NI - CD NOTES

I"ve had a PX-8 for alnpbst a year, now. 1In that time, |largely because |I've
had some trouble with them [|'ve learned quite a bit about the N -Cd
batteries that power this conputer and its portable peripherals. Follow ng
is a summary of what |'ve been able to glean, fromreading and from
observation, about Ni-Cd batteries in general and about how they are
handl ed within the PX-8 in particular

The PX-8's Batteries

The PX-8 main unit contains two rechargeable batteries. The main battery
suppl i es power when you are using the unit and is recharged with an AC
adapter that provides about 6 volts DC. This battery is rated at 1100 mAH
at a nomnal 4.8 volts. The backup battery supplies power when the unit is
switched off or turns itself off. This backup power keeps data and
programs stored in the PX-8 s main nmenory intact. The backup battery is
rated at 90 mAH, also at a nominal 4.8 volts. To insure that the backup
battery is always in a fully charged state when it is needed, it is
recharged in one of two ways: either by the AC adapter or, if the PX-8 is
on but the adapter is not connected, by the circuitry that powers the LCD
screen.

The Batteries of Some PX-8 Peripherals

PF-10 Battery

Like the PX-8 main battery, the PF-10 disk drive battery is rated at 4.8
volts, 1100 mAH. It, too, appears to be built from four rechargeable sub-C
batteries. The PF-10 also has a backup battery, said to be good for about
10 m nutes of operation after the main battery runs down. This battery

| ooks identical to the battery on the main PX-8 board. It is soldered to
the PF-10's main printed circuit board.

RAM Di sk and Multi-Unit Battery
The RAM di sk battery is rated at 4.8 volts, 450 mAH. It is built fromfour
"AA" size cells.

CX-20 Modem Battery
The external nodem battery is identical to the RAM di sk battery, except
that it uses a slightly different connector

Ceneral Characteristics of Ni-Cd Batteries
Ni -Cd batteries conme in a variety of basic types. These include:

Reseal abl e Vented and One-shot Vented

When sufficiently overcharged or over-di scharged, N -Cd batteries can
buil d up enough internal pressure to cause a vent to open. This releases
the pressure and prevents an explosion, but it also rel eases sone of the
battery's electrolyte. Sonme N -Cd batteries are built with one-shot vents;
t hese vents, once open, do not reseal, and the battery eventually dries
out. Many nodern Ni-Cd batteries are built with vents that will resea
once the situation creating the excess pressure has been corrected. These
batteri es may be sonewhat reduced in capacity once they have vented (as is
a lead-acid battery that has been allowed to run |ow on acid), but they
will, in many cases, still be usable for quite a while. Cells that have
vented will have white crystals growi ng near the positive contact or wll
show ot her obvi ous signs of |eakage.

Nor mal Charge and Fast Charge

Some Ni-Cd batteries can only be recharged at a rate | ess than or equal to
the so-called "10 hour rate,” which is one-tenth the rated anpere-hour
capacity of the battery (C/10). For example, the 10 hour rate for the
1100 mAH PX-8 main battery is 110 mA. Due to inefficiencies in the
chargi ng process, the battery nust be recharged at this rate for 14 to 16
hours to achieve full charge. Oher batteries are designed to be able to
wi thstand a charge rate equal to one-fourth their rated capacity (C/ 4).
These batteries are capable of sustaining repeated "fast charges" w thout
damage. The batteries used in the PX-8 appear to be of the "fast charge"
variety, since they are intended to withstand a charge rate greater than
C/ 10 wit hout shortening their life.

Nor mal Capacity and Hi gh Capacity

Normal capacity Ni-Cd batteries will continuously operate a device for
approximately the sane period of time, on one charge, as ordinary dry
cells. High-capacity batteries will operate the sane device for a |onger
period of time. (For exanple, the Radi o Shack high-capacity 'C cells have
al nost twice the capacity of the standard NN-Cd 'C cell, and the high-
capacity 'D cells have nearly four times the capacity of standard N -Cd
"D cells.)

How Ni -Cd Batteries Can Be Damaged

Ni -Cd batteries can be damaged by i nproper use (over-di scharging or

di scharging too quickly) or by inproper recharging (overchargi ng or
charging too quickly). Overly discharging a Ni-Cd battery can cause the
weaker cells to be reverse-charged by the stronger cells. This can

per manent|y damage them by causing themto vent. (In general, no cell in a
Ni -Cd battery should be permitted to fall below 1.0 volts.) Overcharging
Ni -Cds at a rate up to one-tenth the rating of the battery nmay tenporarily
weaken them but the danage can often be nostly reversed, as descri bed
below. On the other hand, overcharging at too great a rate, as wellas
discharging at a rate greater than C/ 2, can cause Ni-Cd's to overheat.
Overheating can lead to venting or can cause internal shorts to devel op
(I'nternal shorts can sonetinmes be repaired by burning them out using the
techni que descri bed bel ow.)

Ni -Cd batteries are also subject to a "nmenory" effect. This can happen
after the batteries have been subjected to repeated, identical partia

di scharge/full recharge cycles. A battery with this problemw || appear to
be di scharged when it "remenbers” the point in its discharge cycle at which
it is usually recharged. This effect, too, can be reversed and the battery
restored to nearly full capacity.

How t he PX-8 Charges Batteries

Main Battery

The main battery is recharged by a 6-8 volt DC power source connected to
the "ADAPTOR' plug on the back of the PX-8. A diode in the PX-8 charge
circuit is intended to protect the battery fromdischarging if the power
supply connected to the computer falls below the battery voltage, and to
protect the conmputer from damage due to reverse polarity power supplies or
short circuiting the power supply connector. The circuitry also contains a
Zener di ode which will shunt noderate overvoltage (though I wouldn't go out
of ny way to test any of this protection, since it, too, is capable of
bei ng damaged) .

The conputer is designed to recharge the batteries at a noderately fast
rate (150-200mA) for eight or eleven hours, depending on whether the
conputer is turned off or on, respectively, when the charge cycle begins.
After that, charge drops to a trickle charge of about 40 mA. This is

i ntended to allow you to recharge the conputer fairly quickly and keep it
in a charged state, while at the same tine avoi ding overcharging the
batteries if the charger is |left connected.

Unfortunately, if you are not careful about how you recharge the batteries,
the circuitry that is intended to protect agai nst overcharge can work

agai nst you. The manual supplied with the PX-8 does not adequately warn
agai nst this.

Here's the problem The PX-8 recharge is nonitored by circuitry intended
to protect against overcharge. It does so by detecting when external power
is supplied to the unit and at that time initiating its 8 or 11-hour charge
cycle. It does so regardless of the current state of charge of the
battery. This neans that if the battery is partially charged when the
power supply is attached, it will be overcharged for sonme portion of the
next eight or eleven hours, and it will be overcharged at the full charge
rate. Repeated overcharges of this sort will eventually damage the
batteries. Although nodern Ni-Cd batteries can "take" continuous charging
at the Cl0 rate (1/10th their current rating) w thout suffering permanent
damage, the PX-8 charge rate considerably exceeds this.

Therefore, you should not recharge your PX-8 unless the battery voltage has
dropped bel ow about 5 volts. (The PX-8 will switch fromtrickle charge to
full charge by itself, if the voltage drops below 5 volts while trickle
charge is in effect.) |If you do need to recharge before this has occurred,
you wi Il be doing your conputer a favor if you do not |eave the charger
connected for the full 8-hour period, or if you take the tinme to run the

battery down by using the serial port or tape drive. Since the charge rate
is boosted to full each tinme the power supply is connected to the rear of

the conputer, you should al so not disconnect and reconnect the adapter once

a charge cycle has begun. Each reconnection begi ns another full charge cycle.

