PX-8
OS Reference Manual

Trademark Acknowledgments
CP/M™ is a trademark of Digital Research, Inc.
MICROCASSETTE™ is a trademark of OLYMPUS OPTICAL Co.,

LTD.

NOTICE

* All rights reserved. Reproduction of any part of this manual
in any form whatsoever without EPSON's express written permis-
sion is forbidden.

* The contents of this manual are subject to chang without notice.

* All efforts have been made to ensure the accuracy of the contents.
of this manual. However, should any errors be detected, EPSON
would greatly appreciate being informed of them.

* The above notwithstanding, EPSON can assume no responsibility

for any errors in this manual or their consequences.

© Copyright 1985 by EPSON CORPORATION.

Nagano, Japan

CONTENTS

Chapter 1.

1.1

1.2

Chapter

2.3.1
2.3.2

2.4

Chapter
3.1
3.1.1

3.1.2

3.3
3.3.1

3.3.2

2.

Introductioncceeeeecccccncnss cececnnn
Purpose of This Manualccvccevceccas
Before Reading This Manualceceveeeccas
General Description and

System Configurationcccecceececccccss
MAPLE System Configurationc.cceeceese
Hardware Configurationc.cceveneen.

Hardware Configuration
(see block diagram) ..ccesecececescacoccsscss

Built-in I/0 DevicCes ...eeecescesosconcnsas
External Interfacescceeeccccccccecccs
Software Features and Organization
Software Featurescceeceescccccosccnns
Software Organizationccceccenee ceesens

MAPLE State TransitionN ..cceceesocecses ceccena

MAPLE CP/M Principles of Operation
CP/M Memory Organizationcceceeeeeses
Roles of CP/M Modules in ROM and RAM

Procedure for Constructing
a CP/M System in RAM ...cceevecccones ceeeae

BDOS Function Processing Flow ceennns
BDOS Error Recovery Procedurecceee.

Receiving BDOS Error Information
in Return Code ® ® © & © ® © © 0 & O S O 0 O O T O & O OV OO 0 s

Rewriting the Jump Vector for
Processing BDOS EXYOXS ..ceesessscccccocnsccs

BIOS Function Operation Flow ceeenne

3-1
3-1

3-1

3-5
3-11

3-12

Chapter 4.

Chapter 5.

5.1

5.5.1
5.5.2

5.6

Chapter 6.

6.1

Chapter 7.
7.1
7.2
7.3
7.4
7.5
7.5.1

7.5.2

BIOS S'leroutines ®© © 0 0000 0 000000 00000000000 e 4-1
Keyboardcieiieeeicciencceanse cessssss 5-1
Generalcccece0ceetvsscccncnaa ceessccas 5-1
Keys and Keyboard TYPES .icceeesccccccacscs 5-1
OS Key Routine Functionscceeceecesccas 5-5

Operation FlOW ® 0000000000000 0000000000000 5-6

Keyboard Statescc000000. ceeseesscsees 5-10
Keyboard Mode Transition ...¢.ceceeeeeeeenn 5-10
Keyboard State Transitioncceeceeececes 5-12
Special KeYS tveeeesseseccosssssnccnnncss ees 5=15
CONOuT Pescccestsscsessectsesecananaans 6-1
Outline ..iieeeeecsceesnsacacccsssscsssaccss 6-1

Screen Configuration ® @@ & & & & O 5 O & 6 O O O O O 6 O 000 6-2
Screen MOAES ..ceescesssoccsosscsssscsscnssnse 6-4
Special Screen Features ceessssssescnse 6-15

How to Use CONOUT ® © 6 0 0 & 5 6 0 O 0 40 OSSO N e 0 0 6_19

CONOUT FunCtionsS ...cceeeecececscsncccccces ee. ©6-19
System Functionsccececeeececccoccnccacs 7-1
PASSWOIXd .ceeececcccccccccccssosascnsasccsss 7-2
Auto Start Stringcceeececccccccccanen 7-3
MENU ...ccececceccssecscsccccsccsccccsosncsccss 7-6
Resident ..ceeeeceeneeeeceeccccncccacencnss 7-10
System DiSpPlay seeecececcccssecccssecccccess 7-12
PasSSWOXd ..eeecescccsssnccccacccsosscccsssscs 7-13
Alarm/Wake ..ccveeecececcssnnccsaccannnsnas 7-13

- ii -

Chapter 8.
8.1

8.2

8.9

8.10

8.11

Chapter 9.

Manual MCT Operationeeeeccccccccccnss

Other Information Displayed
by System Display Functioncccevceeen

Auto Power Off ... veeeeeececooocncecconcoesns

Alarm/Wake FeatUreccceeeencoccccccscs
Generalcciiittesescersttccnocnnonens
Alarm Functioneceeeeocecscssascscscas
Wakel FUNCtionceeeeececccccccsccncanss
Wake2 FUncCtionceieeeeececcsscscsscscas
Alarm/Wake Function Processing Flow

How to Augment the Alarm/Wake
Functions Using HOOKS ... veierveececcncans

Making Alarm/Wake Settings Directly
fOr 7508 ittt eeneecenenosnsenancacnnsnnss

Relationship to BIOS ...ceciceecnncecncenns

Method of Inhibiting Alarm Message
Display from Application Program

How to Disable System Display Function
for Displaying Alarm/Wake Message

Precautions on the Use of the Alarm/Wake

FUNCLIONS .vvtveerencecnssccccssnsosancenns
Power On/Off Functioncieecteenencss
POWEer-on SeqUENCES .. ccveescccccccsoccccssocs
Software-driven Power-on Se€qUENCesa...

Power-off Sequenceciieeeieiencccnns

- iii -

Chapter 10.
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

10.10

Chapter 11.
11.1
11.2

11.3

Chapter 12.

Power Fail SeqUeNCecceveecensscecoancenns 9-11
Software-activated Power-Off 9-13
Turning Power Off Always in

the Continue Modeccvieeeenecncnnncen 9-14
Changing the Key for Specifying

the Continue Modecicveveecrenncncenns 9-15
Relationship between Power-off

Interrupts and BIOSccevevecasssnccacns 9-16
Method of Inhibiting Power-off Sequence

from Application Program ...eeeececcececess 9-19
Interrupt ProcessSing ...eeeeeecacscconcenns 10-1
Interrupt LevelsS ..cieeeecvescccsosccococens 10-1
Interrupt ProCeSSiNg tieeeeeeescssacoconess 10-2
7508 Interrupts ceccssescscssssssaves 10-9
8251 Interrupts ...ceeeeecerecenccaannncnes 10-12
CD Interruptsciceteececcccccnncocnncas 10-14
OVF Interrupts ...ceeceeceeececcsccscccnnnese 10-17
ICF InterruptsS ..ccceeeccceerecccacccccanns 10-19
EXT InterruptsS ..ceecececcecsoccssscscsccnscs 10-23

Procedure for Modifying Interrupt vectors . 10-25

Programming Notes on Interrupt Processing . 10-26

7508 CPU .t.vvevevssscancccsssssssascsnssasns 11-1
7508 CPU FUNCLiONS cvieeececccssacocccsssns 11-1
Interface to Z80iiveienneeenncennnenn 11-3
7508 Commandsceocscececececccccnsanccsocssss 11-7

Using 8251A Programmable Serial
Controlleriiieeeeeescecsensscnanancsas 12-1

- 1iv -

12,

12.

Chapter 13.

13.

1

13.2

13.

13.

Chapter 14.

3

4

14.1

14.1.
14.1.
14.1.

14.1.

14

14.
14.
14,
14.3.
14.

14.

Chapter 15.

15

15

15.

15.

.1.

2

3

3.

4

5

A

.2

3
4

Interface between the Z80 and the 8251A ... 12-1

Controlling the 8251A Transmitter/

Receiver CloCKkS e.ceeeeesee ceesececcaceccscas 12-2
6301 Slave CPU Operations ...ccceececscsnncns 13-1
Functions ...ceceeececeesee ceceeans e e evosoccee o 13-1
Data BacCKUP ceeeveeccccccsssoscsassscscnssssscs 13-10

Z80-to-slave-CPU Communication Procedure .. 13-11

Slave CPU CommandsScececeeeecccccccacssoce 13-13
MTOS/MIOS Operations ceesecccsnaaenas 14-1
MTOS/MIOS ..evevess Ceecesetssacsneseseneannn . 14-1
MTOS/MIOS OUtliNe ..eceeeesocescoceccncnans 14-1
File Controlcceeeeeeeccceccccsncccncnsns 14-5
Tape File Control Block (T-FCB) .eceeeecesee 14-14
MTOS Programming Considerations 14-17
Miscellaneous Considerations on MTOS 14-21
USING MTOS teeeeereeosscssssasnssocccncasnss 14-32
MTOS FUNCtioONnNsS ...ceveeeeecccccsanccccnannss 14-33
BDOS calls ...cceeeeee Cesececcssecnasesennan 14-35
Return Codes from MTOScceececccccncnns 14-67
UsSing MIOS ..t ieeeeeeoaasaaansssonssosnsscans 14-73
MIOS FUNCtiONS ..ccesececcccsssnccccnococnscs 14-75
I/0 and Peripheral Devices ...cceeeeccasces 15-1
I/0 AAAreSsSS SPACE cveeseenccooscssssansansss 15-2
Physical File Structurececcceecececess 15-21
EPSP ProtoCOlc.iceeeeeeennccnccncconans 15-34
DIP Switches ...iiiiiiiinnneenntcencsnseanns 15-42

Chapter 16.
16.1
16.2
16.3
16.4

16.5

Chapter 17.
17.1
17.2

17.3

Chapter 18.
18.1

18.2

Chapter 19.
19.1

19.2

19.2.1
19.2.2

19.3

19.4

19.5

19.6

Extension Unitsieiiintececocecccannns
Nonintelligent RAM Disk Unitc.cc0e..
Intelligent RAM Disk Uniteeeeeeececons
Direct Modem Unitceieeieececeennnnn
Multi-Unit 64ceiertiereeencanccnncens
Multi-Unit IT ...cietereereneccnnaccccacnns
How to Use User BIOS Are€aceeceeececasns
OULLliNE ... eierveecoccoooosecsoscoaccscnsacsas
User BIOS Area Specificationsccueee..

Programming Notes on the Use of

the User BIOS Area@cceceeececccscsccnscoss
Memory MapS .ceceeeeeccscccecscssoncsasosascss
OS ROM MemoOXry Map cceecececocscccncsassscsanse

RAM MemOYXy Map ccceeceecccccossccccsocncccsnse

Application Notesciveecececccccncaacnns
FILINK Communications Protocolccc..

Procedure for Calling BDOS and BIOS

Directly from BASICcieeeencccnsccccns
Calling BDOS tiieeeevecessccscsscssanocncss
Calling BIOS .ttcieeccencncccscaccnses ceeccons
Procedure for Determining the Type and

Size of RAM Diskcc0... ceessecsesssesaa
CG Fonts ...cecv.en ceccscscecsssessscsscnan

Procedure for Identifying the 0OS Version
from an Application Programcccccooeee

Procedure for Checking the Data Received
by CCP from an Application Program

- vi -

19.7

19.8

19.9

19.10

19.10.1

19.10.2

19.10.3

19.10.4

19.10.5

19.10.6

19.10.7

19.10.8

19.10.9

19.11

19.12

19.12.1

19.12.2

Procedure for Detecting the Depression
of the CTRL/S&OP KEYS tvececeeennnnn ceeenen

Procedure for Assigning Printer Output
to RS-232C or Serial Interface

Procedure for Restoring the Screen
into the State Set up by CONFIGc....
Procedure for Configuring the System

Environment from an Application Program ...

Auto Power Off (common to both overseas
and Japanese-language versions)

CP/M Function Key (common to both
overseas and Japanese-language versions) ..

Cursor & Function Key Display {(common to
both overseas and Japanese-language
versions)

Date and Time (common to both overseas
and Japanese-language versions)

Disk Drives (common to both overseas and
Japanese-language versions)

® 6 ¢ ¢ @ 0 0 06 0 5 00 0 0 s 0

Printer (common to both overseas and
Japanese-language VersSioONS) ...cceeeccceccs

RS-232C (RS-232C (1) for Japanese-
language version)

Screen mode (common to both overses
and Japanese-language versions

Serial (common to both overseas and
Japanese-language versSioOns ceeae

XON/XOFF Control for the Currently
Open RS-232C Interface

Procedure for Sending and Detecting
the RS-232C Break Signal

Sending the RS-232C Break Signal

Detecting the RS-232C Break Signal

- vii -

19-24

19-24

19-24

19-24

19-28

19-28

19-30

Chapter 1 Introduction

1.1 Purpose of This Manual

This manual describes the functions of the operating
system for the EPSON PX-8, HC-808, and HC-88 series
(referred to as MAPLE) microcomputer systems. It is
intended for system house users who are to develop

applications programs which make the best of the MAPLE's

capabilities.

The reader is assumed to be familiar with the following:
- Basic knowledge about the CP/M operating system
- General knowledge about machine-language programming

- Z80 instructions

1.2 Before Reading This Manual

This manual uses the following notational conventions:
(1) Data representation

This manual discusses binary, decimal, and hexadecimal
numbers. They are represented in the formats:

Binary: 00100011B (Numbers are followed by 'B')
Decimal: 35 (only numerals)

Hexadecimal: 23H (Numbers are followed by 'H')

Character constants are enclosed in apostrophes (').
Example:

'ABC'

(2) Operating system types
The MAPLE runs in three types of operating systems (0S).
In this manual, these operating systems are
distinguished as follows:
ASCII (0S): ASCII ver. OS (PX-8)
JIS (0S): Japanese-language JIS Keyboard 0S (HC-80, -88)
TXT*(0S): Japanese-language TXT Keyboard OS (HC-80, -88T)
* TXT stands for the Touch-16 Japanese language
input methods originally developped by EPSON.
Japanese-language (0S): Japanese-language JIS and TXT

Keyboard OSs

1-3

Chapter 2 General Description and System
Configuration

2.1 MAPLE System Configuration

The MAPLE is a successor of the worldly-accepted EPSON
HC-20 hand-held computer. It is a new generation hand-
held computer which incorporates in its compact body
much more functions than ordinary desktop
microcomputers. With its battery-driven power supply,
the user can user the MAPLE any time, any place, even

outside the office.

