əellini                    | न्ध्री<br>भ                | କସ୍ମାମ୍ୟ                   | म्ह्र<br>स्था              | ead) ni                                | 19<br>5                    |
|     | ~                       | 1                             | ,                          |                              |                            |                                                                                                                     | 19<br>19<br>19<br>19             | ,                          | 1                          | 1                          | ı                          | ı                                      | 1                          |
|     | Drive TYP               | Shugært<br>SA 400             | Shugart<br>SA 450          | Shugart<br>SA 410            | Stugert<br>SA 460          | BAST<br>6106                                                                                                        | 845F<br>6108                     | 900<br>700                 | 200<br>2008                | MPI<br>Madel 51            | MPI<br>Madel 52            | Philipe<br>X3111/X3113                 | Philipe<br>X 3112/2011e    |

# Figure 1.4 POSSIBLE INTERFACE CONFIGURATIONS

X3111/2/3/4

1-9

| URDY- N | Drive loaded, up to speed and selected (only when electrical head load option is used) |
|---------|----------------------------------------------------------------------------------------|
| HLD - N | Load head(s)                                                                           |
| DUN - N | Lock/unlock loading door, and/or light busy LED                                        |
| US1-4-N | Enable control and status lines of drives 1-4                                          |
| MTRN- N | Run the spindle motor                                                                  |
| IND - N | Index pulses                                                                           |
| DIR - N | Select direction of carriage movement                                                  |
| STP - N | Move one track in direction indicatd by DIR-N                                          |
| WRDA- N | Write data and clock pulses                                                            |
| WREN- N | Enable write circuits, disable read                                                    |
|         | WREN-N also generates the erase signal ERASE via a delay circuit                       |
| TK00- N | Heads are over track 00                                                                |
| WRP – N | Write protected disk loaded                                                            |
| RDA – N | Read data and clock pulses                                                             |
| HDS - N | Select head 1                                                                          |
|         |                                                                                        |

- IN USE-N/DISK CHANGE-N This optional function is included on pin 1/34 to provide compatibility with B.A.S.F. mini flexible interfaces. It allows pin 34 to be used for a latched, door lock/unlock signal, or as an indication of change of ready status (see section 3.15).
- Note: Except for the special case of IN USE/DISK CHANGE, interface lines are not latched, so the DC levels on HLD, DIR, WREN, US, MTRN, HDS and DUN must be maintained as necessary.

Figure 1.5 CONTROL AND DATA LINE FUNCTIONS

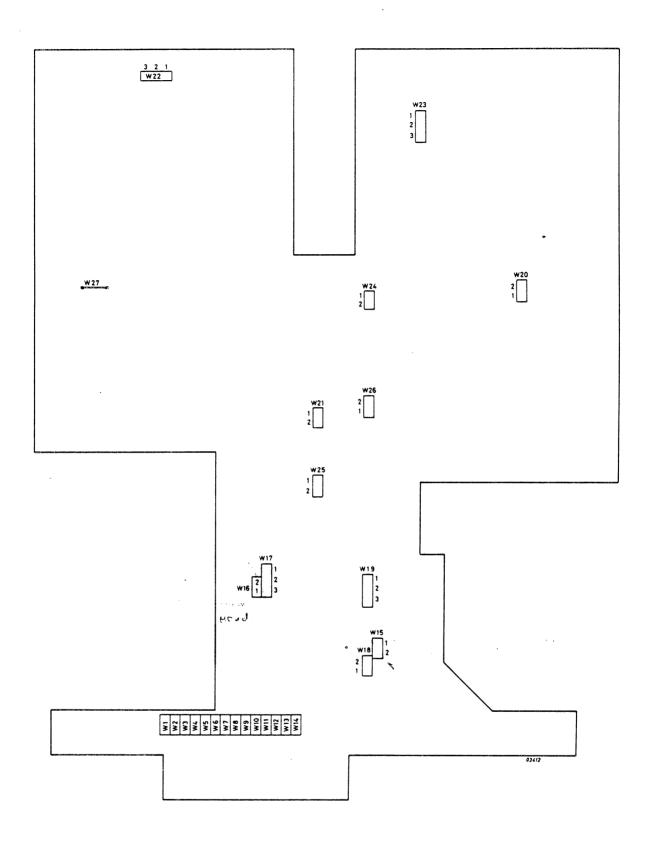



Figure 1.6 TEST POINT AND STRAP LOCATIONS

# **1.5 APPLICATION NOTES**

These drives are designed for general OEM use. The adaptable, industry standard interface, and the range of data capacity and options, makes them ideal for this purpose.

The slimline dimensions  $(^{2}/_{3}$  the height of standard mini flexible drives) and extra screening, suit typical desk-top applications.

# 1.6 INSTALLATION DATA

1.6.1 STRAP SETTINGS

| FUNCTION                                                                              | LINE                     | STRAPS                                                     | STRAPS NOT TO BE INSTALLED                                                                             |
|---------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Unit Select 1<br>Unit Select 2<br>Unit Select 3<br>Unit Select 4<br>Continuous Select | 10<br>12<br>14<br>6<br>- | 12<br>13<br>8<br>6<br>14                                   | 6/8/13/14<br>6/8/12/14<br>6/7/12/13/14<br>4/5/8/12/13/14<br>6/8/12/13                                  |
| Motor On 1<br>Motor On 2<br>Motor On Continuous                                       | 16<br>6<br>-             | 9,20<br>4,20                                               | 4<br>5/6/9<br>20                                                                                       |
| Ready 1<br>Ready 2                                                                    | 2<br>6                   | 1<br>5                                                     | 2<br>4/6                                                                                               |
| Disk Change                                                                           | 34                       | 11                                                         | 10                                                                                                     |
| Head Load                                                                             | 2                        | 2                                                          | 1                                                                                                      |
| Door Lock<br>Door Lock<br>Door Lock<br>Door Lock Continuous                           | 4<br>14<br>34            | 3, 19 (1-2)<br>7, 19 (1-2)<br>10, 19 (1-2)<br>24, 19 (1-2) | 7/10/24 ) MAY BE 'ANDED'<br>3/8/10/24) WITH 'US' BY<br>3/7/11/24) INSTALLATION<br>3/7/10 ) OF W18 ALSO |

Note: Door Lock = Door Lock/unlock and/or busy LED.

Figure 1.7 INTERFACE FUNCTION STRAPS.

Strapping tables should be interpreted as follows:

0 = STRAP REMOVED

٠

1 = STRAP INSTALLED X = STRAP DEFINED ELSEWHERE

# STRAPS

# FUNCTION

| <u>W16</u> | <u>W15</u> | <u>W17 1-2</u> | <u>W17 2-3</u> |                                           |
|------------|------------|----------------|----------------|-------------------------------------------|
| Х          | X          | 0              | 1              | HEAD LOAD WITH 'UP TO SPEED'              |
| Х          | Х          | 1              | 0              | HEAD LOAD WITH 'MTRN-N'                   |
| Х          | 0          | X              | Х              | HEAD LOAD INDEPENDANT OF 'US'             |
| Х          | 1          | Х              | Х              | HEAD LOAD DEPENDANT ON 'US'               |
| 0          | Х          | Х              | Х              | HEAD LOAD INDEPENDANT OF INTERFACE SIGNAL |
| 1          | Х          | Х              | Х              | HEAD LOAD DEPENDANT ON INTERFACE SIGNAL   |

Figure 1.8 HEAD LOAD FUNCTION STRAPS

| STRAPS         |                |             | FUNCTION                                                                                                      |
|----------------|----------------|-------------|---------------------------------------------------------------------------------------------------------------|
| <u>W19 1-2</u> | <u>W19 2-3</u> | <u>W18</u>  |                                                                                                               |
| 1<br>1<br>0    | 0<br>0<br>1    | 0<br>1<br>X | DOOR LOCK FROM INTERFACE SIGNAL ALONE<br>DOOR LOCK BY I/F SIGNAL AND 'US'<br>DOOR LOCK SIGNAL LATCHED BY 'US' |

Figure 1.9 DOOR LOCK FUNCTION STRAPS

STRAPS

# FUNCTION '

| W21 | TEST POINT - 96 TPI MONO-FLOP OUTPUT         |
|-----|----------------------------------------------|
| W22 | TEST POINT – ANALOGUE READ SIGNAL            |
| W23 | TEST POINT - NTROO (pin 3) and INDX (pin 2)  |
| W26 | TEST POINT - READY MONO-FLOP OUTPUT          |
| W27 | SINGLE SIDED DRIVE - (STRAP IN)              |
|     | DOUBLE SIDED DRIVE - (STRAP OUT AND IC17 IN) |
| W25 | 48 TPI DRIVE – (STRAP IN)                    |
|     | 96 TPI DRIVE - (STRAP OUT AND IC17 IN)       |

Figure 1.10 TEST POINTS AND CONFIGURATION STRAPS

1.6.2 MOUNTING (SEE FIGURES 1.11 AND 1.12)

CHASSIS

The chassis is drilled and tapped for mounting by means of a stepped, locating cavity (C) at the rear and two 4 mm tapped holes at 10 cm centres (A).

As an option, four 6mm threaded holes to a depth of 10 mm can be provided (B). Further mounting options may be possible on request.

FRONT PANEL

A removable front panel, or mask, clips around the loading door. Two sizes are available to provide compatibility with major OEM dimensions:

a) Height 86.5 mm Width 150 mm Thickness 6 mm b) Height 57.5 mm Width 150 mm Thickness 6.5 mm

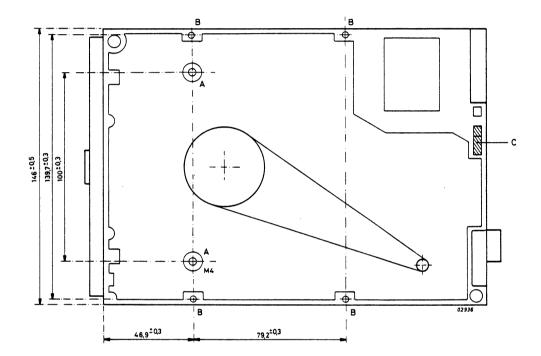



Figure 1.11 CHASSIS MOUNTING DETAILS

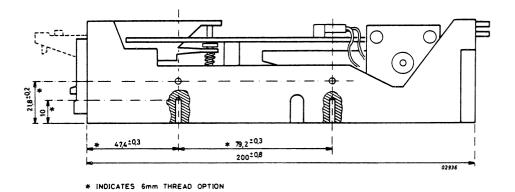
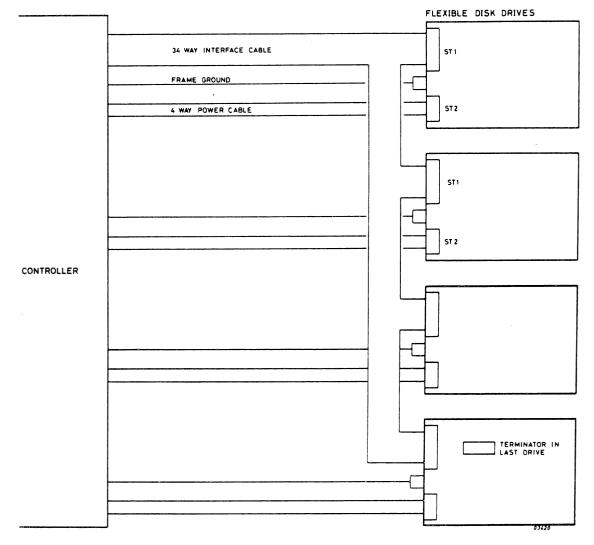




Figure 1.12 6 mm UNC 6-32 THREAD OPTION

# 1.6.3 INTERCONNECTIONS



Note 1: Full complement of 4 drives shown connected.

Note 2: A terminator must be installed in the final drive only.

Figure 1.13 INTERCONNECTION DIAGRAM

#### I/O CABLE AND CONNECTOR

Command status and data are transmitted between the host controller and the drive by flat ribbon cable.

 $\rm I/O$  Cable and connector is 34 Pin, 3M connector 3463-0001 with 3M flat cable 3365-34.

Note: A plug in terminator chip (supplied) must be inserted in the last drive in a chain. This will terminate all the receive lines with 132 Ohm. Similar termination must be provided by the controller on each input signal line from the drive.

DC CABLE AND CONNECTOR

The mFD utilizes an AMP 1-480424-0 (socket) and 1-480426-0 (plug on PCB) receptacle (see figure 1.15). Pin assignments for the DC-connetor are:

| Pin | Use  |        |
|-----|------|--------|
| 1   | +12V |        |
| 2   | +12V | RETURN |
| 3   | + 5V | RETURN |
| 4   | + 5V |        |

#### FRAME GROUND

The drive frame ground is connected to the system ground, by means of a plug on the mFD, and can be carried in the DC cable to the system (see figure 1.16). Plug on the Drive is of the type Fast-ON-Tab AMP-PIN 61664-1, with mating connector AMP PIN 60972-1.

MFD PLUG ASSIGNMENTS

ST1 - Interface connections
ST2 - Power connections
ST3 - Head connections
ST4 - Stepper motor connections
ST5 - Chassis sensors, leds and solenoids
ST6 - Spindle motor and head load solenoid

Note: For plug locations see figures 4.2 to 4.4.

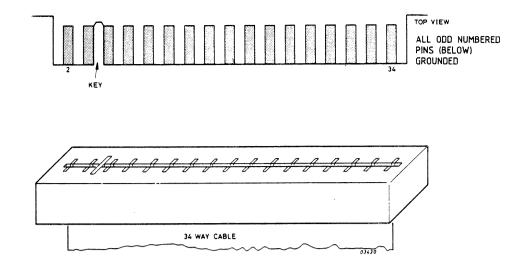



Figure 1.14 I/O CABLE AND CONNECTOR

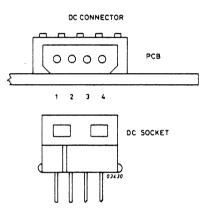



Figure 1.15 DC CABLE AND CONNECTOR

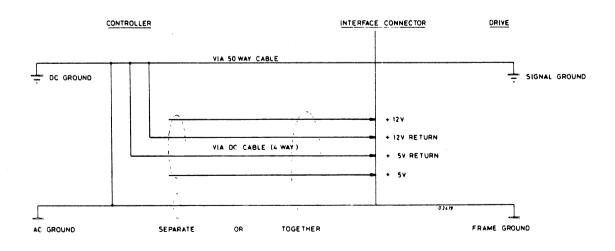



Figure 1.16 SYSTEM GROUNDING

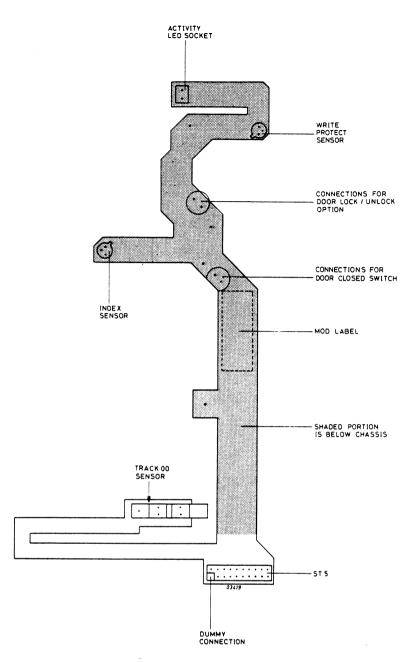



Figure 1.17 WIRING LOOM MFDF

#### 1.6.4 COMPATIBILITY

Not applicable.

# 1.6.5 PACKING AND UNPACKING

The drive is supplied in a plastic bag inside two halves of a styrofoam shell. This is then placed in a cardboard box. Outside dimensions of the package are: 280 mm x 196 mm x 123 mm. The packing should be kept for future transport.

.

FUNCTIONAL DESCRIPTION

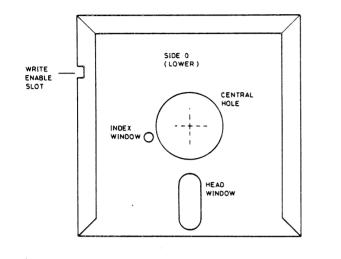
| SECTION | 2.1<br>2.1.1<br>2.1.2<br>2.1.3<br>2.1.4<br>2.1.5<br>2.1.6<br>2.1.7<br>2.1.8<br>2.1.9<br>2.1.10<br>2.1.11 | DISKETTE AND CARTRIDGE<br>Physical and Electromechanical Characteristics<br>Diskette Format<br>Track Density<br>Sector Formatting<br>Gaps<br>Sector Identifier<br>Data Block<br>Index Gap<br>Identifier Gap<br>Data Block Gap<br>Track Gap | PAGE 2-3<br>2-4<br>2-4<br>2-4<br>2-4<br>2-4<br>2-4<br>2-4<br>2-4<br>2-4<br>2-5<br>2-5<br>2-5 |
|---------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|         | 2.2<br>2.2.1<br>2.2.2<br>2.2.3<br>2.2.4                                                                  | MODULATION METHODS<br>Frequency Modulation Encoding<br>Modified Frequency Modulation Encoding<br>Recording on the Disk<br>Write - Pre - Compensation                                                                                       | 2-6<br>2-6<br>2-7<br>2-7                                                                     |
|         | 2.3<br>2.3.1<br>2.3.2<br>2.3.3<br>2.3.4                                                                  | GENERAL<br>Control<br>Disk Rotation<br>Head Positioning<br>Data Transfer                                                                                                                                                                   | 2-8<br>2-8<br>2-11<br>2-11                                                                   |
|         | 2.4                                                                                                      | POWER ON                                                                                                                                                                                                                                   | 2-11                                                                                         |
|         | 2.5<br>2.5.1<br>2.5.2                                                                                    | MOTOR START<br>Motor Start by Disk Insertion<br>Motor Start by Motor on Signal                                                                                                                                                             | 2-11<br>2-11<br>2-11                                                                         |
|         | 2.6                                                                                                      | SPINDLE MOTOR CONTROL                                                                                                                                                                                                                      | 2-13                                                                                         |
|         | 2.7                                                                                                      | DRIVE READY                                                                                                                                                                                                                                | 2-13                                                                                         |
|         | 2.8                                                                                                      | UNIT SELECT                                                                                                                                                                                                                                | 2-13                                                                                         |
|         | 2.9                                                                                                      | SEQUENCE OF OPERATIONS                                                                                                                                                                                                                     | 2-15                                                                                         |
|         | 2.10                                                                                                     | HEADS LOADING                                                                                                                                                                                                                              | 2-15                                                                                         |
|         | 2.11                                                                                                     | STEPPER MOTOR PRINCIPLES                                                                                                                                                                                                                   | 2-15                                                                                         |
|         | 2.12                                                                                                     | MOTOR STEPPING PROM                                                                                                                                                                                                                        | 2-16                                                                                         |
|         | 2.13                                                                                                     | STEPPER TIMING                                                                                                                                                                                                                             | 2-17                                                                                         |
|         | 2.14                                                                                                     | HEAD SELECTION                                                                                                                                                                                                                             | 2-17                                                                                         |
|         | 2.15                                                                                                     | READ OPERATION                                                                                                                                                                                                                             | 2-17                                                                                         |
|         | 2.16                                                                                                     | WRITE OPERATION                                                                                                                                                                                                                            | 2-19                                                                                         |
|         | 2.17                                                                                                     | WRITE PROTECT                                                                                                                                                                                                                              | 2-20                                                                                         |
|         | 2.18                                                                                                     | READ AND WRITE DATA                                                                                                                                                                                                                        | 2-20                                                                                         |

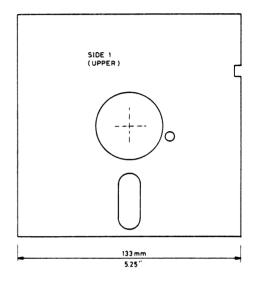
2

---

2-1

# LIST OF ILLUSTRATIONS





| 2.1  | DISKETTE AND CARTRIDGE<br>SECTOR FORMAT | PAGE 2-3<br>2-5 |
|------|-----------------------------------------|-----------------|
| 2.3  | FM ENCODING                             | 2-5             |
| 2.4  | MFM ENCODING                            | 2-6             |
| 2.5  | NRZ RECORDING AND RECOVERY              | 2-7             |
| 2.6a | FUNCTIONAL DIAGRAM mFD                  | 2-9             |
| 2.6b | FUNCTIONAL DIAGRAM mFD                  | 2-10            |
| 2.7  | MOTOR-ON TIMING                         | 2-12            |
| 2.8  | MOTOR SWITCHING AND SPEED CONTROL       | 2-12            |
| 2.9  | UNIT SELECT AND CONTROL LINE DECODING   | 2-14            |
| 2.10 | STEPPER MOTOR PRINCIPLES                | 2-15            |
| 2.11 | MOTOR STEPPING PROM                     | 2-16            |
| 2.12 | TRACK ADDRESS TIMING                    | 2-17            |
| 2.13 | READ INITIATE TIMING                    | 2-18            |
| 2.14 | WRITE INITIATE TIMING                   | - 2-19          |
| 2.15 | WRITE DATA TIMING                       | 2-20            |
| 2.16 | READ DATA TIMING                        | 2-20            |

# 2.1.1 PHYSICAL AND ELECTROMECHANICAL CHARACTERISTICS

Diskettes should conform to ECMA 66 (single sided) or ECMA 70 double sided) Diskette and cartridge details are shown in figure 2.1.