Backup Battery

The backup battery is designed to always be at peak charge while the PX-8
is on, so that it can take over when the nmain battery needs to be charged.
If the AC adapter is connected, the backup battery is recharged in the sane
fashion as the main battery (full charge/trickle charge). |If the adapter
is not connected and the conmputer is turned on, the backup battery is
recharged through the internal power supply to the LCD screen

RAM Di sk Battery

The RAM di sk or Multi-unit battery is recharged in a manner simlar to the
mai n battery, and is subject to the sane full charge/trickle charge cycle.

It can only be charged when the RAM disk is connected to the PX-8, since it
does not have a separate external power supply connection

PF-10 or External Mydem Battery

The PF-10 and CX-20 external nodem do not seemto have overcharge
protection circuitry. Their batteries can be danmaged by being continuously
connected to a charger (I can say from personal experience that the PX-10
batteries will overheat if they are connected too long). |If the batteries
have not | eaked due to overcharge, nost of the apparent damage can be
reversed by cycling the batteries through one or nore charge/di scharge
cycles. If they have | eaked, they should be replaced. This can be done by
ordering a battery pack from an EPSON supplier, or nmuch nore cheaply by
purchasi ng the appropriate replacenent cells (froman el ectronics supplier
or from Radi o Shack) and building a new battery pack fromthe original one,
as described el sewhere in this article.

How to Squeeze a Little More Power Qut of PX-8 Batteries

You can use the technique recommended for restarting the PX-8 after you
have changed the battery to get a few mnutes nore life out of a discharged
PX-8 battery -- enough to finish nost | ow power operations. If the unit
has turned itself off because the battery got too |ow, turn the power
switch to "off" and let it sit for a few mnutes. Wile holding down the
reset button, turn the unit on and rel ease the reset button. The PX-8 wll
probably cone on, and it will function for another five or ten m nutes.

PX-8 Ni-Cd DO s and DON T' s
o Don't short out the battery. Do be careful when you renove or
repl ace the battery fromthe PX-8.

o Don't overcharge. This will happen if you attach the charger for the
full 8 hours when the battery is not fully discharged. Wit for the
"CHARGE BATTERY" nessge, or use a battery nonitor programlike px.com
battery.com or pxutil and don't recharge until the battery is near the
cutoff point (4.7 or 4.8 volts).

o0 Do let the battery rundown conpletely before you recharge. Don't
partially discharge and then fully recharge. This can produce the so-
called "nmenmory effect.” The nmenory effect, which can occur after
repeated, nearly identical partial discharge/full recharge cycles,
causes the battery to appear discharged at the point the premature
recharge cycles previously began, therefore giving shorter service than
it shoul d.

How Damaged N -Cd Batteries Can Be Restored

You can restore a weak battery if it has not become physically damaged
(internal short or |eakage of electrolyte). Usually, all you have to do is
repeatedly put the battery through full discharge/full recharge cycles,
preferably bringing the termnal voltage down to 4.0 volts (but not |ower!)
for a 4.8 volt battery. To restore the PX-8 batteries, try fully

di schargi ng and then recharging the conputer a fewtinmes. |If this doesn't

i nprove things sufficiently, try bringing the battery down below the 4.7
volts at which the PX-8 normally cuts out. You can do this by first
letting the conputer run the batteries down, then disconnecting the battery
and inserting the ends of a 100 or 220 ohmresistor in the connector that
normally plugs into the PX-8. Mnitor the battery voltage with a

voltneter clipped to the resistor |eads.

As a last-ditch effort, you can try to restore batteries that have one or
nmore shorted cells by jolting themw th a short burst of excess charge.
This charge burns through small short circuits within the cell itself. You
can supply this charge by building and applying the circuit below (from
[lHands- On El ectronicsl), June '87).

25 + __ I\ __ blast button
vdc o---///]------- +----0 0----- S L o to voltmeter plus
150 ohm | |
1 watt | 0 bl ast
resi stor | / | blast/charge
| / | switch
+----/ 0----- +
| char ge
E E
10,000 nf ----- -----
capacitor ----- --- cell to be blasted
(or nore) | |
| |
| |
25 - | |
vdc 0-------------- Foom - R o to voltnmeter m nus

The idea is to leave the switch on "blast" and | et the capacitor charge,
then hit the blast button a few tinmes, waiting a few seconds between each
hit. Then switch to "charge" and watch the voltnmeter; if you have
succeeded in repairing the damage to the battery, the battery voltage wll
rise. |If not, you nmay as well repeat the process a couple of tinmes, then
put the battery through a normal charge/di scharge cycle and see what
happens. | have also acconplished the sane thing by nmonmentarily shorting
a dead cell of a battery across a six volt power supply, though I can't
guarantee the safety of this procedure. |In any event, batteries brought
back to life with this nethod are not likely to last as long as batteries
that have not been damaged, and you are probably better off replacing them

Repl acenents for PX-8 Batteries

The main battery is easy to replace when it wears out (that is, will no

| onger hold a charge for a reasonable period of time). It is built from
four 1.2 volt sub-C cells. A replacenent pack is available from Epson, but
one can al so be constructed nuch nore cheaply fromtabbed sub-C cells

avail abl e from Radi o Shack and other el ectronics suppliers. On the other
hand, the backup battery is soldered to the main circuit board of the PX-8
and would be difficult for a PX-8 owner to replace, even if a substitute
could be found.

A replacenent battery pack for the PF-10 is available from Epson. The PF-
10 is also designed to run off ordinary 'C batteries; with a sinple
nmodi fi cation, described bel ow, you can enable it to use and to recharge
comonly avail abl e standard or heavy duty NN-Cd 'C cells. (The heavy duty
batteries provide al nost twi ce as nuch power as the factory batteries.)

The battery for a wedge (RAM di sk or Multi-unit) can be replaced easily by
removi ng the retaining screws of the RAM di sk unit, unplugging the battery
pack, and replacing defective or worn out cells with tabbed 'AA" cells
avail abl e from Radi o Shack or other suppliers. The CX-20 nodem battery
pack is simlarly constructed and can be repaired in the sane way.

Modi fying the PF-10 to take High-Capacity Batteries

The following is adapted froma description by John Cooper. |t describes
how to nodify a PF-10 disk drive to use Radio Shack 1.8AH'C N -Cd
batteries (Radi o Shack part #23-141). | have performed the sane

nodi fication, follow ng his directions.

The project requires four batteries. The nodification enables the PF-10 to
recharge these or other rechargable batteries as well as the origina
battery pack. Note, however, that you should not operate the PF-10 with
the charger attached when you are using ordinary, disposable batteries
after you make this nodification to the PF-10

PoNE

o

Set the PF-10 on a flat surface with the back of the unit facing you.
Renove the single screw between the Serial plug and the Adapter plug.
Turn the unit on its back and renove the battery cover and battery pack.
Remove both of the npbst rearward PF-10 case screws. Slide the plastic
battery carrier and rear cover combined out to the rear.

Carefully disconnect the plug connecting the battery carrier to the main
printed circuit board.

Turn the battery carrier over so you can see the small printed circuit
board. Pry the board up a little to free the wires, then de-solder the
white wire fromthis circuit board. Store the wire under the tape that
dresses the plug wires on the carrier.

Connect the nowenpty pad where the white wire was to the red wire pad,
and then to the brown wire pad.

Reassenbl e. Make sure you plug the battery carrier wires into the main
PCB the same way they canme off, and don't forget the OV OFF switch
cover. Alittle organizing of the wiring harness may be necessary to
keep it clear of the Serial cable sockets.

The PF-10 should run about twi ce as |ong between charges (though it wll

al so take about twice as long to recharge). The new batteries should al so
be much | ess succeptible to damage from overcharge, since the charge rate
of the charger that cones with the PF-10 charges the new batteries at |ess
than the C/ 10 rate for these cells.