To further augment this outstanding portability feature,
EPSON supplies a wide variety of peripheral devices and
options., For example, the MAPLE employs a large (88
columns by 8 lines) LCD screen., With the virtual screen
support, the MAPLE allows the user to create display
images larger than those the conventional CRT devices
can provide. The MAPLE is furnished as standard
microcassette drives which are completely controlled by
the distribution operating system so the user can handle
them as easy as floppy disk units. Another standard
device is an RS=-232C interface which enables the MAPLE
to communicate with other computers directly or via a
telephone lines. When combined with an optional

microfloppy disk drives, P-80 printer, or CP-2¢

acoustic coupler, all are battery driven!, the MAPLE
provides a full computing environment even in locations
where no commercial AC source. The main unit proper

will meet most of daily business needs.

The MAPLE employs as its operating system the industry
standard CP/M version 2.2 operating system implemented
in ROM. This allows the user to implement an abundance
of commercial CP/M application programs on the MAPLE.
In addition to the supports for all MAPLE peripheral
devices, the MAPLE CP/M has many extended functions
which will help the user develop application programs

for the MAPLE.

The MAPLE with the Japanese-language 0S and Japanese-
language processor unit supports kanji processing so that
the user can easily construct application programs using

kanji characters.

The ideal combination of the MAPLE with the software
that make the best of the MAPLE's portability and
capability will explore new computer uses that no one

ever imagine,

2.2 Hardware Configuration

2.2.1 Hardware Configuration (see block diagram)

(1) CPU

The MAPLE uses three processors: 7280, 6381, and 7508.
The 6301 and 7508 processors are used mainly to control
1/0 operations to reduce the burden of the 280 central

processing unit.

1) z8¢

- Main CPU

- CMOS version

- 2.46 MHz clock

2) 6391

- 8-bit CPU

CMOS version

614 KHz clock

Contains 4K-byte program

The 63@1 CPU controls the following I/0 devices:
- Screen (LCD)
- Serial Interface
- Microcassette
- ROM capsule

- Speaker

3) 7548

- 4-bit CPU

- CMOS version
- 200 KHz clock

- Contains 4k-byte program

The 7508 CPU controls the following I/0O devices
- Keyboard
- Power supply to main CPU
- RESET SW

- Battery voltage port

2-4

- Temperature data port
- Calendar ports
- Alarm port

- l-second software timers

(2) Memory
0S ROM: 32K bytes (CMOS mask ROM)
Main ROM: 64K bytes (CMOS DRAM)
VRAM: 6K bytes (CMOS DRAM)

- The 0S ROM and main RAM are bank-switched.

- VRAM is controlled by the 6301 processor.

- The main RAM and VRAM are battery backed up and
their data are sustained even when power switch is

turned off.

(3) Battery
Two types of rechargeable Ni-Cd batteries are used:
Main battery capacity: 1160 mAH

Subbattery capacity: 90 mAH

Normally, the main battery is held on. When the power
voltage falls down to 4.7 volts, power is switched from
the main battery to subbattery and the subbattery

maintain only power to the RAM. Recharging (tricle

2-5

recharging) is accomplished using the attached AC
adapter. Eight hours after tricle recharging is started
with the AC adapter, recharging is stopped to prevent
overcharging from damaging the battery. The main

battery charges the subbattery while it is in operation.

(4) Interrupt handling

7Z80 mode 2 interrupts are used for interrupt to Z80. Six

interrupt levels are available. They are listed below in the

descending order of priority:

1) Interrupts from the 7508

2) RS-232C receive interrupt from 8251

3) CD (Carrier Detect) interrupt from RS-232C interface

4) FRC (Free Running Converter) overflow interrupt

5) ICF (Interrupt Catch Flag) interrupt from the bar code
reader.

6) External interrupt

2.2.2 Built-in I/O devices

(1) Keyboard

- The keyboard consists of 66 keys and six switches
(66 keys and seven switches for Japanese-language
version).

- The keyboard supports N-key rollover feature.

- The keyboard also supports auto repeat feature.

(2) LCD
- 480 dots (wide) x 64 dots (long)
Dot size: 0.41 mm (wide) x #.45 mm (long)
Dot spacing: #.46 mm (wide) x 0.50 mm (long)
- 80 characters by 8 lines (30 characters by 3 lines

for kanji characters)

- The LCD panel swivels in the range of 180° in 13
intervals.

- The LCD view angle can be controlled by a slide
switch.

- 1/64 duty

(3) Microcassette drive

- The microcassette drive is controlled by software.

- Allows Dame recording and playback. Only playback
is possible with voice information.

- The sound from the microcassette drive can be
monitored using the internal or external
speaker.

- The tape speed is 2.4 cm/second.

(4) ROM capsule

- 28-pin 2764/27128, 27256, or equivalent.

- NMOS or CMOS mask ROM or PROM is possible.

- A ROM capsule can contain up to two ROM chips.
They may be used single or in combination.

- Power to the ROM is supplied only when it is
accessed, which is controlled by software.

- The ROM capsule allows easy installation or removal

by the user.

2-8

(5) Built-in dynamic speaker

- Compact dynamic speaker

- The frequency and duration can be controlled by
software.

- The volume can be adjusted with a volume control.

- The output can be connected to an external speaker

interface.

2.2.3 External Interfaces
(1) RS=-232C
- The RS-232C interface uses a CMOS 8251 controller
chip (compatible with Intel 8251a).
- The output level is + 8 volts.
- The power to the driver is controlled by software.
- 8-pin mini-DIN connector is used.
- Bit rates (bps)
TX: 116, 150, 200, 300, 600, 1200
RX: 110, 159, 200, 300, 600, 1200
TX: 240, 4800, 8600, 19200
RX: 240, 4800, 8600, 19200
TX: 1200, 75

RX: 75, 1200

- Number of start bits: 1

- Number of stop bits: 1, 2

- Data length: 7, 8

- Parity: Even, odd, none

- Full duplex/half duplex

2-10

(2) Serial interface

- The output level is + 8 volts.

- The power to the driver is controlled by software.
- The driver is shared with the RS-232C interface.

- 8-pin mini-~DIN connector is used.

- Bit rates (bps)
TX: 110, 6006, 4800, 38400
RX: 116, 600, 4808, 38400

- Number of start bits: 1
- Number of stop bits: 1
- Data length: 8
- Parity: None

- Full duplex/half duplex

(3) Bar code reader

- 3-pole connector

- Power is controlled by software.

2-11

(4) Analog input ports
- 2 channels
- Input level: 0 to 2 volts

- Resolution: 6 bits (2 v / 26 = 0.03 v)

(5) External speaker
- The output to the built-in speaker can be switched
to the external speaker by plugging in a plug into

the speaker jack.
(6) System bus

- A total of 58 lines including the 16 address bus

lines and 8 data bus lines are available.

2-12

Peripheral Devices Connectable to

the External Interface

External
Interface

Peripheral

Cable

Options

RS-232C

Printer

#723

P40

P80 Series

#725

EPSON printers
with serial
I1/F

MP (X) series
FP (X) series

RP (X) series

Acoustic coupler

#724

Cp-20
CX-20
CX-21

Computer

#726

MAPLE
PINE

#725

QC (X)-20
QC(X)-10

#738

HC (X)-20

2-13

External
Interface

Peripheral

Cable

Options

Serial I/F

Minifloppy disk drive

#723

TF-10
TF-15
TF-20

Microfloppy disk drive

#726

PF~-10

Printer

#723

P40
P80 series

#725

EPSON
printers with
serial I/F

MP (X) series
FP (X) series

RP (X) series

Bar code
reader I/F

Bar code reader (Wand)

HPP@BR code
JA (low
resolution)

HPPBR code
HA (high
resolution)

External
Interface

Peripheral

Cable

Options

System bus

Expansion unit

#727

RAM disk unit

Japanese-
language unit

Modem unit
Multi-unit 64

Universal unit

2-15

andurt
oa

snq

Emumhw,

Block Diagram

andut bHoTreuy andano asyesds Tetxas

A A
v

I93IDAUOD d/1 zo3eads saTnsdeo 9339SSs®ed d/1

OOy o Teuzogxg | | TOXE2IS WOY Z —oxoti| |97 TeTIss
y N A é/ 0

IDTTOIFIUOD
ant
P 4 L\ ,_\ ~ P v Y \ﬁ v «
< e ~
(WO¥ H
934g-3p =
sepnIouT _ WOY S3Aq-dy
_mmHmVuucoug 805/) °34q-39 sSopnTouT)

¢ ,= WYY 10£9

Ewuum@unﬂ Tomod i
[£133309 uTeR)

~
A 7

L

d/1 9344 Mp9| [93hd Mz |||(zHWSY T)
15028 TOUTL 2 oo seg da1 W e 087

A
ST AN AT | anduTt spoo aeg

2-16

2.3 Software Features and Organizatien
2.3.1 Software Features
This subsection lists the features of the MAPLE
software.
(1) Industry-standard CP/M 2.2
This allows the user to transport an abundance of
commercial CP/M application programs to the MAPLE with
relatively little effort.
(2) A variety of peripheral devices supported by OS.
The peripheral devices that MAPLE CP/M 2.2 supports are:
RAM disk
ROM capsule
Mini- and micro-FD
Microcassette
Speaker
Analog input
RS-232C
Power

Clock (calendar)

To support these devices, 25 BIOS entries have been included into
the standard CP/M BIOS. Consequently, the user can develop

application programs handling these devices with great

ease.

The 0S, however, supports no bar code equipment. It
must be handled by application programs. These programs

are also supplied from EPSON,

(3) Many CP/M drives

The table below lists the peripheral devices that are

supported as CP/M drivers.

Capacity

Drive Peripheral Direc- Maximum
P Total Data area tories tracks/sector
A: RAM disk When main RAM
is used: @ - 23K bytes 16 3 TRK/7 SCT
When RAM disk
is used:
6gK bytes 59K bytes 32 7 TRK/31 SCT
64K bytes 63K bytes 32 7 TRK/63 SCT
120K bytes 119K bytes 32 14 TRK/63 SCT
128K bytes 127K bytes 32 15 TRK/63 SCT
B: ROM capsule Depends on
C: ROM type
8K bytes 8K bytes 31 @ TRK/63 SCT
16K bytes 16K bytes 31 1 TRK/63 SCT
32K bytes 32K bytes 31 3 TRK/63 SCT
Sum of the
above capaci-
ties when
drives B: and
C: are used as
a contiguous
drive.
D: FD 320K bytes 278K bytes 64 39 TRK/64 SCT
E:
F:
G:

2-19

Capacity Direc- Maximum

Drive Peripheral Total Data area tories tracks/sector
H: Microcassette Approx. 3@K Approx. 3@K 12
bytes with bytes with
3@-minute 3@-minute Only sequen-
tape tape tial access

in file units
is allowed.

I: ROM capsule in
extension unit 128K bytes 128K bytes 31 15 TRK/63 SCT

Supported by a
combination of
OS ASCII
version B or
later and a
Multi-unit 64.

ROM capsule in
extension unit 32K bytes 32K bytes 31 3 TRK/63 SCT

Supported by a
combination of
Japanese-
language 0OS and
a Japanese-
language unit.

2-20

(4) RAM disk features

Allows both reads and writes.

High-speed access.

Provides a storage capacity of 23K bytes maximum
when main memory is submitted as RAM disk and a
capacity of 128K bytes when an extension unit is
installed.

Data is maintained even when power is turned off.
The main memory RAM disk is disabled when the

extension unit RAM disk is used.

(5) ROM capsule features

Allows only reads.

High-speed access

Provides a storage capacity of 8K bytes (one 2764
chip) to 64K bytes (two 27256 chips).

Easily installed and removed.

2-21

(6) FD features

- Allows both reads and writes.

- High-speed access.

- Provides a large capacity of removable storage.

- Can handle both mini- and micro-floppy disk drives.

- The micro-FD drives (PF-10) is battery driven.

(7) Microcassette

- Allows both reads and writes.,
- High-speed access.
- Customized 0OS allows the user to handle

microcassette in the same easy way as FD files.
- Only sequential access is supported.

- Only one file can be open at a time.

(8) Extended unit ROM capsule

- Allows only reads.

- High-speed access

- ASCII OS supports larger capacity than internal ROM
capsules.

(9) Devices for software exchange
The user can select any of the following devices for

exchanging storage media of different sizes and

2-22

formats:
- ROM capsule
- FD

- Microcassette

(18) Screen

The MAPLE is provided with a large (80 columns by 8 lines) LCD.
Its OS also supports virtual screens as large as 80 columns by 48
lines. The user can switch between four screens, namely, i.e.,
three text only screens (the 80-column text screen, the 39-column
Split screen, and the Dual screen) and one graphics screen, all
under software control. 1In addition to these screens, the
Japanese-language OS supports two types of kanji screens. It
also permits switching of virtual screens and control of screen

scrolling with function keys.

(11) Clock

The MAPLE has a clock which indicates the year (lowest
two digits, month, day, minutes, and second). The clock
is battery backed up and performs automatic leap year

adjustment.

(12) Password function

The password function protects the MAPLE programs and
data from unauthorized accesses. Once a password is
defined, this function defers any attempt for a
power-on sequence until the operator enters the defined

parameter.

(13) Alarm function

The alarm function sounds an alarm at the preset time,
whether the MAPLE is in use or not, and displays the
predefined messages on the screen. This function can be

used for schedule management.

(14) wake function

The wake function automatically powers on the MAPLE and
executes programs in the preprogrammed sequence when the
preset time (month, day, and hour) has reached. 1If the
MAPLE is already inon state when the preset time is
reached, this function sounds an alarm and displays
messages indicating the operating procedure for the
programs (alarm function). This function can be used
for automatically starting the MAPLE in instrumentation

and data gathering applications.

(15) Auto start function

The auto start function performs the steps or programs
predefined by the user automatically at power on time.
This function will be useful when the MAPLE is used as a

dedicated machine.,

(16) Menu function

The menu function displays a directory of executable
programs on the screen in a menu format at power on or
warm boot time. The user can select the program with
cursor movement keys and start the selected program by
pressing the RETURN key. This function is highly
convenient for users who are unfamiliar with operator
operations. When a program is already in the TPA, this
function causes the program in memory to be immediately
executed, thus eliminating the time-consuming program

load step.

(17) System display function

The system display function is started by pressing the
CTRL and HELP keys simultaneously and displays the
system status on the screen. The user can define the
parameters for the password, alarm wake, auto start, and
menu functions from the screen. The function also
allows the user to manually control the microcassette

drive.

(18) Hard copy function

The user can take a hardcopy of the current contents of
the LCD screen on the printer in one of the

following methods:

(1) Pressing the CTRL/PF5 key.

(2) Calling the BIOS hardcopy routine.

Some OS versions do support the hard copy function.

(19) Power off state in restart and continue modes

The MAPLE can be in one of the two power off modes,

i.e., restart and continue modes, depending on how the

MAPLE is powered off.

- Restart mode: Execution starts at CCP oxr a menu is
displayed when the MAPLE is powered on.