The index hole and the write enable slot are optically detected.





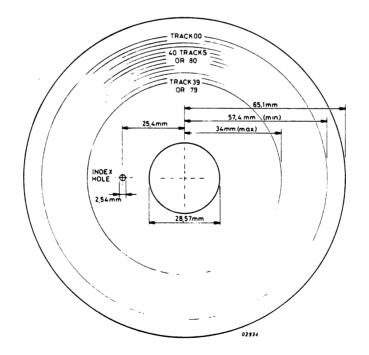



Figure 2.1 DISKETTE AND CARTRIDGE

.

2.1.2 DISKETTE FORMAT (FIGURE 2.2)

The number of sectors/track, and the diskette format used is customer dependent, however, an explanation of the ECMA 70 recommended format is given as an example.

2.1.3 TRACK DENSITY

Track 00, side 0 is recorded by the frequency modulation (FM) method. All other tracks are recorded by the modified frequency modulation (MFM) method. Refer to section 2.2 for further detail.

2.1.4 SECTOR FORMATTING (FIGURE 2.2)

Except that an index gap occurs before the first sector, and a track gap occurs after the last sector, all sectors have the same format.

2.1.5 GAPS

The gaps are filled with a number of bytes, all recorded as: TRACK 00, SIDE 0 = FF Hex All Other TRACKS = 4E Hex

2.1.6 SECTOR IDENTIFIER

This block contains the following information: MARK - indicates beginning of block CYLINDER NUMBER - 00 to 34 SIDE NUMBER - 0 or 1 SECTOR NUMBER - 01 to 16 ERROR DETECTION CHARACTERS

2.1.7 DATA BLOCK

Consists of:

MARK - indicates beginning of block DATA - 256 (MFM) or 128 (FM) bytes ERROR DETECTION CHARACTERS

#### 2.1.8 INDEX GAP

This allows time, considering the  $\pm$  3% speed tolerance, for the index pulse to be recognised, and provides a recognisable pattern, different from the identifier mark.

#### 2.1.9 IDENTIFIER GAP

Provides separation between identifier and the data block, to prevent accidental partial overwriting of data.

# 2.1.10 DATA BLOCK GAP

Separates blocks to prevent accidental partial overwriting.

# 2.1.11 TRACK GAP

Fills the space between the last sector and the index hole.

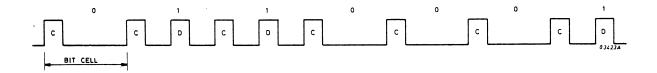

|    | SECTOR<br>SEQUENCE   | TRACK OO,<br>SIDE O            | ALL OTHER<br>TRACKS            |
|----|----------------------|--------------------------------|--------------------------------|
|    | INDEX GAP            | 16 x FF <sub>h</sub>           | 32 x 4E <sub>h</sub>           |
|    | SECTOR<br>IDENTIFIER | 13 BYTES                       | 22 BYTES                       |
|    | I DENT IF IER<br>GAP | 11 x FF <sub>h</sub>           | 22 x 4E <sub>h</sub>           |
|    | 1ST DATA<br>BLOCK    | 137 BYTES                      | 274 BYTES                      |
|    | DATA BLOCK<br>GAP    | 24 x FF <sub>h</sub>           | 50 x 4E <sub>h</sub>           |
| 11 |                      |                                | ¥ =                            |
|    | BLOCK                |                                |                                |
|    | DATA BLOCK<br>GAP    | 24 x FF <sub>h</sub>           | 50 x 4E <sub>h</sub>           |
|    | TRACK<br>GAP         | 149 x FF <sub>h</sub><br>(nom) | 330 x 4E <sub>h</sub><br>(nom) |
|    |                      |                                |                                |

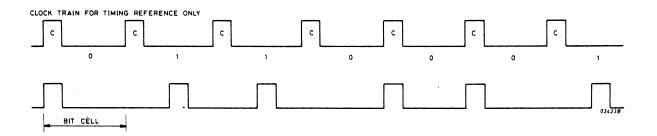
Figure 2.2 SECTOR FORMAT

#### 2.2 MODULATION METHODS

#### 2.2.1 (FM) FREQUENCY MODULATION ENCODING (SINGLE DENSITY)

This method of encoding uses clock bits to define a 'bit cell'. If a data bit occurs between clock bits, it is recognised as a '1'. If no data bit occurs, this is recognised as a '0'.




#### Figure 2.3 FM ENCODING

Clocks are recorded for every cell, so in order to record data at say 125 Kbits/sec., the heads, media, etc. must be capable of handling 250 Kbits/sec.

The rules for this method of recording are: Write clock bits at the beginning of each bit cell. Write data bits in the centre of the cell.

#### 2.2.2 (MFM) MODIFIED FREQUENCY MODULATION ENCODING (DOUBLE DENSITY)

This method of encoding defines a bit cell by means of clock bits as before but the clock bits are not recorded unless no data bit is present.



#### Figure 2.4 MFM ENCODING

The rules for this method of encoding are:

- Write data bits at the centre of the bit cell.
- Write clock bits at the beginning of the cell if:
- 1) no data is written in the previous cell, and
- 2) there will be no data bit written in the present cell.

By not producing unnecessary clocks, the MFM method allows the clock frequency to be doubled and the data packed closer together. Thus for the same heads, media, etc. as FM, data can be recorded at twice the frequency. Hence the designations single density and double density.

# 2.2.3 RECORDING ON THE DISK

Data is passed from the controller to the drive as a series of pulses in either FM or MFM coding. The drive converts each pulse into a current reversal in the heads, which creates a flux reversal on the disk (figure 2.5). When reading back, the flux reversals will be converted to pulsed form by the drive. Decoding is performed by the controller.

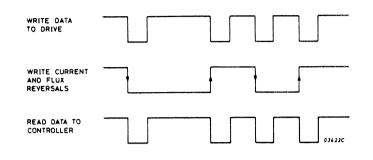



Figure 2.5 NON-RETURN TO ZERO RECORDING AND RECOVERY

# 2.2.4 WRITE - PRE - COMPENSATION

For MFM pre-compensation during the write process shall be incorporated to minimize the peak shift.

The pre-compensation shall be 250 nsec starting at track 20 for X3111/12 and starting at track 43 for X3113/14.

The following patterns have to be compensated in the direction of the arrow.

| LATE |       | EARLY |
|------|-------|-------|
|      |       |       |
| Х    | 0 1 1 | X 110 |
| 1    | 0 0 0 | 0001  |
|      |       |       |

X = don't care.

# 2.3 GENERAL

The flexible disk drive, can be considered as having 4 functions:

- 1. Control function maintaining overall control of drive activities- ensuring the integrity of data inhibiting invalid operations.
- 2. Disk rotation function switching the spindle motor on and off in response to interface commands controlling spindle speed.
- 3. Head positioning function loading the heads against the disk moving the heads to the tracks chosen by the controller alerting the controller that the heads are on a reference track.
- 4. Data transfer function converting write data pulses to magnetic transitions on disk - converting information from the disk, into the original pulsed form.

2.3.1 CONTROL (SEE SECTION 1.4 AND FIGURES 2.6a and 2.6b)

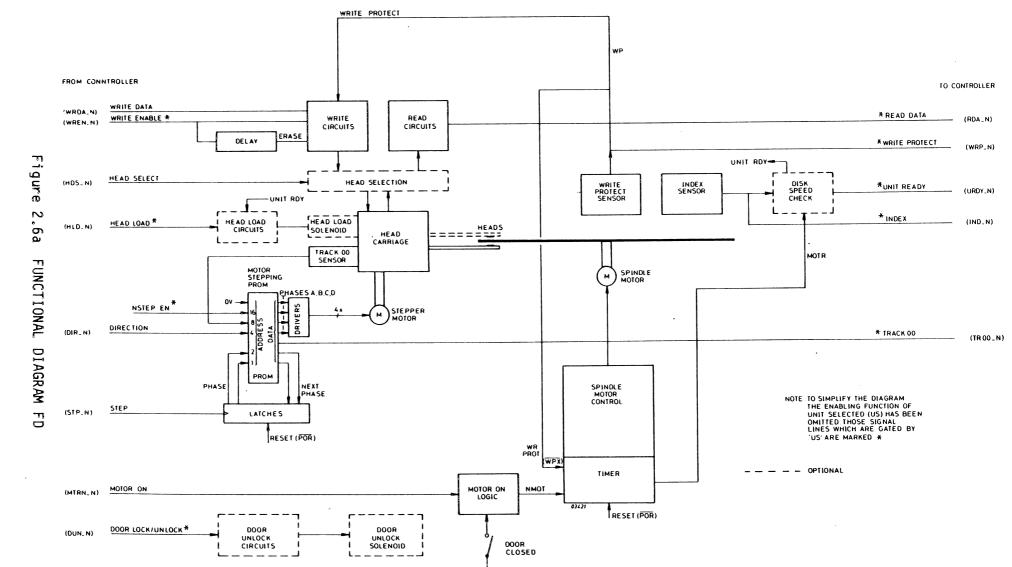
The drive uses a number of sensors to monitor whether a disk is loaded and up to speed, whether it is write protected and whether the heads are on track 00. Using this information, the hardware protects the carriage mechanism and prevents accidental erasure of data.

However, the main control is provided by software via the controller.

The master control line is UNIT SELECT which, if false, inhibits all those lines marked with an asterisk. Thus if a particular drive is not enabled by the controller, heads cannot be stepped to a required track, no writing or reading can take place, and drive status signals are inhibited.

The only input lines not effectively inhibited are MOTOR ON, HEAD SELECT and WRITE DATA. All output lines are dependent on UNIT SELECT.

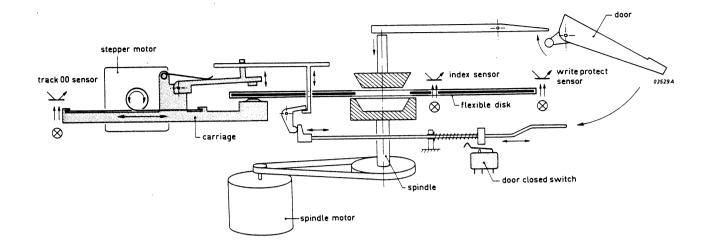
All output lines are dependent on only select.


None of the control signals are latched, thus UNIT SELECT, HEAD LOAD (if used) and WRITE ENABLE, if writing, must be held true for the the duration of the activity.

# 2.3.2 DISK ROTATION

When MOTOR ON goes true, the spindle motor will start. Its speed will be controlled by the spindle motor control circuit. A timer ensures that once the motor has been started, it will run for at least a minute.

A connection to the write protect logic causes the motor to start (if not already running) during the loading of a disk. This ensures that the disk is correctly centred on the spindle.


The motor control circuit gives rapid initial acceleration before stabilising the disk at around 300 rpm. This brings the disk up to speed very quickly. MOTOR ON false will stop the motor (subject to the timer operation).



8204

X3111/2/3/4

2-9



X3111/2/3/4

#### 2.3.3 HEAD POSITIONING

In drives without the electrical head load option, closure of the front door allows the heads to load under spring tension. In drives which use the option, head loading is achieved by operating a solenoid which, when unenergised, holds the heads apart.

Carriage positioning is achieved by supplying a sequence of four 'phases' (A, B, C and D) to a stepper motor which moves the carriage. When true (low), DIRECTION selects a sequence to move the carriage forward; when false, it selects a sequence to move the carriage in reverse.

Each time STEP goes true, the next phase of the sequence is selected and the carriage moves forwards or backwards, one track.

The track O sensor advises the controller that track OO is under the heads and that no further reverse steps should be taken.

#### 2.3.4 DATA TRANSFER

Before transfer of data to or from the controller, the drive must be selected. A disk must be installed and up to speed, and the heads must be loaded, positioned, and in the double sided models, selected.

If writing, WRITE ENABLE must be true and WRITE PROTECT must be false. As previously mentioned, the composite data and clock information (WRITE DATA and READ DATA) is in pulsed form and will be converted to or from NRZ transitions on the disk.

2.4 POWER ON

When power is applied, a reset signal (NPOR) prevents the timer from starting the motor accidentally. NPOR also clears the Motor Stepping Prom latches, thus selecting the A phase.

Unit ready (URDY-N) will be false.

2.5 MOTOR START

2.5.1 MOTOR START BY DISK INSERTION

If a disk is loaded, the write protect sensor will generate NWP and thus start the motor. The disk will be up to speed in 500 msecs.

In the absence of a motor-on signal (MTRN-N) the disk will stop after approximately one minute.

If MTRN-N goes true, the motor will continue to run.

2.5.2 MOTOR START BY MOTOR ON SIGNAL

If MOTOR ON (MTRN-N) goes true, the motor will run until MTRN-N goes false or the timer resets, whichever is later. Figure 2.7 shows details of motor-on timing.

Note: MTRN-N is inhibited if the loading door is open.

2.6 SPINDLE MOTOR CONTROL

When a DC motor is running, it generates a back emf which increases the effective resistance of the motor. This back emf is proportional to speed. Thus when under load, such a motor is running slowly, the voltage across it is low and the current is high. As the motor speeds up, the voltage rises and current falls. This principle is used to control the speed of the spindle motor.

A differential amplifier (figure 2.8) controls V2O which in turn, controls the motor. Inputs to the amplifier are:

- a) the sum of a fixed reference voltage and the voltage (VfdbkV) across the motor.
- b) the sum of an adjustable reference voltage and a voltage (VfdbkI) derived from motor current.

When the differential amplifier is first enabled, the motor voltage (VfdbkV) is low and current feedback is high. This is a positive feedback state which drives V20 full on, causing the motor to accelerate quickly.

As the motor speeds up, VfdbkV rises and IfdbkI falls. Therefore the motor acceleration reduces.

Eventually a speed is reached where the reference voltages and the feedback voltages balance. If the adjustable voltage has been correctly adjusted, this stable speed will be 300 rpm  $\pm 3\%$ .

If the motor runs over speed, the feedback will be negative and the motor will be slowed down to normal.

2.7 DRIVE READY

There is only a speed check if the electrical head load option is used. Once the disk is rotating, the index hole will be sensed. The output from the index sensor is checked against a timing element (F/F) with a duration of 250 msecs. When index pulses are spaced by 250msecs or less, the disk is at least up to 80% of nominal speed. This condition causes URDY-N to go true.

URDY-N alerts the controller, and may be used to enable the head load circuits (figure 2.6).

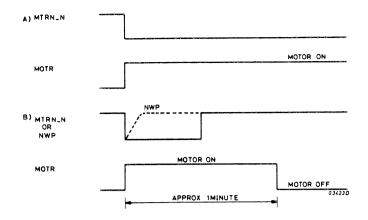



Figure 2.7 MOTOR-ON TIMING

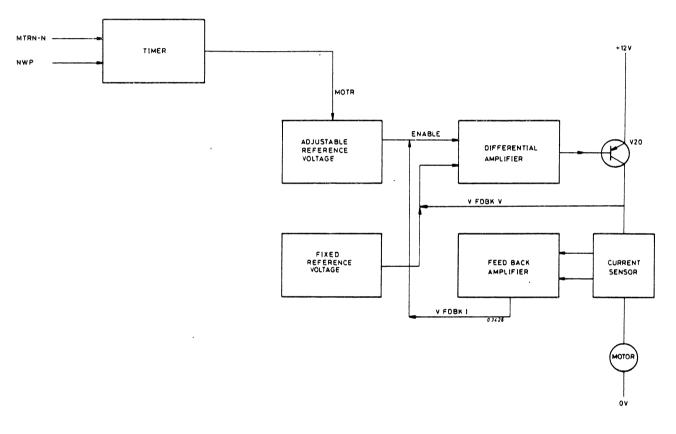
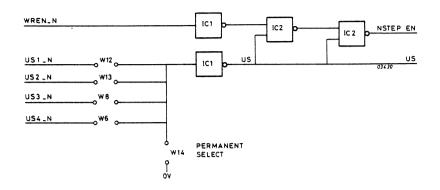




Figure 2.8 MOTOR SWITCHING AND SPEED CONTROL

## 2.8 UNIT SELECT (FIGURES 2.6 AND 2.9)

Note: To simplify diagram 2.6a, the unit select function is not shown.



#### Figure 2.9

Four discrete select lines, each with a strap, allow the drive to be selected as drive 1, 2, 3 or 4. A further strap allows the drive to be permanently selected. 'US', when true, enables the index, write protect, track 00 and read data outputs. It also enables the write gate input and the stepper logic.

## 2.9 SEQUENCE OF OPERATION

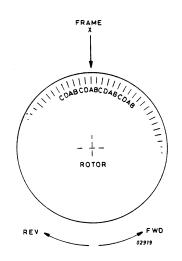
Once the drive is selected and ready, the head must be stepped to the required track, loaded and selected before a read or write operation can take place. The sequence of stepping, loading and selecting depends entirely on the controller.

#### 2.10 HEADS LOADING

Mechanical head loading is standard in all 4 drives but there is also an electrical head load option. Mechanical head load is described in section 1.2.

Electrical head load may be operated by various combinations of US-N, URDY-N (see 1.6.1). These signals generate the +ve signal HEAD, which controls the head load circuits.

# 2.11 STEPPER MOTOR PRINCIPLES


.

The stepper motor is driven by a series of repeatable current phases A, B, C and D supplied by the stepper motor PROM. Each phase represents a defined state of currents in the stepper motor coils.

Figure 2.10 is a functional diagram of the stepper motor rotor and its relationship to a point X on the frame.

If current phase A is supplied to the stepper, the rotor will align the nearest 'A' pole, with point X (as shown).

If phase B current is now supplied, the nearest 'B' pole will align with X, thus moving the rotor 1 track in the FWD direction. If phases C, D, A, B etc. are generated in succession the motor will continue to step in the forward direction. A phase sequence of D, C, B, A, D etc. will move the rotor in the reverse direction.





Direction is thus a matter of providing the correct sequence. DIR-N selects this sequence by addressing the motor stepping PROM.