Davi d Bookbi nder
West Medford, MA
Cct ober 10, 1987

Di rect comrunication with the 8251 chip on the PX-8 conmputer

The PX-8 | ap conputer

by Earl

Evans and Chris Rhodes

is equi pped with an 8251 serial interface

chip. BIOS subroutines are available to use the features of this

chi p; however, at tines it

may be desirable to comunicate

directly with the chip through the Z80 I/O ports. Before doing

this, there are a few problens that

sol ved.

must be recogni zed and

First, we recognize that the BIOS functions are performng a
consi derabl e ambunt of functions transparent to the user. Wen
speaking directly to the 8251, you nust perform sone of these
functions yourself.

power, initialing the baud rate,

paranet ers.

These include turning on the RS232 port

and setting the RS232

Second, the 8251 is normally interrupt driven, and the interrupts
are serviced by the BIGCS routines.

enabl ed, they wi

If these interrupts are |left

mal i ci ously swi pe the characters fromthe 1/0O

port. Disabling the interrupts is a must.

Third, we nust make the systemthink that the port is open, so
i nadvertently attenpt to open it during our

that it will not

conversation with the 8251.
beconme enabl ed again

This will cause the interrupts to

Fourth, the menory map of the PX-8 CP/ M nmaintains mrror images

of the values currently in use in the 8251 chip. The BIOS

routi nes update these automatically; however, we nust update them
oursel ves, since we are circunmventing the BIOS routines.

The following is a portion of the source code for DI OMODEM a
version of the MODEM program
i mpl enents direct comunication with the 8251 based on the

principles we previously discussed.

MAPLEVB

CTRL1
CTRL2

I ER
RS232MODE
RS232CMND
RSOPFLG

: Handl es i n/out

EQU

ports for

OECO3H

OFOBOH
OFOB2H
OF0B3H
OF6D0OH
OF6D1H
OF2C8H

This particular version of MODEM

PX-8 CP/ M war m boot | ocati on

0\
;o\
;| system storage |ocations
.
!

LR R R R R EEEEEEREEEEEEEREEEREEEEREEEREE SRR SRR EEREEEEEEEREEEREE SRR SRR E S

data and status

; | NBMODCTL1 pl aces the current control status in the A register

A, (ODH)

; OUTSMODDATP sends the contents of the A register out the data

I NEMODCTL1:
I'N
RET

; port

OUT$MODDATP:
ouT
RET

(OCH) , A

; | NESMODDATP pl aces the incom ng character into the A register

| N$MODDATP:

I'N A, (0CH)
RET

; Cal l'i ng ANl $MODRCVB and CPlI $MODRCVR i n sequence will set the Z
;flag if there is an incom ng byte fromthe nodem and reset the Z
;flag if not.

ANI $MODRCVB

AND 2 ;test this bit for receive ready
RET

CPI $MODRCVR

cpP 2
RET

; Cal i ng ANI SMODSNDB and CPlI $SMODSNDR i n sequence will set the Z
;flag if it is all right to send out a character, and will reset
ythe Z flag if not.
ANl $MODSNDB
;bit to test for send ready

AND 1

RET
CPl $MODSNDR:

cP 1

RET
; INITIALI ZE THE PX-8 RS232 PORT
I NI TMOD
; INITIALI ZE THE PX-8 RS232 PORT

; let's close the port first

CALL MAPLEVB+3CH ; close RS232 port
LD A, O0OH ;
LD (RSOPFLG), A ; Store O in RSOPFLG (makes the

system think the RS232 is open)

; Disable any 8251 interrupts

LD A (I ER) ; get current interrupt enable state
RES 1, A ; clear RX interrupt

RES 2,A ; clear CD interrupt

out (4),A

LD (IER), A

; Turn power on with inhibit

LD A, (CTRL2) ; get current value - lights, etc.
SET 4, A ; inhibit TX

out (2),A ; send it out

CALL ST1ML ; delay, says the BIOS
SET 3,A ; power on

out (2),A ; send it out

CALL ST100ML

RES 4, A ; enable TX

SET 5 A ; enable internal RX
out (2),A ; send it out

LD (CTRL2), A ; save new val ues

; insure baud rate clock set

LD A, (CTRL1) ; get current value baud rate
out (0),A

;. force reset of 8251

LD
out
LD
out
LD
out
LD
out
CALL

; Set up 8251

ST10US:

ST10USL:

STiM.:

ST100M.:

LD
out
LD
ouT

RET

PUSH

DEC
LD

JR
POP
RET

PUSH
CALL
POP
RET
PUSH
CALL

POP
RET

A 0
(ODH) , A
A 0
(ODH) , A
A 0

(ODH) , A
A, 40H

(ODH) , A
ST100M.

A, (RS232MODE)

(ODH) , A
A, (RS232CMND)

(ODH) , A

AF

BC

A B

C

NZ, ST10US1
AF

BC
BC, 100
ST10US
BC

BC

BC, 10000
ST10US
BC

reset command

del ay, says the BICOS

get current node val ue

get current command val ue

del ays about 10 uS

1 mllisecond

100 m I liseconds

Using the PX-8 with Asynchronous Communi cati on Packages

by Chri stopher Rhodes

The PX-8 has built-in BIOS support for the RS-232-C port which is
controlled by the 8251. These BIGOS routines control all aspects
of operation fromsetting the conmuni cation protocol to setting
t he address and size of the interrupt serviced input buffer. An
alternative to BIOS calls is direct communication with the 8251
The article "Direct Communication with the 8251 Chip on the PX-8
Computer” (printed in the July 20 Mail bag) describes that
procedure. This paper covers the use of the built-in BIOS calls
for RS-232-C support and di scusses the advantages and

di sadvant ages of both nethods. It includes recomendations for
pat chi ng prograns using either procedure.

Using BIOS Calls
The following BIOS calls are provided by the operating system

RSOPEN
RSCLOSE
RSI N
RSI NST
RSOUT
RSQUTST
RSI OX

These BICOS calls are used instead of the direct comrunication
with the system UART normal |y perfornmed by nost nachines. RSOPEN
and RSCLOSE are responsible for the hardware and software
initialization required before and after use of the RS-232-C
port. Renenber power nust be supplied to the 8251 before it is
used. The initialization is performed after the paraneters
chosen in CONFI G or those chosen by the general RS-232-C routine,
RSI OX. RSIN and RSINST cover character input and input status,
RSOUT and RSOQUTST cover character output and output status.

RSI OX can be used to acconmplish any of the above individual calls
and al so can be used to determ ne the remaining chip status
states such as parity, overrun, and framng errors. RSIOX is

al so used to configure the size and | ocation of the buffers used
by the 8251. Please refer to the PX-8 User's Manual for details.

There is a one to one correspondence between the BIOS calls and
calls you would normally do with direct 1/Oto the UART.

BI OS Cal | Assenbly Routine
RSOPEN - General routine to initialize etc.
RSCLOSE - Any clean up. Not normally required
RSI N - I'N A, (DATAPORT)
RSI NST - I'N A, (STATPORT)
AND RECRDYBI T
RSOUT - ouT (DATAPORT) , A
RSOUTST - I N A, (STATPORT)
AND TXRDYBI T
RSI OX - Not normal |y supported except for other

status infornmation

Program Pat chi ng

RS- 232- C support using the BIOS calls is no nore difficult than

direct 1/Oroutines. In many ways your task is easier. Wenever
you would do direct 1/Oto a UART, sinply replace the code with a
BIOS call. For exanple, to patch a nodem program you woul d need
routines to send and receive characters and to test the status of
the chip prior to perform ng these operations. The follow ng
code woul d be used:

PUSH BC

PUSH DE

PUSH HL

CALL RSIN ; or RSOUT or RSINST or RSOQUTST
POP HL

POP DE

POP BC

RET

Renenber that the Bl OS uses many of the registers, so if your
program assumes a register will be unaffected by a sinple IN or
QUT to a port, it may not work properly unless you preserve the
environnent across the BIOS call. The BIOS call is also slower
than DIRECT I/Oto a port. Any prograns basing timng | oops on
the port access tine may need to be nodified to account for the
time difference.