- Continue mode: The processing that were being executed
when the MAPLE was powered off is resumed

when the MAPLE is powered on again.

2-26

(20) Power on/off

The MAPLE can be powered on and off not only through the
POWER switch but under program control. The MAPLE can
be turned on by the wake function and turned off by a
BIOS routine. The user can also set the restart or
continue mode. The contents of MAPLE memory are

maintained when MAPLE power is turned off.

(21) Auto power off function

The auto power off function automatically turns MAPLE
power off in the continue mode when no key entry is made
for a predetermined time, thus saving battery power.
When the MAPLE is powered on again, executions resumes
at the point when the auto power off function is

executed.

(22) Voltage drop warning

When the battery voltage drops below approximately 4.7
volts, the 0S displays a message "CHARGE BATTERY" on the
screen and, in approximately 20 seconds later,
automatically turns MAPLE power off., This precludes the
contents of the RAM from being completely destroyed or
the CPU from hanging up due to the reduced battery
voltage level. When this occurs, the active battery is
automatically switched to the subbattery which only

maintains the power to RAM,

2.3.2 Software Organization

The MAPLE 0S resides in the 32K-byte ROM. The 0S runs

while switching between the RAM and ROM banks. The 0S

contains the modules listed below.

Module Function
STARTER Resides in ROM and performs the following:
- System initialize
- RESET switch processing
- POWER switch processing
- Processing of alarm interrupts in power
off state.
INTROM Resides in ROM and processes interrupts from
the 7508 and 8251.
MENU Resides in ROM and controls menu processing.
SYSCRN Resides in ROM and controls system display
processing.
RELOC Resides in ROM and relocates RAM resident

modules from ROM.,

Module

Function

BDOS Resides in ROM and processes CP/M BDOS calls.

PREBIOS Resides in ROM and perform preprocessing for
CpP/M BIOS calls.

PSTBIOS Resides in ROM and perform postprocessing for
CP/M BIOS calls.

BIOS1 Resides in ROM and processes CP/M BIOS calls.

BIOS2 The BIOS module is divided into three

BIOS3 submodules.

SCREEN Resides in ROM and controls CONOUT BIOS call
processing.

MCT Resides in ROM and controls the microcassette

drive.

Module

Function

CCPD

The CCP portion of CP/M in a relocatable
format and is relocated into RAM at the

beginning of execution,

RBDOSB

The BDOS entry portion of CP/M (main BDOS body
resides in ROM) in a relocatable format and is
relocated into RAM at the beginning of

execution.

RSYSPR

The part of the CP/M BIOS entry portion (main
BIOS body resides in ROM) in a relocatable
format and is relocated into RAM at the
beginning of execution. Includes interrupt

handling routines and other system routines.

SYSAR1
SYSAR2

SYSAR3

Copied into RAM and initialize the system work
area. There are three modules which are
invoked at different timings depending on when

the work area is to be initialized.

ROMID

Contains the 0S5 ROM identification.

2.4 MAPLE State Transition

The MAPLE can be in eight states when viewed from the
software standpoint. The interrelationship between
these eight states is illustrated in the figure on the

next page.

MAPLE states

(1) Restart mode power off state

(2) Continue mode power off state

(3) Password entry screen display state

(4) Menu screen display state

(S) System display screen display state

(6) Alarm/wake screen display state
The MAPLE performs no special wake function except
it displays messages (strings) indicating operating
procedures in the same way as the alarm function
when a wake time is reached in the power on state.

(7) Charge battery screen display state

(8) CCP or application program running state

States 1 through 7 are unique to the MAPLE and only
supported by the MAPLE OS.
Note: Power failure refers to a drop in the battery

voltage below a specified level.

2-31

MAPLE State Transition Diagram

Alarm screen |«

displayed > Restart mode power off state

Power SW on

Charge battery
screen
displayed
Power SW on Y
KE X
WA Power fail
Password
specified?
Alarm/wake [« ALARM/WAKE Password Power SW off
screen entry screen .
displayed > displayed POWEROFF in BIOS
C OK] l
B
Menu ¥
specified? B
. N B D
Alarm/wake |« RLARM/WAKE Menu screen ~ System display Marm/wake
3§re§n a - displayed » Zgggigyed > ggggigyed
1splaye c [Copc | CTRLYHELP ALARM/
ESC key RL/ WAKE
(menu
Select sgec;—
\ fied B D
ALARM/WAKE
Alarm/wake |4 / CP/M CCP or application program - System screen | géiggéwake
§§:;$:yed »| execution state - »| displayed »| displayed
c CTRL+HELP ALARM/WAKE
B OK
Alarm/wake - ALARM/WAKE Password entry
screen > screen
displayed o displayed
C
N
Y
Password
pecified?
A
Power off 4 k
by BIOS
Power fail
N
Charge battery Power SW on
screen
displayed WAKE
ALARM A

Alarm screen |+

displayed - Continue mode power off state

C

Power SW on

- CTRL + Power SW off, Auto power off, Power failure
A, Power SW off

5@ seconds, ESC Key, Power SW off, CTRL + Power SW
off, Power failure

D - C, Power SW off

QWX
[}

2-32

Chapter 3 MAPLE CP/M Principles of
Operation

MAPLE adopts CP/M Version 2.2 as its operating system.
Since the basic part of the MAPLE operating system is
implemented in ROM, MAPLE CP/M runs in a slightly
different way from the CP/M for most disk-based
computers. This chapter explains how MAPLE CP/M run on

the MAPLE computing system,

3.1 CP/M Memory Organization

3.1.1 Roles of CP/M Modules in ROM and RAM

MAPLE CP/M switches between two 32K-byte banks during
execution using a bank switching technique as shown in
the figure on the next page. One is a ROM bank
containing the major portions of CP/M 0S and the other
is a RAM bank which makes up the first half of the 64K
main RAM memory. The CP/M modules (CCP, BDOS, and
BIOS) are apparently loaded in RAM as they are on
ordinary disk-based computers. This means that MAPLE
application programs can use the CP/M functions in the
same way as those which use the standard CP/M. 1In
fact, however, only a 100H bytes of a system area
containing the entry points to the BDOS and BIOS are

loaded in RAM, making the most part of the RAM

available for application programs. Actual BDOS and
BIOS operations are performed in the 0S in ROM that is
activated through bank switching. Control is returned
to the application program again through bank switching

to RAM after processing is terminated.

3-2

29gPH

7FFFH

BDOS

BIOS1
BIOS2
BIOS3

Screen

CP/M system area

TPA

Cccp

BDOS

BIOS

RAM Disk

User BIOS

Work area

29891

P11

@ to 24K bytes
in total

The addresses of the CCP, BDOS, and BIOS in RAM differ
depending on the total size of the RAM disk implemented
and the user BIOS area (0 - 24K bytes). The size of
the CP/M system ranges from 59.5K to 45.5K bytes. The
RAM disk and user BIOS sizes can be changed by the

CONFIG program,

3.1.2 Procedure for Constructing a CP/M System in RAM
On MAPLE, the CP/M system can be 1loaded from ROM into
RAM by three routines: system initialize, reset (CBOOT),
and WBOOT. This subsection describes the function of
these routines and the timing when they are invoked as
well as the interactions between them. The STOP and
CTRL/STOP functions for interrupting program execution

are also explained here.

The user can take the following measures (must be
attempted in this sequence) when his program hangs up:
1. Press the STOP key.
2. Press STOP key while holding down the CTRL key.
3. Press the RESET switch.
4. Hold the SHIFT and GRPH keys simultaneously
and press the RESET switch on the side of
MAPLE.

5. Press the 7508 RESET switch.

3-5

*apow 3Ie3lsaI UuT

uo xamod butuing °¢
curexboad
9yl UuT 1009dM O3
T0I3U0D buTlpuss °¢
*apou *DIANOD
*1LOO9gM SOId O3 dDD ut A9y doOIs Aq dn 39s spow a3yl 03 JIOSANOD dBY} S3ISS g
sdum(Toxzuo) °T {|ay3z xo D butasdjumg °1 *I1393Ing dd 9yl saysnid 1T L0oogM
*9IINOD Aq
paoTIToads opow 9Y3z 03 UDDIDS dSY3 S319S °G
‘uUNS3Oo9YO YSTP WYY @Yl S}o9aud ¢
‘WYY 031 S0Id 9Y3 Speod "¢
*dn sbuey 1gc9 g ‘UO3ITMS LHSHI *Ig€9 NdD saeTS ¥yl s3essy ‘g
dn sbuey ggz 1 ay3 burssaiad 1 *7z eoxR WA3lSAS SOZTIRIRTUI °T 319s9Y
so3&q @ :sOIg I9sSn S93AQ Mg NSIA WWY
Kepuns ¢g:¢d: dd
ge/08/886T :9uT3 pue 23eq
:UoT3
-eZTTRT3TUT wa3sAs butwxojrad 3noylrTm
SMOTTOF Se wd3sAs ayjz S9zTTeTITUT ATuo
pue STp WYY SY3l SjewIoj UOT3ezTTeTy
-TUT we3sds ay3z ‘g UOTSIAISA IIDSY UI °§
*paAouwsI IO PO (so sbenbuer-ssauedep pue g-°T
-T{Te3SuT ST 3Tun UOTSIBA IIDSY) °SOId I9sSn pue ISTP WYY
UOTSUa3IX® YL "€ | "UOITMS LISTI =Yl ay3 JO 9zTS 9yl pue puoodds pue ‘ajnuru
‘dn sbuey ggs, °z | burssead pue umop ‘anoy ‘Aep ‘yauow ‘zxesk oyl s3o8
*aseyosand s&hoy HAYD pue *UOT1eZTTRTITUT weolsAs suxojiad °§
I39313e LUty LATIHS 3yl DUTPTOH °Z “ITUn YSTP WYY POPUalIXd 3yl S3}O9YD °¢
3SIT3 92Yy3 1037 *Yo3IMS LASHI “1IHS9 NdD SARTS 9Y3 S39s9dY ° 9ZTTRT3TUT
wa3lshks ayz bursn T | 8F4SL 22Ul burssaiag 1 *1 eoxe We3lSAS S8ZTTRTITUI T we3sAs

usyM

Aq pejeT3iTul

uoTyexadp

‘Heg butaTondx
UO 93PUTWIS]
asnu wexboxd

uoTjeoTdde
syy burizdnx

- Koy dOLS

"HEF UITM

~I93UT uUsyM °T 2y3 bursssad T 3T speol pue x93ing Koy 8yl SALSTD °1 doLs
“HEd
butaTeoax UO
93BUTWAI] ISNUW
uexboxd uoTl
—-eoT1dde ayg
‘uoT3lex
-ado o/1 ue but - Koy dOLS
~wxoJxad uweaboxd oyl butrssaad "HEF Y3ITM
uoT3eoTTdde pue A3 TIILD 92U 3T speol pue I93ing A9y SUF saeITD 7
butadnaxzejuy °*T |umop burpioy usym °T ‘uoTyeaado Q/I 3IusIano 9yl sidnaxszur T dOoIs/ 1D
usayM Aq pejer3Ttul uot3eaado

Relationships among the system initialize, reset, and WBOOT

System initialize

BOOT

Sets the currently
logged in drive to A:.
Sets the I/O byte to
A9H.

Displays the CP/M sign-
on message.

Sets the keyboard and
character set types
according to the DIP
switch settings.

==

7588 is reset.
SHIFT/GRPH + RESET

RESET switch

- Execution jumps to WBOOT.

- Power is turned on in restart
mode.

WBOOT

Actions common to BOOT and WBOOT

W
L] L] L]

Ul
.

Turns RS-232C power off.

Turns ROM capsule power off.

. Stops the micro cassette.

Creates the BIOS and BDOS jump vectors in
the CP/M system area.

Loads BDOS to RAM.

U

Loads CCP to RAM and transfers control to CCP
or the menu display routine.

System areas 1, 2, and 3
The RAM work area that MAPLE uses is classified into the
following two types:

1. Work areas initialized at a specific timing before use.

2. Work areas used only temporarily.

The work area of the first type isdivided into three types
called system areas 1, 2, and 3 according to the timing at

which initial values are set.

Initialized when Work area contents

System area 1| System initialize| Initial values of flags
is invoked. indicating PASSWORD and
MAPLE basic status.

System area 2| Reset is invoked. | Initial values related
to BIOS.

System area 3| WBOOT is invoked.| Initial values related
to BDOS.

3.2 BDOS Function Processing Flow

When BDOS is called by a MAPLE application program,
control is first transferred to the entry point to the
BDOS in RAM. Then the 0S switches banks and maps the
memory addresses (@000OH to 7FFFH into ROM, then calls the
real BDOS in ROM. Upon completion of processing, the 0S
switches the bank to RAM and returns control to the
application program with return information loaded in

registers.

The BDOS in ROM calls directly the BIOS in ROM.

3-10

BDOS call processing flow

goggn

7FFFH

(Bank @)

BDOS

gP9P5H

Iy

BIOS

—_— - - -

ROM bank
selected.

r
|
|
| I
!
I
|
|
|
I
|

BDOS in ROM
called.

|
|
|
|
i
1
I
|
‘ !
|
|
I
]
J

RAM bank
selected.

| S, _*______

(Bank 1)

JMP BDOS

- PPPPH

(99@5H)
CALL BDOS

CCp

BDOS

BIOS

RAM DISK
&
User BIOS

System resident
area and work
area

} 199H

FFFFH

3.3 BDOS Error Recovery Procedure

BDOS can display four types of error conditions. Since
these errors are handled totally under BDOS control, it
is likely that they destroy the current screen image,
initiates a warm boot on receipt of user response from
the keyboard after the error display, or even destroy
memory data. One of countermeasures to avoid this is to
make the application program report and handle error
conditions for itself. The MAPLE OS permits the
application program to take the following two measures
against error conditions to achieve this:

1. Receiving BDOS error information as a return code.
2. Rewriting the jump vector for BDOS error processing

and performing user-supplied error processing.

The four types of BDOS errors are:
1. Bad Sector
2. Bad Select
3. R/0 Disk

4. R/0 File

3.3.1 Receiving BDOS Errxor Information in Return Code
(1) Changing the BDOS error reporting mode

The application program can receive any BDOS error
information directly in CPU registers by calling
location @012H (SET ERROR) in OS ROM (bank @). It can
also have BDOS return any error information by calling

location @015H (RESET ERROR) in 0OS ROM.,

The application program must use BIOS CALLX (WBOOT +
69H) to directly call a routine in 0S ROM. 1In this
case, the program must reserve a stack area at a

location 8000H or higher in RAM,

(2) Return codes

Register A H
Error
\
BAD SECTOR FFH @1H
BAD SELECT FFH P2H
R/0O DISK FFH @3H
R/O FILE FFH 24H
MCT ERROR FFH @5H }

For Bad Sector errors, BDOS stores more detailed

information in memory.