Note: Phase A is energised when the heads are on track 00 and on every 4th track therefrom, i.e. 4, 8, 12, 16 etc. Phase B occurs at 1, 5, 9, 13 etc. and so on for phases C and D.

# 2.12 MOTOR STEPPING PROM

Figure 2.6a shows how the motor stepping PROM (IC14) is connected. NSTEP EN, NTROO and DIR-N provide the higher address numbers and the lower 2 bits of the data byte provide the low numbers. Thus for each combination of the 3 high address lines, the lower 2 lines will address a table of 4 bytes. For example, if the 3 higher lines are all true (low), the 2 lower lines will address 0-3 and if DIR-N changes state, 4-7 will be addressed.

Refer to figures 2.6 and 2.11 during this explanation.

With the lower data bits fed back to the input, each data byte out of the PROM provides the required phase and the address of the next required phase. STEP merely transfers this address onto the address line.

When forward direction is selected the sequence A, B, C, D, A, etc. is followed. For example, address 0 suplies phase A and the next address is '1'; the address of phase B. Reverse direction selects phases in reverse order.

| ADDRESS                                                |                            |             | DATA OUT              |                           |
|--------------------------------------------------------|----------------------------|-------------|-----------------------|---------------------------|
| LINE STATES                                            | ADDRESS                    | TRACK<br>00 | PHASE                 | NEXT<br>ADDRESS           |
| DIR = FWD.<br>NTROO SENSED<br>UNIT SELECTED            | 0<br>1<br>2<br>3           | YES         | A<br>B<br>C           | 1<br>2<br>3               |
| DIR=REVERSE<br>NTROO SENSED<br>UNIT SELECTED           | 3<br>4<br>5<br>6<br>7      | YES         | D<br>A<br>B<br>C      | ø<br>7<br>4<br>5          |
| DIR = FWD<br>NTROO NOT SENSED<br>UNIT SELECTED         | 8<br>9<br>10               |             | D<br>A<br>B<br>C      | 5<br>6<br>9<br>10<br>11   |
| DIR = REVERSE<br>NTROO NOT SENSED<br>UNIT SELECTED     | 11<br>12<br>13<br>14<br>15 |             | D<br>A<br>B<br>C<br>D | 8<br>15<br>12<br>13<br>14 |
| DIR = FWD<br>NTROO SENSED<br>UNIT NOT SELECTED         | 16<br>17<br>18<br>19       | YES         | A<br>B<br>C<br>D      | 16<br>17<br>18<br>19      |
| DIR = REVERSE<br>NTROO SENSED<br>UNIT NOT SELECTED     | 20<br>21<br>22<br>23       | YES         | A<br>B<br>C<br>D      | 20<br>21<br>22<br>23      |
| DIR = FWD<br>NTROO NOT SENSED<br>UNIT NOT SELECTED     | 24<br>25<br>26<br>27       |             | A<br>B<br>C<br>D      | 24<br>25<br>26<br>27      |
| DIR = REVERSE<br>NTROO NOT SENSED<br>UNIT NOT SELECTED | 28<br>29<br>30<br>31       |             | A<br>B<br>C<br>D      | 28<br>29<br>30<br>31      |

A track 00 output for the controller is only produced when NTROO is sensed and phase A is selected.

# Figure 2.11 MOTOR STEPPING PROM

NSTEP EN is gated by US, thus when the drive is selected, NSTEP EN is true (low) and the lower locations of the PROM are addressed.

When the unit select line goes false (high), locations 16-31 are addressed. In each of these locations the next address is the same as the present address. For example, address 18 supplies the phase C, and the next address is 18.

In this condition, STP-N transfers the same address each time so the phase does not change. This prevents step pulses for other drives from stepping an unselected drive. The drivers convert the data from the PROM. into stepper motor drive current.

2.13 STEPPER TIMING

A timing sequence is shown in 2.12. Note that a 10 ms delay must occur between the last step in one direction and the first step in the other direction.

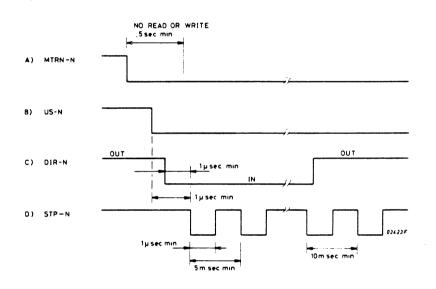



Figure 2.12 TRACK ADDRESS TIMING

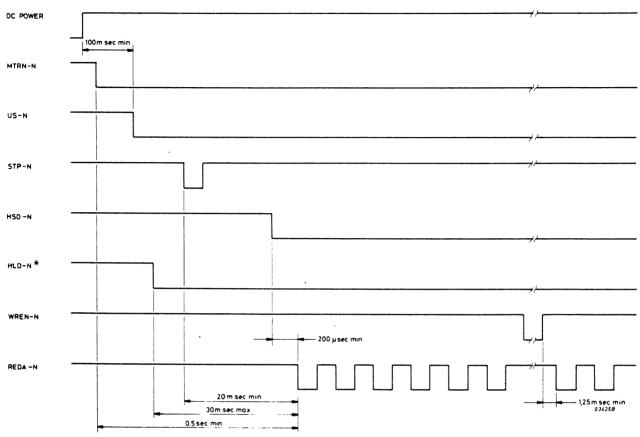
#### 2.14 HEAD SELECTION

In the one sided drives X3111 and 3113, the head (0) is permanently strap selected and the HDS-N line is not used.

The two-sided drives have head select logic and a second head. In this case the state of HDS-N determines which head is selected. Logic 'O' (high) selects head 0.

# 2.15 READ OPERATION

With the drive selected and up to speed, the heads loaded on the correct track, and the required head selected, the drive will now be reading data from the disk. The read circuits will convert the data to pulsed form and transfer it as REDA-N to the controller.


8204

X3111/2/3/4

Thus for reading, it is merely a matter of the controller or the system, interpreting and selecting the data on the line.

An example of read timing can be found in figure 2.13.

Note: 30 msec MAX shown between HLD-N and the beginning of a read action indicates the time required for the electronic head load versions to load and stabilise the heads.



\* ON ELECTRICAL HEAD LOAD DRIVES ONLY



## 2.16 WRITE OPERATION (FIGURE 2.14)

If the drive is selected and ready, the heads loaded on the correct track, and the required head selected, the drive will be, as previously stated, in the read state.

By taking WREN-N true, the read circuits will be disabled and the write circuits enabled. The data to be written should be supplied on WRDA-N within 8 usecs of WREN-N going true.

The figures marked 'min' on figure 2.14 indicate the minimum periods which the controller must allow between actions.

Within the drive, tunnel erase is generated from the WREN-N signal, ERASE is delayed 450 usecs after WREN-N goes true and is held on for 850 usecs after WREN-N goes false.

It is the responsibility of the controller to read the cylinder, side and sector information (figure 2.2), enable the write circuits, and write the new data block.

Note: When WREN-N goes false at the end of a write operation, a delay of at least 1.25 msecs must be allowed before trying to read data, or before changing MTRN-N, US-N or STP-N. This delay is to allow the normal operation of delayed erase and to allow the read circuits to stabilise.

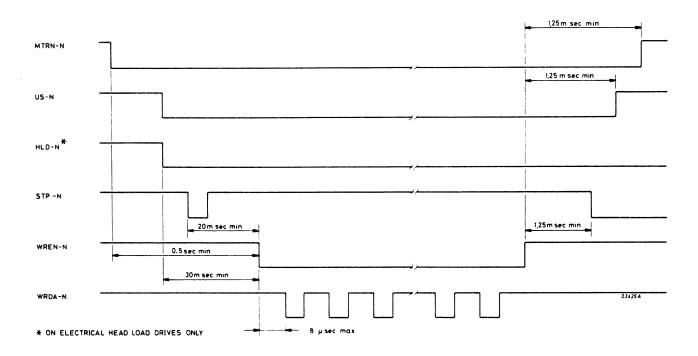



Figure 2.14 WRITE INITIATE TIMING

2.17 WRITE PROTECT

If a write protected disk is sensed, WREN-N is inhibited and WRP-N indicates the situation to the controller.

2.18 READ AND WRITE DATA

WRDA-N pulses must conform to figure 2.15. REDA-N will be as for figure 2.16. Note: These examples show single density encoding.

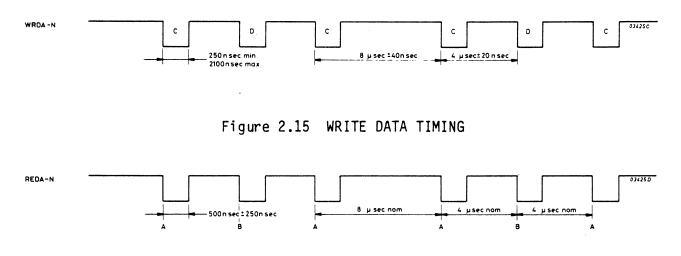



Figure 2.16 READ DATA TIMING

| SECTION | 3.1                      | POWER-ON RESET                                                                               | PAGE 3-2                  |
|---------|--------------------------|----------------------------------------------------------------------------------------------|---------------------------|
|         | 3.2                      | MOTOR-START DELAY                                                                            | 3-2                       |
|         | 3.3<br>3.3.1<br>3.3.2    | MOTOR SPEED CONTROL<br>Configuration<br>Operation                                            | 3-2<br>3-2<br>3-2         |
|         | 3.4                      | INDEX AND SPEED CHECK                                                                        | 3-3                       |
|         | 3.5                      | ELECTRICAL HEAD LOAD OPTION                                                                  | 3-4                       |
|         | 3.6                      | UNIT SELECT                                                                                  | 3-4                       |
|         | 3.7<br>3.7.1<br>3.7.2    | STEPPING<br>Motor Detail<br>Motor Drive                                                      | 3-4<br>3-4<br>3-5         |
|         | 3.8                      | TRACK 00                                                                                     | 3-8                       |
|         | 3.9                      | READ CIRCUITS                                                                                | 3-8                       |
|         | 3.10<br>3.10.1           | WRITE CIRCUITS<br>Write Enable                                                               | 3-9<br>3-9                |
|         | 3.11                     | ERAS                                                                                         | 3-9                       |
|         | 3.12                     | WRITE OPERATION                                                                              | 3-10                      |
|         | 3.13                     | WRITE PROTECT                                                                                | 3-10                      |
|         | 3.14                     | INTERFACE TERMINATION                                                                        | 3-10                      |
|         | 3.15                     | IN USE/DISK CHANGE OPERATION                                                                 | 3-11                      |
|         |                          | LIST OF ILLUSTRATIONS                                                                        |                           |
| FIGURE  | 3.1<br>3.2<br>3.3<br>3.4 | MOTOR WINDINGS<br>POLE DETAIL<br>STEPPER MOTOR DRIVERS<br>READ AND WRITE CIRCUITS SIMPLIFIED | 3-6<br>3-6<br>3-7<br>3-11 |

.

e

**3 DETAILED DESCRIPTION** 

Refer to figures 4.6/1, 4.6/2 and 4.6/3 during this section and note that circuits indicated by the option symbols will be absent if that option is not supplied.

3.1 POWER-ON RESET (NPOR) (FIGURES 4.6/1 and 4.6/2)

As soon as power is applied to the drive, the +5V and +12V will begin to rise from OV, NPOR however, cannot rise until V10 conducts. The operation is as follows:

Until the +5V line rises to 3.3V, V7 will be cut off. When it rises above this level, V7 will begin to conduct. However, V9 requires approx +0.6V on the base, and so will not conduct until the +5V reaches approx +4V.

A similar circuit controls the conduction of V10 which can only conduct if the +5V supply is above +4V and the +12V supply is above approx +9V. At this point, NPOR will become false, thus releasing the stepper latches and the motor timer, as well as several other F/Fs.

PS12, which is delayed to prevent accidental writing at switch-on, is generated at the same time.

3.2 MOTOR-ON DELAY (FIGURE 4.6/1)

IC12 forms the delay circuit for the motor control circuit which is shown in 2.6. A low pulse on pin 2 will cause the output pin 3 to go high for a period determined by the values of R53 and C14. If pin 2 is held low, pin 3 will remain high, making MOTR true.

3.3 MOTOR SPEED CONTROL

Refer to section 2.6 and figures 2.8 and 4.6/1 during this description.

3.3.1 CONFIGURATION

With reference to figure 2.8; IC11-1 to 7 forms the differential amplifier and IC11-8 to 10 is the feedback amplifier.

The junction of R57 and V18 provides the fixed reference voltage (+7.5V).

The adjustable reference voltage is set by the wiper of the motor speed adjustment potentiometer R58.

VfdbkV is via R68, VfdbkI via R62.

## 3.3.2 OPERATION

When MOTR is false, IC11-6 and 2 are clamped to OV, pins 1 and 7 are high and V20 is cut off. Due to the VfdbkV connection via R68, the non-inverting inputs (pins 5 and 3) are approx. +3.5V.

When MOTR goes true, the clamping action of V19 is released allowing IC11-2 and 6 to rise above the voltage of pins 3 and 5. V20 is switched on.

The voltage across R69, generated by the initally high motor current, is input to the feedback amplifier, driving IC11-8 high and increasing the transistor base drive via the differential amplifier. The motor accelerates, aiming at a very high speed.

As the motor speeds up, VR69 falls, making IC11-2 and 6 less positive. VfdbkV via R68 rises, taking pins 3 and 5 move positive. This change in feedback level reduces the base drive of V20 and reduces the aiming speed of the motor. Therefore, although the motor continues to speed up, the acceleration rate falls.

Eventually, as VfdbkV continues to rise and VfdbkI falls, a balance is achieved between the fixed inputs and the feedback. At this point, acceleration is zero and motor speed should be 300 rpm.

Using a zener diode (V18) to supply the reference voltage, provides an element of temperature compensation for the motor.

If the zener was not installed, the motor as it warmed up, would take less current (due to the temperature/resistance coefficient of the windings) and would therefore slow down. However, a reference diode of 7.5V also has a positive temperature coefficient, therefore, under the influence of motor temperature, the reference voltage also rises.

The higher reference voltage provides more base drive to V2O and therefore counteracts some of the effect of winding temperature.

# 3.4 INDEX AND SPEED CHECK (FIGURES 4.6.2 AND 4.6/1)

Positive INDX pulses at IC9-2, are generated as the index hole is sensed by the index sensor. These pulses are gated to the controller via IC10. They are also feed to the speed check circuit, when electrical head load option is used.

In the absence of INDX pulses, IC5-13 is held low (reset) by IC4-13. Pulses on IC4-2, drive pin 13 high for 250 msecs, thus releasing the reset on IC5-13. If another INDX pulse arrives before IC4 'times out', IC5-9 will be set. If the pulse arrives after IC4 times out, IC4 will be triggered again and IC5 will remain reset.

It should be clear that INDX pulses spaced by 250 msecs (240 rpm) or less, will set IC5-9. If US is true, IC6-3 will go low to indicate a READY (disk loaded and up to speed) condition.

An 'up to speed' condition, may (via W17) also be used to generate HEAD, which operates the electrical head load option.

#### 3.5 ELECTRICAL HEAD LOAD OPTION (FIGURE 4.6/1)

The signal HEAD, which operates the head load circuits, may be generated as just described or by an HLD-N signal on the URDY-N line (ST1, pin 2). Naturally, if the line is used for the READY function, it can not be used for HEAD LOAD.

Due to the physical characteristics of a solenoid, greater power is required to operate it, than is required to hold it operated. Thus to load the heads, the head load circuits generate a large current pulse, and then a lower, steady hold current.

Ideally, heads should be loaded quickly and yet gently, and in spite of changes in temperature or supply voltage, the head loading time should be consistent. This ideal is approached by use of feedback between the head load solenoid and the head load timing circuits.

When HEAD goes true, IC4-10 is triggered, driving pin 5 high. V15 will remain off but V13 and V14 will be switched on and will operate the head load solenoid. V14 is a power transistor which provides the high current necessary to operate the solenoid.

The solenoid, which initially has a low impedance and thus a low voltage, starts to close quickly. As it closes, its impedance (and thus voltage) begins to rise. When the voltage reaches approx. +9.5 volts, zener diode conducts, thereby providing a second discharge path for C12. Thus the period of IC4 is controlled by head load action. If the head tends to load too quickly, the action is slowed down by the early discharge of C12. If the head load action is too slow, discharge is delayed and head load speeded up.

After approx. 10 msecs, IC4 will 'time out'. V15 will be switched on, and V13 and V14, off. V15 provides the lower current which is sufficient to hold the solenoid operated.

If HEAD goes false, V15 will be disabled and the head load solenoid released.

#### 3.6 UNIT SELECT (FIGURES 4.6/1 AND 2.9)

A US-N signal generates US which, 'anded' with WREN-N false, produces NSTEP EN to enable the stepper logic. US also enables UNIT READY (IC6-2), HEAD (IC2-9) and DOOR LOCK/UNLOCK (IC2-13), and is monitored by the DISK CHANGE circuits which indicate a change of state on the UNIT SELECT line.

The status outputs of IC10 are also gated by US.

## 3.7 STEPPING

Motor stepping principles are covered in 2.11 and 2.12

## 3.7.1 MOTOR DETAIL (FIGURES 3.1, 3.2 AND 4.6/1)

The stepper motor which drives the head carriage has two windings (X and Y) on four, stator poles. These are wound as in figure 3.1.

#### X3111/2/3/4

When the current in X and Y is in the direction shown in 3.1, the poles will
have the following polarity:
 1 = N
 2 = neutral (fields cancel)
 3 = S
 4 = neutral (fields cancel)
If current is reversed in winding Y, the poles will now have polarity as
follows:
 1 = neutral
 2 = S
 3 = neutral
 4 = N
Thus with the correct, current phase sequence, the N and S poles can be made to

The rotor consists of two shaped pole pieces fastened to the N and S poles of a permanent magnet. Our views in figure 3.1 and 3.2 are from the south pole side. Figure 3.2 shows the poles in more detail, in a position related to current in figure 3.1.

The rotor being a S pole will be attracted to a N and repelled by a S. Thus it will adopt the position shown with N-S poles as close as possible, and S-S poles as far apart as possible.

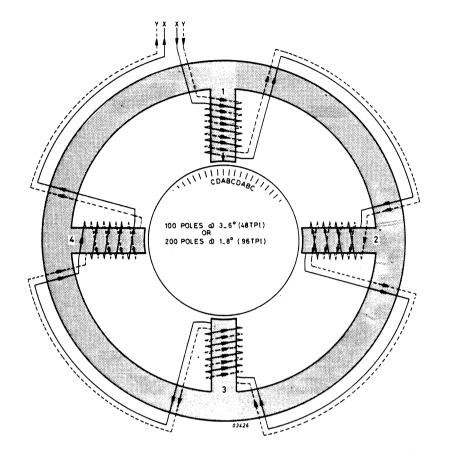
If the phases are changed so that pole 2 becomes N, the rotor will move 1 step clockwise. If the phases are changed so that pole 4 becomes N, the rotor will move 1 step anti-clockwise.

Note: The terms clockwise and anti-clockwise relate to the diagrams and not necessarily to the motor.

## 3.7.2 MOTOR DRIVE (FIGURES 3.3 AND 4.6/2)

move in one direction or the other.

The precise configuration of motor drive circuits is dependant on which stepper motor is used. This is because in order to provide satisfactory positioning characteristics, the 96 TPI stepper motor used in X3113/4 requires a higher run voltage than the 48 tpi version. The stepping operation however, is exactly the same for all models.


Figure 3.3 shows how one of the stepper coils is connected.