VWhich to Use

There are advantages to both DIRECT I/O and BIOS calls. At the
outset, realize that the Geneva cannot be used if the only things
a programallows you to specify are the data and status ports and
which bits to check. As discussed in "Direct Communication with
the 8251," there are many other concerns; such as nenory | ocations
affected by interrupt routines, power to the 8251, etc.; which
must al so be perforned before sinple IN and OQUT routines to the
8251 will work. Such limtations determ ne your ability to

nmodi fy the source code directly or to wite your own drivers and
overlay or include themin the program

The system BIOS calls are reconmended for several reasons.
They have al ready been witten and debugged, and are avail able
for your use. They allow all the necessary control wi thout
any additional coding. Since the input is being handl ed by
interrupt, you can elimnate many data | oss problenms. You may
speci fy your own buffer length and | ocation. The BICS calls
support several types of handshaki ng such as XON XOFF

One di sadvantage of the BIOCS calls is the rather excessive
overhead incurred, especially if your only need is to get data to

and fromthe port. However, in many applications this will not
be a concern, and in fact, there will be tinmes when your
application will run nmore quickly with the systemcalls.

The direct 1/O offers the advantage of |aying the code and
operation of the chip before you. It |eaves no question of

what the BIOS may be doing. However, this sinplicity is offset
by the tricks you nmust performto fool the BIOS into letting you
take command of the chip. The pitfalls are nunerous.

An exanpl e using the MODEM program may prove useful. | patched
one version of MODEM/24 to use BICOS calls and patched one to
performdirect I/Oto the 8251. | had initially expected the

direct 1/O version to produce the better results. The outcone
was quite surprising.

The direct 1/O version could not be made to run nmuch faster than
about 2400 baud for file transfer. The overhead of the program
and the limted speed of the Z80 led to dropped characters and
numerous retry conditions at speeds above 2400 baud. The BIOS
version operated reliably at speeds up to and including 19.2K
baud. | did not clock the overall transfer tinme, but doubt that
it was significantly different. The BIOS version seened faster
and the ability to run at all the supported baud rates is
desirable. | think the interrupt buffered input is the reason
the BIOS version ran at the higher speeds.

I reconmend you use the BIOS calls whenever possible and use the
DIRECT /O only as a last resort. There is no codi ng advant age
to using DI RECT I/ O because all the special Geneva support wll
have to be included in special drivers that will have to be
written and added to source code or overlayed on executabl e code.

Usi ng the Bar Code Reader on the PX-8

I nt roducti on

Bar code input on the PX-8 occurs at the standard bar code 3-pin plug
connector while using any normal bar reader wand.

The architecture and addressing schenme of the PX-8 interface is different
fromthe HX-20, which uses the 6301 internal timer logic to capture bar
code input. Wile there is a 6301 slave CPUin the PX-8, it is not used
for PX-8 bar code operations. Instead, separate timer |ogic has been

desi gned external to the PX-8 CPU chips, to performthe sanme basic function
as the HX-20 6301 timer.

Consequently, any existing HX-20 assenbly code driver would be unusable for
this reason alone, not to mention the obvious fact that the HX-20 runs 6301
code while the PX-8 requires Z80 code.

Since this is the first exposure to PX-8 hardware for al nost everyone, the
foll owi ng di scussion of bar code is nmeant to be a guideline only, and does
not represent the final, authoritative word on howto wite bar code
software for this machine.

Bar code interface architecture

The theory of operation of the bar code interface is basically this: A 16-
bit Free Running Counter (FRC), simlar to the one inside the 6301 CPU, is
driven by a 614 kHz clock (1.6 us period). Its output is applied to a 16-
bit Input Capture Register (ICR) conmprised of two 8-bit (low and high byte)
addressabl e registers ICRL and ICRH. The current value of the FRC is
latched in the ICR by any enabl ed bar code data edge. Hence, as the wand
scans across a bar synbol, each bar's leading and trailing edge will latch
a count in the ICR that can then be read directly and interpreted by the
bar code driver software.

The signal to the software that an edge has been detected, and therefore a
count latched, is provided by the Input Capture Flag (ICF) bit, which is
set sinmultaneously with the latching of the ICR This ICF bit is sensed hy
polling or interrupt handling, and is imediately reset by the ICRH-B read
operation that follows. (Note: ICRH-B refers to I/O port 03H, the Input
Capture Hi gh Byte bar code Trigger Register and should not be confused with
| CRH-C port 01H, the Input Capture Register H gh Byte Conmand Trigger.)

When the 16-bit FRC reaches 0000H, the Overflow Flag (OVF) is set to signha
the end of a 64K count. The driver software al so senses for this bit
through polling or interrupt handling and resets the flag with a WRITE
operation to port OlH (Command Register) to set bit 2 (the RES OVF bit).

After power up, the OVF and ICF bits are in an indeterm nant state and nust
be initialized to the reset condition before reading any bar code.

Sof t ware operations

The foll ow ng discussion illustrates the 1/O protocol required in

comuni cating with the bar code I/F. Al the registers that are directly
related to bar code input capture are accessed with I/O instructions, in
contrast to the nmenory mapped 1/ 0O of the HX-20.

One such register is control register 1. It is a wite only register that
controls the power to the bar code port, enables input data edge
triggering, switches nmenory banks, and sets baud rates. |Its I/O port
address is 00H
Exanpl e:

LD A, OFH ;Bit 3 puts bar code power on. Bits 2 & 1 enable

; rising and falling edge detect. Bit 0 enables Bank 1.
our (ooH , A ;wite to port 0, Control Register 1.

The status register at port 5is a read only register that has 4 bits of
information (0 to 3 bits) regarding machine status. Bit 1 indicates the

| evel of the data signal (BRDT) input fromthe bar code reader. The other
three bits don't relate to bar code. The BRDT bit is therefore usable as a
means of nonitoring the particular bar type (black bar or white space) that
is being read. Since nost bar readers have an open-collector output, a

bl ack bar or an "off-the-paper"” condition will produce a TTL high (+5v)

out put reading. The white margin before a bar code synbol will normally
produce a | ow (0Ov) reading.

However, in the PX-8, this input logic level is inverted at the status

regi ster to produce a binary 1 state for a white input and a binary 0 for a
bl ack input. BRDT polling therefore can be used to indicate the white

"qui escent" state before actual bar code scanning can be validly perforned.
After identification of the white margin, the edge triggering bits 1 and 2
of port 0 can be enabl ed, and reader scanning can proceed with automatic
edge activated | atching of the FRC count into the ICR

Exanpl e:
WVAR:
LD B, 80H ;arbitrary count down value for a white margin
VWL OOP: ;white margin | oop
IN A, (05H) ; get status
BIT 1,A ;test for high input indicating a white margin
JP Z, WAR ;if low, then no white input detected yet.
DINZ WWMLOOP ;if on white, then decrenment the B reg and | oop
;ountil O
JP MAI N ;satisfied that we're on white nmargin, proceed

; W th scanning.

The Interrupt Enable Register (IER) at port 4 is used to enable or disable
(mask or unmask) the six mgjor interrupt sources. Sending an all 0 output
to this register will disable all interrupts. Port 4 also allows the
reading of the interrupt status. The six interrupt status bits, 0 to 5,
can be read even if interrupts had been masked by an earlier port 4 wite.
The ICF (bit 3) and OVF (bit 4) are polled here during bar code operations.