BIOSERROR EQU OF536H

Data in
Error type

memory

@11 Read error

@2H Write error

@3H Write protected.

g4H Timeout

#5H Seek error

@6H CTRL/STOP pressed.

@7H Power turned off.

«—Write protected

(MCT only)

(MCT only)

Standard CP/M
BDOS errors

BDOS errors
unique to MCT

error

(3) Procedure for identifying errors

Some of the BDOS functions returns OFFH to the A
register as a usual return code. Therefore, the calling
program must identify errors by examining the H register

as well as the A register. See the figure below.

SET ERROR
processing

T
1
|
[
|
|
|
Y

BDOS call

\

BDOSIerror Normal Fermination

| |
| |
e e e e - —— T
|
¥

RESET ERROR

processing

(4) Programming notes

1) Once SET ERROR is executed, BDOS performs no error
processing and continues only to return error
status until a RESET ERROR or WBOOT is executed.

2) After execution of SET ERROR, the results are not
guaranteed unless the application program performs

its own error checking and recovery processing.

3.3.2

Rewriting the Jump Vector for Processing BDOS Errors

Four jump vectors for processing BDOS errors are located

at the beginning of BDOS in RAM. The application

program can handles error conditions in its own way by

changing the contents of these jump vectors.

ERRVCTR: (+======m—w-

DW

DW

DW

DW

- 4

Address ((Contents of RAM addresses 6 and 7)+3)

PERERR (===~

SELERR (===~

RODERR (===~

ROFERR (===~

Address of parameter error processing routine
(Bad Sector error)

Address of select error processing routine
(Bad Select error)

Address of read only disk error processing

routine (R/0 Disk error)

Address of read only file error processing

routine (R/0 File error)

The application program can perform its own error

processing by changing the above addresses.

Programming notes:

(1) On return, the stack area is switched to that for

the application program because the stack area for the
BDOS was used during BDOS processing.

(2) Bank 1 is selected (all RAM).

(3) The user error processing routine must contain no

BDOS calls if it is to return control to BDOS with a RET

statement.

3.4 BIOS Function Operation Flow

(1) Outline

The major BIOS operations are carried out by BIOS in ROM
as BDOS operations are. To achieve these, when a call
to BIOS is made from an application program, the 0S
receives the call in the BIOS in RAM, switches the
active bank to the system bank, and calls the BIOS in
the system bank (ROM). After completion of the BIOS
processing, the 0S returns to the BIOS in RAM with
various return information and result data, switching
again to the user bank, and returns control to the

application program.

The BIOS in RAM always resides in addresses higher than

8000H so that it is not affected by bank switching.

(2) PREBIOS and PSTBIOS

Some BIOS routines uses the slave CPU functions (e.g.,
screen and microcassette handling). Since the main and
slave CPUs communicate commands and data using a
specific protocol, if the main CPU attempts to request
the slave CPU to do one operation while it has already
instructed the slave CPU to do another operation, the
protocol will be destroyed and the communication between
the main and slave CPUs hang up. BIOS controls the
slave CPU properly while BIOS alone is using the slave
CPU. 1If, however, an interrupt is generated which calls
for a service by the slave CPU (e.g., alarm, power off,
or power failure interrupt), it will try to have the
interrupt source use the slave CPU, ignoring the
execution sequence established between the main and

slave CPU, causing the MAPLE to hang up.

PREBIOS and PSTBIOS are provided to solve this problem.
When a call is made to BIOS, the 0S executes PREBIOS to
set on a flag indicating that BIOS processing is in
progress. If an interrupt requesting for a slave CPU
service is generated while this flag is on, the
interrupt handling routine checks this flag and, knowing

that the slave CPU is used by a BIOS routine, makes the

3-20

interrupt-driven processing pending after turning on a

flag indicating that an interrupt is held pending.

When the BIOS processing is completed, the 0S starts
PSTBIOS, which in turns executes any pending interrupt
routines, clears the flag indicating the execution of a
BIOS routine, and returns control to the application

program.

The flowchart on the next page shows the

relationship between PREBIOS, PSTBIOS, and BIOS

processing.

3-21

PREBIOS

BIOS

— et mme o a— om— ——

PSTBIOS

‘ ENTER)

BIOS in-process
flag set to on

I —

BIOS
processing

Interrupt
flag on?

— — — onmmn =

Interrupt
processing

-

BIOS in~process
flag set to on

‘ EXIT)

Interrupt generated

BIOS being
executed?

Interrupt
processing

Interrupt flag
set to on

<
-

(3) Calling a BIOS routine from an application program
The entry address into the BIOS WBOOT in RAM is located
in addresses 1 and 2 in RAM. To use a BIOS call,

the user program must call BIOS specifying the address
obtained by adding the function offset to this BIOS
entry address. Since every BIOS routine ends with a

RET statement, control returns the statement immediately
following the CALL statement that called the BIOS

routine.

SAMPLE PROGRAM
The sample program below calls a BIOS routine with the
function's offset from the WBOOT (multiple of 3) in the

IX register pair.

BIOS:
PUSH BC
LD BC, (0001H) ;Entry point to WBOOT.
ADD IX, BC
POP BC
JP (IX) ;Jump to BIOS.

(4) BIOS call operation flow

(Bank @) (Bank 1)
gegon gapgu
CP/M system area
PREBIOS -
1 CALL BIOS]
BIOS (9P (IX))
PSTBIOS -
7FFFH ' @
@ @ CcCcp
BDOS
BIOS @
f-—f—"-"=-- RAM DISK
| -} &
l ROM bank User BIOS
| selected | .._J
A
! SEEs i
¥ | System resident
! BIOS in ROM | area and work
! called | area
|
! I
| A '
| RAM bank l
! selected | FFFH
L

R J

Chapter 4 BIOS Subroutines

MAPLE BIOS is greatly extended for support of a number
of I/0 functions. 1In fact, it contains as many as 44
subroutines. This chapter gives a detailed description
of these subroutines. The BIOS CONOUT routine has many
options, and therefore, a whole chapter is reserved for

it for full description of the function (see Chapter 5).

* Programming Notes on the use of BIOS calls

1) The entry to each function is indicated by the offset
from WBOOT. Find its effective address by adding this
offset to the entry address to the WBOOT iocated in 0lH
and 02H.

2) Save the contents of registers if necessary because
the contents of the registers except those for receiving

the return parameter are not guaranteed.

4-1

The entry addresses and functions of BIOS Subroutines

Offset .
from WBOOT ENTRY NAME Function
-@3H BOOT Performs a cold BOOT.
iﬂﬂH WBOOT Performs a warm BOOT.
+@3H CONST Returns the console input status.
+J6H CONIN Inputs one character from the
console.
+@9H CONOUT Outputs one character to the console.
+@CH LIST gutputs one character to the LIST
evice.
+OFH PUNCH Outputs one character to the PUNCH
device.
Inputs one character from the
+12H READER READER device.
+15H HOME Positions the disk head to track g4.
+18H SELDSK Specifies the device.
+1BH SETTRK Sp§01f1es the track for read or
write.
: Specifies the sector for read or
+1EH SETSEC write.
+21H SETDMA Specifies the DMA starting address
for read or write.
+24H READ Reads the specified sector.
+27H WRITE Writes data to the specified sector.
+2AH LISTST Retgrns the status of the list
device.
Translates a logical sector to a
+2DH SECTRN physical sector.
Converts graphics screen data for
+30H PSET display.
+33H SCRNDUMP Takes a hard copy of the displayed
data.
+36H BEEP Sounds the speaker.
RSOPEN Opens the RS-232C interface.

+39H

Offset

from WBOOT ENTRY NAME Function
+3CH RSCLOSE Closes the RS-232C interface.
Informs whether the RS-232C
+3FH RSINST interface has received data.
, Checks whether the RS§-232C interf
+42H RSOUTST face is ready for transmission
Receives one character from the
+45H RSIN RS-232C interface.
Transfers one character to the
+48H RSOUT RS—-232C interface.
+4BH TIMDAT Performs clock or alarm functions.
+4EH (MEMORY) Does nothing.
+51H RSIOX Performs RS-232C functions.
+54H (LIGHTPEN) Does nothing.
+57H MASKI Sets or resets the interrupt mask.
+5AH LOADX Reads the data in the specified
: bank.
+5DH STORX Writes data into the specified
bank.
+6@H LDIRX Transfers data between banks.
+63H JUMPX Jumps to the specified bank address
Calls the subroutine at the
+66H CALLX specified bank address.
+69H GETPFK Gets a PF key.
+6CH PUTPFK Defines a PF key.
+6FH ADCVRT Performs analog data input
operations.
Processes communication with the
+72H SLAVE SLAVE CPU 63f1.
+75H RDVRAM Reads the contents of VRAM.
+78H MCMTX Processes communication with MIOS.

Offset

ENTRY NAME Function
from wBoOT
+7BH POWEROFF Turns main power off.
+7EH USERBIOS Entry point to the User BIOS.

Entry Name BOOT Entry Address WBOOT - @3H
Function Performs a CP/M cold boot.

Entry None,

parameter

Return None.,

parameter

Explanation

BOOT is entered by a 7508 or system initialize reset
(SIFT/GRPH/RESET), or the depression of the RESET key. This
routine is used not by application programs but by the

operating system.

BOOT performs the following:
l. Sets the current drive to A:.
2. Sets the I/0 byte to 10101001B.
LST: = LPT: (RS-232C)
PUN: = UPl: (RS~-232C)

RDR:

URl: (RS-232C)

CON: CRT: (Output: LCD, Input: Keyboard)

3. Displays the CP/M sign-on message.

4-5

Reads informations of the DIP switches and saves
their settings in a work area to identify the
keyboard (nationality) and the character set to be

used.

. Loads the CTRL/HELP entry in the keyboard

subroutine table with the system display address
and the CTRL/PF5 entry with the hardcopy address.
Sets the pointer to the PF key table to the system
table.

Initializes the cursor movement key (arrowed key)
codes.,

Jumps to the routine shared with WBOOT.

Entry Name WBOOT Entry Address WBOOT +@H
Function Performs a CP/M warm boot.

Entry None.

parameter

Return None.,

parameter

Explanation

WBOOT is entered when power is turned on in restart mode or a

JUMP @ is executed.

WBOOT performs the following:

l. Writes the write data left in the FDD buffer into the floppy

disk.

2. Initializes the MCT parameters.

3. Restores the cursor into the state defined by CONFIG.

4. Sets the pointer to the PF key table to the system table.

5. Displays the PF key definitions on line 8 when PF key display

mode is specified.

The following processing is common to WBOOT and BOOT:

6. Sets SP to the value for BIOS.

7. Turns
Turns
Stops

8. Loads

Loads

9. Loads

the RS-232C interface power off.

the ROM capsule power off.

the microcassette.

addresses 0 to 2 with the object code of JP WBOOT.
addresses 5 to 7 with the object code of JP BDOSE.

RAM BDOS starting address + 6

BDOS into RAM.

The subsequent actions of WBOOT depends on the system conditions

under which it has executed so far. The actions are shown in the

flowchart on next page.

10

Restart
mode powered on?

Powered on
during an alarm
generated by a
power off?

Powered on
by wake?

N
Auto start Ve

>

string set?

Wake ;::Z;;\\\\ N
Séfi////////,
Y

Move start string

to KEY INPUT. MENU display

specified?

\

Resident

Move wake string ESC selected
elec .

to KEY INPUT. entered.

- Display MENU.

CR entered.
®

Move command
line contents
to KEY INPUT.

/

Y J ’

Go to TPA
program.

Load CCP into RAM and transfer control to CCP.

A: When an auto start string is specified and
- The power switch is turned on.
- The power switch is turned on while an alarm generated in
the power off state is being displayed.
B: When power is turned on by wake with a wake string specified.
C: - After BOOT is executed.
- After WBOOT is executed.
- When power switch is turned on by wake with no wake string

specified.

Entry Name CONST Entry address | WBOOT + @3H

Function Returns the status of the console.

Entry None.

parameter

Return A = @PH: Console input buffer is empty.

parameter A = QFFH: Data is present in console input buffer.
Explanation

CONST checks the CON: field (bits @ and 1) of the I/0 byte (at
address 3) to determine whether the console input device is the

keyboard or RS=-232C interface and returns the status of the

console.

CON: Bit 1 Bit @
0 0 } Indicates whether the keyboard buffer
@ 1 is empty.
1 0 } Indicates whether the RS~232C receive
1 1 buffer is empty.

Entry Name

CONIN Entry address | WBOOT + @6H

Function Returns one character read from the console.
Entry None.
parameter
Return When YPFCMFLG X @FFH
parameter A = ASCII code
When YPFCMFLG = @FFH
C = @0H --> A = ASCII code
C = OFFH --> A reg. contains one of @E@H through
PE9H which correspond to PFl through PF9.
Explanation

CONIN checks the CON: field of the I/0 byte like CONST, and

receives one character from the keyboard or RS-232C interface.

This routine waits until a character is received.

(1) Wwhen the keyboard is assigned to the console (I/O byte,

bits 1 and 0 are 00 or 01)

CONIN operates in different ways depending on the state of

YPFCMFLG (at 0F1U8H) which controls the handling of the PF keys.

1) When YPFCMFLG X FFH

When a PF key is pressed, CONIN returns the string defined

2)

for that PF key. Consequently, CONIN cannot determine what
PF key is pressed. When a key other than PF keys is

pressed, CONIN returns the corresponding ASCII code.

When YPFCMFLG = @FFH

CONIN returns via the C reg. the information as to whether a
PF key is pressed.

- When C = @@0H

Indicates that a key other than PF keys is pressed and the
corresponding ASCII code is placed in the A regqg.

- When C = @FFH

Indicates that a PF key is pressed. The A reg. contains
either one of EQH through E9H which correspond to PF1

through PF9.

YPFCMFLG is set by directly rewriting the work area or by writing

ESC + OBOH or ESC + @BlH through the CONOUT routine.

CONIN waits until input data is received. When the auto power

off time expires, however, power is automatically turned off

during the CONIN routine in the continue mode. When power is

turned on again, execution resumes at the CONIN wait state.

(2) When the RS-232C interface is assigned to the console

(I1/0 byte, bits 1 and 0 are 10 or 11)

CONIN places the data received from the RS-232C interface into
the A regq. When no data is present at the RS-232C interface,
CONIN waits until data is received. The operation of this

routine is identical to that of RSIN.

=
I

14

Entry Name

CONOUT Entry Address WBOOT + @9H

Function

Outputs one character to the console.