Assuming the E = 1 and F = 0, V24 will be cut off and V25 on. This will take point G to OV. At the same time, V28 will be on and V29 off, thus connecting point H to the +12V supply via R80. Current through the stepper coil will be as shown by the full arrows.

Reversal of polarities at E and F will cause current flow as per the dotted arrows.

In the 96 tpi models, V21 is included as a bypass.

Before stepping the motor, V21 is switched on in order to short out R80. This action connects the full +12V to the driver transistors and thus increases stepper coil current. Approx. 100 usecs later, the stepper phase (in this case E and F) is changed, causing a step action. This delay is to allow the higher voltage across the stepper drivers, to stabilise.



POLES 1 AND 3 WINDINGS X AND Y IN SAME DIRECTION

POLES 2 AND 4 WINDINGS X AND Y IN OPPOSITE DIRECTIONS

Figure 3.1 MOTOR WINDINGS

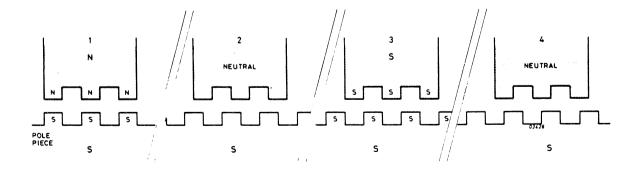
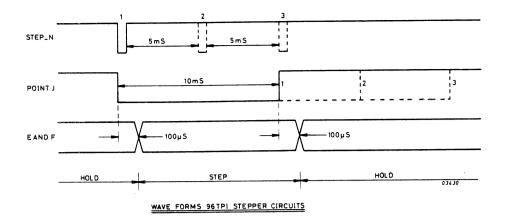




Figure 3.2 POLE DETAIL



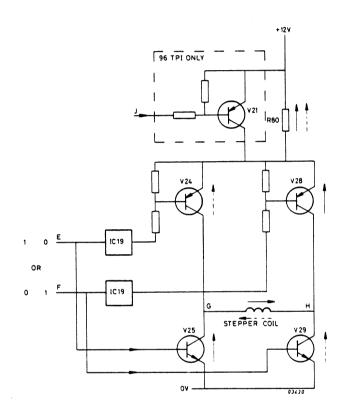



Figure 3.3 STEPPER MOTOR DRIVES

The operation is as follows: (see waveforms of figure 3.3).

STP-N triggers monostable IC13-1, which has a period of 10 msecs. Pin 4 goes low for that period, switching on V21. If another STP-N pulse occurs before IC13 times out, the F/F will be re-triggered. Thus V21 will be on from the first STEP-N pulse, until 10 msecs after the last STEP-N pulse.

STEP-N also triggers monostable IC13-9, which has a period of 100 usecs. Pin 12 goes low (which has no effect on IC15 latches), and then goes high 100 usecs later, thereby latching the address of the next phase.

The new phase, supplied by the PROM, will change the state of the driver inputs.

Note from figure 3.3, that a defined stepper coil changes state on alternate STP-N pulses. Thus for the pulse marked 2, the other stepper coil will be affected.

Models X3111/2 do not need a higher voltage during the stepping process and therefore do not need delay circuits to allow the voltage to stabilise. In this case, STP-N is routed directly to the step latches. Therefore E and F change state on the leading edge of STP-N.

Note: The value of R80 is different for the two versions.

## 3.8 TRACK OO (FIGURES 4.6/2 AND 2.11)

The track O sensor, which is mounted on the chassis behind the head carriage, is a complete unit consisting of light source and sensor. When the carriage is forward, NTROO is high. When the head is on track O, 1 or 2; NTROO will be low (assuming the unit is correctly adjusted). NTROO provides bit 8 of the stepping PROM address. When NTROO is true and phase A is selected, TROOX is generated and gated as TKOO-N to the controller.

## 3.9 READ CIRCUITS (FIGURES 3.4 AND 4.6/3)

One of the heads will always be selected. In models X3111 and 3113, the head will be permanently selected by link W27. In models X3112 and 3114, one of the pins 3 or 5 of IC17 will be low, depending on the state of HDS-N. A low on the centre-trap of a head winding, enables that head.

When write enable (WE) is low (false) and heads are loaded, drive enabled etc., the drive will be reading.

WE false, disables V6 (erase driver), V38 and V39, and enables V40 AND V41. The selected head therefore, is connected via V40 and V41 to the monolithic, read amplifier IC16.

As the disk spins under the heads, alternate flux reversals generate voltages in the head windings. These are coupled via V34/V35 and V41 or V33/V36 and V40, to the read amplifier.

Amplified analogue read data and clock is available at W22 for test purposes. It is also amplified and impendance matched by V30/V31, and then fed into the discriminator circuits of the MC3470.

The discriminator converts analogue data and clock (NRZ) to pulsed data and clock at pin 10 (data out). This is gated to the interface by US.

R98, which forms a cross-connection between the two halves of the internal discriminator, is used for read symmetry adjustments (Section 7.2.7). This resistor should not be touched except during the adjustments of 7.2.7.

Variable values of C3O and C31 are mounted to account for the different peak shift characteristics of the 48TPI head and the 96TPI head. Changing C31 to 47O pF and removing C3O, reduces peak shift effects on the 96TPI head. X3113 however, also uses the 96TPI head but X3O and C31 are not changed. The necessary peak shift correction may, in this case, be provided by floppy disc controller belonging to the system.

Another variable occurs in head symmetry adjust network. L3 is installed on 96TPI versions, in order to reduce the bandwidth of the discriminator. This has the effect of improving the noise characteristics of the 96TPI head.

## 3.10 WRITE CIRCUITS (FIGURES 4.6/3 AND 3.4)

Before writing, WP must be low (false) and WREN-N must be taken low. This will make WE true.

WRDA-N may now be pulsed with write data.

Note: WREN-N should precede pulses on WRDA-N by 8 usecs or less.

#### 3.10.1 WRITE ENABLE (FIGURES 4.6/1 AND 4.6/3)

With US-N and WREN-N true and WP false, WE will be high.

IC5-5 and 6, which were forced high by WE false, are released, causing this D latch to adapt a set or reset condition, thus causing one of the write drivers (V38 or V39) to conduct. It will remain in this state until toggled by WRDA-N pulses.

'WE' will also generate the delayed ERASE signal via ICs 8 and 9, and V6.

# 3.11 ERASE

The erase delay circuit uses the fact that the output circuits of ICs 8 and 9 are switched off when high and on when low; to create 2 different delays. ERASE goes high 450 usecs after WE goes true, and goes low 850 usecs after WE goes false.

When WE goes true (high), IC8-12 is high impedance and IC9-14 is low impedance. Thus the delay between WE high and IC9-13 low is governed by the two, time constants, C3/R13 and C4/R16. The delay between WE low and IC9-13 high, is controlled by C3/R12 and C4/R15/R16.

When the base of V6 is low, V6 will conduct, thereby connecting the tunnel erase coils to PS12. Note that different values of R21/22 are inserted to match either the wide-track head used with a 48TPI stepper, or the narrow-track head used with the 96TPI stepper. This gives erase currents of 80mA for the 48TPI head, or 30mA for the 96TPI head.

#### X3111/2/3/4

To prevent accidental writing on erasure during the switching-on process, PS12 is delayed until the +5V and +12V is almost stable. As a further precaution, ERASE is inhibited during switch-on, by holding IC9-10 low for a period dependant upon C5 and R17. During this period, IC9-13 will be high and V6 will be cut off.

V4 allows rapid discharge of C4 when power is swiched off.

## 3.12 WRITE OPERATION

'WE' release IC5-1 and 3 and switches off V40 and V41, isolating the read amplifier. WRDA-N pulses toggle IC5 which alternately switches V38 and V39. This toggling action converts the pulsed data into NRZ form.

V38 and V39 alternately draw current from the OR driver (IC17) of the selected head. In the X3111 and the X3113, head 1 and IC17 do not exist. The centre tap arrangement for X3111 and X3113 is shown dotted in figure 3.4. Different values of R115 and R118 provide 8mA write current for the 48TPI head, and 6.2mA for 96TPI head. One of the write current paths for head 0 is shown in figure 3.4.

# 3.13 WRITE PROTECT (FIGURE 4.6/2)

When the LED is obscured by either a disk being loaded, or by a disk with the write enable slot covered, WP goes high. This action disables WE at IC3-1 and generates NWP at IC11-14.

If the motor is stopped NWP triggers the timer IC12, thus switching on the spindle motor for about 1 minute.

WP is also gated by US to provide WRP-N to the controller.

# 3.14 INTERFACE TERMINATION

7438 quad-2-input drivers or equivalent are used as line drivers in the mFD. Low-power Schottky 7404 six-1-input inverters (or equivalent) are used generally as line receivers.

All signal lines are terminated (in the last drive) with an impedance of 150 Ohms. Equivalent termination must be provided by the controller on each input line from the mFD (See figure 1.6).

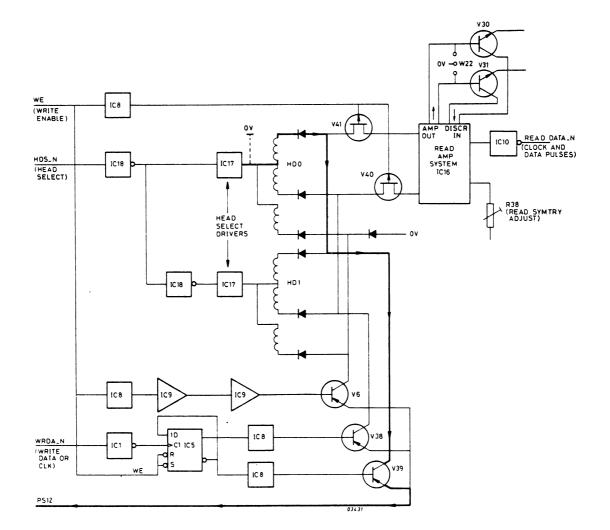



Figure 3.4 READ AND WRITE CIRCUITS SIMPLIFIED

3.15 IN USE/DISK CHANGE OPERATION (FIGURE 4.6/1)

If ST1-34 is used for the DISK CHANGE function, the IN USE (door lock/unlock) function if used, must be connected to ST1 pin 4 or 14. In this case, the state of DUN-N is latched by the leading edge of US at IC7-3. If DUN-N is true when US goes high, IC3-12 will be driven low to energise the solenoid.

URDY-N is gated by US. Therefore if the drive became 'unready', and then ready again while the drive was unselected, there would be no indication that the change had taken place.

The signal DISK CHANGE-N indicates that such a change has occurred.

DISK CHANGE option provides a compatible signal for BASF interfaces. Operation as follows: When a drive is deselected (US-N high), NUS clocks a O to IC7-9. DISK CHANGE-N (IC6-8) goes high. If whilst the drive is unselected, RDY goes false; IC7-9 will be set to "1". When US goes true again, DISK CHANGE-N will also go true.

| FIGURE | 4.1                     | INTERCONNECTION DIAGRAM                                                                         | PAGE | 4-3               |
|--------|-------------------------|-------------------------------------------------------------------------------------------------|------|-------------------|
|        | 4.2                     | PCB LAYOUT                                                                                      |      | 4-4               |
|        | 4.3                     | PCB LAYOUT                                                                                      |      | 4-6               |
|        | 4.4                     | PCB LAYOUT                                                                                      |      | 4-8               |
|        | 4.5                     | RESERVED                                                                                        |      |                   |
|        | 4.6/1<br>4.6/2<br>4.6/3 | SCHEMATIC X3111/2/3/4 SHEET 1<br>SCHEMATIC X3111/2/3/4 SHEET 2<br>SCHEMATIC X3111/2/3/4 SHEET 3 |      | 4-5<br>4-7<br>4-9 |

PLUG ST1

| 34 | DISK CHANGE-N | ٥٧ | 33 |
|----|---------------|----|----|
| 32 | HDS -N        | 07 | 31 |
| 30 | RDA -N        | 07 | 29 |
| 28 | WRP -N        | 07 | 27 |
| 26 | TRO -N        | 07 | 25 |
| 24 | WREN-N        | 0V | 23 |
| 22 | WRDA-N        | 0V | 21 |
| 20 | STP -N        | 0V | 19 |
| 18 | DIR -N        | 0V | 17 |
| 16 | MTRN-N        | 0V | 15 |
| 14 | US3 -N        | 0V | 13 |
| 12 | US2 -N        | OV |    |
| 10 | US1 -N        | OV | 9  |
| 8  | IND -N        | 0V | 7  |
| 6  | US4 -N        | 01 | 53 |
| 4  | DUN -N        | 0V | 3  |
| 2  | URDY-N        | OV | 1  |
|    |               | 1  |    |

PLUG ST2

+12V

+ 5V

MFD

+12V RETURN

+ 5V RETURN

1

2

3

4

PLUG ST3 (X3112 AND X3114) (X3111 AND X3113)

b

2

3

45

6

HDOE

HDOF

HDOC HDOS

HDOO

|   | b      | a    |
|---|--------|------|
| 1 | HDOE   | HD10 |
| 2 | HDOF   | HDIS |
| 3 | HDOC   | HD1C |
| 4 | HDOS   | HD1F |
| 5 | HDOO   | HDIE |
| 6 | $\geq$ |      |

PLUG ST4

|   | b      | ć      | 3    |
|---|--------|--------|------|
| 1 | STM    | 2      | STM1 |
| 2 | STM    | 4      | STM3 |
| 3 | $\geq$ | $\geq$ | +12V |

PLUG ST6

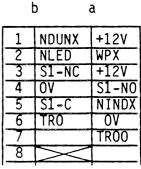
SPM2

SPM1 LHDX

a

OVP

OVP


b

1

2

3

PLUG ST5



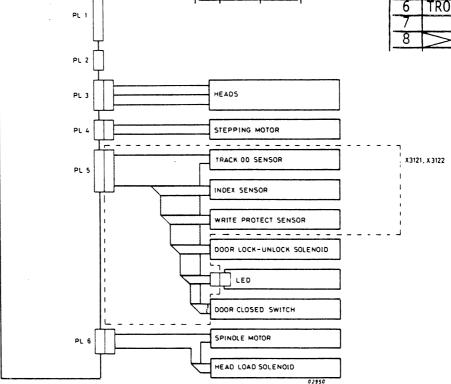
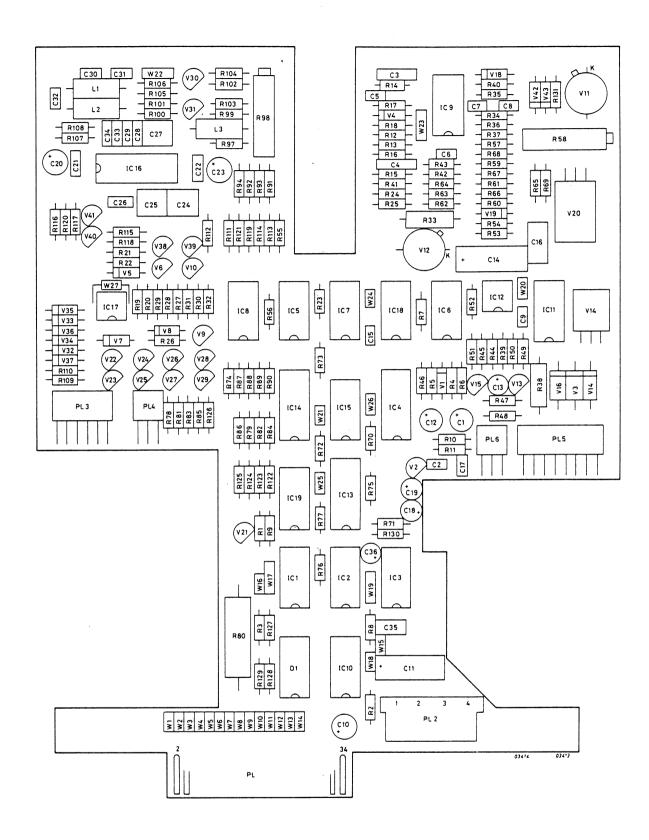
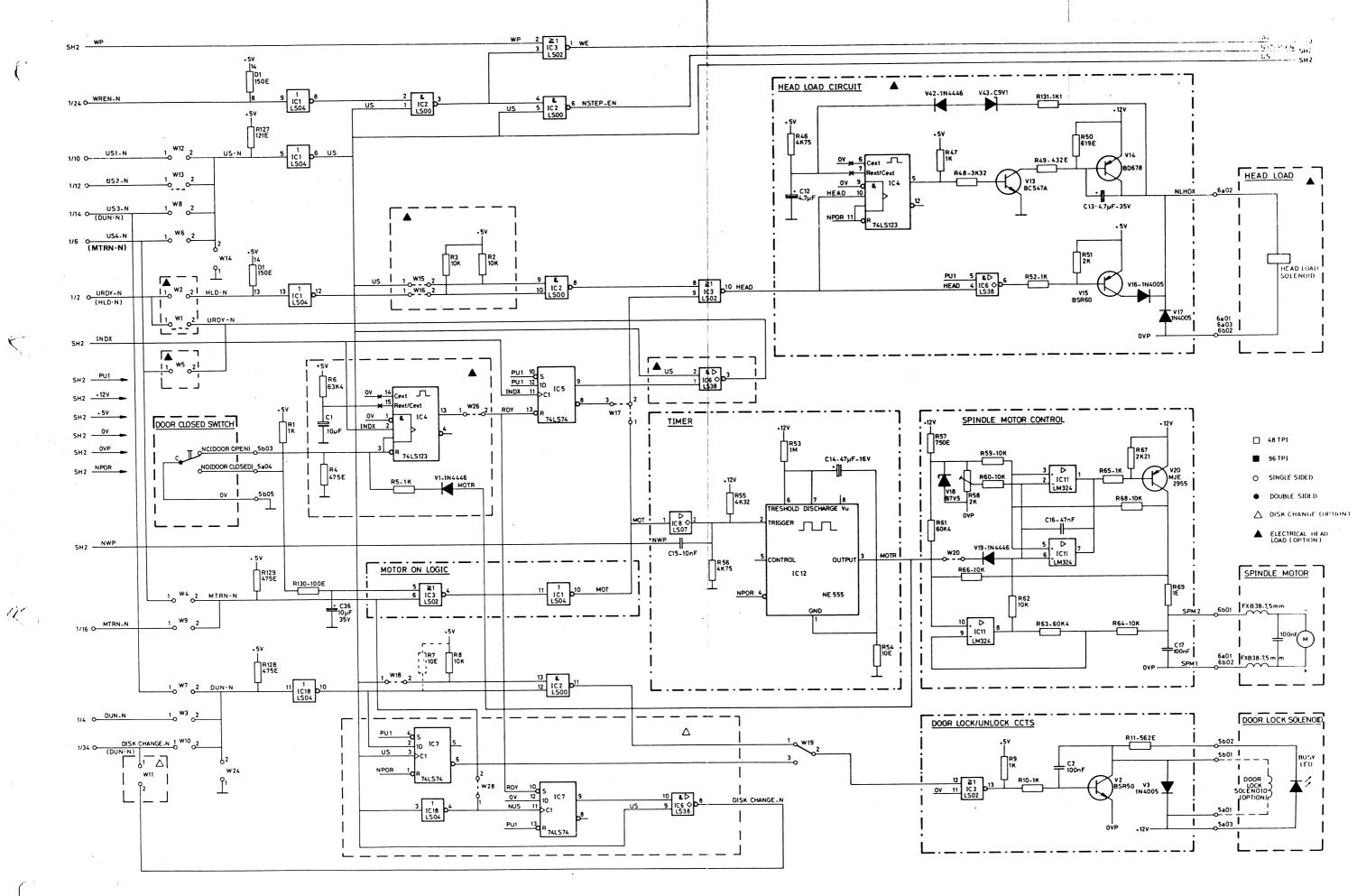