It is much easier to keep interrupts di sabled during bar code ops, since
software to handle the usual interrupts, along with ICF and OVF interrupts,
i ntroduces the problem of |earning what the operating systemis doing with
the 7508 CPU clock interrupts and the serial port interrupts. (It was

di scovered that the 7508 and serial chip interrupts cause bank switching to
occur, thereby inadvertently turning off bar code port power, since the
power bit is in the same register as the bank bit. This problemcan be
overconme by nodifying certain operatins systemnenory |ocations. But now
you need operating system source |istings.)

Exanpl e:

LD A0

ot (04H) , A ;disable all interrupts during bar code ops
LOOP: ; edge detection polling |oop

IN A, (04H) ;read the interrupt status register

BIT 4, A ;test for OVF fromthe FRC

JP Nz, OVFSUB ;if OVF bit set, junp to overflow subroutine

BIT 3,A ;test for ICF

JP Z, LOOP ;if I CF received, detected bar edge, continue
MAI N: ; with main program

The 16-bit ICRitself is a read only type accessed by four different ports.

Ports 0 and 1 are used for reading the FRC value at any time desired by the
software. The ICRL-C (low byte read conmand) directed to port O latches in
the full 16-bit FRC count in ICR, and then reads the LS byte of ICR The
subsequent | CRH C read through port 1 inputs the M5 byte of ICR

Ports 2 and 3, however, are dedicated to the reading of the FRC count after
a bar code edge has previously latched the FRC count in ICR The ICRL-B
(Il ow byte bar code read) is directed to port 2. The ICRHB (high byte bar
code read) is directed to port 3 and perforns the necessary extra function
of reseting the ICF

Exanpl e:

I'N A (02H) ; 1 CRL-B read

LD (CNT), A ;save low byte in CNT | ocation
I'N A, (03H) ;1CRH-B read. Resets ICF al so
LD (CNT+1), A ; save high byte

A di scussion of a sanple PX-8 bar code driver programin Z80 code is
continued in a document on the Epson BBS naned MBRCD. DOC; its conpanion
listing, MBRCD. MAC, is also avail able on the BBS

[lcontinued in a docunent on the Epson BBS named MBRCD. DOC; its conpani on
listing, MBRCD

Perform ng PX-8 Anal og-to-digital Conversions on the PX-8

The PX-8 analog to digital conversion operations are perfornmed under
control of the 7508 slave CPU. Most, but not all, of these A/D operations
can be handled with just one BIOS call that nakes all the Z80/7508

comuni cation invol ved transparent to the user. However, tenperature
sensing with the A/D converter is not handled by this call and requires
sonme extra programm ng, which will be discussed |later. The special A/D
converter used in the PX-8 is a uPD 7001C

The menonic ADCVRT is used for this BIOS call, and it provi des a conmon
entry point for reading certain specific bytes of input data, such as an
external anal og voltage input, the bar code reader input voltage, the
internal battery voltage, the DIP switch settings, and the power sw tch
status. Note that the last two itens do not involve the A/D converter as
you woul d expect.

A/ D Specifications

The A/ D converter (uPD 7001C) specifications are:

I nput | evel: 0to 2.0V
Resol uti on: 6 bits/32 nVv
Channel s: Four channels, two of which are available to the

user. Two other channels are used internally to
detect battery voltage and tenperature.
Conversion tine: 140 us
Max. input voltage: O - 4.5V
ADCVRT cal | description
The ADCVRT subroutine call is setup as foll ows:

Entry Point: WBOOT + 6F

Entry Paraneters:

Regi ster C =0 ; selects A/D channel 1 (input from A/D input jack)

Regi ster C =1 ; selects A/D channel 2 (input from bar code reader
connect or)

Regi ster C = 2 ; selects DIP SW

Regi ster C = 3 ; selects battery voltage

Regi ster C = 4 ; selects power switch status

VWhen any other value is set in Register C, the routine returns w thout
doi ng anyt hi ng.

Return Paraneters:

Upon return fromthe ADCVRT call, register Awll contain the data byte

requested on entry as illustrated bel ow
Bit - 7 6 5 4 3 2 1 0 ; Regi ster A bits
Data - MSB LSB ; A/D channels 1 & 2
Dat a - 8 7 6 5 4 3 2 1 ; DI P SWL
Data - MsSB LSB ;Battery vol tage
Data - TRIG PWSW ; Power switch

For an A/ D channel 1 or 2 request, bits 2 to 7 will all be 1 if the input
voltage is greater than 2.0 V. [If the input voltage is negative, bits 2 to
7 will all be O.

For a DIP SW status request, each bit returned denotes the corresponding
switch on/off status.

For a battery voltage request, bits 2 to 7 will all be 1 if the input
voltage is greater than 5.7 V. The greater than 2.0 V battery voltage is
conpensated for by a special divider circuit that prevents the A/ D device

fromseeing nore than the 2.0 volts at its input. The ADCVRT routine then
returns a value in the A register that can be related to the actual voltage
of the battery by a |linear fornula.

For a power switch status request, bit 0 = 1 indicates that the Power
switch is On, while bit 0 = 0 indicates that it is Of. Bit 1 =1

i ndicates that the TRI G status of the anal og connector is On, while bit 1 =
O indicates that it is Of.

A practical use of the ADCVRT call is presented by the source listing for

t he program BATTERY. ASM witten by Bob Diaz, and avail able on the EPSON
B.B.S. Running this programon the PX-8 produces a graphic display of the
actual battery voltage of your unit. As you will notice, the sinplest part
of the programis the actual ADCVRT call, while the rest of the program
deals with binary to ASCII conversions and screen display.

7508 CPU comruni cati ons

For cases where no BIOS Call is provided, the progranmer should keep in
m nd that comunication with the 7508 CPU nust take place across a seria
i nterface that requires handshaki ng protocol. The di scussion bel ow wil|

illustrate this.

Since all A/D converter operations are controlled by the 7508 slave CPU
the Z80 never wites or reads directly to or fromthe A/D converter. The
Z80 program nerely sends comrands to and reads data froma register in the
7508 I/F. When a one byte command is stored in this register, it is then
serially passed to the 7508 CPU, which in turn recogni zes and executes the
speci fic command. The result of the 7508 command execution is then
serially passed back to the same I/F register for subsequent readback into
the A register of the Z80.

As descri bed above, the ADCVRT call does all this for you for the specific
cases it was designed to handle. There is one A/D feature that this cal
does not handl e, however. This is the tenperature sensing feature.

The foll owi ng exanpl e of tenperature sensing will further illustrate how to
conmuni cate with the 7508 chip

I/ O address 06H points to the SIOR (Serial 1/O Register) in the 7508 I/F,
where a one byte command to the 7508 chip is sent. For sensing tenperature
this command is 1CH; for battery voltage reading it is OCH This paralle
byte is then serially transferred to the 7508 as soon as the RES RDYSI O bit
(bit 1 of CMDR address 01H) is set to a 1. Setting this bit to a 1 resets
the RDYSIO bit (bit 3 of STR address 05H) and signals the 7508 to read the
SIOR serially. Wile this command is being executed by the 7508, the
RDYSI O bit (Serial 1/0 Ready) stays low indicating that the 7508 command is
still executing. Wen the execution is finally conplete, the result is
passed serially by the 7508 back to the SIOR. A Z80 input command can now
read this result and process it as needed.

To obtain a tenperature reading performthe following routine in Z80 code:

LD A 1CH ;1CH is the tenperature sense comuand

QUT (06H), A ; Qutput 1CH to the SIOR

LD A 02

QUT (01H), A ; Set RES RDYSIO bit to 1 to reset RDYSIO
; at this point the command is being sent to 7508
RDY:

IN A (05H) ; Read RDYSI O bit. Low=7508 busy

BIT 3 A ytest it

JP Z, RDY ;i1 f busy, loop until 7508 op conplete

; when here, SIOR contains result of requested commuand
IN A (06H) ; Read the raw tenperature data

The data byte that is nowin register A nust be converted into a meani ngfu
formwith a nonlinear translation fornula. This fornula is too conpl ex

to detail at this tinme. However, a very rough |inear approximtion, as
extracted fromthe PX-8 technical manual, could be constructed fromthe
five val ues bel ow.