Entry

parameter

C = output data

Return

parameter

Explanation

See Chapter 6 for details.

Entry Name LIST Entry Address WBOOT + @CH
Function Outputs one character to the list device.

Entry C = output data

parameter

Return None

parameter

Explanation

LIST checks the LST: field (bits 7 and 6) of the I/0 byte and

sends one character to the corresponding device,.

I/0 byte
Bit 7 Bit 6
0 2 (TTY) : Outputs to the serial port.
] 1 (CRT) : Outputs to the LCD (LIST operates
in the same way as CONOUT).
* 1) (LPT) : Outputs to the RS-232C interface

(LIST operates in the same way as
RSOUT). LIST waits until DSR

and TxRDY are set to 1 indicating
that the counterpart receiver is

ready for reception.

1 1 (ULl1) : Does nothing.

*: Default setting.

When the I1/0 byte is set to serial or RS-232C interface and
LIST is used for the first time after WBOOT, LIST outputs
the command ESC + "R" + x to select the character set

corresponding to the country currently set before sending

the output data.

4-17

Entry Name PUNCH Entry Address WBOOT + @FH
Function Outputs one character to the punching device.
Entry C = output data

parameter

Return None

parameter

Explanation

PUNCH checks the PUN: field (bits 5 and 4) of the I/O byte and

sends one character to the corresponding device.

I/0 byte
Bit 5 Bit 4
0 1) (TTY) : Does nothing.
) 1 (PTP) : Outputs to the LCD (operates in
the same way as CONOUT).
* 1 0 (UP1) : Outputs to the RS-232C interface

(operates in the same way as
RSOUT). PUNCH waits until DSR
and TxRDY are set to 1 indicating
that the counterpart receiver is

ready for reception.

1 (UP2) : Does nothing.

*: Default setting.

4-19

Entry Name READER Entry Address WBOOT + 12H
Function Inputs one character from the reader device.
Entry None.

parameter

Return A = input data.

parameter

Explanation

READER checks the RDR: field (bits 3 and 2) of the I/0 byte and
reads one character from the corresponding device. When no input

data is present, READER waits until data is received.

I1/0 byte
Bit 3 Bit 2
]] (TTY) : Reads from the keyboard (operates
in the same way as CONIN).,
g 1 (PTP) : Does nothing.
1 0 (UP1): Reads from the RS-232C interface
(operates in the same way as RSIN).

1 1 (UP2) : Does nothing.

In OS ASCII versions B and later, READER always returns 1AH (EOF)

when the PTR or UR2 is selected.

Entry Name HOME Entry Address WBOOT + 15H
Function Positions the disk head to track 0.

Entry None,

parameter

Return None,

parameter

Explanation

HOME writes the write data left in the FDD buffer into the floppy

disk and moves the disk head to track g¢g.

Entry Name SELDSK Entry Address WBOOT + 18H

Function Specifies the drive.
Entry C = logical drive No. @@0H = A: --> @8H = I:
parameter Bit @ of the E reqg. indicates whether the drive

is to be accessed for the first time after WBOOT.

Bit @ = 0: The first access after WBOOT.

Bit # = 1: Not the first access after WBOOT.
Return HL = @@¢0P0H: Parameter error.
parameter HL X @000H: Normal termination.

HL contains the DPE (disk parameter header)
address of the physical drive corresponding

to the logical drive.

Explanation

Entry parameters @0H through @8H correspond to the logical drives
A: through I:, respectively. Since the correspondence between

the logical drives A: through G: and the actual physical drives is
not fixed, SELDSK specifies the drive after translating the
logical drive into the physical drive. (See "Changing Drives"

for details about logical and physical drives.)

SELDSK sets or resets bit @ of the E reg. to indicate whether the

drive is to be accessed for the first time. When bit 0 = 0,

SELDKS takes the following actions according to the selected

physical drive:

1.

2.
1)

2)

3.

1)

2)

3)

RAM DISK (Default logical drive is A:.)

Does nothing.

ROM capsule (Default logical drives are B: and C:.)

Turns the ROM capsule power on.

Checks whether the 2 bytes of the ROM header contains @ESH and
37H to determine whether ROM is actually installed and whether
the ROM is for ROM capsules. A parameter error is signaled

if an error occurs.

FDD (Default logical drives are D:, E:, F:, and G:.)

Opens the serial port for communication and turns the drive
power on,

If the write buffer has been already loaded with write data,
SELDSK writes the data onto the FD.

Example: ON the TF-20 which contains two drives, if drive E:
is specified when the preceding write data for drive D: is
only placed in the buffer but not actually written on the

FD, SELDSK flushes out the buffer before designating drive E:.
Otherwise, SELDKS issues the RESET command to the FDD.

Once the FDD buffer is cleared through operation 2) or 3), the

1)

2)

FDD can be used with the newly specified drive designation.
A parameter error will be reported if an error occurs during
the above processing; e.g., the serial port cannot be opened
or the RESET command is terminated abnormally (no FDD is
installed or no floppy disk is inserted).

Microcassette drive (Default logical drive is H:.)

Does nothing.

ROM capsule in the extended unit (Default logical drive is
I:.)

Checks whether the extended unit is installed.

Checks whether ROM is installed in the ROM capsule in the
extended unit and whether the 2 bytes of the header are gES5H
and 37H which identify the ROM for ROM capsules.

A parameter error will be signaled if an error occurs during

operation 1) or 2).

Entry Name SETTRK Entry Address WBOOT + 1BH
Function Specifies the track for read or write,

Entry BC = track No.

parameter

Return None.

parameter

Explanation

The following track numbers can be specified depending on the

drive type:

Physical drive

Logical drive Track No.

RAM DISK

A: g - 2: Internal RAM disk
@ -« 7: 60K RAM disk unit
g - 7: 64K RAM disk unit

- 14: 120K RAM disk unit

@ - 15: 128K RAM disk unit

ROM capsule B: g -7
C:
FDD D: g - 39

G:
MCT H: g - 4
ROM capsule in I: g - 15

extended unit

Since SETTRK makes no entry parameter check, it reports no error
even if a truck number outside the valid range is specified. An
error will be reported when an actual read or write operation is

performed.

Entry Name SETSEC Entry Address WBOOT + 1lEH
Function Specifies the sector for subsequent read or write.
Entry BC = sector No, (@ - 63)

parameter

Return None.

parameter

Explanation

Valid sector numbers are @ through 63. Although SETSEC does not

check the entry parameter, an error will be signaled when an

actual read or write is performed if a sector number beyond that

range is specified.

Entry Name SETDMA Entry Address WBOOT + 21H

Function Specifies the DMA starting address for read or
write.

Entry BC = DMA starting address.

parameter

Return None.

parameter

Explanation

SETDMA specifies the starting address of the area to be

used as the memory buffer during read or write. Data is read

from or written onto the drive in 128 byte (1 sector) units.

Entry Name

READ Entry Address WBOOT + 24H

Function Reads the specified sector.
Entry None,

parameter

Return A = @PH: Normal termination,
parameter A X 0@H: Abnormal termination.
Explanation

READ reads the sector specified by SELDSK, SETTRK, and SETSEC and

stores the contents in the 128 byte area starting at the address

specified by SETDMA.

If the drive is FDD (D:, E:, F:, G:), one of the following

codes is returned when an error occurred:

FAH: Read error.

FBH: Write error. Only @FAH or OFCH is returned

FCH: Select error. by READ.

FDH: Read only disk.

FEH: Read only file.

An error will be generated if a READ is executed for MCT (H:).

Use MIOS subroutines for MCT.

Entry Name WRITE Entry Address WBOOT + 27H

Function Writes the data to the specified sector.

Entry C = Specifies how to write.

parameter P§PH: Write standard format data (write after
blocking).

@1lH: Write unblocked data (write immediately
without blocking).

@§2H: Write to a sequential file.

Return A = @g@FH: Normal termination.
parameter A # @@H: Abnormal termination.
Explanation

WRITE writes the data from the 128 byte area starting at the
address specified by SETDMA into the sector specified by SETTRK

and SETSEC.

If the drive is FDD (D:, E:, F:, G:), one of the following

codes is returned when an error occurred:

\
FAH: Read error.

FBH: Write error. Only @FBH, @FCH, OFDH, or OFEH is
}.
FCH: Select error. returned by WRITE.

FDH: Read only disk.

FEH: Read only file.)

An error will be generated if a WRITE is specified for a drive
other than RAM disk (A:) and FDD (D:, E:, F:, G:). Use MIOS

subroutines for MCT.

Entry Name LISTST Entry Address WBOOT + 2AH
Function Returns the status of the list device.
Entry None.
parameter
Return A = FFH: Ready (sending data on the list device
parameter is allowed).
A = O00H: Busy (sending data on the list device
is disallowed).
Explanation

LISTST checks the LST:

field (bits 7 and 6) of the I/0 byte and

returns the status of the corresponding device.

I/0 byte

Bit 7

Bit 6

(S

(TTY) : Checks the serial port.
@FFH: Control In is high.
PPH: Control In is low.

(CRT) : Returns FFH because the device is
always set to LCD.

(LPT): Checks the RS-232C interface.

@FFH: DSR is high.
@P9H: DSR is low.
1 (UL1): Always returns @FFH if no

actual device is defined.

Entry Name SECTRN Entry Address WBOOT + 2DH
Function Translates a logical sector to a physical sector.
Entry BC = Logical sector number.

parameter

Return HL = Physical sector number.

parameter

Explanation

Actually, SECTRN performs no actual translation but returns the
physical sector number identical to the logical sector number.
This function is originally provided to perform skew processing to
increase FD performance. Therefore, physical to logical sector
translation is not necessary for drives other than FDD.

For FDD, SECTRN need not translate sector numbers because the

FDD connected to MAPLE is intelligent to perform logical to

physical sector translation,

Entry Name PSET Entry Address WBOOT + 30H

Function Converts graphics screen data for display.
Entry B = Data to be converted.
parameter C = Function,

@1H: AND, 02H: OR, @3H: XOR
In other cases, PSET loads the C reg. with the
data at the address specified by HL.

HL = Graphics screen address of the data to be

converted. (8 - 3839)

Return A = @@H: Normal termination,
parameter = FFH: Screen is in character mode.
= Others: HL contains an address other than
graphics screen addresses (8 - 3839).
C = Loaded with the operation result upon normal
termination.
Explanation

PSET processes the 1 byte data at the address specified by HL and
data in the B reg. on the graphics screen according to the data
in the C reg., then places the result to the C reg. An error

is reported in the following conditions:

4-35

- When the screen is not in graphics mode.

- When HL is loaded with an address other than the graphics

screen addresses (0 - 3839).

PSET only loads the C reg. with the data at the specified address

on the graphics screen when the C reg. contains other than 0lH,

02H, and 03H.

Each byte on the graphics screen is assigned an address as shown

below:
g - 59
K S
£y S
g > |3779
3789 == === ‘ >l 3839

Entry Name SCRNDUMP Entry Address WBOOT + 33H

Function Takes a hard copy of the displayed data.
Entry None.,

parameter

Return LSTERR (F69EH)

parameter = POPH: Normal termination,

PFFH: Terminated with CTRL/STOP key.

Explanation

SCRNDUMP checks the 1/0 byte and dumps (outputs) the current data
on the LCD screen onto the device (serial, RS-232C) specified in
the LST: field. However, it does nothing if the LST: field is

set to CRT (LCD).

The dump operation can be terminated any number of times by
pressing the CTRL/STOP key. LSTERR indicates whether the

operation was terminated with the CTRL/STOP key.

SCRNDUMP sends the display data to the serial port or RS-232C
interface as characters when character mode is selected. It

checks the sixth DIP switch and converts special codes to spaces

before output.
Sixth DIP switch
@: Converts @0H - 1FH, 7FH, and @FFH to spaces.

l: Converts @0H - 1FH and 7FH - OFFH to spaces.

The display data is output to the serial port or RS-232C

interface in bit image when graphics mode is selected.

In either mode, seven lines from the top are output on the

printer if the PF key definitions are displayed on line 8.

SCRNDUMP

Check I/0
byte.
Delete
cursor.
i
Output CR
Character and LF. Graphics
screen screen
Screen
type.
Read VRAM) Output ESC [set line
contents in + "A" + @g8H |— spacing to
character codes on printer. 8/72 inch.
l : kepeat for lines l
Convert special p Output ESC . ,
codes to spaces 1 through 8 (- ngn + PEgH ?rlnt a llne.
by referencing (lines 1 through + @1H on —1 in 48@-dot bit
DIP SW. 7 if the PF key printer. image
definitions are
displayed on
Output on line 8), one Read VRAM
printer. line at a time. contents in
7 bit image.
Output on
| printer.
L
Output ESC Set line
+ "2" on .
. specing to
printer. 1/6 inch.

I
Load @@H
into LSTERR.

Throughout the processing,
- l SCRNDUMP checks whether
Display the CTRL/STOP key is

cursor. pressed. If pressed,
it immediately terminates
the operation with LSTERR
loaded with FFH.
EXIT

Entry Name

BEEP

Entry Address WBOOT + 36H

Function Sounds the speaker.
Entry C = Specifies the duration of a beep in 100
parameter ms units.

BEEP does nothing if C = 4.

DE = Specifies the period in 3.2 us units.
1
Frequency = ———=====--- x 106 Hz
3.2 x (DE)

Return None.
parameter
Explanation

BEEP generates a beep sound in the period specified by DE with

the duration of time specified by C.

The processing can be terminated any number of times by pressing

the CTRL/STOP key or turning the power switch off.

BEEP can be used as a 190 ms software timer because it waits for

the length of time specified by the C reg. without generating

sound if DE

goo0H.

Entry Name RSOPEN Entry Address WBOOT + 39H

Function Opens the RS-232C interface.
Entry None.

parameter

Return A = @BH: Normal termination.

parameter

§2H: Already open.

@4H: An invalid specification was found in
the conditions set by CONFIG for RS-
232C. This error causes no problem as
long as CONFIG specifies the conditions
for RS-232C but may cause a problem if
the work area has been updated directly

by the application program.

Explanation

RSOPEN initializes the RS-232C interface based on the conditions
set by CONFIG, turns RS-232C power on, enables RS-232C receive

interrupts (8251 interrupts) for RS-232C communication.

RSOPEN must be executed before executing the following routines:

RSIN

RSINST

RSOUTST

RSOUT

Entry Name

RSCLOSE

Entry Address

WBOOT + 3CH

Function Closes the RS-232C interface.
Entry None.

parameter

Return None.

parameter

Explanation

RSCLOSE turns

interrupts.

RS-232C power off and disables RS-232C receive

Entry Name RSINST Entry Address

WBOOT + 3FH

Function Informs whether the RS-232C interface has

received data.