Figure 4.1 INTERCONNECTION DIAGRAM



Note: For X3112/14 - IC17 is mounted. For X3111/13 - Link W27

Figure 4.2 PCB LAYOUT



8204

K

Figure 4.6/1 SCHEMATIC X3111/2/3/4 SHEET 1

# X3111/2/3/4

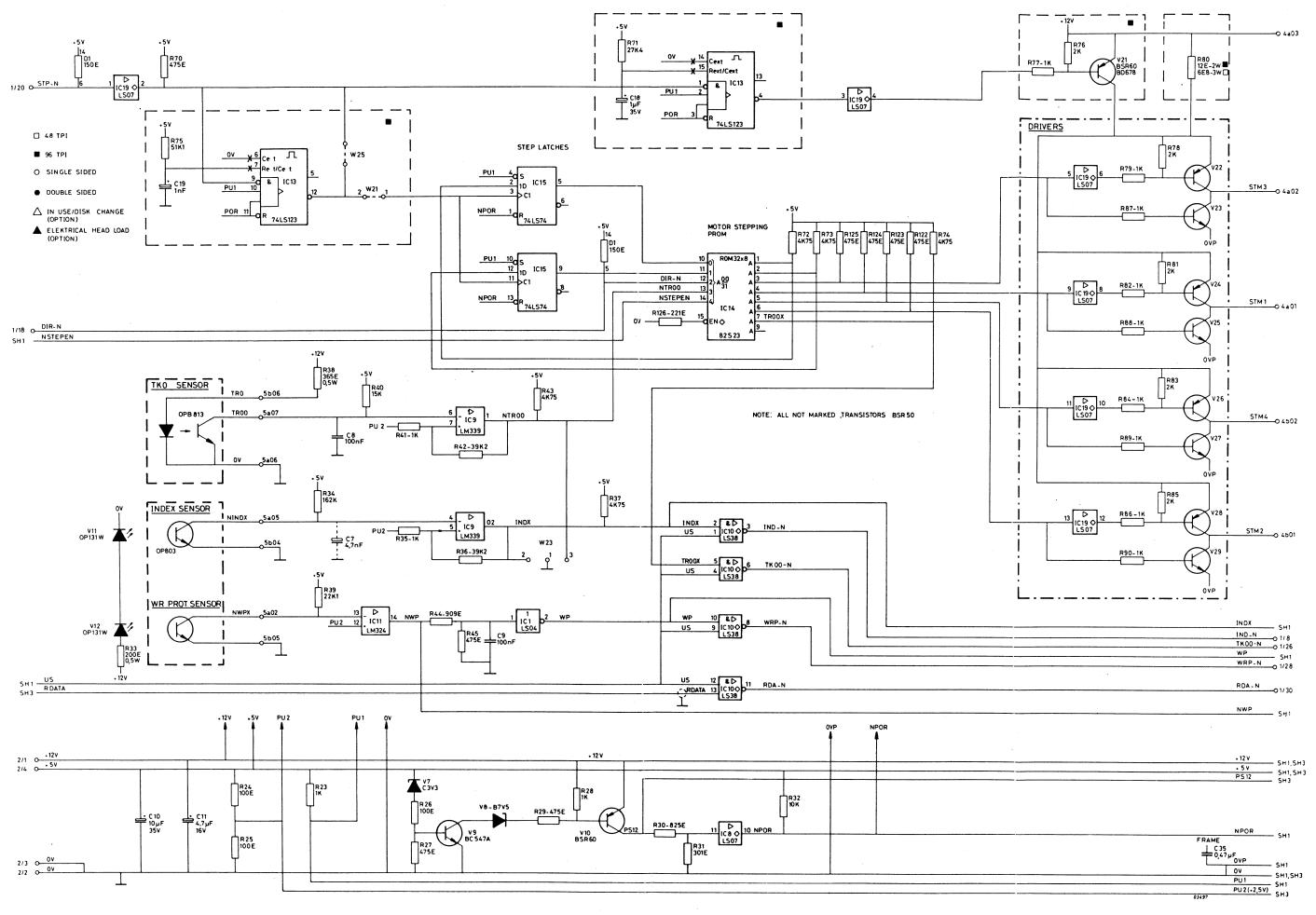
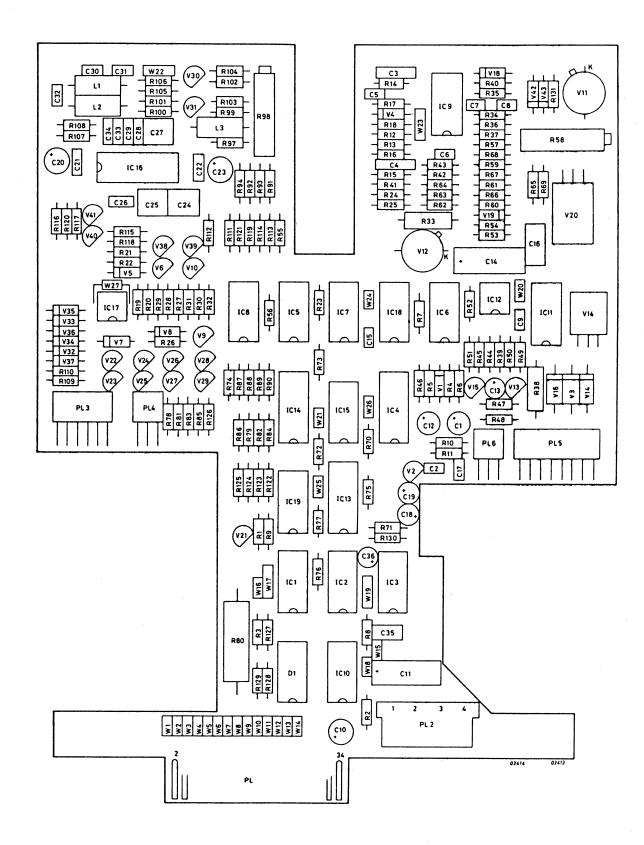
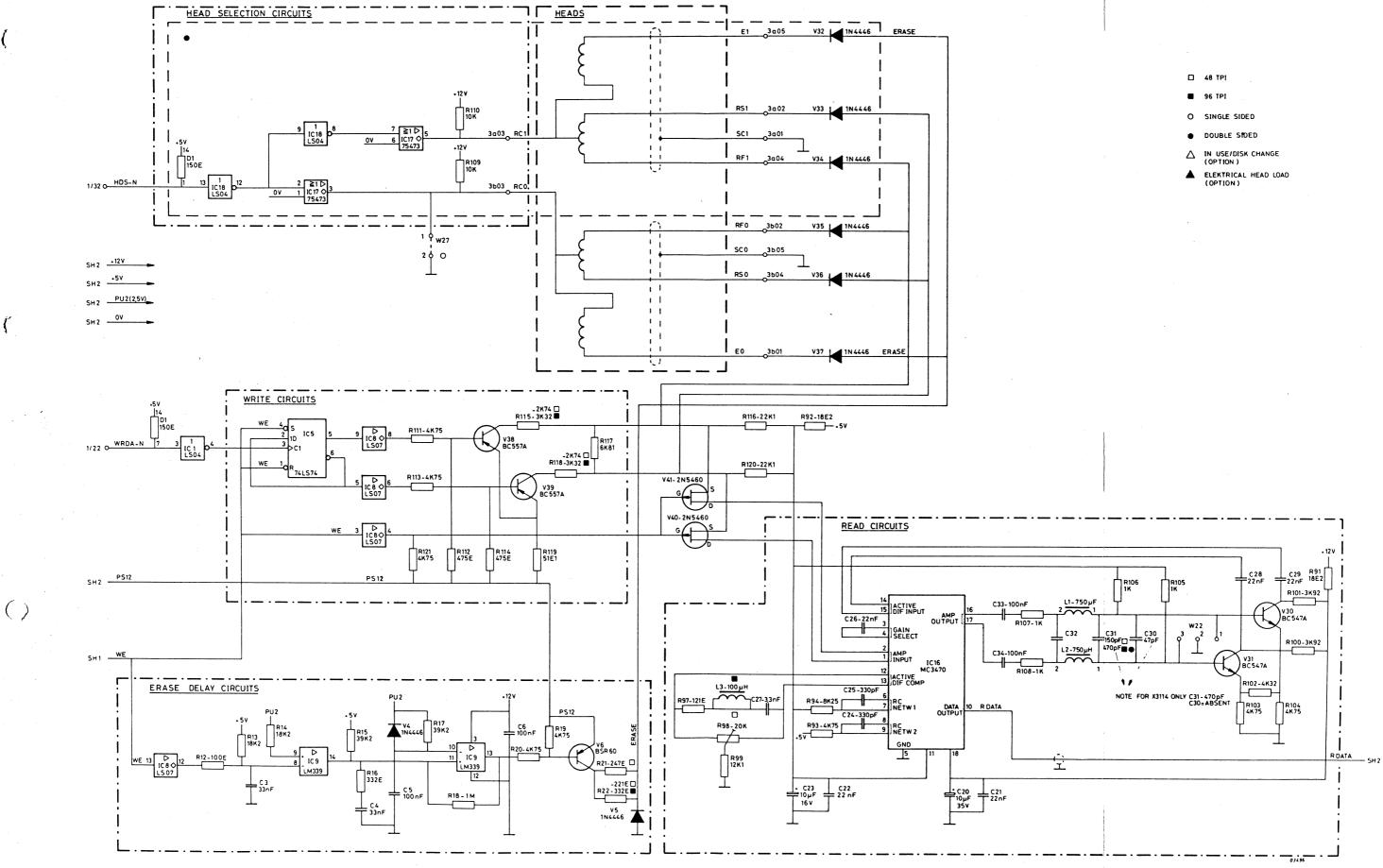



Figure 4.6/2 SCHEMATIC X3111/2/3/4 SHEET 2

t i





Figure 4.4 PCB LAYOUT

X3111/2/3/4

8204

Ç

5



X3111/2/3/4

8204



Figure 4.6/3 SCHEMATIC X3111/2/3/4 SHEET 3

# SECTION 5.1 MOTOR STEPPING PROM 82523N

PAGE 5-2

# 5.1 MOTOR STEPPING PROM 82523N

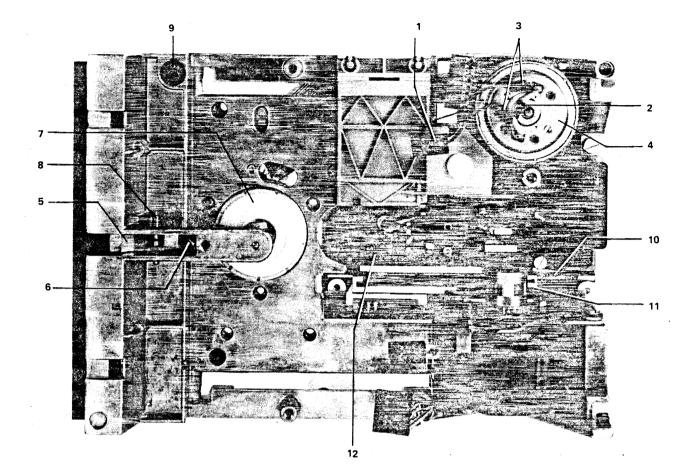
| ADDRESS<br>(DECIMAL) | Y1     | ¥2     | Y3     | Y4     | Y5     | ¥6     | ¥7 | ¥8 |
|----------------------|--------|--------|--------|--------|--------|--------|----|----|
| 0<br>1<br>2<br>3     | X<br>X | X<br>X | X<br>X | X<br>X | X<br>X | x<br>x | X  |    |
| 4<br>5<br>6<br>7     | X<br>X | x<br>x | X<br>X | X<br>X | x<br>x | x<br>x | X  |    |
| 8<br>9<br>10<br>11   | X<br>X | X<br>X | X<br>X | X<br>X | X<br>X | x<br>x |    |    |
| 12<br>13<br>14<br>15 | X<br>X | X<br>X | X<br>X | X<br>X | X<br>X | x<br>x |    |    |
| 16<br>17<br>18<br>19 | x<br>x | X<br>X | X<br>X | x<br>x | X<br>X | X<br>X | X  |    |
| 20<br>21<br>22<br>23 | x<br>x | X<br>X | X<br>X | X<br>X | X<br>X | x<br>x | X  |    |
| 24<br>25<br>26<br>27 | x<br>x | x<br>x | X<br>X | X<br>X | X<br>X | x<br>x |    |    |
| 28<br>29<br>30<br>31 | x<br>x | X<br>X | X<br>X | X<br>X | x<br>x | x<br>x |    |    |

X = HIGH LEVEL

.

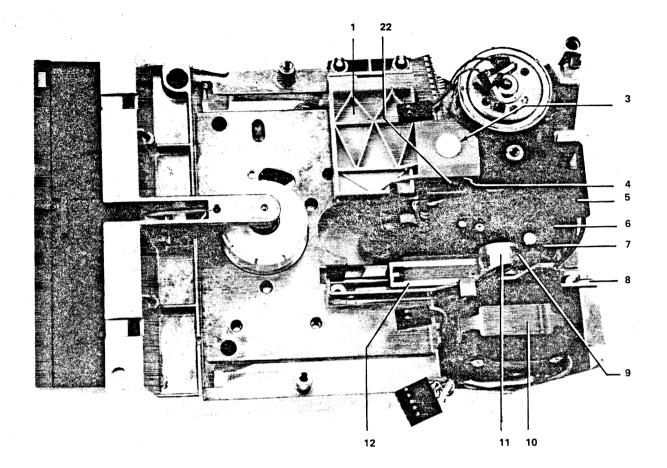
.

.


·

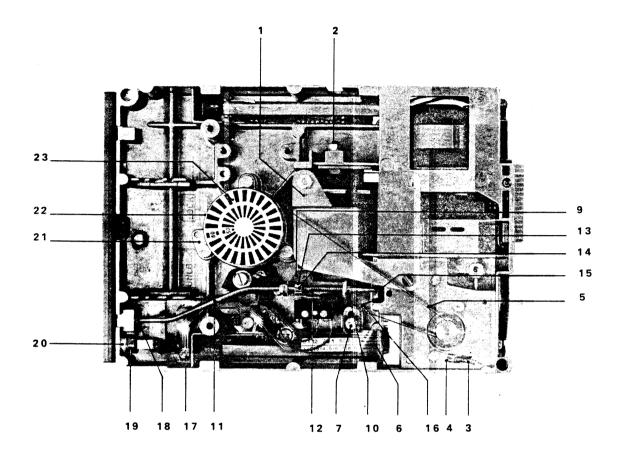
PARTS LIST

SECTION


,

| MFD Mechanical Parts     | PAGE | 6-2  |
|--------------------------|------|------|
| Carriage X-3111          |      | 6-8  |
| Carriage X-3112          |      | 6-8  |
| Carriage X-3113          |      | 6-9  |
| Carriage X-3114 (t.b.f.) |      | 6-9  |
| PCB SMFD                 |      | 6-11 |
| PCB MFDF                 |      | 6-17 |
| Internal Cables          |      | 6-19 |
| ADD-ONS                  |      | 6-23 |
| Conversion List(s)       |      | 6-24 |




| Pos.                          | Code Number                                                                            | Description                                                                           |                                                                                                       |
|-------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| A<br>1B                       | 5112 291 66610<br>5112 291 66620<br>5112 291 66630<br>5112 291 66640<br>5112 280 02991 | MFD-X3111 compl.<br>MFD-X3112 compl.<br>MFD-X3113 compl.<br>MFD-X3114 compl.<br>Cable | X-3111/12/13/14                                                                                       |
| 2 B<br>3B<br>4B<br>5B<br>6B   | 2022 562 00009<br>4312 020 31331<br>5112 291 49970<br>5112 211 62410<br>5112 200 06401 | Capacitor 100nF<br>Bush core<br>Motor assy<br>Lever<br>Tension spring                 | X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14           |
| 7B<br>C<br>C<br>C<br>C        | 5112 291 49960<br>5112 211 57020<br>2622 115 10012<br>5112 200 06431<br>2522 630 02004 | Cone assy<br>Bush<br>Cupped spring washer<br>Compression spring (small)<br>Ring       | X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14           |
| C<br>D<br>C<br>C              | 5112 291 49950<br>5112 211 57010<br>2622 001 30343<br>5112 200 06711<br>5112 211 57030 | Cone flange assy<br>Cone flange<br>Ball bearing<br>Compression spring (big)<br>Cone   | X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14           |
| 8B<br>9B<br>10B<br>11B<br>12B | 5112 211 62220<br>5112 211 71900<br>5112 211 62130<br>5112 211 62480<br>5112 291 53420 | Pin<br>Bush<br>Shaft<br>Rotary spring<br>Carriage compl.*                             | X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111 |
|                               | 5112 291 53160<br>5112 291 53430<br>5112 291 53590                                     | Carriage compl.*<br>Carriage compl.*<br>Carriage compl.*                              | X-3112<br>X-3113<br>X-3114                                                                            |

Note: \* For break-down carriage see page 6-8, 6-9.



| Pos.                       | Code Number                                                                                              | Description                                                                                              |                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 18<br>28<br>38<br>48<br>58 | 5112 291 53080<br>5112 211 72080<br>2612 115 02044<br>5112 291 53270<br>5112 211 71940                   | Lifting bracket compl.<br>Tab<br>Compression spring<br>Lever compl.<br>Stop                              | X-3111/12/13/14<br>X-3111/12/13/13<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14              |
| 6B<br>7B<br>8B<br>9B<br>B  | 5112 211 71950<br>5112 211 59610<br>2622 115 10001<br>5112 211 62150<br>5112 291 53360                   | Loading place<br>Hold plate<br>Cupped spring washer<br>Bracket<br>Stepping motor assy 3,6                | X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12 |
| 10C<br>11C                 | 5112 291 53340<br>5112 291 53550<br>5112 291 53500<br>5112 291 53500<br>5112 291 67170<br>5112 211 62160 | Stepping motor assy 1,8<br>Stepping motor assy 1,8<br>Stepping motor 3,6<br>Stepping motor 1,8<br>Pulley | X-3113<br>X-3114<br>X-3111/12<br>X-3113/14<br>X-3111/12                                                  |
| C<br>12B                   | 5112 211 84170<br>2522 043 14038<br>5112 211 62140                                                       | Pulley<br>Pin<br>Steel band                                                                              | X-3113/14<br>X-3111/12/13/14<br>X-3111/12/13/14                                                          |