If Areg
If Areg

60H t hen tenperature
80H t hen tenperature

50 degrees Centi grade.
40 degrees Centigrade.

AOH t hen tenperature
COH t hen tenperature
EOH t hen tenperature

32 degrees Centi grade.
25 degrees Centi grade.
18 degrees Centi grade.

Maki ng BIOS Calls from BASIC on the Geneva

Many people are aware that you can use BIOS operations to give
BASI C prograns sone of the power and speed that was fornerly
limted to machi ne | anguage prograns. Few, however, are aware of
the techniques required to do this. In the exanple program

bel ow, you will see how a BIOS routine (ADCVRT) can nmake a BASIC
program more powerful and read the internal and externa

vol t ages.

Learning how to use BICOS calls can be very useful for new
programers. It allows themthe ease and sinplicity of witing

in BASIC and then reverting to the nore difficult machi ne code
only when specialty problens of speed or power arise. The end
result can be powerful programs witten with ease. Some know edge
of machi ne code and operating systens is required.

General Procedure

You begin by witing your programin BASIC, |eaving the machine
porti on undone. When you are satisfied that all the BASIC
keyboard I/O routines, nenus, etc. are in working order, you can
devel op the machi ne code portions that will give you the
addi ti onal power.

Devel opi ng the Machi ne Language Portion

Here is the sequence of tasks the machi ne | anguage portion nust
acconplish to handle a BIOS call and pass the results back to
BASI C.

1. Discover the warm boot address.

2. Add a certain nunber to it to call the particular BIOS
routine. Each BIOS routine you call requires a different
nunber to be added to it to address that routine.

3. Store this updated address to nenory. The stored address
(which is the sumof the WBOOT address and an added offset)
equal s the calling address of the desired BIOS routine.

4. Call the desired BIOS routine (in the exanple below it reads
vol tage through the A/ D port).

5. Return to the BASIC program where the data retrieved from
the called routine is converted to neani ngful nunbers to be
di spl ayed on the screen

The machi ne | anguage programthat does this is shown bel ow.

Once the machi ne | anguage programis devel oped, a couple nore
steps remain. The machi ne | anguage op codes nust be be converted
to decimal codes. Finally, the converted machi ne | anguage (now
in decimal format) nust be inserted into upper nmenory (usually
the USER BI OS area) with POKE statenents assisted by READ/ DATA
statenents.

If you choose the USER BICS area to wite your machi ne code
portion in, you nmust set aside enough roomw th the CONFIG
program Since the machine programis |ess than one page of 256
bytes in the exanple program the USER BIOS is |ocated at hex
address EB0O. If the routine were nore than one page, the
starting address woul d nove down one page for each page of code.
For exanple, a two page routine would have to start at hex
address EAO0O.

WARNI NG Do not attempt to neasure A C. voltages of any
magni tude or D.C. voltages greater than 2 volts. You can
seriously damage the CGeneva if you try to do this.

Sanpl e Program that Reads the Geneva Battery and External
Vol t ages

10 REM This is a programto read internal battery voltages and
external D.C. voltages up to 2 volts.
20 REM 1t is witten in BASIC, but it calls machi ne | anguage
routines in the USER BI CS.
30 CLS
40 | F PEEK(&HF0O0B) <>1 THEN PRI NT "USER BI OS SIZE IS NOT 1 BLOCK- -
USE CONFI G PROGRAM TO CORRECT THI'S: SET TO 1 PACE.": END
50 I NPUT "DO YOU WANT TO READ | NTERNAL BATTERY OR EXTERNAL
VOLTAGES(B/ E) "; V$
60 | F V$="E" THEN GOTO 300
65 | F V$="B" THEN 90
70 PRINT "USE CAPI TALS -- ENTER B OR E"
80 GOTO 50
90 REM *** SECTI ON TO DEFI NE | NI TI AL VALUES ***
100 DEFINT A-J,L-Y

110 K=5.7/63 "DIVIDE 5.7 V INTO 64 PARTS FOR | NTERNAL
120 z=2/64

130 ADRS=&HEBOO " USER Bl OS AREA

140 T=0

150 REM *** SECTI ON TO POKE MACHI NE CCODE DATA TO DI SK ***:

160 FOR | =&HEBOO TO &HEB17: "THIS IS THE USER BI OS AREA
170 READ A

180 T=T+A

190 PCKE I, A

200 NEXT |

210 | F T<>2362 THEN PRI NT "ERROR | N DATA LINES!I'!I":END

220 | F V$="E" THEN POKE &HEBOB, 0

230 REM *** SECTI ON TO CALL ROUTI NE AND CONVERT DATA ***

240 CALL ADRS

250 X=PEEK(&HEB17) ' GET THE STORED NUMBER THAT = VOLTAGE NUM
260 PRI NT "NUMBER RETURNED FROM A TO D PORT=" X

270 | F V$="E" THEN PRINT X*Z "VOLTS" ELSE PRI NT X*K "VOLTS"

280 END

290 REM EXTERNAL VOLTAGE SECTI ON

300 CLS: PRINT "NEVER EXCEED 2 VOLTS - USE D.C. VOLTAGES ONLY***=*"
310 PRINT "ACCURACY LIMTED TO 6 BITS (=1 PART IN 64)"

320 PRINT: PRINT "H' T ANY KEY WHEN READY TO PROCEED'

330 I NPUT Z$

340 GOTO 90

350 DATA 42,1, 0, 125,198, 111, 111, 34, 13, 235, 14, 3

360 DATA 205, 114, 231, 31, 31, 230, 63, 50, 23, 235, 201, 61

Detail ed Look at the Machi ne Code Portion

EBOO LHLD 0001 2A, 01, 00 42,1,0

EB03 MOV AL 7D 125

EBO4 ADI 6F C6, 6F 198, 111

EBO6 MOV L, A 6F 111

EBO7 SHLD EBOD 22, 0D, EB 34,13, 235

EBOA WI C 03 OE, 03 14, 3,

EBOC CALL EA72 CD, 72, EA 205, 114, 231

EBOF RAR 1F 31

EB10 RAR 1F 31

EB11 ANI 3F E6, 3F 230, 63

EB13 STA EB17 32,17, EB 50, 23, 235

EBI 6 RET (0] 201

The Geneva will read voltages internal and external if the ADCVRT
BIOS function is called. To call it, you nmust know the address

where this routine resides. The address is equal to the warm
boot address plus the hex nunber 6F. So the operation of reading
vol tages takes place in these steps.

In all CP/M machi nes, the warm boot address can al ways be | ocated
by reading the data stored in locations 1 and 2. A 16-bit read
instruction will read both | ocations at once, and store the warm
boot location in the HL register if this instruction is:

LHLD 0001

The LHLD instruction causes the 16-bit read that reads both
addresses. The 0001 gives the starting address 1. The WBOOT
address has now been read fromlocations 1 and 2.