Entry None.,
parameter

Return See below.
parameter

Explanation

The status at termination is as follows:
1) Z flag = 1: Normal termination.
A = FFH: Received data present.

A

@0H: No received data present.

BC = Number of received data bytes in the buffer.

2) Z flag = @PH: Abnormal termination.

A = @3H: RS-232C is not open.

Entry Name RSOUTST Entry Address WBOOT + 42H

Function Checks whether the RS-232C interface is ready for

transmission.

Entry None.
parameter
Return A = @@H: Transmission disabled. (Z flag = 1)

parameter FFH: Transmission enabled. (Z flag = 1)

@3H: RS=232C is not open. (Z flag = 0)

Explanation

The RS-232C interface is enabled for transmission when the
following two conditions are met:
1) 8251 TxRDY = 1.

(For Overseas Version 1.0, TxEMPTY must also be set to 1l.)

2) No XOFF is received when XON/XOFF control is specified.

Entry Name RSIN Entry Address WBOOT + 45H

Function Receives one character from RS-232C.
Entry None.

parameter

Return Z flag = 1: Normal termination.
parameter A = Received data.

Z flag = 0: Abnormal termination.

A = @3H: RS-232C is not open.

A = @4H: CTRL/STOP key is pressed.

Explanation

When no data is present at the RS-232C interface, RSIN waits
until data is received. Processing can be terminated by pressing

CTRL/STOP Kkey.

If XON/XOFF control is specified, RSIN sends an XON when the
number of the received bytes in the buffer has reduced down to
1/4 of the buffer capacity after it sent an XOFF.

When SI/SO is specified, RSIN performs SI/SO processing on the

received data.

As explained above, XON/XOFF and SI/SO codes are processed by the
operating system and not returned to the application program as

data bytes.

Entry Name RSOUT Entry Address WBOOT + 48H

Function Transfers one character to RS-232C.
Entry None.
parameter
Return z flag = 1: Normal termination.
parameter Z tlag = 0: Abnormal termination.

A = 03H: RS-232C is not open.

A 04H: CTRL/STOP key was pressed.

Explanation

RSOUT checks whether the RS-232C interface is enabled for output
(conditions are the same as with RSOUTST) and, if it is disabled,
waits until the interface is ready for transmission. Processing

can be terminated by pressing the CTRL/STOP key.

RSOUT sends an SI or SO code before sending the pertinent data

byte if SI/SO control is specified.

Entry Name TIMDAT Entry Address WBOOT + 4BH
Function Performs clock and alarm functions.

Entry Described below.

parameter

Return Described below.

parameter

Explanation

TIMDAT provides the following six functions:

l.

Reads the time. (C = @@H)

Sets the time. (C = @FFH)

Enables the alarm/wake function. (C = 80H)
Disables the alarm/wake function., (C = 81H)
Sets the alarm/wake time. (C = 82H)

Reads the alarm/wake time. (C = 84H)

The calling program must call TIMDAT after loading the C reg.

with the code of the function to be performed and the D reg. with

the starting address of the packet (time descriptor) for

transferring time-related data.

reg.

TIMDAT will do nothing if the C

is loaded with a code other than the above codes.

TIMDAT assumes the following clock specifications:

- Maximum time count is 23:59:59 12/31/1999.
Leap year processing is performed automatically.
- The time is represented in the 24-hour system.

The day of the week is not set automatically but updated

when the day changes.

Time descriptor structure

The time descriptor consists of 11 bytes as shown below. Not all

bytes are necessarily used by a function.

(DE)ee e e - »
@ 152%0re Vear in Bop code. I |1 byte
@ |Loaded with the month in BCD code. 1 byte
® |Loaded with the day in BCD code. 1 byte
@ |Loaded with the hour in BCD code. 1 byte
® |Loaded with the minute in BCD code.| 1 byte
© |Loaded with the second in BCD code.| 1 byte
@ |Loaded with the day of the week. 1 byte
Loaded with the alarm/wake type. 1 byte
©® |Loaded with the address. 2 bytes
@ |Loaded with the status. 1 byte

(1) - (6): Year, month, day, hour, minute, second
The time data 1984, 09, 14, 15, 53, 28 is loaded as follows:
84H, 09H, 14H, 15H, 53H, 28H

(1) (2) (3) (4) (5) (6)

(7) : Day of the week
¢o0H, €14, 02H, @3H, G4H, O5H, @6H

SUN. MON. TUE. WED. THU. FRI. SAT.

(8): Type

Specifies the alarm/wake type.

@@H --- No specification.

gl --- Sets the alarm.
(Displays an alarm message at the specified time.)

P2H --- Specifies wakel.
(Performs the function identified by the string at
the address specified in (9) at the specified
time.)

@3H --- Specifies wake2,
(Executes the subroutine at the address specified

in (9) at the specified time.)

(9):

Address

The meaning of the address differs depending on the type

specified in (8).

Type Meaning

0iH ----- Starting address of the

02H ----- Starting address of the
function to be executed

U3H --—-- Starting address of the

alarm message.
string identifying the
during wakel.

subroutine (processing) to

be executed during wake2.

The alarm message and wakel string must be defined in the

following format:

le
!

41 bytes in total

Message or string

I 40 bytes

Message length (1 byte):

i]

Specify the actual message text or string length in

binary from @@H to 28H.
null string.

@PH indicates no message or

(10):

Status

Identifies the alarm/wake interrupt type.
Interrupt type Status value
Alarm/wake time is specified. ------- 00H

(via BIOS TIMDAT).

Alarm/wake interrupt is generated. -- 01lH
Alarm/wake time is read ——-—---=——==-- Set to 00H after
(via BIOS TIMDAT). the current status

is returned.

TIMDAT returns 0l1H only when it has read an alarm/wake time
for the first time after an alarm/wake interrupt occurs.
TIMDAT continues to return 00H whenever called until the

next interrupt occurs.

Entry Name TIMDAT (1) Entry Address | WBOOT + 4BH
Function Reads the time.

Entry C = 00H

parameter DE = Time descriptor starting address.

Return DE = Time Descriptor starting address.
parameter

Explanation

TIMDAT (1) loads the time descriptor fields (1) to (7) with the

year, month, day, hour, minute, second, and day of the week to

set the clock.

Entry Name

TIMDAT (2)

Entry Address

WBOOT + 4BH

Function Sets the time.

Entry C = @FFH

parameter DE = Time descriptor starting address.
Return DE = Time descriptor starting address.
parameter

Explanation

TIMDAT (2) loads the time descriptor fields (l) to (7) with the

year, month, day, hour, minute, second, and day of the week that

are read from the clock.

@FH codes retain the previous time settings.

Since TIMDAT (2) makes no check,

The BCD digits which are locaded with

the validity of the subsequent

information supplied by the clock is not guaranteed if logically

invalid data is specified in this function.

Entry Name TIMDAT (3) Entry Address WBOOT + 4BH
Function Enables an alarm/wake function.

Entry C = 80H

parameter

Return None.

parameter

Explanation

No alarm/wake interrupt will be generated even when an alarm/wake
time is specified until the alarm/wake function is enabled by

TIMDAT (3).

Entry Name TIMDAT (4) Entry Address WBOOT + 4BH
Function Disables an alarm/wake function.

Entry C = 81H

parameter

Return None.

parameter

Explanation

No alarm/wake interrupt occurs once TIMDAT (4) is executed.

To use the alarm/wake function again, it is necessary to redefine
alarm/wake time using the following steps:

1) Specify the alarm/wake time.

2) Enable the alarm/wake time.

Entry Name TIMDAT (5) Entry Address WBOOT + 4BH

Function Specifies the alarm/wake time.
Entry C = 82H
parameter DE = Time descriptor starting address.

Return DE

Time descriptor starting address.

parameter

Explanation

Call TIMDAT (5) after filling the month to address fields

(entries (2) -~ (9)) in the time descriptor .

The year cannot be specified for the alarm/wake function. The
value in the unit place in the second field (the lowest 4 bits of
(6)) is also ignored because TIMDAT (5) monitors only the value

in the ten's place.

Any BCD digits which are set to @FH (four bits are all set to 1)
in the entries from the month to the day of the week are regarded
as matching any time value. For example, alarm/wake will be
invoked at the specified time every day if the month and day are

set to @FFH.

Since TIMDAT (5) makes no entry data check, normal clock
operation cannot be guaranteed if invalid data is specified.

No alarm/wake interrupt will be generated even when an alarm/wake
time is specified until the alarm/wake function is enabled by

TIMDAT (5).

Entry Name TIMDAT (6) Entry Address WBOOT + 4BH

Function Reads the alarm/wake time.

Entry C = 84H

parameter DE = Time descriptor starting address.
Return DE = Time descriptor starting address.
parameter

Explanation

The current alarm/wake settings are loaded into the year to
status fields of the time descriptor ((1) - (10)) after TIMDAT
(6) is executed. The year field and the first digit of the
second field are always set to @FFH and @FH, respectively. This

is because they are never set by TIMDAT (5).

The validity of the data loaded into the time descriptor is not
guaranteed if TIMDAT (6) is executed with no alarm/wake

information specified.

Entry Name MEMORY Entry Address WBOOT + 4EH
Function Does nothing.

Entry None.

parameter

Return None.

parameter

Explanation

4-60

Entry Name RSIOX Entry Address WBOOT + S1H
Function Performs various RS-232C functions.

Entry Described below.

parameter

Return Described below.

parameter

Explanation

RSIOX provides the following ten functions which are identified

by
1.

9.

10.

the contents of the B reg.:
Opens RS-232C., (B = 10H)
Closes RS-232C. (B = 20H)

Informs whether RS-232C has received data. (B = 3@H)
Checks whether RS-232C is enabled for transmission. (B = 40H)

Receives one character from RS-232C. (B

5¢H)
Sends one character from RS-232C. (B = 6@H)
Checks the control line status. (B = 70H)

Sets the control line. (B = 80)

Checks the error status. (B = 98H)

Checks whether RS-232C is open. (B = @F@H)

Entry Name RSIOX (OPEN) Entry Address WBOOT + 51H

Function Opens the RS-232C interface.
Entry B = 10H
parameter HL = Parameter block starting address.
Return A = @08: Normal termination. (Z flag = 1)
parameter = P2H: Already open. (Z flag = 0)
= @P3H: Invalid parameter. (Z flag = 0)
HL = Parameter block starting address.
(The parameter block is loaded with
status data.)
Explanation

RSIOX (OPEN) initializes the RS-232C interface based on the
conditions set in the specified parameter block, turns RS=232C
power on, enables the RS-232C controller (8251) for receive

interrupts) to ready the interface for communication.

RSIOX (OPEN) has the same functions as RSOPEN (WBOOT + 39H)
except that it allows the user to initialize the RS-232C

interface.

The calling program must always call RSIOX before performing I/0

operations to or from the RS-232C interface.

4-62

Parameter block structure
(HL) —=---—+>

1 Receive Buffer Starting Address 2 bytes
2 Receive Buffer Length 2 bytes
3 Baud Rate 1 byte
4 Bits/Char 1 byte
5 Parity 1 byte
6 Stop Bits 1 byte
7 Special Parameter 1 byte

(1) Receive Buffer Starting Address

(2)

(3)

Specifies the starting address of the receive buffer. The

buffer may be located anywhere in the CP/M TPA.

Receive Buffer Length

Specifies the length of the receive buffer.

Bit Rate

Specifies the bit rate.

The table below lists the codes

that correspond to the available bit rates.

Code Bit Rate (BPS)
@FH 19209
@EH 9600
@DH 4889
gCH 2499
#AH 1298
#8H 600
g6H 3090
#5H 208
g4H 158
@2H 119
81H 75/1208 (Tx/Rx)
8gH 12808/75 (Tx/Rx)

-——Not supported in
the overseas
versions.

Tx and Rx represent the transmit and receive bit

rates, respectively.

4-63

Tx and Rx may be different.

(4) Bit/Char
Specifies the character length in bits.
P2H --~ 7 bits/character
@3H --- 8 bits/character
(5) Parity
Specifies parity check type.
@H --- No parity
@l1H --- 0dd
#3H --- Even
(6) Stop Bits
Specifies the number of stop bits.
#lH --- 1 bit

@3H --- 2 bits

(7) Special Parameter

Specifies the RS-232C operating modes and status on a bit

basis.

Bit Description

] Controls the DTR line.
@: OFF (-8V)

l: ON (+8V)

1 Controls the RTS line.
#: OFF (-8V)

1: ON (+8V)

2 Specifies whether SI/SO is to be controlled.
@: Controlled.
(valid only for 7 bits/char. data width)

1: Not controlled.

3 Not used.

4 Specifies whether XON/XOFF control is to be
used.
@: Controlled.

l1: Not controlled.

5 - 7 Not used.

This byte must be set to @FFH when not used.

4-65

Parameter block contents on return

On return, the HL regq.

parameter block that was specified on entry.

parameter block are changed as follows:

(HL) --->
1

2

retains the starting address of the

The contents of the

Status 1 byte

GET Point 2 bytes
PUT Point 2 bytes
Receive Buffer Starting Address | 2 bytes
Receive Buffer Length 2 bytes

(1) Status

Indicates the

RS~-232C status.

Bit

Description

0

Indicates whether RS-232C is open.
#: Open.

l: Not open,

Indicates whether the receive buffer is full.
@: Not full.,

1: Full.

Indicates whether a receive buffer overflow
occurred.

@: No overflow occurred.

l: Overflow occurred. Some data must have

been discarded.

Indicates the CD line status (inverted).
@: CD line is high. (+3 ~ +15V)

l: CD line is low. (=3 ~ =15V)

Indicates whether a parity error occurred.
@: No parity error occurred.

l: Parity error occurred.

Indicates whether an overrun error occurred
in 8251 during data reception.
#: No overrun error occurred.

l: Overrun error occurred.

4-67

Overrun errors are likely to occur when data

transfer is too fast.

Indicates whether a framing error occurred
during data reception.

@: No framing error occurred.

l: Framing error occurred.
Framing errors occur when the parameters of
the RS-232C (bit rate, bits/char, parity,
stop bits) do not match those of the

counterpart terminal.

Indicates the DSR line status.
@: DSR line is high., (+3 ~ +15V)

l1: DSR line is low. (-3 ~ ~15V)

(2)

(3)

(4)

(5)

Bits @, 1, 3, and 7 always indicate the current status.

Bits

2, 4, 5, and 6, on the other hand, retains the error status

until the RSIOX error check function is executed once an

erroxr occurred.

GET Point

The address of the next data to be taken from the receive

buffer.

PUT point

The receive buffer address into which the next data received

by 8251 is to be placed.