,



| Pos. | Code Number    | Description                |                 |
|------|----------------|----------------------------|-----------------|
| 1B   | 5112 211 84180 | Protection cover           | X-3111/12/13/14 |
| 2B   | 5112 211 62260 | Screw bolt                 | X-3111/12/13/14 |
| 3B   | 5112 200 06591 | Tension spring             | X-3111/12/13/14 |
| 4B   | 2412 015 01242 | Solder tag                 | X-3111/12/13/14 |
| 5B   | 5112 200 06231 | Belt                       | X-3111/12/13/14 |
| 6B   | 5112 291 66570 | Flex. printer circuit MFDF | X-3111/12/13/14 |
| 7B   | 2513 700 03543 | Solid rivet                | X-3111/12/13/14 |
| 8B   | 5112 211 57080 | Holder                     | X-3111/12/13/14 |
| 8    | 5112 291 53290 | Slider assy                | X-3111/12/13/14 |
| 9C   | 5112 211 72030 | Bearing plate              | X-3111/12/13/14 |
| 10C  | 5112 211 62350 | Bush                       | X-3111/12/13/14 |
| 11C  | 5112 211 72090 | Sliding rod                | X-3111/12/13/14 |
| 12C  | 5112 200 06631 | Pressure spring            | X-3111/12/13/14 |
| 13C  | 2522 640 20002 | Adjusting ring             | X-3111/12/13/14 |
| 14C  | 2522 043 14016 | Pin                        | X-3111/12/13/14 |
| 15C  | 2612 115 02511 | Presure spring             | X-3111/12/13/14 |
| 16C  | 5112 211 72070 | Slider                     | X-3111/12/13/14 |
| 17B  | 5112 291 60770 | Diode holder               | X-3111/12/13/14 |
| 18B  | 5112 211 62350 | Bush                       | X-3111/12/13/14 |
| 19B  | 9390 243 50112 | Mounting ring              | X-3111/12/13/14 |
| 20B  | 9332 589 00112 | Diode LED 16               | X-3111/12/13/14 |
| B    | 5112 291 49940 | Disk assy                  | X-3111/12/13/14 |
| 21C  | 5112 211 56950 | Flange                     | X-3111/12/13/14 |
| C    | 2622 001 30596 | Ball bearing               | X-3111/12/13/14 |
| C    | 2522 629 01011 | Ring                       | X-3111/12/13/14 |
| C    | 2512 700 01494 | Disk                       | X-3111/121/31/4 |
| C    | 2612 115 10106 | Cupped spring washer       | X-3111/12/13/14 |
| 22C  | 5112 211 56970 | Pulley                     | X-3111/12/13/14 |
| 23C  | 5112 211 58310 | Stroboscope disk           | X-3111/12/13/14 |

s

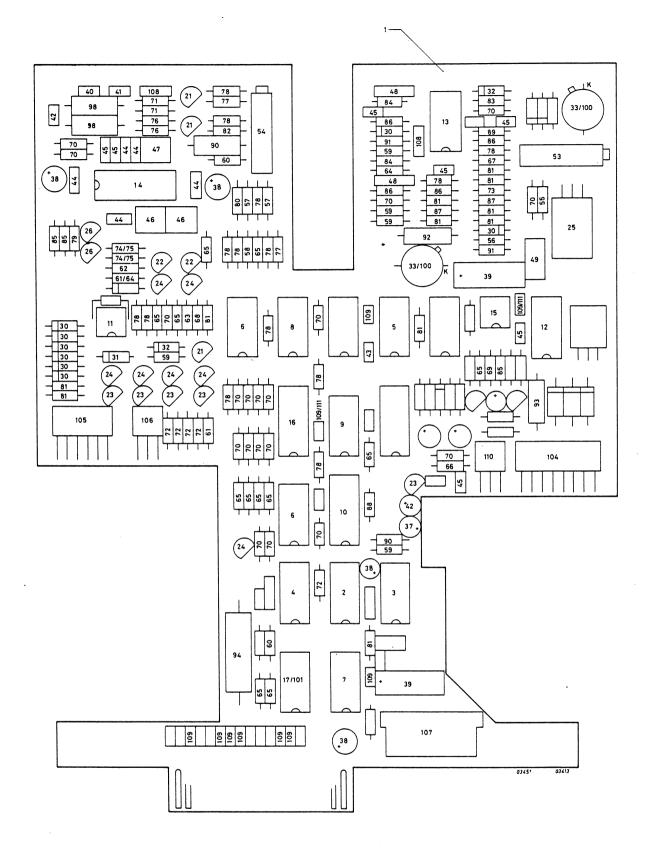
# CARRIAGE X-3111

.

| Pos.                  | Code Number                                                                            | Description                                                                                     |                                                          |
|-----------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| B<br>C<br>D<br>E<br>E | 5112 291 53420<br>5112 291 53400<br>5112 291 52910<br>5112 211 60263<br>2512 700 09067 | Carriage mounted 2<br>Carriage mounted 1<br>Carriage assy<br>Carriage<br>Screw                  | X-3111<br>X-3111<br>X-3111<br>X-3111<br>X-3111<br>X-3111 |
| D<br>D<br>D<br>D<br>D | 8212 220 30311<br>5112 211 84110<br>2422 034 10788<br>2422 034 11935<br>5112 211 84130 | Button head<br>Feed adjustment cable<br>Plug contact<br>Connector housing 5 pol.<br>Screen ring | X-3111<br>X-3111<br>X-3111<br>X-3111<br>X-3111<br>X-3111 |
| C<br>D<br>C<br>C      | 5112 291 53440<br>5112 211 71980<br>5112 210 30321<br>5112 211 62470<br>5112 211 62540 | Felt holder assy<br>Felt holder<br>Felt<br>Pressure arm<br>Tension spring                       | X-3111<br>X-3111<br>X-3111<br>X-3111<br>X-3111           |
| С                     | 5112 211 62180                                                                         | Damping                                                                                         | X-3111                                                   |

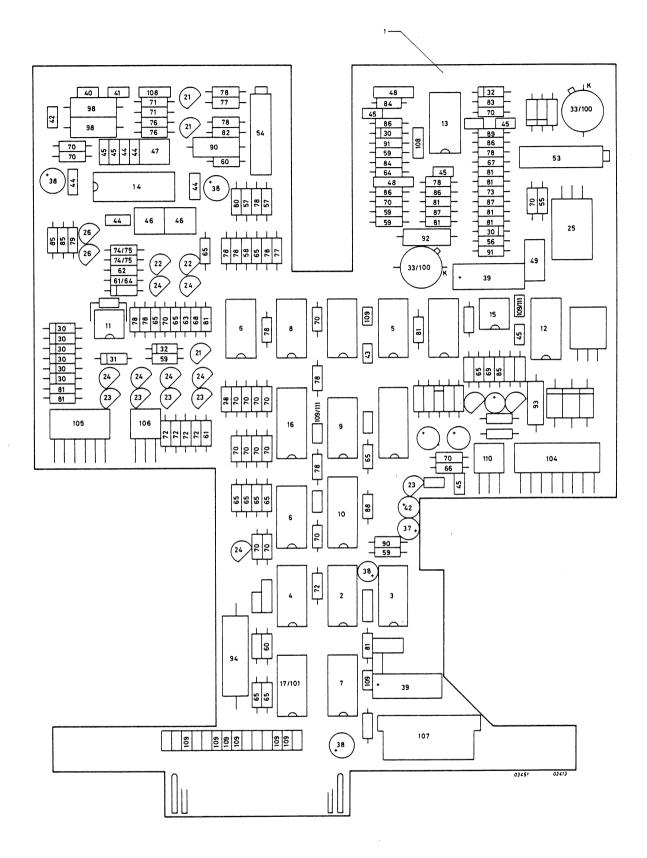
# CARRIAGE X-3112

| Pos.                  | Code Number                                                                            | Description                                                                                 |                                                          |
|-----------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|
| B<br>C<br>D<br>E<br>F | 5112 291 53160<br>5112 291 52930<br>5112 291 52920<br>5112 291 52910<br>5112 211 60260 | Carriage mounted 3<br>Carriage mounted 2<br>Carriage mounted 1<br>Carriage assy<br>Carriage | X-3112<br>X-3112<br>X-3112<br>X-3112<br>X-3112<br>X-3112 |
| F<br>E<br>D<br>E      | 2512 700 09067<br>5112 211 62550<br>5112 211 84130<br>5112 291 52940<br>5112 291 52900 | Screw<br>Feed adjustment head<br>Screen ring<br>Upper arm mounted<br>Upper arm              | X-3112<br>X-3112<br>X-3112<br>X-3112<br>X-3112<br>X-3112 |
| F<br>E<br>D<br>D      | 5112 211 62100<br>1322 952 13009<br>5112 211 62590<br>5112 211 62110<br>5112 211 62540 | Leaf hinge<br>Makrolon<br>Feed adjustment upper head<br>Clamp block<br>Torsion spring       | X-3112<br>X-3112<br>X-3112<br>X-3112<br>X-3112<br>X-3112 |
| D<br>D<br>D<br>C      | 5112 211 62580<br>2422 034 10788<br>2422 034 11764<br>5112 211 00860<br>5112 211 62180 | Feed adjustment cable<br>Plug contact<br>Connector housing 12 pin<br>Dummy<br>Damping       | X-3112<br>X-3112<br>X-3112<br>X-3112<br>X-3112<br>X-3112 |


**.** -

## CARRIAGE X-3113

| Pos.                  | Code Number                                                                            | Description                                                                    |                                                          |
|-----------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|
| B<br>C<br>D<br>E<br>E | 5112 291 53430<br>5112 291 53410<br>5112 291 52910<br>5112 211 60260<br>2512 700 09067 | Carriage mounted 2<br>Carriage mounted 1<br>Carriage assy<br>Carriage<br>Screw | X-3113<br>X-3113<br>X-3113<br>X-3113<br>X-3113<br>X-3113 |
| D<br>D<br>D<br>D<br>D | 8212 220 30301<br>2422 034 16788<br>2422 034 11764<br>5112 211 00860<br>5112 211 84130 | Button head<br>Plug contact<br>Connector housing 12 pin<br>Dummy<br>Screening  | X-3113<br>X-3113<br>X-3113<br>X-3113<br>X-3113<br>X-3113 |
| C<br>D<br>D<br>C      | 5112 291 53440<br>5112 211 71980<br>5112 210 30321<br>5112 211 62470                   | Felt holder assy .<br>Felt holder<br>Felt<br>Pressure arm                      | X-3113<br>X-3113<br>X-3113<br>X-3113<br>X-3113           |
| C<br>C                | 5112 211 62540<br>5112 211 62180                                                       | Torsion spring<br>Damping                                                      | X-3113<br>X-3113                                         |

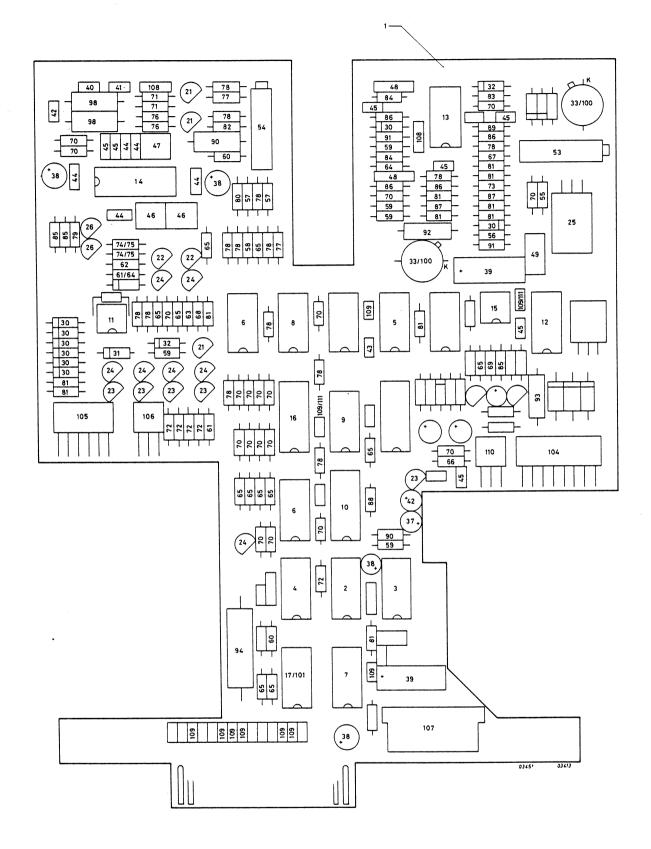

# CARRIAGE X-3114

| Pos. | Code Number    | Description        |        |
|------|----------------|--------------------|--------|
| В    | 5112 291 53590 | Carriage mounted 3 | X-3114 |
|      | t.b.f.         |                    |        |



۰.

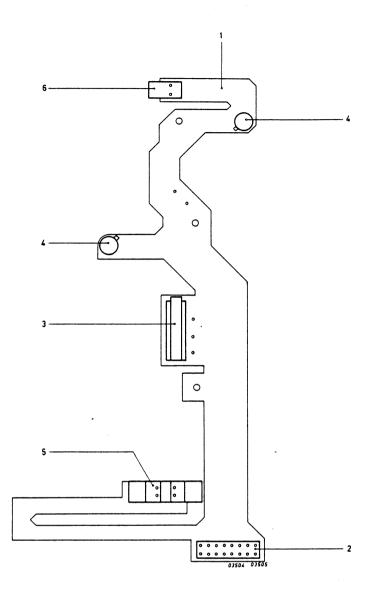
| Pos.                          | Code Number                                                                            | Description                                                                                              |                                                                                           |
|-------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 1B<br>2C                      | 5112 291 67230<br>5112 291 67240<br>5112 291 67250<br>5112 291 67260<br>9332 315 90112 | PCB SMFD 3-1 compl.<br>PCB SMFD 3-2 compl.<br>PCB SMFD 4-1 compl.<br>PCB SMFD 4-2 compl.<br>IC SN74LSOON | X-3112                                                                                    |
| 3C                            | 9331 529 00112                                                                         | IC SN7402N                                                                                               | X-3111/12/13/14                                                                           |
| 4C                            | 9331 398 50112                                                                         | IC SN7404N                                                                                               | X-3111/12/13/14                                                                           |
| 5C                            | 9332 316 00112                                                                         | IC SN74LS04N                                                                                             | X-3112/13/14                                                                              |
| 6C                            | 9331 713 30112                                                                         | IC SN7407N                                                                                               | X-3111/12/13/14                                                                           |
| 7C                            | 9331 719 20112                                                                         | IC SN7438N                                                                                               | X-3111/12/13/14                                                                           |
| 8C<br>9C<br>10C<br>11C<br>12C | 9331 211 50112<br>9332 316 50112<br>9332 746 80772<br>9335 273 80682<br>9335 004 40112 | IC SN7474N<br>IC SN74LS74N<br>IC SN74LS123N<br>IC SN75473P<br>IC LM324N                                  | X-3111/12/13/14<br>X-3112/13/14<br>X-3113/14<br>X-3112/14<br>X-3112/14<br>X-3111/12/13/14 |
| 13C                           | 9333 485 60112                                                                         | IC LM339AN                                                                                               | X-3111/12/13/14                                                                           |
| 14C                           | 9334 704 90112                                                                         | IC MC3470P                                                                                               | X-3111/12/13/14                                                                           |
| 15C                           | 9332 243 90112                                                                         | IC NE555N                                                                                                | X-3111/12/13/14                                                                           |
| 16C                           | 5112 209 13891                                                                         | IC N82S23B/MFD1-I                                                                                        | X-3111/12/13/14                                                                           |
| 17C                           | 2122 118 00753                                                                         | IC 314A151                                                                                               | X-3111/12/13/14                                                                           |
| 21C                           | 9331 976 20112                                                                         | Transistor BC547A                                                                                        | X-3111/12/13/14                                                                           |
| 22C                           | 9331 977 20112                                                                         | Transistor BC557A                                                                                        | X-3111/12/13/14                                                                           |
| 23C                           | 9333 266 20112                                                                         | Transistor BSR50                                                                                         | X-3111/12/13/14                                                                           |
| 24C                           | 9333 266 50112                                                                         | Transistor BSR60                                                                                         | X-3111/12/13/14                                                                           |
| 25C                           | 9334 972 40112                                                                         | Transistor MJE2955T                                                                                      | X-3111/12/13/14                                                                           |
| 26C                           | 9333 893 20112                                                                         | Transistor 2N5460                                                                                        | X-3111/12/13/14                                                                           |
| 30C                           | 9331 126 60112                                                                         | Diode IN4446                                                                                             | X-3111/12/13/14                                                                           |
| 31C                           | 9332 262 70112                                                                         | Diode ZPD3V3                                                                                             | X-3111/12/13/14                                                                           |
| 32C                           | 9331 668 40112                                                                         | Diode BZX79B7V5                                                                                          | X-3111/12/13/14                                                                           |
| 33C                           | 9335 286 70112                                                                         | Diode OP131W                                                                                             | X-3111/12/13/14                                                                           |
| 37C                           | 2012 198 07108                                                                         | ELCO 1uF 35V                                                                                             | X-3113/14                                                                                 |
| 38C                           | 2012 198 07109                                                                         | ELCO 10uF 35V                                                                                            | X-3111/12/13/14                                                                           |
| 39C                           | 2222 015 26479                                                                         | ELCO 47uF 25V                                                                                            | X-3111/12/13/14                                                                           |
| 40C                           | 2222 641 34479                                                                         | Capacitor 47pF                                                                                           | X-3111/12/13/14                                                                           |
| 41C                           | 2222 641 34151                                                                         | Capacitor 150pF                                                                                          | X-3111/12/13                                                                              |
| 42C                           | 2222 630 05102                                                                         | Capacitor 1nF                                                                                            | X-3111/12/13/14                                                                           |
| 43C                           | 2222 629 05103                                                                         | Capacitor 10nF                                                                                           | X-3111/12/13/14                                                                           |
| 44C                           | 2222 629 05223                                                                         | Capacitor 22nF                                                                                           | X-3111/12/13/14                                                                           |
| 45C                           | 2022 552 00524                                                                         | Capacitor 100nF                                                                                          | X-3111/12/13/14                                                                           |
| 46C                           | 2012 331 00084                                                                         | Capacitor 330pF                                                                                          | X-3111/12/13/14                                                                           |
| 47C                           | 2012 331 00045                                                                         | Capacitor 3,3nF                                                                                          | X-3111/12/13/14                                                                           |
| 48C                           | 2012 310 03108                                                                         | Capacitor 33nF                                                                                           | X-3111/12/13/14                                                                           |
| 49C                           | 2012 318 11006                                                                         | Capacitor 47nF                                                                                           | X-3111/12/13/14                                                                           |
| 53C                           | 2122 350 00493                                                                         | Pot. meter 2K lin.                                                                                       | X-3111/12/13/14                                                                           |
| 54C                           | 2122 350 00376                                                                         | Pot. meter 20K lin.                                                                                      | X-3111/12/13/14                                                                           |