Next, addition cannot be done in the HL register, so the data
stored there nmust be nmoved fromthe HL (called L below) to the
accurul ator (called A below). All addition is done in the

accurul ator. This nmove operation is done with the instruction

MOV A L

Now t hat the warm boot address has been noved to the accunul at or
the next step is to add hex number 6F to it with this
i nstruction:

ADI 6F

The first stage is now done. The nunber in the accunul ator
represents the address of the BIOS routine that calls the ADCVRT
routine. W nust store this nunber for future use. This magic
nunber is stored back to the HL register with the command:

MOV L, A

Finally, the nunber nust be stored one nore tinme in a permanent
menory | ocation so it can be called when needed. It is done in
this programw th the command:

SHLD EBOD

Now t hat the address to call has been determ ned and stored at
the address directly after the CALL instruction, the next step is
to determ ne whether the voltage read will be an interna

vol tage (battery voltage) or an external voltage. To nake this
choice, a certain nunber nust be placed in the C register just
prior to calling the voltage reading routine. 1In the exanple

bel ow, the internal battery voltage is read by placing a 03

into the Cregister with the instruction

Wl C,
At this point all the prelimnary work has been done and it is
time to call the routine that will read the voltage. Calling
this routine will |leave a nunber in the accunul ator that
represents the voltage read. This nunmber will be fromO to 63.

If you place a 03 in the register before calling the routine,
you read battery voltage. Each of the 64 nunbers in the
accumul ator represents the battery voltages fromO to 5.7 in 64
st eps.

If you had placed a 0 in the C register before calling the
routi ne, each of the 64 nunbers you find in the accumul at or
represent external voltages fromO0-2 V.D.C. in 64 steps.

At this stage all prelimnary work has been done. All you need
to do nowis call the routine. This is done with the conmand:

CALL EA72

NOTE: The EA72 is a dumry address; it is replaced by the data
provi ded by the SHLD instructi on above.

The Vol tage has been read by calling the ADCVRT routine, but the
nunber stored is an 8-bit value and the port is only capabl e of
reading with 6 bits of accuracy. So only 6 of the 8 bits read
have useful information. To elimnate the right two usel ess
bits, you issue rotate right commands |ike this:

RAR
RAR

Masking is perforned to get rid of any useless carry bits that
may have crept in fromthe left. This is done with the comuand:

ANl 3F

The final results are now stored at a safe | ocation waiting for
BASIC to read and convert it. This is done with the conmand

STA EB17

You have now found the location, called the routine, read the
data, renoved the usel ess portions and stored the results. The
final step is to return to BASIC. This is done with the conrand:

RET

By multiplying a conpensation factor by the number you stored,
BASI C can now read voltages with an accuracy of 1 part in 64.

Not es on Using the ASM Program

The machi ne program shown must be processed by the ASM programto
generate the hex file that will be used. Before the ASM program
can use the machine file, certain alterations nust be performed.
First, a starting address is needed for the ORG statenent. Since
you are using a one-page USER BICOS, the programis ORCed
(started) at EBOO. Next, the assenbler requires that all hex
nunbers end with the letter H An exanple of how this | ooks when
conpl eted is shown bel ow.

ORG OEBOOH
LHLD 0001
MoV AL
ADI 6FH
MoV L, A
SHLD OEBO3H
Wi C 03H
CALL OEA72H
RAR

RAR

ANI O03FH
STA OEB17H
RET

Using the HEX file

When the ASM program has processed your source machine code file,
it produces two new files: one with a . HEX extension, and one
with a .PRN extension. It is the .HEX one that you need to get

t he HEX codes necessary to convert into your BASIC program The
HEX file | ooks |ike the one shown bel ow

: 10EBO0002A01007DC66F6F2203EBOEO3CD72EALF50
: 07EB10001FE63F3217EBCI9BD
: 0000000000

There is definite order to this seem ng madness. As you can see
by | ooking at the the organized version below, the first portion
is starting line nunbers and addresses. This is followed by the
actual data. The last part of each line is a checksumdigit to
insure accuracy. The file is termnated by a |line of zeros

i nstead of the usual control Z. The only part that is useful is
the 16 pairs of nunbers on each line (separated by parentheses in
the exanmpl e below). These are the nunber pairs that are
converted to decimal and POKEd i nto upper menmory to formthe
machi ne | anguage part of the program

10 EBOO 00 (2A 01 00 7D C6 6F 6F 22 03 EB OE 03 CD 72 EA 1F) 50
:07 EB10 00 (1F E6 3F 32 17 EB C9) BD
: 0000000000

The Hex pairs of nunbers can be converted in BASIC by using the
PRI NT command with the &H prefix. For exanple, to convert the
first two pairs on hex nunbers above you would enter

PRI NT &H2A
PRI NT &HO1

The conputer would return these values (in BASIC)

42
1

By repeating this sequence, all of the hex data pairs can be
converted to deci mal numbers to be poked into the upper nenory or
t he USER BI OS area

There is a sinpler way to directly insert the hex data into upper
menory. The DDT programw || automatically load the file into
upper menmory if the file has been given a starting address with
the ORG command. This is done by entering a statenent like this:

DDT FI LE. HEX
[lhas been given a starting address with
the ORG command. This is done by entering a s

PX-8 Technical Information

We have recently been graciously supplied by Epson Anerica with
of good deal of technical information on the PX, information that
suppl enents many areas not found in the PX-8 System Essential s
Guide. The follow ng discussion of USERBICS originates fromthis
docunentation. |If there are other areas of technical information
that you would like presented here, please |et us know, and we
shall do our best to present them

USERBI OS

The PX-8 Systen Essentials Manual |ists and expl ains nost of the
BIOS calls of the PX. One particular call that is not explained,
however is USERBI OS. The fol owi ng discussion illustrates the use

of this call

USERBI OS is one of the extended CP/MBICS calls of the PX-8. It
provi des an entry point through which an application program can
makes BICOS calls after loading its own BIOS routine in the RAM
USERBI OS area. It neither requires nor returns any paraneter.

The foll owi ng procedure must be observed when using a user-
provi ded BIOS routine through the entry point at USERBI OS

1) Load the BICOS routine into the RAM USERBI CS ar ea.

2) Replace the contents of addreses (WBOOT + 7EH) + 1 and (WBOOT
+7EH) + 2 with the entry address bytes of the user routine in the
USERBI OS ar ea.

3) Call this BIOS in an application program

Not es on Progranm ng the USERBI OS Area

The user BIOS area mau be shared by nore than one program or bl ock
of data by placing a 16 byte header at the end of the area. The
header is used by thenapplication programto check whether the
programor data to be used ia available in the user BIOS area.

The header is always |ocated at EBFOH EBFFH since the bottom
address of the user BICS area is fixed, while the top address
differs depending on the size user BICOS

1) The header ID, 2 bytes in length, and fixed to "UB".

2) The routine name, 8 bytes in length. The nane of the routine
| oaded in the user BIOS area. Any nanme may be specified in ASCII
as long as it is not used in another routine.

3) The size of the routine loaded into the user BIOS area in 256-
byte units stored in binary. This is 1 byte in length.

4) The overwite flag indicates hwether the currently | oaded
routi ne can be overwitten. This is also 1 byte and if set to OOH
di sabl es the overwite feature.

5) The rel ease address area. The processing routine at this
address is executed before a routine currently |oaded in the user
BIOS area is overwitten by a new routine. This rel ease
processi ng routi ne may be executed only when the overwite flag
for the currently | oaded routine is set to OOH. The rel aese
address nmust fall within in the user BICOS area. The rel ease
processing routine nust end with a RET instruction

6) Not used and fixed to OOH

7) The checksum which is |laoded with the resilt obtained by
subtracting the contents of the 15 bytes (fromthe header top to
the item preceedi ng checksum) from OOH, sequentially one byte at a
time. This result is used for checking the validity of the header
dat a.

Overwite Flag and Rel ease Processing Routine

Set the overwite flag to OOH when | oading a routine which nmust be
resident in the user BIOS area (such as schedul er resident
routines) once it is |oaded. This routine can be deleted fromthe
user BIOCS area only by the programthat |oaded it. For routines
that all ow | oadi ng of new routines after execution of a rel ease
processing routine, a nonzero value nust be specified to allow a
new routine to be loaded into the user BIOS areawhen this area can
be restored to the original state after the executon of a rel ease
processing routine. Set this flag to a nonzero value for routines
which alter the systemarea at |oad tine, but which can restore
the systemarea into the original state by executing the rel ease
processing routine and | oading a new one into the user BICS area.