Receive Buffer Starting Address

The address specified on entry.

Receive Buffer Length

The length specified on entry.

4-68

Entry Name RSIOX (CLOSE) Entry Address WBOOT + S51H
Function Closes the RS-=232C interface.

Entry B = 20H

parameter

Return None.

parameter

Explanation

RSIOX (CLOSE) turns RS-232C power off and disables RS-232C
receive interrupts. The functions of RSIOX (CLOSE) is identical

to those of RSCLOSE (WBOOT + 3CH).

Entry Name RSIOX (INSTS) Entry Address WBOOT + S1H

Function Indicates whether there is any data in the

receive buffer,.

Entry B = 30H
parameter HL = Starting address of the field for storing

9-byte return information.

Return Described below,

parameter

Explanation

The status information that RSIOX (INSTS) returns on termination
is as follows:
(1) Z flag = 1: Normal termination.
A = OFFH: Data has been received.
= 00H: No data in the receive buffer.
BC = Number of bytes of received data in the buffer.
HL = Address specified on entry. The nine bytes
starting at this address contains the return
information described earlier (see RSIOX (OPEN)).
(2) 2 flag = @: Abnormal termination.

A = @3H: RS-232C is not open.

HL retains the previous value.

Entry Name RSIOX (OUTST) Entry Address WBOOT + 51H

Function Checks whether RS-232C is enabled for
transmission.

Entry B = 40H

parameter HL = Starting address of the field for storing

9-byte return information,

Return Described below.

parameter

Explanation

The status information RSIOX (OUTST) returns on termination is as

follows:
(1) z flag

A

@0OH:

Normal termination.

Transmission disabled.

@gFFH: Transmission enabled.

HL = The address specified on entry. The nine bytes

starting at this address contains the return

information described earlier (see RSIOX (OPEN)).

The RS-232C interface is enabled for transmission when the

following two conditions are satisfied:

1) 8251 TxXRDY =1

4-71

(For Overseas Version 1.0, TXEMPTY must also be
set to 1.)
2) No XOFF is received when XON/XOFF control is specified.
(2) 2 flag = 0: Abnormal termination.
A = 03H: RS-232C is not open.

HL retains the previous value.

Entry Name RSIOX (GET) Entry Address WBOOT + 51H

Function Receives one character from the RS-232C
interface.

Entry B = 50H

parameter HL = Starting address of the field for storing

9-byte return information.

Return Described below.

parameter

Explanation

RSIOX (GET) returns the following status on termination:

(1) Z flag = 1:

Normal termination.

A = Received data.

HL = The address specified on entry. The nine bytes

starting at this address contains the return

information described earlier (see RSIOX (OPEN)).

(2) z flag = @:

A

Abnormal termination.

P3H: RS-232C is not open.

@4H: CTRL/STOP key is pressed.

HL retains the previous value.

The actual function of RSIOX (GET) is identical to that of RSIN

(WBOOT + 45H).

Entry Name

RSIOX (PUT) Entry Address WBOOT + S51H

Function Transfers one character to the RS-232C
interface.

Entry B = 60H

parameter C = Send data
HL = Starting address of the field for storing

9-byte return information.

Return Described below,

parameter

Explanation

RSIOX (PUT) returns the following status on termination:

(1) z flag

1:

Normal termination.

HL = The address specified on entry. The nine bytes

starting at this address contains the return

information described earlier (see RSIOX (OPEN)).

(2) Z flag = @: Abnormal termination,

A

@3H: RS-232C is not open.

P4H: CTRL/STOP key is pressed.

HL retains the previous value.

The actual functions of RSIOX (PUT) is identical to those of

RSOUT (WBOOT + 48H).

Entry Name RSIOX (CTLIN) Entry Address WBOOT + 51H
Function Reads the control line status.

Entry B = 70H

parameter

Return Described below.

parameter

Explanation

RXIOX (CTLIN) returns the DSR and CD status when the RS-~232C is
open.
(1) Z flag = 1: Normal termination

A reg. Bit 7 DSR status.

0: +3V to +8V
l: Lower than +3V

Bit 3

CD status.
0: Lower than +3V
i1: +3V to +8V

All bits other than bits 7 and 3 are set to 0.

(2) Z flag = 0: Abnormal termination

A = 03H: RS-232C is not open.

Entry Name RSIOX (SETCTL) Entry Address WBOOT + 51H

Function Sets control lines.

Entry B = 88H

parameter C = Data set (see below).
Return Z flag = 1: Normal termination.,

parameter zZ flag

@: Abnormal termination.

A = @3H: RS-232C is not open.

Explanation

RSIOX (SETCTL) sets the DTR and/or RTS line states according to
the contents of the C regq.

C reg. Bit @: Sets the DTR state.

@: DTR set to - 8V (Low)

l: DTR set to + 8V (High)

Bit 1: Sets the RTS state.

#: RTS set to - 8V (Low)

l1: RTS set to + 8V (High)

Bits 2 - 7: Not used.

Entry Name RSIOX (ERSTS) Entry Address WBOOT + 51H
Function Checks the RS-232C error status.

Entry B = 90H

parameter

Return Described below.

parameter

Explanation

RSIOX (ERSTS) returns the error status of the RS-232C interface
when it is open. All errors are cleared on termination of RSIOX
(ERSTS).

(1) Zz flag = 1: Normal termination.

A = Error status

7 6 5 4 3 2 1 '/

L’ g
———————
Receive buffer 2
overflow
— CD line status See RSIOX (OPEN)
: for details of
Parity erro > the return
‘ * Overrun error information.
L— Framing error
L—» pSr line status J

(2) 2 flag = 0: Abnormal termination.

A = 03H: RS-232C is not open.

Entry Name

RSIOX (SENS)

Entry Address

WBOOT + 51H

Function Checks whether the RS-232C interface is open.
Entry B = OFOH
parameter
Return Z flag = 1: RS-232C is not open.
parameter A = (Q0H
Z flag = @: RS~232C is open.

A = @92H

Explanation

Entry Name LIGHTPEN Entry Address WBOOT + 54H
Function Does nothing.

Entry None.

parameter

Return None.

parameter

Explanation

Entry Name MASKI Entry Address WBOOT + 57H
Function Sets or resets interrupt mask.

Entry Described below.

parameter

Return Described below.

parameter

Explanation

MASKI enables or disables the six interrupts supported by MAPLE.
(1) Entry parameters
B = Function
= @: Inhibits interrupts from the devices whose
corresponding bit in the C reg. is 1.
= 1: Enables interrupts from the devices whose
corresponding bit in the C reg. is 1.

2: Checks the current enabled or disabled status.

v

C = Specifies which type of interrupts are to be processed
according to the contents in the B regq.
Bit @: 7508 interrupts
Bit 1: RS-232C (8251) receive interrupts

Bit 2: RS-232C Carrier Detect interrupts

Bit 3: FRC overflow interrupts
Bit 4: Bar code reader interrupts
Bit 5: External interrupts
Bit 6: Not used.
Bit 7: Not used.
The Interrupts for which the corresponding bits are set to 1
are processed according to the specification in the B reg.
The interrupts for which the corresponding bit is set to #
retain their previous state. Bits 6 and 7 must be set to @.
(2) Return parameter
A = Loaded with return information indicating whether the
individual interrupts are enabled after this function
is executed. The correspondence between the bits and
interrupt types is the same as that shown above.
Interrupts are enabled if the corresponding bit is set
to 1 and disabled if it is set to 0.

See Chapter 10 for details on individual interrupts.

Entry Name LOADX Entry Address WBOOT + SAH

Function Reads one byte of data from the specified bank.
Entry C = Bank from which data is to be read.
parameter @@H = User bank

@FFH = System bank

HL = Address of the data to be read.

Return A = Data
parameter Other registers retain the previous values.
Explanation

LOADX is used in application programs to read the contents of 0S
ROM. The user bank is selected when a value other than @0H and

PFFH is specified in the C regq.

Entry Name STORX Entry Address WBOOT + 5DH

Function Writes one byte of data to the specified bank.
Entry A = Data to be written.
parameter C = Bank to which data is to be written.

@8H = User bank

@FFH = System bank

HL = Address at which data is to be written.

Return All registers retain the previous values.
parameter
Explanation

STORX is not used in application programs. Nothing will happen
if it is used to write data into the system bank ROM.
The user bank is selected when a value other than 00H and @FFH is

specified in the C regq.

Entry Name

LDIRX Entry Address WBOOT + 60H

Function Transfers the data on the specified bank onto
another bank.
Entry A = @P@H: Transfers data from the system to user
parameter bank.
= @FFH: Transfers data from the user to system
bank.
HL = Starting address of the data to be
transferred.
DE = Starting address of the destination to which
data is to be transferred.
BC = Number of bytes of data to be transferred.
Return A = (PH h
parameter BC = 0Q0@gH > Register contents on termination.

DE = DE + BC

HL = HL + BC

Explanation

LDIRX is used in application programs to transfer the contents of

0S ROM to RAM,

Specifying a value other than @@H and @FFH in the

A reg. causes the same effect as specifying 00H.

4-84

Entry Name JUMPX Entry Address WBOOT + 63H

Function Jumps to the specified bank address.

Entry (DISBNK) @PH: Jumps to the specified address
parameter on the user bank.
= @FFH: Jumps to the specified address

on the system bank.

IX = Destination of jump.

Return None.,

parameter

Explanation

JUMPX causes program execution to jump to an address in 0S ROM.

JUMPX is rarely used in application programs.

This BIOS call is also terminated when a RET statement is
encountered in the routine at the jump address. Since control
branches with the stack in the BIOS, an error may occur if the

stack level goes too deep during the execution of the called

routine.

The DISBNK address is:

OF539H --- for Overseas Version 0S
OF2B6H --- for Japanese Version 0OS
Specifying a value other than 00H and OFFH in DISBNK has the

same effect as speciiying 00H.

Entry Name CALLX Entry Address WBOOT + 66H

Function Calls the specified bank address.

Entry (DISBNK) @@H: Calls the specified address on

parameter the user bank.

= @FFH: Calls the specified address on
the system bank.

IX = Called routine address

Return None.

parameter

Explanation

CALLX is used by application programs to directly call a routine

in OS ROM.

Since the routine is called with the stack for BIOS still,

unexpected results may occur if the called subroutine uses too

large an amount of stack area.

The DISBNK address is:

OF539H --- For Overseas Version 0OS

UF2B6H --- For Japanese Version OS

Specifying a code other than @¢¢H and @FFH in DISBNK has the same

effect as specifying @0H.

Entry Name GETPFK Entry Address WBOOT + 69H
Function Reads in PF key data.
Entry C = PF key number - 1
parameter PFl = 00H --- PF1l0 = 09H
HL = Starting address of the character string to
be read.
Return HL = Retains the previous value.
parameter
Explanation

GETPFK gets a character string defined for a PF key in lé6-byte

format as shown below.

than 00H to 09H is specified in the C reg.

GETPFK does nothing when a value other

(HL)
Numbex Character |Character|Character|Character|-=-====—-- Character |Character
of
1 2 3 4 14 15
characters
l) 15 bytes
g@H - PFH:

Indicates the number of characters in the string.

that no string is defined for this PF key.

Example

PgPH indicates

¢ 3H "P n

"I"

"P"

are not guaranteed.

4-89

* The contents of the subsequent bytes

Entry Name PUTPFK Entry Address WBOOT + 6CH

Function Defines a PF key.
Entry C = PF key number - 1
parameter PFl = 00H --- PF10 = 09H
HL = Starting address of the character string to

be assigned.

Return HL

Retains the previous value.

parameter

Explanation

PUTPFK assigns a character string to a PF key in the 1l6-byte
format. The maximum string length is 15 characters. PUTPFK does

nothing when a value other than 00H to 09H is specified in the C

reg.
(HL)
Number
Character [Character|Character|Character|Character Character|Character
of | TETTEET T TR e e T T T e
1 2 3 4) 14 15
characters
gPH - PFH: 15 bytes

Specifies the number of defined characters in binary. @@H indicates
that no string is defined for the specified PF key.

If old PF key definitions are displayed on the screen, they are

also updated as they are redefined by PUTPFK.

Entry Name ADCVRT Entry Address WBOOT + 6FH

Function Performs an analog data input operation.
Entry C = Analog data to be selected.
parameter

Return A = AD conversion results

parameter

Explanation

ADCVRT converts analog data selected by the parameter in the C

reg. to digital data and returns the results to the A reg.

C = 00H: A/D channel 1 --- Data from the analog jack.
C = 01H: A/D channel 2 --- Data from the bar code reader
connector.

C = 02H: DIP SW settings.
C = 03H: Battery voltage.
C = 04H: Main switch (for Power ON/OFF) and analog input
connector trigger terminal settings.
ADCVRT does nothing when the C reg is loaded with a value other
than O00H to 04H.
The pages that follow describe what data is returned to the A

reg. according to the value specified in the C reg.

(1) When the C reg. = 00H or 0lH

A voltage 0 to +2V applied to the A/D jack is converted
to a digital quantity and placed into the highest 6

bits of the A reg. (resolution of 6 bits).

Bit Bit

Aregq.

-~ VAN ”

g ~ +2V Not defined.

U

Each bit corresponds to 2v + 255 32mv. These bits
are all set to 1 when a voltage higher than +2V is

input. They are set to @ when a negative voltage
is input.

(2) When the C reg. = 02H

The settings for the DIP switches on the main unit back

panel are placed into the A reg. in the following format:

4-93

(3) When the C reg. = 03H
The data about the battery voltage is placed in the A

reg. See Chapter 11 for the correspondence between the

battery voltages and the A reg. values.

(4) When the C reg. = 04H
The main switch settings and the analog input connector

trigger terminal state are placed into the A reg.

Bit Bit

Areg. g | 2 1/ /) g1 2

Trigger S
terminal state

@ = OFF (+5V)
1 =0N (gV)

Main switch
settings. < '

@: Main switch is set to OFF.
1: Main switch is set to ON.

MAPLE may be started even when the main switch is in the off

position (by the wake function).

>
|

94

Entry Name SLAVE Entry Address WBOOT + 72H

Function Controls the communication with the SLAVE CPU.
Entry DE = Communication packet starting address,
parameter

Return A = @§@H: Normal termination.

parameter X @0H: Abnormal termination.

DE = Retains the previous value.

Explanation

SLAVE is used by the application program to control the SLAVE CPU
directly. See Chapter 13 for details on the functions that SLAVE

can perform and the command and data used by SLAVE.

The SLVFLG field in the work area must be set as follows before
this BIOS function is called:
The SLVFLG address is:
OF358H --- For Overseas Version OS
OF080H --- For Japanese Version 0OS
Bit 7: Always set to ON.
Bit 6: Set to ON when accessing SLAVE memory (executing command

@2H, O@lH, or @2H). Otherwise, this bit is set OFF.