**.** ...

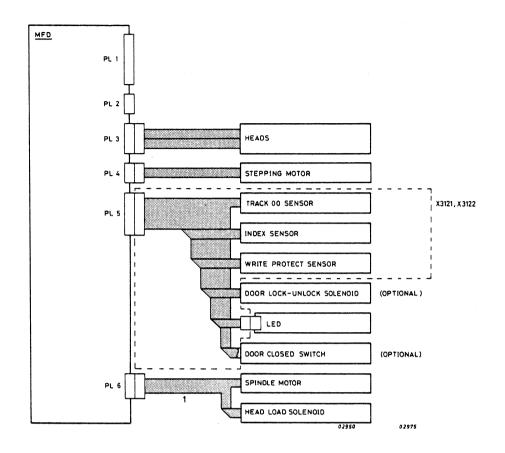
| Pos. | Code Number    | Description      |                 |
|------|----------------|------------------|-----------------|
| 55C  | 2322 151 51008 | Resistor 1E      | X-3111/12/13/14 |
| 56C  | 2322 151 51009 | Resistor 10E     | X-3111/12/13/14 |
| 57C  | 2322 151 51829 | Resistor 18E2    | X-3111/12/13/14 |
| 58C  | 2322 151 55119 | Resistor 51E1    | X-3111/12/13/14 |
| 59C  | 2322 151 51001 | Resistor 100E    | X-3111/12/13/14 |
| 60C  | 2322 151 51211 | Resistor 121E    | X-3111/12/13/14 |
| 61C  | 2322 151 52211 | Resistor 221E    | X-1111/12/13/14 |
| 62C  | 2322 151 52741 | Resistor 274E    | X-3111/12/13/14 |
| 63C  | 2322 151 53011 | Resistor 301E    | X-3111/12/13/14 |
| 64C  | 2322 151 53321 | Resistor 332E    | X-3111/12/13/14 |
| 65C  | 2322 151 54751 | Resistor 475E    | X-3111/12/13/14 |
| 66C  | 2322 151 55621 | Resistor 562E    | X-3111/12/13/14 |
| 67C  | 2322 151 57501 | Resistor 750E    | X-3111/12/13/14 |
| 68C  | 2322 151 58251 | Resistor 825E    | X-3111/12/13/14 |
| 69C  | 2322 151 59091 | Resistor 909E    | X-3111/12/13/14 |
| 70C  | 2322 151 51002 | Resistor 1K      | X-3111/12/13/14 |
| 71C  | 2322 151 51102 | Resistor 1K1     | X-3111/12/13/14 |
| 72C  | 2322 151 52002 | Resistor 2K      | X-3111/12/13/14 |
| 73C  | 2322 151 52212 | Resistor 2K21    | X-3111/12/13/14 |
| 74C  | 2322 151 52742 | Resistor 2K74    | X-3111/12/13/14 |
| 75C  | 2322 151 53322 | Resistor 3K32    | X-3113/14       |
| 76C  | 2322 151 53922 | Resistor 3K92    | X-3111/12/13/14 |
| 77C  | 2322 151 54322 | Resistor 4K32    | X-3111/12/13/14 |
| 78C  | 2322 151 54752 | Resistor 4K75    | X-3111/12/13/14 |
| 79C  | 2322 151 56812 | Resistor 6K81    | X-3111/12/13/14 |
| 80C  | 2322 151 58252 | Resistor 8K25    | X-3111/12/13/14 |
| 81C  | 2322 151 51003 | Resistor 10K     | X-3111/12/13/14 |
| 82C  | 2322 151 51213 | Resistor 12K1    | X-3111/12/13/14 |
| 83C  | 2322 151 51503 | Resistor 15K     | X-3111/12/13/14 |
| 84C  | 2322 151 51823 | Resistor 18K2    | X-3111/12/13/14 |
| 85C  | 2322 151 52213 | Resistor 22K1    | X-3111/12/13/14 |
| 86C  | 2322 151 53923 | Resistor 39K2    | X-3111/12/13/14 |
| 87C  | 2322 151 56043 | Resistor 60K4    | X-3111/12/13/14 |
| 88C  | 2322 151 55113 | Resistor 51K1    | X-3113/14       |
| 89C  | 2322 151 51624 | Resistor 162K    | X-3111/12/13/14 |
| 90C  | 2322 151 52743 | Resistor 27K4    | X-3113/14       |
| 91C  | 2322 151 51005 | Resistor 1M      | X-3111/12/13/14 |
| 92C  | 2322 152 52001 | Resistor 200E    | X-3111/12/13/14 |
| 93C  | 2322 152 53651 | Resistor 365E    | X-3111/12/13/14 |
| 94C  | 2113 256 00924 | Resistor 6E8     | X-3111/12       |
| 95C  | 2108 251 00192 | Resistor 12E     | X-3113/14       |
| 98C  | 2422 535 98278 | Coil 750uH       | X-3111/12/13/14 |
| 99C  | 8212 221 04111 | Coil 100uH       | X-3113/14       |
| 100C | 5112 211 62380 | Lampholder       | X-3111/12/13/14 |
| 101C | 2422 549 13505 | IC socket 14 pol | X-3111/12/13/14 |

•


٩



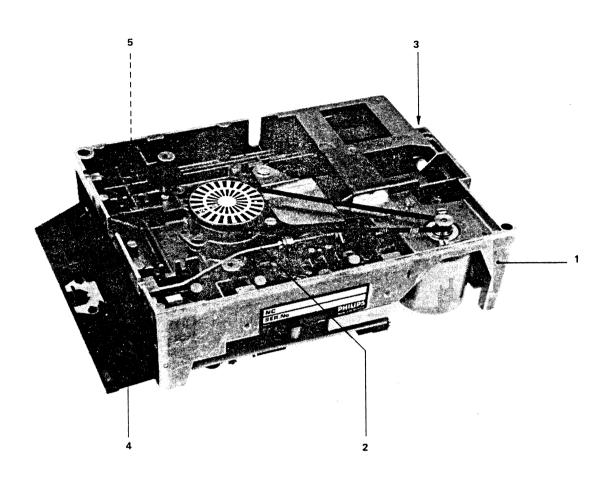
.


,

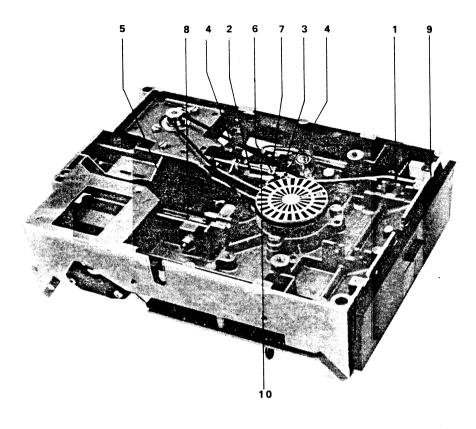
| Pos. | Code Number    | Description      |                 |
|------|----------------|------------------|-----------------|
| 104C | 2422 023 98184 | Connector 15 pol | X-3111/12/13/14 |
| 105C | 5112 211 59400 | Connector 5 pol  | X-3111/12/13/14 |
| 106C | 5112 209 04731 | Connector 5 pol  | X-3111/12/13/14 |
| 107C | 2422 025 04227 | Connector 4 pol  | X-3111/12/13/14 |
| 108C | 5112 211 03270 | Connector 3 pol  | X-3111/12/13/14 |
| 109C | 5112 211 06040 | Connector 2 pol  | X-3111/12/13/14 |
| 110C | 5112 211 59390 | Connector 2 pol  | X-3111/12/13/14 |
| 111C | 2422 024 88003 | Jumper           | X-3111/12/13/14 |



8204


| Pos.                        | Code Number                                                                            | Description                                                                                |                                                                                             |
|-----------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1 B<br>2C<br>3C<br>4C<br>5C | 5112 291 66570<br>2422 062 00812<br>5112 209 18242<br>9335 302 30112<br>9335 306 10112 | PCB MFDF compl.<br>Connector 16 pol.<br>Micro switch<br>Transistor OP803<br>Optical switch | X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14<br>X-3111/12/13/14 |
| 6C                          | 2422 025 01687                                                                         | Connector 2 pol.                                                                           | X-3111/12/13/14                                                                             |




6-18

i

| Pos. | Code Number    | Description                                 |                 |
|------|----------------|---------------------------------------------|-----------------|
| 1B   | 5112 280 02991 | Cable to spindle motor<br>and head Solenoid | X-3111/12/13/14 |



| Pos.               | Code Number                                                                            | Description                                                                  |
|--------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| В                  | 5112 291 53070<br>5112 291 53260                                                       | Frame assy<br>Frame M3 assy                                                  |
| 1C                 | 5112 291 53300<br>5112 211 62310<br>5112 211 72020                                     | Frame UNC-6 assy<br>Frame<br>Frame M3                                        |
| 2C<br>3C<br>B<br>B | 5112 211 84100<br>2622 006 40084<br>2522 671 07061<br>5112 211 57060<br>5112 211 57070 | Frame UNC-6<br>Ball bearing<br>Pin<br>Front cover small<br>Front cover large |
| 4B                 | 5112 291 71130<br>5112 291 71140                                                       | Cover assy (black)<br>Cover assy (beige)                                     |
| 5B                 | 5112 209 19031                                                                         | Door unlock magnet 12V (Option)                                              |



| Pos:             | Code Number                                                                            | Description                                                     |
|------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| B                | 5112 291 53140                                                                         | Ejector assy                                                    |
| C                | 5112 291 53060                                                                         | Slider assy                                                     |
| 1D               | 5112 211 62370                                                                         | Pressure spindle                                                |
| 2D               | 2612 115 02045                                                                         | Compression spring                                              |
| 3D               | 5112 211 62340                                                                         | Bearing house                                                   |
| 4 D              | 5112 211 62350                                                                         | Bush                                                            |
| 5 D              | 5112 211 62280                                                                         | Slider                                                          |
| D                | 2522 677 01002                                                                         | Spring dowel                                                    |
| D                | 5112 211 62300                                                                         | Handle                                                          |
| D                | 2522 672 01024                                                                         | Pin                                                             |
| D                | 2612 115 00179                                                                         | Tension spring                                                  |
| 6D               | 2522 640 20002                                                                         | Adjusting ring                                                  |
| 7D               | 2522 043 14016                                                                         | Bolt                                                            |
| 8C               | 5112 291 53050                                                                         | Motor plate assy                                                |
| D                | 5112 291 53040                                                                         | Motor plate                                                     |
| D<br>D<br>D<br>D | 5112 211 62320<br>5112 211 62290<br>5112 211 62330<br>5112 200 06491<br>5112 200 06501 | Rest spring<br>Spindle<br>Ejector<br>Compression spring<br>Pipe |
| B                | 5112 291 62060                                                                         | Disk in assy                                                    |
| 9C               | 5112 211 62350                                                                         | Bush                                                            |
| 10C              | 5112 291 53180                                                                         | Switch assy                                                     |
| D                | 5112 211 62370                                                                         | Compression rod                                                 |
| D                | 5112 200 06631                                                                         | Compression spring                                              |
| D                | 5112 211 62500                                                                         | Bearing house                                                   |
| D                | 5112 211 62350                                                                         | Bush                                                            |
| D                | 2622 080 90803                                                                         | Ring                                                            |
| D                | 5112 211 62510                                                                         | Handle                                                          |
| D                | 5112 209 14811                                                                         | Micro switch                                                    |
| D                | 5112 211 05450                                                                         | Plate                                                           |
| D                | 5112 211 62520                                                                         | Spring                                                          |
| D                | 2622 006 40071                                                                         | Ball bearing                                                    |

.

| TYPNUM 1                                                         | TYPE-DES | CRIPTION               |          |                | URGNTI              | SRVKLS                                    |      |
|------------------------------------------------------------------|----------|------------------------|----------|----------------|---------------------|-------------------------------------------|------|
| X 3113 L                                                         | LIST OF  | MFD-UNITS              | FROM E   | 'FELD          | 1                   | 4 .                                       |      |
|                                                                  |          |                        |          |                |                     |                                           |      |
|                                                                  |          |                        |          |                |                     |                                           |      |
|                                                                  |          |                        |          |                |                     |                                           |      |
| VRSVLG TYPE/VERS                                                 | 510N     | TPSERIE T              | RSERIE   | SAG            | VRKDAT              |                                           |      |
| $ \begin{array}{ccc} -0 & X & 3113 \\ 1 & X & 3121 \end{array} $ |          | 0005000 0              | 000000   | 08250          | 82071               |                                           |      |
| 1 X 3121<br>2 X 3122                                             |          | 0005000 0<br>0005000 0 | 000000   | 08250<br>08250 | 82121<br>81381      |                                           |      |
|                                                                  |          |                        |          |                |                     |                                           |      |
| . "The division" — that is an an an an an an an an an            |          |                        |          |                |                     |                                           |      |
| LINE FACTORYCOI                                                  | DE       | SERVICE                | CODE     | FP FR          |                     | PTION ART.SPECIFIC.<br>D S PER MAG UN HIG |      |
| 00010 5112 291 6                                                 | 67250    | 5322 21                | .6 21124 | 11 000         | PRINTE              | ) CIRCUIT PCB MFD 4-1                     |      |
| 00020 5112 291 6                                                 | 66580    |                        |          |                | 0 0 0 0             |                                           |      |
| 00030 5112 291 5                                                 |          |                        |          |                | 0 0 0 0<br>BOARD, F | 0 0 0 0 1 3                               |      |
| 00040 5112 291 6                                                 |          |                        |          |                | 1000                | 0 000 0 13<br>0 CIRCUIT PCB MFD-F         |      |
| 00050 5112 291 5                                                 |          |                        |          |                | 0 0 0 0<br>SEGMENT  | 0 0 0 0 0 1 3                             |      |
|                                                                  | ·        | i                      |          |                | 0 0 0 0             | T SLIDE ASSY 96TPT.<br>D 0 000 0 13       | 105  |
| 00060 5112 291                                                   |          |                        | .8 74548 |                | 0 0 0 0             | 0 0 0 0 0 1 3                             |      |
| 00070 5112 291 5                                                 |          |                        |          |                | MOTOR, S            | 0 0 0 0 1 3                               | 1,8% |
| 00080 5112 291 5                                                 | 53360    | 5322 36                | 1 41002  | 12 000         | MOTOR,              | STEPPER<br>0 0 0 0 0 1 3                  |      |
| 00090 5112 291 4                                                 | 49970    | 5322 36                | 1 24212  | 12 000         | MOTOR               | MAIN MOTOR ASSY                           |      |
| 00100 5112 291 5                                                 | 53080    | 5322 40                | 5 40046  | 12 000         | LEVER               | LANDING LEVER                             |      |
| 00110 5112 211 6                                                 | 62140    | 5322 40                | 5 46409  | 12 000         | 0 0 0 0<br>BRACKET  | STEELSTRAP                                |      |
| 00120 5112 200 (                                                 | 06231    | 5322 35                | 8 24162  | 12 000         |                     | BELT 3X308                                |      |
| 00130 5112 291                                                   | 49940    | 5322 52                | 8 10419  | 12 000         | 0 0 0 0<br>DISC,RE  | D 0 000 0 13<br>EEL SPINDLE ASSY          |      |
| 00140 5112 291 4                                                 | 49960    |                        | 01 60029 |                | 0 0 0 0             | 0 000 0 13<br>CONE ASSY                   |      |
|                                                                  |          |                        |          |                |                     | 0 0 0 0 0 13                              |      |

•

.

7

| SECTION | 7.1                                                                                  | TOOLS                                                                                                                                                                                                                                      | PAGE 7-2                                                           |
|---------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|         | 7.2<br>7.2.1<br>7.2.2<br>7.2.3<br>7.2.4<br>7.2.5<br>7.2.6<br>7.2.7<br>7.2.8<br>7.2.9 | ADJUSTMENT<br>Belt Tension<br>Spindle Speed Adjustment<br>Write Protect Sensor Check<br>Head Alignment<br>Track OO Sensor Adjustment<br>Index to Burst Adjustment<br>Read Symmetry Adjustment<br>Door Closed Switch Check<br>Head Cleaning | 7-2<br>7-2<br>7-3<br>7-3<br>7-3<br>7-5<br>7-6<br>7-7<br>7-8<br>7-8 |
|         | 7.3<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>7.3.6<br>7.3.7<br>7.3.8<br>7.3.9 | REMOVALS AND REPLACEMENTS<br>PCB<br>Belt<br>Spindle Motor<br>Stepper Motor<br>Head Carriage<br>Head Load Solenoid<br>MFDF<br>Spindle Assembly<br>Cone Assembly                                                                             | 7-11<br>7-11<br>7-11<br>7-12<br>7-12<br>7-13<br>7-14<br>7-14       |
|         |                                                                                      | LIST OF ILLUSTRATIONS                                                                                                                                                                                                                      |                                                                    |
| FICUDE  | 7 1                                                                                  |                                                                                                                                                                                                                                            | 7 /                                                                |

| 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8 | BELT TENSION<br>TRACK O SENSOR ADJUST<br>HEAD ALIGNMENT<br>INDEX TO BURST ADJUSMENT<br>INDEX TO BURST CHECK<br>READ SYMMETRY ADJUSTMENT<br>BAND REMOVAL<br>DOOR CLOSED SWITCH CHECK | 7-4<br>7-5<br>7-7<br>7-7<br>7-9<br>7-10<br>7-11                                                                                                                                                                                                         |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.9                                                  | BAND POSITION                                                                                                                                                                       | 7-13                                                                                                                                                                                                                                                    |
|                                                      | 7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8                                                                                                                                       | <ul> <li>7.2 TRACK O SENSOR ADJUST</li> <li>7.3 HEAD ALIGNMENT</li> <li>7.4 INDEX TO BURST ADJUSMENT</li> <li>7.5 INDEX TO BURST CHECK</li> <li>7.6 READ SYMMETRY ADJUSTMENT</li> <li>7.7 BAND REMOVAL</li> <li>7.8 DOOR CLOSED SWITCH CHECK</li> </ul> |

#### 7 MAINTENANCE

The maintenance philosophy for the drives is customer dependant, however, if the logic board is replaced, or even slackened, it is recommended that all the drive parameters are checked as per this section. If the board is moved, the index sensor position cannot be guaranteed.

#### 7.1 TOOLS

In addition to a normal range of flat bladed screwdrivers and a micrometer, the following tools will be required:

- a) 2.5 mm Allen key (for carriage mounts)b) 7 mm open ended or ring spanner ('catseyes' adjustment)
- c) Alignment diskettes
  - X3111/X3112 partnumber 8709 010 92411 - X3113 - partnumber 8709 010 92421 - X3114 - partnumber 8709 010 92461
- d) Head cleaning kit FD-05- Innovative Computer Product
- e) MFD exerciser No. 8709-010-92291
- f) Oscilloscope to the following minimum specification: dual channel invert and add facility 10 MHz bandwidth 50 mV/div sensitivity external trigger facility
- g) frequency counter with .1 msec resolution (min.)
- Note 1: A battery powered, test oscillator with integral matching network is to be released shortly for read symmetrie adjustments on the read amplifier.
- Note 2: The test oscillator and item c will be supplied as a tool kit under No. 8709-010-92301.

#### 7.2 SETTING UP

```
3 = x3113
4 = x3114
```

7.2.1 BELT TENSION (SEE FIGURE 7.1)

- a) Remove power from the drive.
- b) Slacken screws 'D' and 'E' just enough to tension the spring 'F'.
- c) Tighten D
- d) Tighten E

#### 7.2.2 SPINDLE SPEED ADJUSTMENT

Before beginning this adjustment ensure that belt tension is correct, and belt is unworn and undamaged.

- The drive should be at room temperature (approx  $20^{\circ}$  C).
- a) Power on drive
- b) Start motor (if not already started)
- c) Connect the index O/P from the test box to the frequency counter
- d) Push in alignment diskette, position on track  $\emptyset$  and load head
- e) Adjust R58 (figure 4.6/1) until the counter reads a period of 199 msecs ± 1 msec.
- Note: This adjustment allows for increase in motor temperature when the drive is in its operating environment, thus the stroboscopic disc on the underside of the motor provides a guide only.

#### 7.2.3 WRITE PROTECT SENSOR CHECK

Insert and remove a non write protected diskette and check that the write protect LED on the text box switches on and off. Check that the LED is off when the diskette is fully inserted.

Procedure:

- a) Check that W2O is installed.
   Switch off motor and wait for it to stop.
   Note 1: The motor may continue to run for a minute or so.
- b) Insert a diskette. The motor should run for approx one minute.
   Note 2: The motor will also run for a minute if a non write-protecte diskette is removed.

#### 7.2.4 HEAD ALIGNMENT (FIGURES 7.2 AND 7.3)

The adjustment requires an oscilloscope, MFD exerciser and the appropriate alignment diskette (see section 7.1). Oscilloscope setting (quide only)

Both channels 50 MV/div, AC coupling One channel inverted Add function selected Timebase 20 msec/div. External trigger +ve.

Connect the external trigger to the INDEX socket of exerciser. Connect probes to pin 1 and pin 3 of W22.

Procedure:

- a) Remove copper screen from below chassis.
- b) Set track 0 sensor screw ('A', figure 7.2) and stepper motor nut ('B', figure 7.3) to the middle of their respective slots.
- c) Press RESET button on exerciser. (Carriage will retrack).
- d) Select HD O, READ
- e1,2) Step to tracks 16, 20 and 24 in turn. Note which track gives nearest picture to catseyes of figure 7.3. Step to that track.
- e3,4) Step to tracks 32, 36 and 40 in turn. Note which track gives nearest picture to catseyes of figure 7.3. Step to that track.