A user BIOS routine which is to nodify the contents of the system
area (hook or jump table, for exanmple) must save the origina
contents of the ssytemarea into the user BIOS area before
starting execution. The release processing routine is called to
restore the systeminto the state before the user BIOS routine is
| oaded by placing the saved contents back into the system area and
setting all header fields to OOH The header must be cleared even
if the system area need not be restored to the original state.

The rel ease processing routine nust be placed in the highest 256
bytes (including the header) of the user BIOS area.

Using User BIOS with an Application Program

The application program nust verify that the user BIOS routine is
avail abl e before accessing the routine. The procedure illustrated
bel ow nmust be followed to check this.

EE R R R R R R R

FI GURE TO BE TYPSET

EE R R R R R R R

(A) Checks whether the correct header is present by matching the
header ID with "UB" and checksum |If the header ID field contains
"US", it is unconditionaly concluded that the scheduler is using
the user BIOS area because it defines the header as "US"

(B) Check to determ ne whether the required user BIOS routine is
| oaded into the ser BIOS area by checking the routine nanme in the
header .

(C Call the routine addressed by the rel ease address in the
header .

(D) Load a new routine to the user BIOS area and update the header
contents.

Conpi I i ng PX-8 BASI C Prograns

There is no specific conpiler designed for the version of BASIC

i mpl enented on the PX-8. McroSoft's BASCOMwi || work to a
certain degree with PX-8 BASIC, however. It is available in 3 1/2
di sk format for use on the PF-10 from Sof Team (800-438-7638).
Davi d Western has taken the tinme to outline the specific areas of

i ncompatiility between BASCOM and the version of BASIC on the PX
Wi th certain suggestions on how to overcome sone of these
descrepencies. Here are his coments.

Here is a list of many inportant comuands that | have found to be
i ncompatabl e in some way and a correspondi ng sol uti on wherever
possi bl e.

by David Western

Al'l conmands comonly entered on the commuand |ine such as LI ST,
AUTO, LOAD, and SAVE can not be used. O her files can be chained

however ,

ALARMS

BEEP

CLS
FRE(0)

I NSTR

LI NE

. pa

LOCATE

OPEN

OPTI ON
COUNTRY

OPTI ON

usi ng the PX-8 conpatabl e CHAI N command.

None of the alarm functions work in BASCOM | have found
no way other than a machi ne | anguage routine to fix
this problem

The only thing you can do to make rmuch noi se in BASCOM
is to use PRINT CHR$(7) to activate the bell

Use PRINT CHR$(12) instead of CLS.
This will return 0 according to the BASCOM nanual

The INSTR function is not supported. Here is a short
routine to do the sane thing. A$ contains the string
you are searching and E$ contains the string you are
finding in A$. Z returns the position where found or O
if not found.

1000 FOR =1 TO LEN(A$)

1010 I F M D$(ES$, I, LEN(ES$)) =M D$(AS$, |, LEN(E$)) THEN
X=1 : RETURN

1020 NEXT |

1030 X=0: RETURN

LINE is not supported. Here is an ESC sequence that
will do the same thing once in SCREEN 3. Use the way
listed here to get into that screen node.

PRI NT CHRS$(27) ; CHR$(198) ; CHR$(X1) ; CHR$(X2) ; CHR$(Y1) ;
CHR$(Y2) ; CHR$(X3) ; CHR$(X4) ; CHR$(Y3) ; CHR$(Y4) ;
CHR$(Z1) ; CHR$(Z2) ; CHR$(Z3) ;

X1 = 1st byte of 1st X coordinate
X2 = 2nd byte of 1st X coordinate
Y1l = 1st byte of 1st Y coordinate
Y2 = 2nd byte of 1st Y coordinate
X3 = 1st byte of 2nd X coordinate
X4 = 2nd byte of 2nd X coordinate
Y3 = 1st byte of 2nd Y coordinate
Y4 = 2nd byte of 2nd Y coordinate
Z1 = 1st byte of mask pattern

Z2 = 2nd byte of mask pattern

Z3 =1 for OFF, 2 for ON, 3 for COWPLI MENT

LI NE (400, 18)-(18,18) is

PRI NT CHR$(27) ; CHR$(198) ; CHR$(1) ; CHR$(144) ;
CHRS$(0) ; CHR$(18) ; CHR$(0) ; CHR$(18) ; CHR$(0) ; CHR$(18) ;
CHRS$(&HFF) ; CHR$(&FF) ; CHR$(2) ;

Here is an ESC sequence to use as LOCATE does not work
wi t h BASCOM

PRI NT CHR$(27);"="; CHR$(Y+31); CHR$(X+31);
X and Y stand for the X and Y position.

Only files that access the disk drives can be used. Al

ot her specs are considered part of the filenane. IN and
QUT nust be used along with a call to the open routine to
directly use the PX-8 RS232 port. LPRINT works fine,

t hough.

Option Country is not supported in BASCOM In order to use
this feature you nmust use the procedure described on pages
C-3 and C-4 of the PX-8 BASIC manual

Option Currency does not work and I can find no contro

CURRENCY sequence to renedy this.

PCOPY PCOPY is not used as there are not seperate BASIC areas in
the BASIC conpiler at this tine.

PO NT The PO NT conmand, which returns the status of a dot on the
screen, is not inplenented. It would be possible to peek the
graphics nmenory to get this but I don't know where that is
or howit is formatted. | wish it DID work because then I
could conpile ny OKIDATA screen dunp routine which takes
forever in BASIC.

POVER All of the POAER commands (PONER OFF, CONT, or RESUME) do
not work. | know of no remedy for this either

PRESET PRESET can be done by using control sequences. The sane
basi ¢ sequence is used by both PSET and PRESET. A ful
description is on page C-8 and C-9 of the PX-8 BASIC nanua
under the section for ESC CHR$(199).

SCREEN The SCREEN command along with all of its options are
supported by control codes. Al of themare on page C-9 of
t he BASI C manual under the section describing ESC CHR$(208).
Al |l Features are supported using these.

SOUND I know of no way to use SOUND in BASCOM | imagine there are
routi nes you can call but EPSON doesn't seemto think anyone
woul d be interested.

STAT STAT is not handled in any way, but there is no real need
for it.

STOP KEY | can find no alternative for the STOP KEY command, but | am
pretty sure there is one. If anyone knows of an MBASIC
command or routine to do this please notify someone about
it.

TAPCNT TAPCNT can not be used though I am sure there is sonme
| ocation that can be peeked for the value. I'mnot an expert
on the special nenory |ocations for the PX-8 as there is no
information for it that | can get a hold of.

TI VES No tinme routines are present. This was because all TIME
routines are different and Mcrosoft wanted to nmake sure
BASCOM wor ked on npbst CP/ M machi nes. There is a machi ne
| anguage routine for it floating around sonewhere. .

TI TLE TITLE is not used as nmultiple program areas are not used.

W ND No command to control the mcro-cassette's nmotor could be
found though it is likely that one exists.

That is the end of the list. | hope that it has proved hel pful to
PX-8 Geneva users. If anyone has anything to add to the list then
login to the SOCI S Epson Connection BBS and | eave mail to David
Western or Bob Hermann. Ot herwi se call The Board Room at
(803) 548-1243 and leave mail to the SYSOP or upload the file.

	EPSON PX-8 Notes
	NI-CD Notes
	Direct Communication with the 8251
	Using the Async Communication Packages
	Using the Barcode Reader
	A/D Conversions
	BIOS Calls from Basic
	User BIOS