Bit 5: Set to ON when writing data into the SLAVE CPU privileged
memory (addresses 80H - OADH). Otherwise, this bit is set

to OFF.

SLAVE immediately terminates abnormally if the SLVFLG field is
found to be set improperly. The calling program must clears the

SLVFLG field to O0OH after returning from this BIOS subroutine.

The communication packet has the following format:

(DE)———

Send packet
@ starting address 2 bytes
©) Send packet length 2 bytes
C) Receive packet 2 bytes

starting address

@ Receive packet length 2 bytes

4-96

(1) Send packet starting address
(2) Send packet length
A send packet refers to a buffer area which contains a

command or a command plus parameters to be passed to

the slave CPU.

Send packet

Send packet

starting —— | Command Parameters
address

Send packet length

A send packet always begins with a l-byte command, so the
length of a send packet is normally longer 1 byte. When the

length is @, SLAVE does nothing for send requests and

performs only receive processing.
(3) Receive packet starting address

(4) Receive packet length

A receive packet is an area for storing the return code and
parameters, if any, which the slave CPU returns after

processing the command and the parameters passed from the

SLAVE CPU in the above format.

Receive packet

Receive

packet » Return Parameters
starting code

address -

Receive packet length

The return code and the contents of the A reg. are the same
when SLAVE terminates normally. Since a return code is
always returned on normal termination, the receive packet
length should longer than 1 byte. When the receive packet

length is @, no data is received from the slave CPU.

The main program can do its own tasks while the slave CPU is
processing a command from the main program. The calling
program can receive the return code and parameters that the
slave CPU returns in response to the previous command by
first sending a command or parameter with a receive packet
length of @ specified, then, after performing its main task,
issuing a command with a send packet length of §. During
this operation, however, the main program cannot perform any
operation which involves slave CPU processing (e.g., Screen
or MCT processing). (Attempting to do so would result in a

SLAVE hang-up.)

Entry Name

RDVRAM Entry Address WBOOT + 75H

Function Reads the contents of VRAM.
Entry B = Starting column number in which read is to begin,
parameter (1 -80)
C = Starting row number in which read is to begin.
(1 - Bottom of screen)
DE = Number of characters to be read.
HL = Address of the area for storing the read
data.
Return A = (gH: Normal termination.
parameter = @1lH: Display extends beyond the screen during
a read.
= FFH: Screen is in graphics mode. Or the
starting position specified by B and C
is outside the virtual screen,
HL = Retains the previous value.
Explanation

RDVRAM reads the data on the character mode screen. The screen

has the following structure:

Set in the B req.

1 >3
{
System screen }8 rows Used by the 0OS
Real screen }8 YOows Same display as LCD.
Set in
the C ¢)
reg.
Virtual screen
! Variable — See Chapter 16 for
details.
\ {’
8 + 8 +
(Number of J

rows in the
virtual screen)

RDVRAM reads the number of characters specified by DE starting at
the position designated by B and C and stores them sequentially
into the area starting at the address designated by DE.
Characters are read from left to right in a row. After ﬁhe 80th
character is read, the leftmost character in the next row is

read.

When the number specified in DE is too large and display extends
beyond the screen, 00H codes are returned as extra characters
until the number of the returned characters equals the value
specified in DE. 1In this case, the A reg. is loaded with a

return code of O0LlH.

4-100

Entry Name MCMTX Entry Address WBOOT + 78H
Function Processes MIOS communication.

Entry B = MIOS function code (@G@H - 15H)

parameter

Return Described below.

parameter

Explanation

MCMTX is used to communicate with MIOS (entering commands or

receiving data) to control MCT directly.

See Chapter 14 for details of MIOS functions.

4-101

Entry Name POWEROFF Entry Address WBOOT + 7BH

Function Turns main power off.

Entry C = @@H: Main power turned off in continue mode.
parameter = Q1lH: Main power turned off in restart mode.
Return None,

parameter

Explanation

POWEROFF is used in application programs to turn MAPLE main power

off.

If power has been set off in continue mode, execution continues
with the command'following this BIOS call when power is turned
on. The I/0 settings established before the power-off is
restored at the same time. This BIOS call must be followed by an

EI instruction when power is turned off in continue mode.

If power has been set off in restart mode, execution will start

at WBOOT when power is turned on.

See Chapter 9 for details of power-on/off.

4-102

Entry Name USERBIOS Entry Address WBOOT + 7EH
Function Provides the entry to USERBIOS.

Entry None,

parameter

Return None.

parameter

Explanation

USERBIOS provides an entry point through which the application
program makes BIOS calls after loading its own BIOS routine in

the RAM USERBIOS area. Presently, USERBIOS serves no purpose.

The following procedure must be observed when using a user-
provided BIOS routine through the entry point at USERBIOS:
1) Load the BIOS routine into the RAM USERBIOS area.
2) Replace the contents of addresses (WBOOT 4+ 7EH) + 1 and
(WBOOT + 7EH) + 2 with the entry address bytes of the user
routine in the USERBIOS area.
3) Call this BIOS in the application program.

See "USERBIOS Usage" for details.

4-103

Chapter 5 Keyboard

5.1 General

The MAPLE is furnished with a typewriter keyboard which
contains special keys such as cursor movement keys
(arrow keys) and programmable function keys. 1I/0
operations concerning the keyboard is controlled by the
7508 sub-CPU. When a key entry is made, the 7508
informs the Z80 CPU of the presence of the key entry by
generating an interrupt. The 0S, on receipt of the
interrupt, fetches information from the 7508 identifying
the key location and takes the corresponding action., 1In
addition to this key entry function, a number of MAPLE
keyboard functions are supported at the 0S level. Those
keyboard functions are fully discussed in this chapter

(see Chapter 11 for the 7508 CPU).

5.2 Keys and Keyboard Types
- Number of keys: 72 (73 keys for Japanese-language
keyboard)
- Number of switch keys: 6
* What is a switch key?
When an ordinary key is pressed, the 7508 CPU

provides only the information that indicates the

depression of the key. When a switch key is
pressed, however, it provides two types of
information, that is the information indicating the
depression of a key and the information indicating
the release of the key. This kind of keys include
SHIFT and CTRL are used to switch the keyboard
mode. These keys are all controlled by the 0S and
application programs need not concern about

this.

- Keyboard types
The MAPLE supports twelve types of Keyboards to
accommodate various languages. Keyboard and 0S key entry
routine assignments are defined by DIP-SW 1 through 4 in the
MAPLE's ROM compartment. DIP~-SW settings are shown on the next
page (see the end of this mannual for key assignments for

different countries).

Keyboard type 3 2 1 Object 0S
3
USASCII 1 1 1
France 1] 1} 2
Germany 1 il 1
England 11 8 8
> ASCII 0S

Denmark g 1 1
Sweden g | 1| 2
Italy J'] g 1
Spain g 8| 8
Norway 1 1] g J
Kana g g g Japanese-
Japanese- language
language JIS g Jo] 1 JIS 0S
keyboard
Japanese- Japanese-language
language touch g ') 1
type keyboard touch type O0OS

g --- OFF

l -——- ON

Auto repeat keys and switches

Auto repeat keys Ezzz (Keys other than shaded
keys)

Switch keys aw

Keyboard other than Japanese-language keyboard

—

/7077777707 %77/ 7 A7)

SW

SW SW SW

SW SW

Auto repeat keys and switches

W

4%%%7 SW/ASWALSW

7,
& %

7]

5-4

5.3 0S Key Routine Functions

Keyboard buffers: 32 (The 7508 sub-CPU has 7 unique

buffers own.)

N-key rollover feature: Provided.

Auto repeat feature: Provided. (See the previous page
for auto repeat keys.)
Repeat start time -- 656 ms

Repeat period =---- 70 ms

Auto repeat setting:
Auto repeat ON/OFF state, repeat
start time, and repeat period can
be changed using the BIOS CONOUT
routine.

- The CAPS, NUM, and GRAPH keyboard modes are indicated by LEDs

on the keyboard.

5.4 Operation Flow
The steps below show the sequence of operations from key

depression to transfer of the key data to the application

program.

(1) A key 1is pressed.

(2) The 7508 scans the keyboard every 30 ms and, if a

key entry is sensed, loads the corresponding hardware
code into its own buffer.

(3) The 7508 reports the Z80 of a key entry via the
interrupt line.

(4)(5)(6) The Z80 takes data from the 7508 buffer via the
7508 port and stores the data into the keyboard buffer.

Any data overflowing the keyboard buffer is discarded.

(7) The key routine takes hardware codes out of the

keyboard buffer, one at a time, and returns the
corresponding key codes to the application program after
making the following checks:
- Code for changing the keyboard mode ?
(SHIFT key, CTRL key, etc.)
- PF key ?
- Subroutine call required?

(CTRL/ESC - CTRL/PFK)

The above steps are illustrated in flowchart form on the next

page.

* 7508 hardware codes

The 7508 hardware codes only identify the corresponding key
on the keyboard and have no relation with the keyboard
shift mode. Consequently, the key routine determines

what code is actually entered according to the

previously established state of the SHIFT, GRAPH, or

CTRL key. (See Chapter 11 for details on hardware

codes.)

Hardware code

Key for
determining

shift mode?

Determine key code
based on entered
hardware code con-
sidering shift mode.

Perform key code
conversion according
to DIP switch
settings specifying
keyboard version.

Get characters
out of PF key
string, one at
a time.

Key code
requiring a sub-

N

v

\j
Return to BIOS.

routinecy

Subroutine Determine key-
call. board shift
mode.

\j

Return to the beginning
of key routine.

Press switch

o s m e —
v l 780
7598 :
@ !
+ +| Interrupt
@ l processing @
(
v ® !
2 | A\
[| S W | IJ <\ 7)
Buffer (7 bytes)

@ Keyboard buffer
(32 bytes)

Lo g0y L]

Key routine @

v
BIOS
(CONST, CONIN)

BDOS

1}]

Application program

5.5 Keyboard States

5.5.1 Keyboard Mode Transition

The MAPLE ASCII keyboard operates in three modes:

Normal, CAPS and NUM. The Japanese-language 0OS supports

the Kana mode in addition to these modes.

Normal: Unshifted letters are input in lowercase. For keys
which have two characters on their keytop, lower
letters are input.

CAPS: The same as the Normal mode except that unshifted
letters are accepted in upper case.

NUM: Numbers are input from the numeric keys which
are aligned horizontally on the top of the
keyboard or from the keys having a number
indicated at the upper right of the keytop.

Some symbols are also input. Other keys are
ignored.

Kana: Kana characters are input.

Mode transition diagram (Kana keyboard)

+Num

+Caps

Power on, Reset
Wake

Mode transition diagram (Keyboards except Kana and

Japanese-language keyboards)

(" Num) Num

+Num
+Caps / +Caps

+Num

v
’ Power on
| Normal)=
Reset

Wake

5.5.2 Keyboard State Transition

In any of the keyboard modes given in the previous
subsection, a depression of a key returns different

codes depending on whether the key is pressed singly or
together with the SHIFT, GRPH, or CTRL key. The state
transition diagram for the MAPLE keyboard is shown on

the next page. The codes here refer to those codes which
the application program receives from the keyboard through

the BIOS CONIN function or a BDOS function.

Keyboard states (for Non-Japanese-language keyboards)

The keyboard state is determined by the combination of
the keyboard mode and the state of the SHIFT, GRPH, and
CTRL keys. The CTRL key has a higher priority than the
GRPH key; i.e., if the CTRL and GRPH keys are pressed

simultaneously, only the CTRL key is validated.

Mode State
Normal » Normal

X

13

N

ﬁg Normal shift
Caps » Caps

Caps shift

Graph
Graph shift

Control

Control shift

Num

Kana *~Kana

(Only for Kana @

keyboard) Kana shift

The codes received from keyboards may differ depending

on the state in which the keyboard is.

Q‘R’L Y CTRL
N

@%—Y—» GRAPH
N

SHIFT CAPS/SHIFT

NORMAL CAPS

The precedence of the mode keys are as follows:

1. CTRL
2. GRAPH
3. NUM
4. CAPS
5. SHIFT

The shift mode of a higher precedence is honored when
two or more shift mode keys are pressed at the same

time.

5.6 Special Keys

There are some keys which perform special functions
besides returning a code when pressed. They are called
special keys. The functions of the special keys are
described below.

(1) STOP: Clears the key buffer and places only “C (@3H)
code into the buffer. Since the STOP key is normally
used to interrupt program execution, when pressed, it
clears all existing key codes except the "C code off the
buffer so that the MAPLE can respond immediately to this
key. You can also enter "“C by typing C while holding
down the CTRL key. In this case, the key buffer is not
cleared at all.

(2) CTRL/STOP: This key sequence not only performs the
above functions but also interrupt the current I/0
operation such as an RS-232C receive operation. For
example, press these keys to interrupt a program which
is stalling, waiting for data from the RS-232C
interface. The execution of the RS-232C receive routine
is then interrupted and control is returned to the
application program, which can then terminates itself by

monitoring the °C code.

Since both STOP and CTRL/STOP load the key buffer with
03H, it is impossible to tell which key was pressed
from the contents of the key buffer alone. The key can
be identified, however, by checking the following flags
in the system work area:
CSTOPFLG --- Overseas version = F1l0BH
Japanese-language version = EEZ25H

= 00H: CTRL/STOP not pressed.

00H: CTRL/STOP pressed.
BRKFLG --- Overseas version = F10AH

Japanese-language version = EE24H
= 00H: STOP or CTRL/STOP not pressed.

O00H: STOP or CTRL/STOP pressed.
Both CSTOPFLG and BRKFLG are set to 00H when the key

buffer is cleared by CONIN.

PgH

CSTOPFLG

7 P9H

Y

Only STOP key was Neither STOP nor CTRL/STOP was
pressed. CTRL/STOP were pressed.
pressed.

(3) SHIFT/INS: Toggle between the tracking mode and

non-tracking mode.

(4) CTRL/INS: Display the portion of the screen on which
the cursor is currently positioned. This key sequence

is used in non-tracking mode to scroll the screen up to

the cursor position.

(5) Cursor movement keys (arrow keys)

There are four cursor movement keys: ?, ‘, ~—, and — .
Since each of them may be pressed independently or in
combination with the SHIFT or CTRL key, it may be
assumed that there are logically twelve movement keys.
The user can assign a code from 00H to OFFH to each of
these keys. Especially, the 0S takes special actions
when codes 80H and 0OF8H to OFFH are entered. These
codes can be set by the application program sending ESC

+ F3H, ESC + F4H, and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>