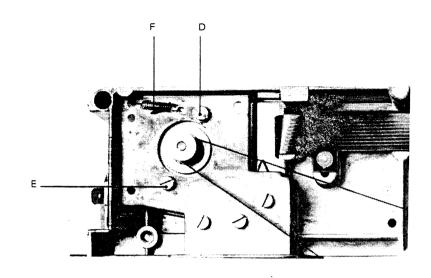



Figure 7.1 BELT TENSION

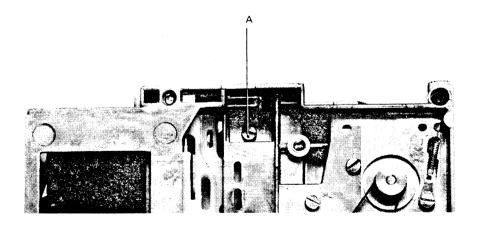



Figure 7.2 TRACK O SENSOR ADJUST

- f) Slacken motor plate (nut B) and adjust with a screwdriver, for 100% catseyes. Lock nut B.
- g2,4) Select head 1. Check that at least 80% catseyes is achieved. If not, readjust motor plate so that each head gives 80% or better.
- Note: A reduction in signal level can be expected on head 1 due to its physical position never to the centre of the disk.
- h) Step to present track, plus 2, and return.
   Step to present track, minus 2, and return.
   On both heads, at least 80% catseyes must be achieved after the return step.
- j) The values indicated only apply in connection with a certified alignment diskette at an environment temperature of  $21^{\circ} \pm 2^{\circ}$  and  $50\% \pm 5\%$  relative humidity.
- k) Carry out Track ØØ sensor adjustment of 7.2.5.

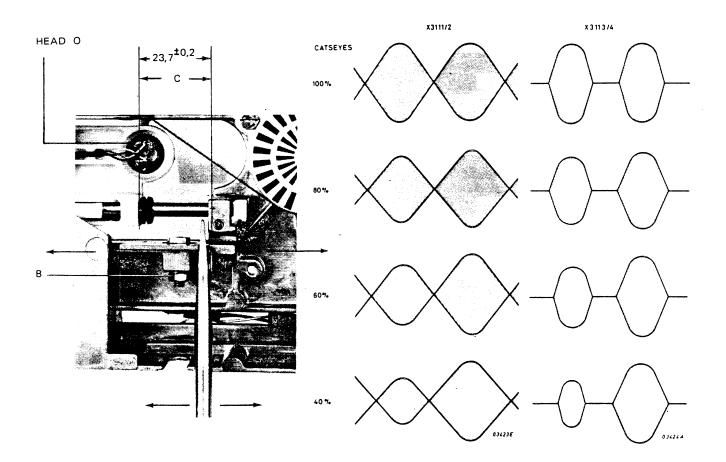



Figure 7.3 HEAD ALIGNEMNT

#### 7.2.5 TRACK OO SENSOR ADJUSTMENT

Note: If an exerciser is not available, this adjustment can be adequately carried out by following this section, a) to g) inclusive, and then stepping to the reference track (16 or 32) to check for catseyes. If catseyes have disappeared, repeat section 7.2.4 and 7.2.5. Do not forget to replace the copper screen. After the adjustment of track  $\emptyset$ , it is absolutely necessary to check the eject function.

Before carrying out this adjustment, the reference track (16 or 32) must be correctly established by the head alignment procedure of 7.2.4. The alignment disk must still be loaded. Set oscilloscope as follows: (quide only) Sensitivity 2V/div, DC coupled. Timebase 50 msecs/div. Auto trigger Connect probe to W23, pin 3 (NTROO). Procedure: al,2) Step to present track, minus 14 (Actual track 2). a3,4) Step to present track, minus 30 (Actual track 2). Slacken TRACK 00 sensor (A, figure 7.2) and move it forward until voltage b) level at W23, just switch from a high level to a low level. Lock A. c) Press RESET button on exerciser. Step to track 3, NTROO should go high d ) Step to track 2, NTROO should go low. e) f) If d) or e) not satisfactory, adjust screw 'A' until change occurs between tracks 2 and 3. Lock A. g) Press reset button. ĥ) Set oscilloscope to normal trigger, internal and +ve. Select track 4 on address switches. j) Select repetitive seek mode. k) Adjust oscilloscope for steady pattern (square wave). 1) Unlock screw 'A' and adjust carefully for equal mark/space ratio. Lock A. m) Press RESET button. Set oscilloscope as for HEAD ALIGNMENT (Section 7.2.4). n) p) Step to reference track (16 or 32) and check that catseyes are OK. If not, repeat 7.2.4 and 7.2.5. **q**) Replace the copper screen. 7.2.6 INDEX TO BURST ADJUSTMENT (FIGURES 7.4 AND 7.5) Before commencing this adjustment, the HEAD ALIGNMENT adjustment previously described should have been carried out. Oscilloscope settings are as follows: (guide only) Both channels 200 mV/div, Ac coupling One channel inverted Add function selected Timebase 50 micro-secs/div External trigger +ve. Procedure: A and B probes to pins 1 and 3 of W22. a) Trigger from INDEX socket on exerciser b) c1,2) Step to track 1, select head 0. c3,4) Step to track 8, select head 0. Check distance between start of trace and start of burst is 200 µsecs ± d) 100  $\mu$ secs (figure 7.5). If not, slacken screw 'G' (figure 7.4) and adjust index LED. e) f) Tighten screw 'G' and check that the timing is still within specification.

•

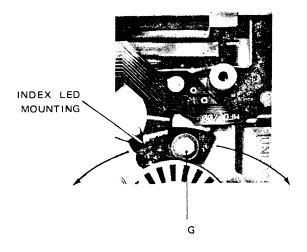



Figure 7.4 INDEX TO BURST ADJUSTMENT

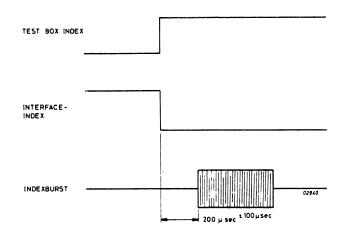



Figure 7.5 INDEX TO BURST CHECK

7.2.7 READ SYMMETRY ADJUSTMENT (FIGURE 7.6)

This adjustment is done with the PCB disconnected from the drive. The exerciser is connected in the usual way and the appropriate drive No selected. Oscilloscope settings are as follows: (guide only)

Channel 'A' selected Trigger 'A', +ve Sensitivity 1V/div, Ac coupled, non-invert Timebase 1 microsec/div.

**Procedure:** 

- a) Connect read data O/P on exerciser, to channel 'A'.
- b) Connect test oscillator to plug ST3.c) Adjust oscilloscope so that at least part of the triggering pulse is useable and also the next two pulses, as in figure 7.6-d.
- d) Adjust R98 so that the second pulse is steady and is equally spaced between the other two.

Note: This adjustment is to counteract the effect of imbalance in the diode and FET network which connects the heads to the read amplifier. The imbalance effectively creates DC bias which causes the zero crossing points, even for a perfect input signal, to be recognised unequally (figure 7.6-b and c).

In setting up the drive, the 'perfect' sine wave is provided by a test oscillator. The adjustment is simply to produce equally spaced output pulses on the read data line.

When viewed on an oscilloscope, two kinds of picture are possible, depending on the triggering; these are:

Every second pulse jittering as figure 7.6-'d'.

Steady picture with unequal displacement as figure 7.6-'c'.

R98 is adjusted to bring the jittering pulses together (d), or to shift every second pulse (c). In both cases the result is 'e'. The ceramic, long-life heads are manufactured to a specification which will not introduce significant amounts of shift when connected to a correctly adjusted PCB.

### 7.2.8 DOOR CLOSED SWITCH CHECK (FIGURE 7.8)

Note: This is an 'eyeball' check which requires no feeler gauges.

- a) Whilst monitoring output terminals of the microswitch, close the loading door slowly until the switch contact makes.
   Note the position (dotted) of the lever.
- b) Close the door fully and check that the end of the lever has moved at least 0.5mm from the noted position.
- c) In the closed position, a gap of 0.2mm (min) must exist between the lever and the switch body.
- d) With an oscilloscope, the function of the switch is to be checked.

#### 7.2.9 HEAD CLEANING

To clean the heads the customer will use the head cleaning kit specified in the tools list in section 7.1.

Instructions for use are included in the kit. A cleaning program will be used; ensure that the heads keep stepping during the cleaning process. This causes even, cleaning diskette, wear. To simulate this program, when the unit is connected to a test box, the engineer should step the heads using the track select switches.

The useful life of the cleaning diskette is 26 cleanings (maximum) so a record of use must be kept.

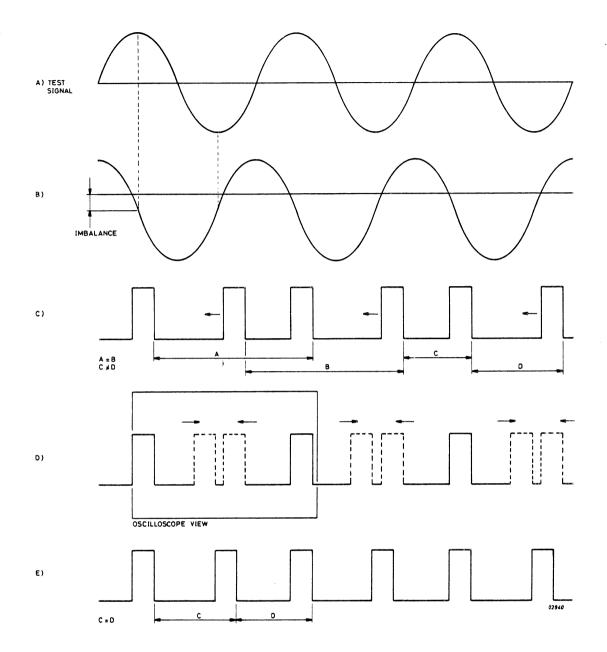
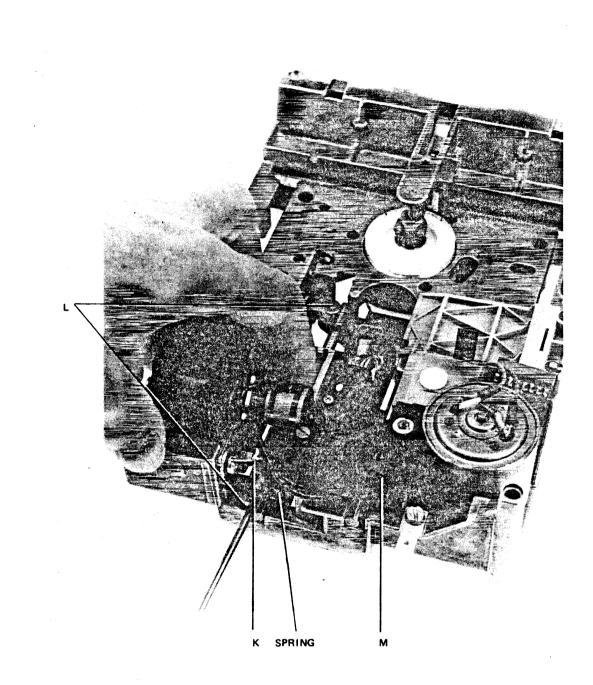




Figure 7.6 READ SYMMETRY ADJUSTMENT

~

X3111/2/3/4



# Figure 7.7 BAND REMOVAL

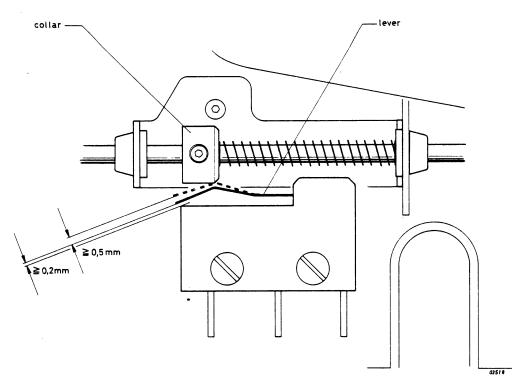



Figure 7.8 DOOR CLOSED SWITCH CHECK

#### 7.3 REMOVALS AND REPLACEMENTS

7.3.1 PCB - REMOVAL

a) Disconnect plugs ST3-6 and remove the 3 fixing screws shown in figure 1.10.b) Slide the board back slightly and then lift out.

REPLACEMENT

Opposite to previous sequence.

7.3.2 BELT - REMOVAL

a) Slacken screws D and E of figure 7.1, push the pulley towards the spindle. b) Slide belt off the spindle.

REPLACEMENT

Opposite to previous sequence, see 7.2.1 Belt Tension.

#### 7.3.3 SPINDLE MOTOR - REMOVAL

Note the connections to the tags of the motor. The terminals are marked + and -. a) Remove the belt (section 7.3.2). b) Unsolder the loads. c) Remove screws D and E of figure 7.1. d) Lift out the spindle motor. Note: Avoid stretching the spring, or belt tension will be upset.

REPLACEMENT

Opposite to previous sequence.

7.3.4 STEPPER MOTOR - REMOVAL

- a) Remove the PCB (section 7.3.1).
- b) Locate the front face of the drive against a firm, flat surface.
- c) Hold the carriage in its retracted position.
- d) Place the blade of a screwdriver between the steel band and the carriage (figure 7.7) and push forward to release the band.
- e) Remove nut and bolt ('B' figure 7.3).
- f) Swing the motor up slightly to allow the band to be pulled carefully out of its slot (figure 7.9) with a pair of tweezers.
  Note 1: If the band is kinked it will have to be replaced
- Note 1: If the band is kinked it will have to be replaced.
- g) Remove screw ('K' figure 7.7). Note that the spring washers are dished to provide spring tension during head alignment.
- h) Lift out the motor.

#### REPLACEMENT

- Note: If the band has been removed or even slackened, screw and clamp J (figure 7.9) should not fully tightened until this assembly procedure is complete. This is to allow the band to align with the carriage and the pulley.
- a) Wrap the band around the pulley and hold it in position.
- b) Locate the slide of the stepper motor over its locating peg at the rear of the chassis.
- c) Lower the motor into position and replace screw K.
- d) Locate the front of the band as per figure 7.9.
- e) Install nut and bolt B. Do not tighten.
- f) Replace spring (figure 7.7) on its peg.
- g) With the front of the drive against a firm, flat surface and the carriage held in the retracted position, push against the spring with a screwdriver (as in removal procedure) and slip the slot in the band over the spring.
- h) Slide the motor mount until nut and bolt 'B' (figure 7.3) are in the middle of the slot.
- i) Tighten 'B' and 'K'.
- j) Move carriage fully in and out a couple of times to line up the band.
- k) Tighten the screw and clamp 'J'.
- 1) Load an alignment diskette and carry out head alignment and track 00 adjustments (section 7.2.4 and 7.2.5).

#### 7.3.5 HEAD CARRIAGE - REMOVAL

- a) Remove PCB and stepper motor (sections 7.3.1 and 7.3.4).
- b) Remove the 2 countersunk screws (L of figure 7.7) with a 2.5 mm Allen key but merely slacken screw 'M', taking care not to damage the MFDF wiring loom.
- c) Slide the two round bars out through the rear of the drive. Warning avoid scratching the bars.
- d) Remove the carriage.

REPLACEMENT

Reverse the previous procedure. Allow sufficient cable for full carriage travel. .

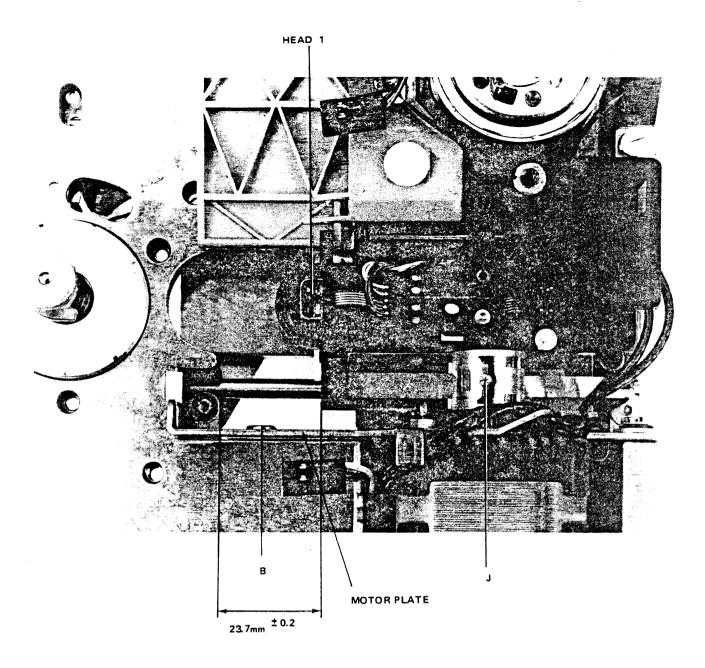



Figure 7.9 BAND POSITION

#### 7.3.6 HEAD LOAD SOLENOID - REMOVAL

The head load assembly consists of the head load solenoid, the head load moulding, and a cable guide. The cable guide, which also fixes the head unload gap, is a plastic moulding which mounts on a stand-off pillar alongside the spindle motor. It is fastened by a single screw on the underside of the chassis.

a) Remove cable guide fixing screw.

Note how the spring is positioned under the head load moulding and then remove the 3 circlips.

b) Remove head load moulding and cable guide.

c) Remove the two screws holding the solenoid to the chassis.

## X3111/2/3/4

#### REPLACEMENT

- a) Remount the solenoid to the chassis.
- b) Replace the core and stand the spring on its peg alongside the solenoid.
- c) Replace the head load moulding by the following sequence:
- Slide the moulding under the lifting arm of the upper head
- Locate the spring on the peg underneath the moulding.
- Slip the moulding onto its 2 locating pegs.
- Replace the 3 circlips.
- d) Replace the cable guide.

7.3.7 MFDF - REMOVAL (FIGURE 1.17)

- a) Remove PCB (section 7.3.1)
- b) Remove the circlip from the top of the track O sensor and screw 'A' (figure 7.2). Unscrew 'A'.
- c) Pull out the 3 white plastic pegs holding the loom to chassis.
- d) Remove screw 'G' (figure 7.4).
- e) Gently prise the activity LED plug and socket apart. Carefully pull out the write protect LED.
- f) Lift the index LED assembly.
- g) Remove the MFDF completely.

REPLACEMENT

Reverse previous procedure. Note that there is a peg to locate the track O sensor.

7.3.8 SPINDLE ASSEMBLY - REMOVAL

a) Remove belt (section 7.3.2).

- b) Remove the three screws holding the spindle assembly. Note the position of the flange.
- c) Lift out, taking care not to lose the two, shim washers under each screw.

REPLACEMENT

Reverse previous procedure. Adjust belt tension as per section 7.2.1.

#### 7.3.9 CONE ASSEMBLY (FIGURE 1.2) - REMOVAL

Note carefully the physical arrangement of the assembly (figure 1.2) before attempting removal.

- a) Remove spindle (section 7.3.8).
- b) Remove PCB (section 7.3.1).
- c) Rotate the pin so that the gap in its circlip is facing down.
- d) Using a pair of snipe-nosed pliers, pull off the circlip and slide the pin out.
- e) Release the lever by closing the front door.
   The assembly will now be free.
   Note: Do not remove the spring unless necessary.

## X3111/2/3/4

REPLACEMENT

- a) Replace and slide the forked end of the lever into position.b) Push the other end of the lever into its slot and open the loading door to hold it in position.
- c) By pushing down the forked end, it should be easy to line up the holes in the casting and the lever.
- d) Replace pin and circlip.

.

e) Replace spindle assembly (section 7.3.8).

. .

**۵** 

: