
1

Epson Tips and Tricks
Martin Hepperle, November 2018 – January 2024

Contents

1. General ... 2

2. Power Supply ... 3

2.1. Transformer Unit ..3

2.2. Replacing the Battery ..4

2.3. Charging the Battery ...5

3. Variations of the ROMs ... 5

4. New Printer Paper .. 5

5. New Printer Ribbons .. 6

6. Internal RAM Boards ... 7

6.1. “mc” 8 KB RAM board ..7

6.2. 16 KB RAM board Type 1 ..8

6.3. 16 KB RAM board Type 2 ..9

7. HX-20 for the Bundeswehr .. 10

8. Replacing the Capacitors .. 10

9. Replacing the Cassette Drive Belt .. 11

10. Character Sets and Keyboards .. 14

11. Keyboards Types .. 15

12. Loading BASIC Programs via RS-232C .. 17

13. Controlling External Devices ... 17

14. Some Useful Subroutines ... 18

14.1. User Defined Characters ...18

2

14.2. Get the Time in Seconds ...18

14.3. Functions to obtain Low and High Byte of an Integer ..19

14.4. Decoding a String with a Hexadecimal Number ..19

15. Some Benchmark Results... 19

16. Writing Machine Language Routines .. 21

16.1. Extending the Operating System...27

16.2. Some Details about HX-20 BASIC (Microsoft BASIC) ..34

16.2.1. The Floating Point Accumulator ... 34

16.2.2. Memory allocation of Arrays .. 34

16.2.3. The BASIC Work Areas .. 35

17. Using a Printer .. 37

18. MH-20 – A Peripheral Emulator .. 37

18.1. Required Hardware for HX-20 ...38

18.2. Using the MH-20 Software ...38

18.3. Display Controller Emulation ...39

18.3.1. Applicable BASIC Keywords and Commands ... 40

18.4. Disk Drive Emulation ...44

18.4.1. Technical Background ... 44

18.4.2. The Emulation ... 45

18.4.3. Applicable BASIC Keywords and Commands ... 45

18.5. Credits ...46

19. Map of the System RAM ... 47

20. News and Commercial Announcements .. 49

21. References and Further Reading .. 59

1. General

The HX-20 was, and still is, a handy, portable computer with built-in printer and cassette drive – some

call it the first laptop.

The LCD screen shows a window of 4 lines of 20 characters each into a virtual screen which can (in

theory) be as large as 255 by 255 characters. In addition to text it can also display graphics at its

resolution of 120x32 pixels.

The cassette drive can be replaced by a small ROM box and you can add a larger RAM/ROM box to

the left side of the computer and you can install one ROM-chip inside the computer.

Additional devices like a barcode reader, a flexible disk drive unit and a display controller were

available in those days.

The operating system and an adapted Microsoft BASIC are stored in 32 KB of ROM, which also

contains a Monitor program. Furthermore 16 KB of RAM are installed inside the computer. The

BASIC also provides commands for graphics and for the RS-232C interface. It can also call routines

in machine code. Programs and data files can be stored in RAM and are immediately available after

switching the device on.

3

The serial RS-232C interface can be used to communicate with other computers or printers and

modems. A second „high speed interface“ was intended to be used by disk drives and display

controllers. It is not directly supported in BASIC, but can be used by programs in machine language.

The HX-20 computer was often used by sales forces, in surveying, agriculture and for mobile data

acquisition or even by the military. For these applications additional peripherals have been constructed

and can sometimes be found installed on these systems.

Because of the robust mechanical design the HX-20 is a long lasting computer – except for some

aging problems of it electronics components.

2. Power Supply

2.1. Transformer Unit

The transformer unit for the HX-20 should never be used without the built-in battery. On the on hand

side the battery acts as a buffer for actions with high power demands, for example printing or

accessing the cassette drive. Peak currents can exceed 1 A. On the other hand the battery charging load

reduces the voltage of the transformer to the required voltage of about 5 V.

The charging time of the original Ni-Cd cells (having about 1100 mAh) is roughly 8 hours. When new

cells with a higher capacity of 2000 mAh are used, the charging time grows to 14 hours. In order to

maximize battery life you should avoid overcharging the battery.

The original transformer unit is matched to the battery circuit of the HX-20. It supplies its nominal

voltage of 6V at 600 mA only when it is loaded by charging the battery. The 5.5/2.1 mm barrel plug

carries plus on the outer barrel and minus on the inner pin – most standard power supplies have the

polarity reversed. The circuit in the HX-20 has a protection diode so that no damage can occur when

the polarity is incorrect, but also no charging will take place.

You should always discharge the battery until the „CHARGE BATTERY !“ message appears, perform

a full charge and then disconnect the power supply again.

Figure 1: The original power supply

unit says “6 V” on the label.

Measurements show that the original power supply delivers

about 9 V when unloaded, which results in an initial charging

current of 250 mA. During charging the current drops rapidly

down to 150 mA. When the battery voltage has reached its

level of about 6V, the current has fallen to about 50 mA.

A modern regulated power supply of 6 V produced a low initial

current of only 50 mA which quickly drops to 20 mA. After

about two hours the current has become zero and the battery

will never be fully charged.

Therefore, a replacement power supply must deliver about 9V

and the charging current must be adjusted by inserting a

suitable resistor into the cable. The average current should

reach about 1/10 of the battery capacity (i.e. 200 mA for a

2000 mAh battery).

4

Figure 2: Using a modern, stabilized 9V/4.5W power supply with an inline 2 Watt resistor of 12 Ω yields an average

charging current of 200 mA and a charging time of about 12-14 hours. The cable has to be cut anyway to

reverse the polarity. Do not forget to slide the shrink tubing over the cable ends before soldering.

2.2. Replacing the Battery

 Ready-made battery packs with connectors can be found on eBay. I cannot say anything about

their quality, but I would guess that they work fine. If you have the equipment, I recommend

to charge and discharge the battery at least once using an external charger/discharger to

determine their true capacity. Alternatively you can build your own battery pack from single

NiCd cells. NiCd chemistry is preferable because the simple charging circuit (a resistor and a

protection diode) in the HX-20 is designed for these cells. The cells must not be too large –

there are small differences between so called „Sub-C“ cells and it is better to use smaller cells

than to try to maximize the capacity. A capacity of 1000-1600 mAh is sufficient – you do not

need 2500 mAh.

 When working on the HX-20 you must avoid electrostatic charges. Use a grounded metallic or

conducting foam work surface and ground yourself using a wrist strap.

 Place the computer with the keyboard facing down on a soft mat.

 Remove all seven screws on the bottom side and put aside.

 Turn the computer over, keeping the upper and lower shells together.

 Lift the upper shell at the rear end by about 5 cm. Use the front edge as a hinge. Next you can

unlock the flexprint cable beside the battery pack by pulling the collar upwards. Pull the

ribbon cable carefully upwards, out of the connector.

 Now you can open the case completely, again using the front edge as a hinge. Careful with the

two ribbon cables close to the front edge. You can lay both halves flat on our working surface,

keeping the two ribbon cables in their connectors.

 Remove the screw in the metal plate over the battery pack and unhook the plate from the case.

 Place the new battery close to the computer – if you replace the battery within a few minutes,

memory content will be maintained.

 Pull the old battery out of the cavity and unplug the connector.

 Plug the new battery in and place it into its cavity.

 Insert the metal plate and tighten the screw lightly. In case of a home-made battery pack: be

sure that you do not create a short – the energy content of the battery pack can lead to a fire.

 Use your left hand to hold and fold the upper case back over the lower case, using the lower

edge again as a hinge. Hold the rear open and insert the flexprint cable and close the lock by

pushing the collar down, all with your right hand.

 When the case is completely closed, wiggle the lever under the microcassette drive (or ROM

box) slightly right/left to make sure it locks into its counterpart.

5

 Also make sure that the blue cloth ribbon in the printer bay is properly placed and not caught

between the case parts. Also check the proper routing of the printer paper.

 Check the proper placement of the panel with the serial connector cutouts in the rear wall.

 Before replacing the screws: test the system – if you obtain no display you might have to

reattach the flexprint cable properly.

 If everything works: replace the screws and pull then hand tight.

2.3. Charging the Battery

The battery should only be recharged when the HX-20 tells you to do so. After charging, the charger

should be unplugged. Figure 3 shows a time history of the charging current obtained with a 9 V power

supply and a series resistor of 12 Ω. The charging was initiated after the HX-20 signaled “CHARGE

BATTERY !” and a minimum of the current indicates the completion of the charge. A charging time

of about 12 ±1 hours seems to be adequate for the 2000 mAh cells and this charger.

Figure 3: Charging current versus time for a NiCd battery pack having a nominal capacity of 2000 mAh.

3. Variations of the ROMs

In Europe, there are at least two versions of the ROMs: they boot as BASIC V1.0 and BASIC V1.1.

The HX-20 cases also differ slightly: older ones have an opening in the bottom cover where the

auxiliary processor is installed, while the later ones do not have this additional opening. So far I

encountered four systems:

 SN 011359, BASIC V1.0: has opening over slave processor

 SN 020734, BASIC V1.1: has opening over slave processor

 SN 040576, BASIC V1.1: has no opening over slave processor

 SN 042951, BASIC V1.1: has no opening over slave processor

4. New Printer Paper

 You can use any non-thermal printer paper with a width of 57…58 mm. In order to fit the tight

space you probably have to roll-your-own from a larger roll of paper. Just take a pencil and

wind a few meters of paper around it, keeping its side edges neatly aligned, remove the pen

and you are ready to go.

6

5. New Printer Ribbons

 In most cases the old ribbons are dry and produce only weak printout if any. Also the foam

rollers are disintegrating after so many years. Therefore, they tend to block the motion of the

endless ribbon. Luckily, even in 2018 new cassettes are still available, because they seem to

be used in printers of some Point-Of-Sales systems.

Figure 4: This ribbon cassette was taken apart to show the internal structure and the disintegrating foam wheels.

7

6. Internal RAM Boards

Some HX-20 come with an internal memory expansion. Originally Epson had not planned to allow for

internal RAM extensions, but some tinkerers found out, that there was enough space inside the shell to

add a board between keyboard and motherboard. A connector could be clamped onto the solder side

pins of the external bus connector at the left edge of the case. This connection is the weak point of all

boards – malfunctions are usually resulting from poor contact and I had to replace the flat spring

connectors with strips from a “tuned precision socket” on the “mc” board to make it work again.

The issue April 1984 of the German computer magazine „mc“ (“MicroComputer”) presented a do-it

yourself circuit layout for an 8 KB RAM expansion board. If no ROM modules were used, two of

these „mc“ boards could be added for the maximum of 16 KB RAM.

Similar boards were also produced by various manufacturers. These commercial boards usually came

with 16 KB of RAM or ROM, which could be selected by a setup procedure with the monitor.

6.1. “mc” 8 KB RAM board

Figure 5: A set of two RAM boards as published in “mc” magazine. Both modules are identical and can be switched

to a starting address by a solder bridge (a dip switch in the published design). Another switch can be used

to deactivate each board if a ROM would be installed.

These boards require no special activation. One or two boards can be installed inside the HX-20,

adding 8 to 16 KB of RAM. After installation, the usual full reset sequence is applied:

 Reset (press Reset button)

 Initialise (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

 Start BASIC (2)

 Input PRINT FRE(0) (Return)

The result should be 29275.

8

6.2. 16 KB RAM board Type 1

Figure 6: RAM board Type 1 with eight 2 KB RAM chips and four additional ROM sockets.

In order to make the full RAM capacity available the following procedure has to be applied:

 Reset (press Reset button)

 Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

 Start Monitor (1)

 Input S7E (Return) [setting $7E to $80 allows

 Input 80 (Return) accessing I/O address $3B below]

 Input - (Return)

 Input S3B (Return) [setting $3B (undocumented)

 Input 82 (Return) to $82 obviously enables RAM]

 Input - (Return)

 Input B (Return)

 Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

 Start BASIC (2)

 Input PRINT FRE(0) (Return)

Again, the result should be 29275.

9

6.3. 16 KB RAM board Type 2

Figure 7: RAM board Type 2 produced by Steinwald with eight 2 KB RAM chips (the empty footprints under the

sticker and the supporting TTL chips can also be populated with bank switched RAM).

The activation sequence for accessing the full 32 KB RAM for this board is:

 Reset (press Reset button)

 Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

 Start Monitor (1)

 Input SFFF5 (Return) [setting this byte in high address range

 Input 0 (Return) enables 32 KB RAM]

 Input - (Return)

 Input B (Return)

 Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

 Start BASIC (2)

 Input PRINT FRE(0) (Return)

As above, the result should be 29275. The option ROM socket on the main board cannot be used.

The activation sequence for accessing 24 KB RAM plus the 8KB ROM socket on the mainboard is:

 Reset (press Reset button)

 Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

 Start Monitor (1)

 Input SFFF5 (Return) [setting this byte in high address range

 Input 8 (Return) enables 24 KB RAM and 8KB ROM]

 Input - (Return)

 Input B (Return)

 Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

 Start BASIC (2)

 Input PRINT FRE(0) (Return)

The result should be 21083. The option ROM socket can be used e.g. for a FORTH ROM. The

remaining 8 KB of RAM on the board are “wasted”.

 Note: you can also use STAT ALL to examine the memory configuration.

10

7. HX-20 for the Bundeswehr

The German Army used the HX-20 to determine firing tables for howitzers. Devices from old military

stock appear regularly on eBay Germany, albeit at high asking prices around 100€ because these are

offered by commercial dealers and gold diggers. Keep in mind that these devices have been modified

and usually are not overhauled so that you will have to invest into a new battery as well as a

replacement of the capacitors.

Figure 8: The instructions for activation.

These devices come in a modified suitcase with

connectors for an external power supply and a reading

lamp. They also have a memory expansion installed,

which must be activated according to the instruction

sheet.

The manufacturer of these modifications was:

 Steinwald Electronic GmbH

 Am Sterngrund 1

 6590 Marktredwitz

Today the company name is:

 STEINWALD Datentechnik GmbH

 Oskar-Loew-Str. 12

 95615 Marktredwitz

Figure 9: Some HX-20 come with a nice label template for tape operation.

8. Replacing the Capacitors

The HX-20 contains 14 electrolytic capacitors on its main board. These have exceeded their useful

lifespan after more than 30 years. In most cases at least some are already leaking and the electrolyte

can be found on the printed circuit board and in the gray discolored solder joints. When trying to run

the HX-20 a weak or flickering LCD screen which cannot be adjusted to full contrast (all pixels dark)

is a sign of bad capacitors. Then it is time to replace all of them. Besides a broken battery pack this

seems to be the second most common problem with the HX-20.

The replacement is simple but tedious because the holes are relatively small and the old solder is

difficult to remove. This is partially caused by the reaction with the electrolyte which seems to change

the properties of the old solder. Despite some experience gained by refurbishing three HX-20, it

usually takes me about two hours to replace all capacitors.

If available all capacitors should be of miniature size – you should revert to the standard size with a

height greater than 7.5 mm only if you cannot source the smaller ones. The standard height capacitors

must be mounted flat on the circuit board in order to fit the board into the case. In this case you have

to bend the wires by 90 degrees. On the other hand this has the advantage that you can solder from

11

both sides and better inspect the soldering joints. I found the miniature capacitors at Reichelt

Elektronik in Germany, however not for all required capacities.

The following electrolytic capacitors are required:

C1, C2, C3, C4, C5, C6: 10 μF/16 V 4.3 mm Ø 7.5 mm

C7, C8 33 μF/16 V 6.5 mm Ø 7.5 mm

C9, C10, C11, C12 47 μF/16 V 6.5 mm Ø 7.5 mm

C13 100 μF/6.3V 6.5 mm Ø 7.5 mm

C14 1 μF/16V 6.5 mm Ø 7.5 mm

A professional solder sucker of the pistol type is a good tool to remove the old solder, but in some

cases additional mechanical rework might be necessary. Be careful not to damage the through-hole

connections between upper and lower board layers.

If you discover electrolyte on the PCB or on the lower side of the old capacitor some cleaning of the

board with water and alcohol should be performed to avoid corrosion.

Be sure that the new solder flows freely through the holes so that both sides of the PCB are wetted.

Wiggling each wire slightly before removing the soldering iron helps the tin to flow through the

narrow gap. To be sure that each solder joint is nice and without stresses I even reflow each joint after

cutting the excess wires.

Figure 10: Some of the nasty culprits.

9. Replacing the Cassette Drive Belt

Most HX-20 are equipped with a micro cassette drive. It comes not as a surprise that the belt of this

drive ages and finally breaks.

It can be replaced by a rubber belt with a square cross section of 0.8×0.8 mm to 1×1 mm and a circular

inner diameter of about 50 mm. This corresponds to a width of approximately 80 mm when pressed

into a flat shape (2×80 ≈ π×50). The belts I used had a diameter of 49 mm and a nominal cross section

of 1×1 mm. The cross section actually measured more like 1.2×1.2 mm which worked fine, but is the

upper limit.

You need pointed tweezers, a small Phillips head screwdriver, a de-soldering tool and a soldering iron.

The parts include a few tiny M 1.4 screws, washers and spacers, which should be saved in a small

container to avoid losing them. It may be wise to take some photographs or to make some sketches

during the disassembly.

12

In order to replace the belt one has to partially dismantle the drive:

 Remove the drive box from the HX-20 by pushing the lever on the rear of the HX-20.

 Remove two screws from the bottom and take the bottom shell off.

 Remove the three 3 small screws holding the metal frame in the upper shell. Two screws

above and below the connector and one on the opposite side.

 Unscrew the fourth screw with its small brass spacer at the upper edge of the PCB which fixes

the PCB and the motor carrier in the upper shell.

Figure 11: These screws have to be removed first:

1: Four screws to remove the drive assembly from the upper shell;

2: two screws to remove the PCB from the drive frame.

 Carefully remove the upper shell. Open the hatch and slide the shell off. There is a small

internal sheet metal lever for pushing the hatch open. It can be rotated slightly around its

vertical pivot axis to get out of the way. Do not use force, just wiggle the shell a bit and slide

it off at an angle of about 45 degrees.

 Unscrew the two screws holding the PCB on the cast aluminum frame; take care of the two

washers under the screw heads as well as the small stepped spacers under the PCB.

 Note the polarity and unsolder the two wires from the tachometer cap and both motor wires.

 Carefully unfold the PCB from the mechanical assembly. The remaining wires on one side

serve as a “hinge”.

 Remove the metal bridge supporting the large drive wheel and the tension wheel (two screws).

 Unscrew the tachometer cap above the motor (2 screws plus 2 brass spacer tubes).

 Note: you might also want to inspect the three electrolytic capacitors. while you have the PCB

on the table.

13

Figure 12: The PCB can be unfolded after unsoldering motor and tachometer cap wires and after removing the bar

across the large drive wheel and the tachometer cap. The new belt has already been installed. You can also

see three electrolytic capacitors on this board, which may also be replaced while the drive is already open.

 Remove the old belt; note how the small white wheel applies tension to the belt.

 Install the new belt – it should fit the groves so that its cross section is angled at 45 degrees.

 Replace the mechanical parts.

 Turn the wheels manually to move the belt and make sure that is moves smoothly without

rubbing against other parts.

 Replace all parts, except for the plastic shell covers.

 Solder the four wires back to where they belong.

 Plug the drive assembly into the HX-20 and make a test run (WIND, FILES, BREAK).

 If everything works, replace the two plastic shell parts.

 Make sure that the hatch can be opened with the lever; you may have to rotate the small

internal sheet metal lever back so that it properly engages the hatch mechanism.

And that was it – phew!

14

10. Character Sets and Keyboards

The European ROM version of the HX-20 supports different character sets than the International or

Japanese versions. For example the British pound sign is not present.

 country code

 0 1 2 3 4 5 6 7

ch
a

ra
ct

er
 c

o
d

e
35

36

64

91

92

93

94

96

123

124

125

126

country
SE DE FR DK SE DE FR NO

ASCII national

Figure 13: Character sets available in the European versions of the HX-20.

The country codes 0, 1 and, 2 have identical ASCII character sets, but different keyboard assignments.

These character bitmaps are stored in the last system ROM which is mapped into the memory range E000-

FFFF. The following character bitmap patterns can be found at the given offsets into this ROM:

Offset 1BBE...1D9D: 96 characters of 5 bytes (shown below 6 bytes wide as they appear on screen)
 | ■ | ■ ■ | ■ ■ | ■ |■■ | ■■ | ■■ | ■ | ■ | ■ | | | | | | ■■■ | ■ | ■■■ |■■■■■ | ■ |■■■■■ | ■■ |■■■■■ | ■■■ | ■■■ | | | ■ | | ■ | ■■■ |
 | ■ | ■ ■ | ■ ■ | ■■■■ |■■ ■ |■ ■ | ■ | ■ | ■ |■ ■ ■ | ■ | | | | ■ |■ ■ | ■■ |■ ■ | ■ | ■■ |■ | ■ | ■ |■ ■ |■ ■ | ■■ | ■■ | ■ | | ■ |■ ■ |
 | ■ | ■ ■ |■■■■■ |■ ■ | ■ |■ ■ | ■ | ■ | ■ | ■■■ | ■ | | | | ■ |■ ■■ | ■ | ■ | ■ | ■ ■ |■■■■ |■ | ■ |■ ■ |■ ■ | ■■ | ■■ | ■ |■■■■■ | ■ | ■ |
 | ■ | | ■ ■ | ■■■ | ■ | ■ | | ■ | ■ | ■■■ |■■■■■ | |■■■■■ | | ■ |■ ■ ■ | ■ | ■ | ■ |■ ■ | ■ |■■■■ | ■ | ■■■ | ■■■■ | | |■ | | ■ | ■ |
 | | |■■■■■ | ■ ■ | ■ |■ ■ ■ | | ■ | ■ |■ ■ ■ | ■ | ■■ | | | ■ |■■ ■ | ■ | ■ | ■ |■■■■■ | ■ |■ ■ | ■ |■ ■ | ■ | ■■ | ■■ | ■ |■■■■■ | ■ | ■ |
 | | | ■ ■ |■■■■ |■ ■■ |■ ■ | | ■ | ■ | ■ | ■ | ■ | |■■ |■ |■ ■ | ■ | ■ |■ ■ | ■ |■ ■ |■ ■ | ■ |■ ■ | ■ | ■■ | ■ | ■ | | ■ | |
 | ■ | | ■ ■ | ■ | ■■ | ■■ ■ | | ■ | ■ | | | ■ | |■■ | | ■■■ | ■■■ |■■■■■ | ■■■ | ■ | ■■■ | ■■■ | ■ | ■■■ | ■■ | | ■ | ■ | | ■ | ■ |
 |

 ■■■ | ■ |■■■■ | ■■■ |■■■ |■■■■■ |■■■■■ | ■■■ |■ ■ | ■■■ | ■■■ |■ ■ |■ |■ ■ |■ ■ | ■■■ |■■■■ | ■■■ |■■■■ | ■■■ |■■■■■ |■ ■ |■ ■ |■ ■ |■ ■ |■ ■ |■■■■■ | ■■■ | | ■■■ | ■ | |
■ ■ | ■ ■ |■ ■ |■ ■ |■ ■ |■ |■ |■ ■ |■ ■ | ■ | ■ |■ ■ |■ |■■ ■■ |■ ■ |■ ■ |■ ■ |■ ■ |■ ■ |■ ■ | ■ |■ ■ |■ ■ |■ ■ |■ ■ |■ ■ | ■ | ■ |■ | ■ | ■ ■ | |
■ ■■■ |■ ■ |■ ■ |■ |■ ■ |■ |■ |■ |■ ■ | ■ | ■ |■ ■ |■ |■ ■ ■ |■■ ■ |■ ■ |■ ■ |■ ■ |■ ■ |■ | ■ |■ ■ |■ ■ |■ ■ | ■ ■ |■ ■ | ■ | ■ | ■ | ■ |■ ■ | |
■ ■ ■ |■ ■ |■■■■ |■ |■ ■ |■■■■ |■■■■ |■ ■■■ |■■■■■ | ■ | ■ |■■ |■ |■ ■ ■ |■ ■ ■ |■ ■ |■■■■ |■ ■ |■■■■ | ■■■ | ■ |■ ■ |■ ■ |■ ■ ■ | ■ | ■ ■ | ■ | ■ | ■ | ■ | | |
■ ■■■ |■■■■■ |■ ■ |■ |■ ■ |■ |■ |■ ■ |■ ■ | ■ | ■ |■ ■ |■ |■ ■ |■ ■■ |■ ■ |■ |■ ■ ■ |■ ■ | ■ | ■ |■ ■ |■ ■ |■ ■ ■ | ■ ■ | ■ | ■ | ■ | ■ | ■ | | |
■ |■ ■ |■ ■ |■ ■ |■ ■ |■ |■ |■ ■ |■ ■ | ■ |■ ■ |■ ■ |■ |■ ■ |■ ■ |■ ■ |■ |■ ■ |■ ■ |■ ■ | ■ |■ ■ | ■ ■ |■ ■ ■ |■ ■ | ■ |■ | ■ | ■ | ■ | | |
 ■■■ |■ ■ |■■■■ | ■■■ |■■■ |■■■■■ |■ | ■■■■ |■ ■ | ■■■ | ■■ |■ ■ |■■■■■ |■ ■ |■ ■ | ■■■ |■ | ■■ ■ |■ ■ | ■■■ | ■ | ■■■ | ■ | ■ ■ |■ ■ | ■ |■■■■■ | ■■■ | | ■■■ | |■■■■■ |
 |

 ■■ | |■ | | ■ | | ■■ | |■ | ■ | ■ |■ | ■■ | | | | | | | | ■ | | | | | | | ■■ | ■ | ■■ | ■ | |
 ■ | |■ | | ■ | | ■ | |■ | | |■ | ■ | | | | | | | | ■ | | | | | | | ■ | ■ | ■ |■ ■ ■ | |
 ■ |■■■■ |■■■■ | ■■■■ | ■■■■ | ■■■ |■■■■■ | ■■■■ |■■■■ | ■■ | ■■ |■ ■ | ■ |■■■■ |■■■■ | ■■■ |■■■■ | ■■■■ |■ ■■ | ■■■■ |■■■■■ |■ ■ |■ ■ |■ ■ |■ ■ |■ ■ |■■■■■ | ■ | ■ | ■ | ■ | |
 | ■ |■ ■ |■ |■ ■ |■ ■ | ■ |■ ■ |■ ■ | ■ | ■ |■ ■ | ■ |■ ■ ■ |■ ■ |■ ■ |■ ■ |■ ■ |■■ |■ | ■ |■ ■ |■ ■ |■ ■ | ■ ■ |■ ■ | ■ |■ | | ■ | | |
 | ■■■■ |■ ■ |■ |■ ■ |■■■■■ | ■ | ■■■■ |■ ■ | ■ | ■ |■■ | ■ |■ ■ ■ |■ ■ |■ ■ |■■■■ | ■■■■ |■ | ■■■ | ■ |■ ■ |■ ■ |■ ■ ■ | ■ | ■■■■ | ■ | ■ | ■ | ■ | | |
 |■ ■ |■ ■ |■ |■ ■ |■ | ■ | ■ |■ ■ | ■ |■ ■ |■ ■ | ■ |■ ■ ■ |■ ■ |■ ■ |■ | ■ |■ | ■ | ■ |■ ■ | ■ ■ |■ ■ ■ | ■ ■ | ■ | ■ | ■ | ■ | ■ | | |
 | ■■■■ |■■■■ | ■■■■ | ■■■■ | ■■■■ | ■ | ■■■ |■ ■ | ■■■ | ■■ |■ ■ | ■■■ |■ ■ ■ |■ ■ | ■■■ |■ | ■ |■ |■■■■ | ■■ | ■■■■ | ■ | ■ ■ |■ ■ | ■■■ |■■■■■ | ■■ | ■ | ■■ | | |
 |

Offset 1D9E...1E5D: 32 graphics characters of 6 bytes
 ■ | ■ | | ■ | ■ | | ■ | | | ■ | ■ | ■ ■ ■|■■■■■■| |■■■ | | | ■ | | | | ■ | | | | | ■ | ■ | ■ | | | ■ |
 ■ | ■ | | ■ | ■ | | ■ | | | ■ | ■ |■ ■ ■ |■■■■■■| |■■■ | ■■■ | ■■■ | ■■■ | ■ ■ | ■ | ■■■ | ■■ | | ■ | |■ ■ |■■■■ | ■■■ | ■ |■ ■ | ■ | ■ |
 ■ | ■ | | ■ | ■ | | ■ | | | ■ | ■ | ■ ■ ■|■■■■■■| |■■■ |■■■■■ |■ ■ |■■■■■ |■■■■■ | ■■■ | ■■■ | ■ ■ | ■■■ | ■ | ■■■■ |■ ■ | ■ ■ |■ ■ ■ | ■ | ■ ■ | |■■■■■ |
■■■■■■|■■■■■■|■■■■■■|■■■ | ■■■■|■■■■■■| ■ | ■■■■|■■■ | ■■■■|■■■ |■ ■ ■ |■■■■■■| |■■■ |■■■■■ |■ ■ |■■■■■ |■■■■■ |■■■■■ |■■■■■ | ■ ■ |■ ■ | ■■■ | ■ ■ |■ ■ | ■ | ■ | ■ | ■ |■■■■■ | ■ |
 ■ | | ■ | ■ | ■ | | ■ | ■ | ■ | | | ■ ■ ■|■■■■■■|■■■■■■|■■■ |■■■■■ |■ ■ |■■■■■ |■■■■■ |■■■■■ |■■■■■ | ■■ ■ | ■■■ |■■■■■ |■■■■■ | ■■■ | ■■ | ■ |■ ■ ■ | ■ ■ | | ■ |
 ■ | | ■ | ■ | ■ | | ■ | ■ | ■ | | |■ ■ ■ |■■■■■■|■■■■■■|■■■ | ■■■ | ■■■ | ■ | ■■■ | ■■■ | ■ |■■■ |■■ ■■ | ■ |■■■■■ | ■ | ■ ■■ | ■ | ■■■ |■ ■ | ■ | |
 ■ | | ■ | ■ | ■ | | ■ | ■ | ■ | | | ■ ■ ■|■■■■■■|■■■■■■|■■■ | | | ■■■ | ■ | ■ | ■■■ |■■ |■■■■■ | ■■■ | ■ ■ | ■■■ |■■ ■ | ■ | ■ | | |■■■■■ |
 ■ | | ■ | ■ | ■ | | ■ | ■ | ■ | | |■ ■ ■ |■■■■■■|■■■■■■|■■■ | | | | | | | | | | | | | | | | | |

Offset 1E5E...1ED0: 23 international characters of 5 bytes (shown below 6 bytes wide as they appear on screen)
 ■ | ■■ | | ■■■ | ■ | ■ | ■ | ■ ■ | ■ ■ | ■ ■ | ■ ■ | ■ ■ | ■ ■ | ■ ■ | ■■ | ■ ■■ | ■ | ■ | | | ■ | ■ | |
 ■ |■ ■ | ■■■■ |■ | ■ | ■ | ■ | | | | | | | |■ ■ |■ ■ | ■■■ | ■ ■ | | ■ | | ■ |■ ■ |
■■■■ | ■■ |■ | ■■■ | ■■■ | | ■■■ | | ■ | ■■■ |■ ■ |■■■■ | | |■ ■ |■ ■ |■ ■■ | ■ |■■ ■ | ■■■ |■■■■ |■■■■■ | ■■■ |
 ■ | |■ |■ ■ |■ ■ |■ ■ |■ ■ | | ■ ■ |■ ■ |■ ■ | ■ | ■■■ |■ ■ |■ ■ |■■■■ |■ ■ ■ | ■ ■ | ■ ■ |■ ■ ■ | ■ |■ |■ ■ |
 ■■■■ | | ■■■■ | ■■■ |■■■■■ |■ ■ |■■■■■ | |■ ■ |■ ■ |■ ■ | ■■■■ |■ ■ |■ ■ |■ ■ |■ ■ |■■ ■ |■ ■ | ■■■■ |■ ■ ■ | ■■■■ |■■■■ |■ ■ |
■ ■ | | ■ | ■ |■ |■ ■ |■ | |■■■■■ |■ ■ |■ ■ |■ ■ |■ ■ |■ ■ |■ ■ |■ ■ | ■■■ |■■■■■ |■ ■ | ■■■ |■ ■ |■ | ■■■ |
 ■■■■ | | ■■ | ■■■ | ■■■■ | ■■■■ | ■■■■ | |■ ■ | ■■■ | ■■■ | ■■■■ | ■■■ | ■■■■ |■ ■ |■ ■■■ |■ |■ ■ | ■■■■ | ■ | ■■■■ |■■■■■ |■ ■ |
 |

Figure 14: Character bitmaps in the system ROM of the HX-20.

Note that the given address ranges are for ROMs which show BASIC Version 1.1 on system start. The

addresses in ROMs of Version 1.0 are shifted down by 8 bytes (the data starts at offset 1BB6). These

addresses are valid for the European HX-20 models.

The character set can be switched by storing a byte between 0x10 and 0x17 (for country codes 0 to 7)

at the address 0x7F and then executing the subroutine at 0xFF6A.

10 POKE &H7F,&H16
20 EXEC &HFF6A

15

11. Keyboards Types

So far I have encountered two different types of HX-20 keyboards. The first one uses individual

mechanical key switches with flat spring contacts; the second type is built from two flexible

membrane layers which carry conductive traces. Pressing a key deflects the upper membrane locally

until it touches the lower layer. The first type is very robust and individual switches can be replaced or

cleaned. The membrane-based keyboards seem to age less well and may develop problems depending

on temperature or moisture. As the individual key mechanics are installed with melted plastic rivets,

they cannot be removed without damaging them.

Figure 15: Top view of both keyboard types: the upper one is using membranes and assemblies of grouped switches,

the lower one carries individually soldered in key switches.

16

Figure 16: Bottom view: the upper keyboard shows the black melted plastic rivets of the switch frames, the lower

shows the soldered in key switches,

Figure 17: Key ‘6’ assembly used on the membrane keyboard and close-up view of the mechanical counterparts.

17

12. Loading BASIC Programs via RS-232C

The command

LOAD "COM0:"

can be used to load BASIC programs in text format from a second computer. If you have a Windows

system, you can use the RealTerm or Teraterm software to send such files. Without handshaking an

inter-character delay of about 10 ms is required to obtain a correct transmission at the default baud rate

of 4800.

The sender should terminate the transfer by sending a last character of CTRL-Z (0x1A). Then the LOAD

command terminates and returns to the command prompt. Otherwise one has to press the BREAK key

on the HX-20 to terminate the transfer.

13. Controlling External Devices

The serial interfaces can be used to control any device with a serial interface. If only a simple on/off

switching function is required, one can also use the “Remote” output of the HX-20. This connection is

intended to control the motor of an external cassette recorder/player. As the schematic shows, it is

completely decoupled from the HX-20 electronics by a relay and thus safe to use for external circuits.

Figure 18: The HX-20 contains a relay to control an external cassette recorder via the REMOTE connector. It can be

controlled by the MOTOR command.

The exact specification of this relay is unknown but the schematic shows a voltage of 5 V and a

5.1 Ω / 1 W current limiter resistor. Thus, the current drawn by the external device should never

exceed 200 mA – I recommend keeping it below 50 mA at 5 V.

A 2.5 mm mono plug with a small diameter handle is needed for the connection. The small diameter is

required for inserting the plug far enough into the HX-20. As I could only find 2.5 mm plugs with a

too large diameter of the handle, I soldered the wires and then filled its body with epoxy resin. Finally

I used a lathe to turn the diameter of the plastic handle partially down to the required diameter.

Alternatively one could also use some silicone rubber or epoxy putty to create a suitable handle.

18

14. Some Useful Subroutines

14.1. User Defined Characters

The following program fragment can be used to define characters which are assigned to the

GRAPH+0 and following keys. It has to be executed only once after a cold start.

10 REM Define NCHARS Characters
20 NCHARS=1
30 ADDR=&H0A40
40 MEMSET ADDR+6*NCHARS
50 REM Again, as MEMSET cleared all variables
60 ADDR=&H0A40
70 NCHARS=1
80 LO=ADDR AND &H00FF
90 HI=(ADDR/256) AND &H00FF
100 POKE &H011E,HI
110 POKE &H011F,LO
120 REM NCHARS Character Bitmap(s) of 6 bytes each
130 DATA 92,98,2,98,92,0
140 RESTORE 130
150 FOR N=1 TO 6*NCHARS
160 READ B
170 POKE ADDR,B
180 ADDR=ADDR+1
190 NEXT N
200 STOP

14.2. Get the Time in Seconds

By converting the return value of the TIME$ function we can determine the seconds into the day:

210 REM Current Time in Seconds
220 T$=TIME$
230 T#=3600.#*CDBL(VAL(MID$(T$,1,2)))
240 T#=T#+60.#*CDBL(VAL(MID$(T$,4,2)))
250 T#=T#+CDBL(VAL(MID$(T$,7,2)))
260 RETURN

The current time is also maintained in the even memory locations between 0x0040 and 0x0044. It can

be read, converted and displayed by the following code fragment:

1000 REM --- TIME ---
1010 T%=0
1020 POKE &H007E,PEEK(&H007E) OR 128
1030 S%=PEEK(&H0040)
1040 M%=PEEK(&H0042)
1050 H%=PEEK(&H0044)
1060 S%=INT((S% AND &F0)/16)*10+(S% AND &H0F)
1070 M%=INT((M% AND &F0)/16)*10+(M% AND &H0F)
1080 H%=INT((H% AND &F0)/16)*10+(H% AND &H0F)
1090 IF S%=T% THEN 1030
1100 IF S%>59 THEN 1030
1110 PRINT USING "##:##:##";H%,M%,S%
1120 PRINT CHR$(&H1E);
1130 T%=S%
1040 T# = 3600.#*H% + 60.#*M% + CDBL(S%)
1150 GOTO 1030

Notes:

 Line 1020 enables access to the low memory region.

19

 Line 1090 waits to update the display every second.

 Line 1100 catches a problem: the seconds value may be larger than 59, probably when the

PEEK in line 1030 occurs just when the clock is updated.

 Line 1120 moves the cursor back to overwrite the time output line.

14.3. Functions to obtain Low and High Byte of an Integer

230 DEF FNLO$(X%)=CHR$(X% AND &HFF)
240 DEF FNHI$(X%)=CHR$((X% AND &HFF00)/256)

14.4. Decoding a String with a Hexadecimal Number

This is a rather trivial application, but it is easily overlooked that the VAL function can do more than

parse decimal numbers.

230 HX$=”0A40”
240 H%=VAL(“&H”+HX$)

15. Some Benchmark Results

The following table lists some execution times for the infamous BYTE Benchmark “Eratosthenes

Primes” [3]. The times given for these roughly comparable systems are all for 10 iterations.

Computer Year CPU Type and Speed Programming Language Time

HX-20 1982 6301 @ 0.614 MHz BASIC 4050 s
HX-20 1982 6301 @ 0.614 MHz Assembler 17 s
HX-20 1982 6301 @ 0.614 MHz Forth 229 s
TI-99/4 1981 TMS 9900 @ 3.0 MHz TI-BASIC 3960 s

PET 1977 6502 @ 1.0 MHz BASIC 3180 s
Apple][1977 6502 @ 1.02 MHz Applesoft BASIC 2806 s
HP-85 1980 Capricorn @ 625 kHz BASIC 3084 s
HP-85 1980 Capricorn @ 625 kHz Assembler 21 s

TRS-80/II 1977 Z-80 @ 1.77 MHz MBASIC 2250 s
IBM PC 1981 8088 @ 4.77 MHz BASICA 1990s

Table 1: Execution times for the BYTE benchmark.

We can clearly see that the HX-20 in BASIC mode is not exactly the fastest computer. In order to

restore the honor of this machine I wrote an assembler version of the benchmark. As I had no

experience with the 6800 family and the Hitachi 6301, the code is surely not optimized but the results

should give a good estimate of what is possible.

 ; ---
 ; The infamous BYTE Benchmark Eratosthenes Sieve.
 ; For the Epson HX/20 with Hitachi HS 6301 CPU.
 ; ---
 ; This assembly language program performs 10 loops
 ; of the Sieve benchmark.
 ; The number of primes is saved in variable "C" at
 ; address 0x0ADA. The correct result is 1899 (0x076B).
 ;
 ; Enter the hex bytes starting at address 0xA40
 ; using the Monitor.
 ; Start with
 ; S0A40

20

 ; When the code up to address 0AD3 has been entered,
 ; it can be executed from 0A40 until the PC reaches
 ; 0ABE (Label STOP):
 ; G0A40,0ABE
 ;
 ; Assembled from the ASM source with the a09 assembler:
 ; a09 -oH01 sieve.asm –Lsieve.lst
 ;
 ; References:
 ; BYTE Magazine, January 1983
 ;
 : Created 12/2018 Martin Hepperle
 ; ---

 OPT H01 ; Hitachi 6301

 ORG $0A40
 Addr Bytes
 0A40 860A LDAA #$0A ; 10 times
 0A42 B70AD4 STAA REP ; repeat count

 ; set FLAG(0:8190)=1
 0A45 CC0001 AGAIN LDD #$0001 ; step size=1
 0A48 FD0AD9 STD P
 0A4B 8601 LDAA #$01 ; set flag
 0A4D B70ADD STAA F
 ; starting address
 0A50 CC0AE0 LDD #FLAG ; load address of FLAG, use as...
 0A53 FD0ADE STD FPTR ; ...starting address for FILL
 0A56 BD0ABF JSR FILL ; set *FPTR, *(FPTR+1), ... to F=1

 ; preparation of loop
 0A59 CC0000 LDD #$0000 ; C=0
 0A5C FD0AD5 STD C ;
 0A5F CCFFFF LDD #$FFFF ; I=-1 for starting loop at 0
 0A62 FD0AD7 STD I
 0A65 8600 LDAA #$00 ; clear flag
 0A67 B70ADD STAA F

 ; I-loop from 0 to 8190
 0A6A FC0AD7 NEXT LDD I
 0A6D C30001 ADDD #$00001
 0A70 FD0AD7 STD I ; I=I+1

 ; compare I against 8191
 0A73 18 XGDX ; D->X
 0A74 8C1FFF CPX #$1FFF
 0A77 273C BEQ FINI ; end of loop

 ; FLAG[I] == 0?
 0A79 CC0AE0 LDD #FLAG ; load address of FLAG
 0A7C F30AD7 ADDD I ; address of FLAG[I]
 0A7F 18 XGDX ; D->X
 0A80 A600 LDAA $00,X ; get value from FLAG[I]
 0A82 27E6 BEQ NEXT ; if already ZERO: continue I loop

 0A84 FC0AD7 LDD I ; I
 0A87 F30AD7 ADDD I ; I+I
 0A8A C30003 ADDD #$3 ; I+I+3
 0A8D FD0AD9 STD P ; P=I+I+3

 0A90 F30AD7 ADDD I ; K=P+I
 0A93 FD0ADB STD K

 0A96 FC0AD5 LDD C ; get C
 0A99 C30001 ADDD #$00001 ; C=C+1

21

 0A9C FD0AD5 STD C ; update count of primes

 ; K > 8190?
 0A9F FE0ADB LDX K
 0AA2 8C1FFE CPX #$1FFE ; 8190
 0AA5 2EC3 BGT NEXT ; continue with loop

 ; for J=K to 8190 step P
 ; starting address
 0AA7 CC0AE0 LDD #FLAG ; load address of FLAG[K]...
 0AAA F30ADB ADDD K ; ...and use as...
 0AAD FD0ADE STD FPTR ; ...starting address for FILL

 0AB0 BD0ABF JSR FILL ; set *(FPTR+K), *(FPTR+K+P), ...

 0AB3 20B5 BRA NEXT
 ; all done, repeat?
 0AB5 B60AD4 FINI LDAA REP ; get repeat count
 0AB8 4A DECA ; decrement
 0AB9 B70AD4 STAA REP ; store repeat count
 0ABC 2687 BNE AGAIN ; not yet finished
 0ABE 39 STOP RTS ; finally

 ; fill FLAG array from *BPTR with F step P
 0ABF FE0ADE FILL LDX FPTR ; address in BPTR = FLAG[J]

 0AC2 8C2ADE LOOP CPX #FLGE ; address of last byte in FLAG
 0AC5 2E0C BGT DONE ; beyond end of FLAG[]: leave loop
 0AC7 B60ADD LDAA F ; flag value to set (byte)
 0ACA A700 STAA $00,X ; insert value into FLAG[J]
 0ACC 18 XGDX ; X<->D
 0ACD F30AD9 ADDD P ; now D has X+P
 0AD0 18 XGDX ; bring X+P back to X
 0AD1 20EF BRA LOOP ; again
 0AD3 39 DONE RTS ; done
 ; -------------------------
 0AD4 00 REP FCB $00
 0AD5 0000 C FDB $0000 ; prime count, 1899d = 076Bh
 0AD7 0000 I FDB $0000 ; loop count
 0AD9 0000 P FDB $0000 ; step size
 0ADB 0000 K FDB $0000 ; starting index
 0ADD 00 F FCB $00 ; value to set
 0ADE 0000 FPTR FDB $0000 ; pointer to array element
 ; -------------------------
 FLAG ; flag array
 0AE0 00000000000000 FILL $00,8190 ; fill with zero
 0AE7 00000000000000
 ...

 2ADE 00 FLGE FCB $00 ; last byte in FLAG array
 END

16. Writing Machine Language Routines

When I ran the BYTE benchmark "Eratosthenes Sieve" in BASIC, I was disappointed by the low

performance. Experience from the HP-85 hinted that writing the code in machine language (using an

assembler) could accelerate the program by a huge factor. Therefore, I started looking for ways to

write and use assembler programs for the HX-20.

22

The BASIC Reference Manual contains a brief explanation how to call machine language subroutines

with the EXEC and USR functions. It also explains the structure of BASIC variables so that these can be

accessed by machine language programs.

This BASIC interface is rather limited, though: the EXEC function does not take any parameters but the

USR function can take one parameter. Officially, the USR function always returns the same type as its

parameter, i.e. if the parameter is an integer, the function return type must also be integer (but there is

a way to change this by placing the result in the FPACC memory location and by adapting the type

information in 0x0085-0x0086). If more than one parameter has to be transferred, these parameters

could be copied to predefined global memory locations so that they can be accessed from BASIC as

well as from the machine language program. Another option to handle multiple or mixed parameter

types is to wrap the parameters into the bytes of a string and write the USR function to split this string

parameter into its components. Finally for multiple numeric parameters an array could be used.

In Figure 19 I show the register set of the 6301 in comparison to the well-known 6800 and 6809. It can

be seen that assembler code for the 6800 should be fairly easy to translate for the 6301. The 6809 has

two additional 16-bit registers making a translation less straightforward.

For more information about programming the Hitachi 6301 one should consult the data sheet of the

6301 and books about the 6800 processor family. I could not find any specific book about the 6301,

though.

Figure 19: Registers of the 6301 and the related 6800 processor family.

An introduction into the 6301 CPU and its assembler language mnemonics is given in the book by

Balkan [4]. It even contains a listing of an assembler written in BASIC and running on the HX-20 or

other machines with Microsoft BASIC.

Unfortunately, the listing seems to have been typeset manually so that it contains about a dozen typos

as well as one major bug. I used this assembler for my first exploratory steps (after fixing the typos

and the bug and running it on a CP/M emulator with MBASIC). However, due to memory limitations

of the 16 KB HX-20, this assembler is rather minimalistic.

Therefore, I searched again and found the A09 assembler which had also been extended to cover the

6301 opcodes. This assembler comes in plain “C” and I compiled and executed it on a Windows

23

system. It can produce listings as well as binary and hexadecimal output. After fixing one bug in its

6301 opcode table it worked fine (by now, the fix should be integrated into the official release).

In order to load the assembled code into the HX-20 I wrote a small Python script which reads the

listing file produced by A09 and transforms the code into a BASIC loader program, complete with

MEMSET, DATA and the required POKE commands.

The transfer of this BASIC program to the HX-20 is accomplished by the RealTerm program at 4800

baud with an inter-character delay of 5…10 ms.

Thus, my process is

 Connect both machines with the proper RS-232C cable.

 On the PC:

o assemble the code with A09,

o convert the output into a BASIC loader program using LST2BAS.py,

o set the communication parameters to 4800 baud, 8 bits, no parity, no handshaking and

1 stop bit,

 On the HX-20

o execute LOAD "COM0:(68N1E)" to prepare for loading the program into the HX-20.

 On the PC:

o use RealTerm to send the BASIC program to the HX-20,

o wait until the program has been transferred.

 on the HX-20

o inspect and execute the BASIC program,

o this last step will actually write the machine code into memory.

After the machine code has been poked into memory, it stays there as long as no MEMSET command

reduces the amount of reserved memory or another machine code program overwrites this memory.

This means that the BASIC loader program has to be run only once. On the other hand, it does not hurt

to run it again, if you want to be sure that the memory has not been altered. After loading, the machine

code can also be saved to and read from the microcassette using the SAVEM respectively the LOADM

commands. Unfortunately, it seems to be impossible to save and restore binary programs via the RS-

232C interface.

If the machine code sequence in the DATA statements would become very large, one could modify the

loader program to read the DATA from the RS-232C port or from tape. So far I wrote only small

programs so that this was not necessary and I found it more convenient to keep the machine code

together with the loader in a single program.

The Python script:

'''
This is a simple tool for converting the listing produced by the
A09 assembler into Epson HX-20 BASIC statements.

The resulting BASIC program loads the machine code into memory.
The code can then be executed by an EXEC statement or by
calling a USR function.

In the DATA statement starting addresses for a range of opcodes
or data are identifiable by a length of four characters.
All opcodes or data bytes are two characters long.
'''

import sys

--

24

def go (s):
 '''
 For Epson HX-20.
 Convert 6301 assembler listing file "s" into BASIC.
 '''

 # grab all (listing files are small)
 fIn = open(s);
 ss = fIn.readlines();
 fIn.close();

 nLines = len(ss);

 # values have to be adapted
 # RETURN is placed
 nStop = 1070

 n = 10
 print (str(n)+' REM --- Epson HX-20 ---')
 n = n+10
 print (str(n)+' REM --- M. Hepperle 2018 ---')
 n = n+10
 print (str(n)+' REM --- adjust BASIC starting address')

 # skip MEMSET line
 n = n+10
 nMemSet = n

 n = n+10
 print (str(n)+' REM --- load the code bytes')
 n = n+10
 print (str(n)+' GOSUB 1010')
 n = n+10
 print (str(n)+' REM --- define the function')
 n = n+10
 nDefFn = n
 n = n+10
 print (str(n)+' REM --- application example')

 # -----
 n = n+10
 print (str(n)+' OPEN "O",#1,"COM0:(68N1D)"')
 n = n+10
 #print (str(n)+' PRINT USR1(CHR$(0)+CHR$(32)+CHR$(0)+CHR$(64)+"Hello World")')
 print (str(n)+' PRINT USR1("Hello World")')
 n = n+10
 print (str(n)+' CLOSE #1')
 # -----

 n = n+10
 print (str(n)+' REM --- if no parameters, then use:')
 n = n+10
 print (str(n)+' REM EXEC &H0A40')
 n = n+10
 print (str(n)+' END')

 n = 1000
 print (str(n)+' REM --- Hex Code Loader ---')

 n = n+10
 print (str(n)+' N%=0')

 n = n+10
 nLoop = n
 print (str(n)+' READ C$')

 n = n+10
 nReturn = n+50
 print (str(n)+' IF C$="DONE" THEN '+str(nReturn))

 n = n+10
 print (str(n)+' N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0')

 # new address, DATA MUST start with an address!
 n = n+10

25

 print (str(n)+' C%=VAL("&H"+C$)')

 # new address, DATA MUST start with an address!
 n = n+10
 print (str(n)+' IF LEN(C$)=4 THEN A%=C% : GOTO '+str(nLoop))

 # new opcode
 n = n+10
 print (str(n)+' POKE A%,C% : A%=A%+1 : GOTO '+str(nLoop))

 # nStop
 n = n+10
 if n != nReturn:
 print ('*** ERROR: increase nReturn by '+str(n-nReturn))
 print (str(n)+' RETURN')

 line=0;
 address = 0

 startAddress = 65536
 endAddress = 0

 sLine = ''

 while line < nLines:
 l = ss[line].replace("\n","")

 # this is the End
 if l.startswith('SYMBOL TABLE'):
 break

 # continuation line has no blank in the first column
 if l[0:1] != ' ':
 #{
 # skip
 line = line+1
 continue
 #}

 addr = l[1:5].strip()

 if len(addr) == 4:
 #{
 try:
 #{
 addrDec = int(addr,16)

 if addrDec < startAddress:
 #{
 startAddress = addrDec
 #}

 if addrDec > endAddress:
 #{
 endAddress = addrDec
 #}

 if addrDec != address:
 #{
 # a step in addresses -
 # output new start address
 address = addrDec
 sLine = sLine + addr + ','
 #}

 opcodes = l[6:20].strip()
 i = 0

 while i < len(opcodes):
 #{
 sLine = sLine + opcodes[i:i+2] + ','
 i = i+2

 # update high water mark

26

 if address > endAddress:
 #{
 endAddress = address
 #}

 # next free address or start of BASIC for MEMSET
 address = address+1

 if len(sLine)>57:
 #{
 n = n+1
 print (str(n) + ' DATA ' + sLine[0:len(sLine)-1])
 sLine = ''
 #}
 #}
 #}
 except:
 #{
 addrDec = 0
 #}
 #}

 line = line+1
 if line > 50000:
 #{
 break
 #}

 # flush DATA line
 sLine = sLine + 'DONE'
 n = n+1
 print (str(n) + ' DATA ' + sLine[0:len(sLine)])

 # insert MEMSET line above
 print (str(nMemSet) + ' MEMSET &H' + hex(endAddress+1).upper()[2:])
 print (str(nDefFn)+' DEFUSR1=&H'+hex(startAddress).upper()[2:])

 # terminate transfer with ^Z
 print ('\032')

 if 1==1:
 print ('Comments:')
 print ('=========')
 print ('The binary code is loaded into RAM between &H' +
 hex(startAddress).upper()[2:]+' and &H' + hex(endAddress).upper()[2:]+'.')
 print ('Thus we need to use MEMSET to shift the start of the BASIC')
 print ('program and data area up:')
 print (' MEMSET &H' + hex(endAddress+1).upper()[2:])
 print ('')
 print ('If the code requires no parameters, you can execute it with')
 print (' EXEC &H' + hex(startAddress).upper()[2:])
 print ('')
 print ('If it takes one parameter, define it as a USR function:')
 print (' DEFUSR1=&H' + hex(startAddress).upper()[2:])
 print ('(Note that USR functions can have only one parameter.')
 print (' Multiple parameters can often be packed into a string or array)')
 print ('Call the function with its parameter and grab the return value:')
 print (' I%=USR1(...parameter...)')
 print ('')
 print ('The generic Hex Code loader at the end of the program reads DATA')
 print ('statements containing either four or two digit hexadecimal numbers.')
 print ('If the number has 4 digits it is interpreted as the "current address".')
 print ('Any following data bytes will be loaded starting at this address.')
 print ('If the number has two digits, it is a data byte which will be loaded')
 print ('to the "current address" and the address is incremented by one.')
 print ('This scheme allows loading data to arbitrary addresses, if desired.')
 print ('Reading the data stream is terminated by the data item DONE.')
 print ('')
 print ('If nothing changes, the data has to be read only once, so that')
 print ('you could add a test for e.g. the first and last bytes and skip loading.')
 print ('The assembler code should usually end with an RTS instruction (&H39).')

--

27

if __name__ == "__main__":
 if len(sys.argv)>1:
 basePath = "D:\\HP\\Epson HX-20\\ASM\\"
 basePath = './'
 fileName = sys.argv[1]
 go(basePath + fileName)
 else:
 print ('Usage: LST2BAS listing.lst')

16.1. Extending the Operating System

The BASIC Operating System of the HX-20 is astonishingly flexible and can be extended in various

ways. One option is to add new devices. The core system already supports the devices

KYBD: keyboard,

SCRN: screen,

LPT0: internal printer,

CAS0: internal cassette (optional),

CAS1: external cassette,

PAC0: ROM cartridge (optional),

COM0: RS232C,

BRCD: barcode reader (optional),

“A:, B:, C:, D: flexible disk units (optional).

The system allows up to 16 devices. Most devices of these can be accessed sequentially with standard

BASIC statements like OPEN, CLOSE, PRINT, INPUT, EOF, LOF and so on.

For each device a device driver is installed in a device table, which is a list of addresses of “Device

Control Blocks” (DCB). Each DCB has a prescribed structure and contains the name of the device as

well as addresses to a set of required functions. It is possible to add devices by installing a device

driver somewhere in RAM and adding the address of its DCB to the table. Before removing the driver,

you should uninstall it, by zeroing the address entry in the device table.

The DCB has the following structure:

; Device Control Block
DCB: FCB "BUF0" ; 4 character name
 FCB $30 ; I/O modes: $01: read-only, $20: write-only,
$30: r/w
 FDB OPENDEV ; OPEN routine
 FDB CLOSEDEV ; CLOSE routine
 FDB READDEV ; READ routine
 FDB WRITEDEV ; WRITE routine
 FDB EOFDEV ; EOF routine
 FDB LOFDEV ; LOF routine
DEVBUF: FCB $00,$00,$00,$00 ; for device purposes
COLPOS: FCB $00 ; current column position (returned by BASIC
POS function)
MAXCOL: FCB $00 ; max. column: $00: infinite
PRTTAB: FCB $14 ; print zone width: step of “,” separated
PRINT output
LSTTAB: FCB $00 ; last print zone on line
WIDTH: FCB $80 ; WIDTH support: $00: yes, $80: no

Following the name of the device it contains some flags and the addresses of 6 worker routines. These

routines are called when the device is opened or closed, when bytes are read and/or written to the

device and when the state of the device is inquired. I/O is performed on a sequential byte-by-byte

28

basis, so this approach is not the fastest way to read or write large amounts of data. But all devices can

be used easily with the standard I/O functions of BASIC.

The following example implements a simple device which provides a small ring buffer of 64 bytes.

You can write data to the buffer and later read it back. It is rather useless, but serves as an example of

a new device. It is installed with a small BASIC loader program and thus becomes available for all

BASIC LOGINs. I decided to place it just below BASIC into RAM starting at address $0A40. This

was the most convenient option for me.

To generate such a driver you

 write the assembler code, starting with the DCB and implementing the required functions,

 assemble the code with a suitable assembler (I use a09),

 translate the binary bytes into BASIC DATA statements and append it to the BASIC loader

program (I use a python script to read the listing produced by a09),

 run the BASIC loader program, which

o moves the starting point of BASIC up to leave room for the new device code,

o loads the DCB and the code into the free space,

o installs the address of the DCB in the device table.

After the driver has been installed, it can be used until it is removed from the device table by replacing

the address of its DCB in the device table with null bytes. This removal is also implemented in the

example BASIC program.

When the driver has been loaded once, it would also be possible to SAVEM it to a disk or tape file.

Later, a BASIC program would only need the correct MEMSET and a LOADM command would

replace the slow HEX loader. The MEMSET command is important to keep the allocated space from

being overwritten by BASIC (there are also other but more complex ways to reserve space for such a

driver).

; a09 device.asm -ldevice.lst
; python LST2BAS.py device.lst > device.bas

 ; HX-20: Hitachi 6301
 OPT H01
 OPT NCL

; insert below BASIC into the address range $0A40...$0AF7
 ORG $0A40

;
; A device driver skeleton for the Epson HX-20
;
; Implements a simple device "BUF0:" which stores
; bytes written to it in a ring buffer.
; Reading from the device returns the bytes written until
; the buffer is empty.
; The LOF() function returns the amount of data currently in the buffer.
; The EOF() function returns 0 if there is something in the buffer,
; -1 otherwise.
;
; Example
;
; 10 REM --- Epson HX-20 ---
; 20 REM --- M. Hepperle 2024 ---
; 30 REM --- adjust BASIC starting address
; 40 MEMSET &HAF8;

29

; 50 REM --- load the device "BUF0"
; 60 GOSUB 350
; 70 REM --- application example
; 80 OPEN "O",#1,"BUF0:"
; 90 PRINT #1,"123";
; 100 PRINT "POS(1)=";POS(1)
; 110 PRINT #1,"ABC"
; 120 PRINT #1,"abc";
; 130 PRINT "POS(1)=";POS(1)
; 140 CLOSE #1
; 150 ON ERROR GOTO 240
; 160 OPEN "I",#1,"BUF0:"
; 170 PRINT "Buffer size=";LOF(1)
; 180 FOR I%=1 TO 100
; 190 C$=INPUT$(1,#1)
; 200 IF ASC(C$)=13 THEN C$="CR"
; 210 IF ASC(C$)=10 THEN C$="LF"
; 220 PRINT "/";C$;
; 230 NEXT I%
; 240 CLOSE #1
; 250 PRINT"/"
; 260 PRINT "UNLINK BUF0:"
; 270 INPUT "Y/N";YN$
; 280 IF YN$<>"Y" THEN GOTO 330
; 290 IF A%=0 THEN GOTO 330
; 300 POKE A%,0
; 310 POKE A%+1,0
; 320 PRINT "BUF0: at";A%;"removed"
; 330 END
; 340 REM --- Hex Code Loader ---
; 350 N%=0
; 360 READ C$
; 380 IF C$="DONE" THEN 430
; 390 N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0
; 400 C%=VAL("&H"+C$)
; 410 IF LEN(C$)=4 THEN A%=C% : GOTO 360
; 420 POKE A%,C% : A%=A%+1 : GOTO 360
; 430 PRINT
; 440 REM install device control block in DCB table
; 450 DCBTAB%=&H0657
; 460 FOR A%=DCBTAB% TO DCBTAB%+30 STEP 2
; 470 C%=PEEK(A%)*256+PEEK(A%+1)
; 480 IF C%=&HA40 THEN GOTO 540
; 490 IF C%=&H000 THEN GOTO 520
; 500 NEXT A%
; 510 IF A%>DCBTAB%+28 THEN GOTO 560 : REM ERROR
; 520 POKE A%,&H0A : REM HIGH
; 530 POKE A%+1,&H40 : REM LOW
; 540 PRINT "BUF0: at";A%;"added" : REM remember A% for later removal
; 550 RETURN
; 560 PRINT "Cannot install BUF0:"
; 570 STOP
; 580 DATA 0A40,42,55,46,30,30,0A,5E,0A,5F,0A,60,0A,7C,0A,A0,0A,AC,00
; 590 DATA 00,00,00,00,00,14,00,80,0A,B8,0A,B8,39,39,FE,0A,5A,BC,0A,5C
; 600 DATA 27,0F,A6,00,08,8C,0A,F8,26,03,CE,0A,B8,FF,0A,5A,39,86,FF,97
; 610 DATA F5,39,5F,D7,F5,FE,0A,5C,A7,00,08,8C,0A,F8,26,03,CE,0A,B8,FF
; 620 DATA 0A,5C,81,0D,27,08,81,0A,27,04,7C,0A,55,39,7F,0A,55,39,5F,FE
; 630 DATA 0A,5A,BC,0A,5C,27,01,39,5A,39,FC,0A,5C,B3,0A,5A,2A,03,C3,00
; 640 DATA 40,39,DONE
; 650 REM --- END

; EOFLG EQU $00F8 ; EOF flag (error in Epson manual)
EOFLG EQU $00F5 ; EOF flag (J. Wald and system ROM A000-BFFF)

; ------------------------------
; Device Control Block
DCB: FCB "BUF0" ; 4 character name

30

 FCB $30 ; I/O mode: $01: r, $20: w, $30: r/w
 FDB OPENDEV ; OPEN routine
 FDB CLOSEDEV ; CLOSE routine
 FDB READDEV ; READ routine
 FDB WRITEDEV ; WRITE routine
 FDB EOFDEV ; EOF routine
 FDB LOFDEV ; LOF routine
DEVBUF: FCB $00,$00,$00,$00 ; for device purposes
COLPOS: FCB $00 ; current column position see BASIC POS(#)
MAXCOL: FCB $00 ; max. column: $00: infinite
PRTTAB: FCB $14 ; print zone width: step of “,” PRINT output
LSTTAB: FCB $00 ; last print zone on line
WIDTH: FCB $80 ; WIDTH support: $00: yes, $80: no
; ------------------------------
; max. 64 bytes
READPT FDB BUFFER ; initialize read and write addresses
WRITPT FDB BUFFER ; initially buffer is empty

; ---
; called by OPEN
; OPEN "I",#1,"BUF:"
; OPEN "O",#1,"BUF:"
OPENDEV
 ; no action
 RTS

; ---
; called by CLOSE
; CLOSE #1
CLOSEDEV
 ; no action
 RTS

; ---
; called e.g. by INPUT$
; C$=INPUT$(n,#1)
; read one byte from device
; return byte in (A) or set EOFLAG to $FF on EOF
READDEV
 LDX READPT ; get read address
 CPX WRITPT ; compare with write position
 BEQ READ_EOF ; buffer is empty

 LDAA ,X ; get byte from buffer
 INX ; increment pointer
 CPX #BUFEND ; get address
 BNE READ_1 ; o.k.
 ; wrap
 LDX #BUFFER ; back to start
READ_1
 STX READPT ; for next read

 RTS

READ_EOF
 LDAA #$FF ; EOF: $FF
 STAA EOFLG ;

 RTS

; ---
; called e.g. by PRINT#
; PRINT# 1,"ABC"
; write one byte to device
; (A) byte to write
WRITEDEV
 CLRB ; not at EOF: $00

31

 STAB EOFLG ;

 LDX WRITPT ; get current write address
 STAA ,X ; store byte
 INX
 CPX #BUFEND ; get address
 BNE WRITE_1

 ; buffer overflow: wrap
 LDX #BUFFER ; get start address

WRITE_1
 STX WRITPT ; for next write
 ; increment or reset POS
 CMPA #$0D
 BEQ ZERPOS
 CMPA #$0A
 BEQ ZERPOS
INCPOS INC COLPOS ; increment column index
 RTS
ZERPOS CLR COLPOS ; reset column index
 RTS

; ---
; called e.g. by EOF(1)
EOFDEV
 CLRB ; not at EOF
 LDX READPT ; get read address
 CPX WRITPT ; compare with write position
 BEQ EOF ; buffer is empty
 RTS
EOF
 DECB ; return $FF EOF flag
 RTS

; ---
; called e.g. by LOF(1)
; return # of bytes in buffer

; wrapping example/test case with 7 byte buffer
; [.ABCDE.]. --- ABCDE not wrapped
; [1234567]8 E=end, behind buffer W write pointer
; [BR....W]E B=begin, buffer R read pointer
; W>R: LOF = (W-R) = (7-2) = 5
;
; [E..ABCD]. --- ABCDE wrapped around
; [1234567]8
; [BW.R...]E
; R>W: LOF = (E-R)+(W-B) = (8-4)+(2-1) = 4 + 1 = 5
; = (W-R)+(E-B) = (2-4)+(8-1) = -2 + 7 = 5
; W-R is negative, must add buffer length
LOFDEV
 LDD WRITPT ; get read address
 SUBD READPT
 BPL LOF_1 ; positive: no wrap
 ADDD #(BUFEND-BUFFER) ; wrap
LOF_1
 RTS

; ---
; placing the I/O buffer at the end allows omitting these bytes from loading
BUFFER FILL $00,64 ; buffer of 64 bytes
BUFEND ; behind buffer
MEMSET $* ; same as BUFEND, first free address, for MEMSET

 END

32

A similar example is “STAT:”, a device which counts the occurrence of each character sent to it. After

installing is, one can LIST "STAT:" a program to it and later sequentially read the number of times

each character occurred in the listing. For this purpose the device maintains a buffer of 256 16-bit

counters, which can be read byte by byte. Thus, opening it for input and reading the first two bytes

(high, low) yields the count of CHR$(0) sent to the device, CHR$(1) is returned in the next two bytes

and so on until the last bytes 511 and 512 define the number of occurrences of CHR$(255). Each OPEN

for output resets the counting array, an OPEN for input resets the reading index to the start of he array.

The example application just sends 3 A’s, 2 B’s and one C as well as a CHR$(13) and CHR$(10) at the

end of the PRINT statement. After running it once, you can directly call RUN 150 e.g. after listing a

program with LIST "STAT:".

10 REM --- Epson HX-20 ---
20 REM --- M. Hepperle 2024 ---
21 REM Installs a device "STAT:".
22 REM Writing to it counts the
23 REM number of occurrances of
24 REM each character code (0...255).
25 REM Reading returns 256*2 bytes
26 REM (high,low) which represent the
27 REM accumulated number of each character.
28 REM One can use LIST "STAT:" to count
29 REM how often each character occurs.
30 REM --- adjust BASIC starting address
40 MEMSET &HCB3
50 REM --- load the code bytes
60 GOSUB 350
70 REM --- install driver
80 GOSUB 450
90 REM --- application example
100 OPEN "O",#1,"STAT:"
110 FOR I%=1 TO 150
120 PRINT#1,CHR$(0)+"AAABBC"
130 NEXT I%
140 CLOSE #1
145 REM --- entry e.g. after LIST "STAT:"
150 PRINT "Finding maximum..."
160 MX=0
170 OPEN "I",#1,"STAT:"
180 FOR I%=0 TO 255
190 H$=INPUT$(1,#1) : L$=INPUT$(1,#1)
200 Y=ASC(H$)*256+ASC(L$)
210 IF Y>MX THEN MX=Y
220 NEXT I%
230 CLOSE #1
240 GCLS
250 OPEN "I",#1,"STAT:"
260 FOR I%=0 TO 127
270 H$=INPUT$(1,#1) : L$=INPUT$(1,#1)
280 Y%=31*(1-(ASC(H$)*256+ASC(L$))/MX)
290 LINE(I%,31)-(I%,Y%),PSET
300 NEXT I%
310 CLOSE #1
320 SOUND 33,2
330 C$=INPUT$(1)
340 END
350 REM --- Hex Code Loader ---
360 N%=0
370 READ C$
380 IF C$="DONE" THEN 430

33

390 N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0
400 C%=VAL("&H"+C$)
410 IF LEN(C$)=4 THEN A%=C% : GOTO 370
420 POKE A%,C% : A%=A%+1 : GOTO 370
430 PRINT
440 RETURN
450 REM --- Device Installer ---
460 DCBTAB%=&H0657
470 FOR A%=DCBTAB% TO DCBTAB%+30 STEP 2
480 C%=PEEK(A%)*256+PEEK(A%+1)
490 IF C%=&H0A40 THEN GOTO 550
500 IF C%=&H0000 THEN GOTO 520
510 NEXT A%
520 IF A%>DCBTAB%+28 THEN GOTO 570
530 POKE A%,&H0A : REM HIGH
540 POKE A%+1,&H40 : REM LOW
550 PRINT "STAT: @";A%;"installed"
560 RETURN
570 PRINT "Cannot install STAT:"
580 STOP
2141 DATA 0A40,53,54,41,54,30,0A,5A,0A,78,0A,79,0A,8F,0A,9F,0A,AB,00
2142 DATA 00,00,00,00,00,14,00,80,B6,06,8A,81,10,27,10,CE,0A,B1,86,FF
2143 DATA 6F,00,6F,01,08,08,4A,81,FF,26,F5,CE,0A,B1,FF,0C,B1,39,39,7F
2144 DATA 00,F5,FE,0C,B1,8C,0C,B1,27,07,A6,00,08,FF,0C,B1,39,7A,00,F5
2145 DATA 39,36,33,4F,05,C3,0A,B1,18,EC,00,F3,0A,AF,ED,00,39,5F,FE,0C
2146 DATA B1,8C,0C,B1,27,01,39,5A,39,CC,00,02,39,00,01,DONE

Assembler source code:

10 REM --- Epson HX-20 ---
20 REM --- M. Hepperle 2018 ---
21 REM Installs a device "STAT:".
22 REM Writing to it counts the
23 REM number of occurrances of
24 REM each character code (0...255).
25 REM Reading returns 256*2 bytes
26 REM (high,low) which represent the
27 REM accumulated number of each character.
28 REM One can use LIST "STAT:" to count
29 REM how often each character occurs.
30 REM --- adjust BASIC starting address
40 MEMSET &HCB3
50 REM --- load the code bytes
60 GOSUB 350
70 REM --- install driver
80 GOSUB 450
90 REM --- application example
100 OPEN "O",#1,"STAT:"
110 FOR I%=1 TO 300
120 PRINT#1,CHR$(0)+"AAABBC"
130 NEXT I%
140 CLOSE #1
145 REM --- entry e.g. after LIST "STAT:"
150 PRINT "Finding maximum..."
160 MX=0
170 OPEN "I",#1,"STAT:"
180 FOR I%=0 TO 255
190 H$=INPUT$(1,#1) : L$=INPUT$(1,#1)
200 Y=ASC(H$)*256+ASC(L$)
210 IF Y>MX THEN MX=Y
220 NEXT I%
230 CLOSE #1
240 GCLS
250 OPEN "I",#1,"STAT:"
260 FOR I%=0 TO 127
270 H$=INPUT$(1,#1) : L$=INPUT$(1,#1)
280 Y%=31*(1-(ASC(H$)*256+ASC(L$))/MX)

34

290 LINE(I%,31)-(I%,Y%),PSET
300 NEXT I%
310 CLOSE #1
320 SOUND 33,2
330 C$=INPUT$(1)
340 END
350 REM --- Hex Code Loader ---
360 N%=0
370 READ C$
380 IF C$="DONE" THEN 430
390 N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0
400 C%=VAL("&H"+C$)
410 IF LEN(C$)=4 THEN A%=C% : GOTO 370
420 POKE A%,C% : A%=A%+1 : GOTO 370
430 PRINT
440 RETURN
450 REM --- Device Installer ---
460 DCBTAB%=&H0657
470 FOR A%=DCBTAB% TO DCBTAB%+30 STEP 2
480 C%=PEEK(A%)*256+PEEK(A%+1)
490 IF C%=&H0A40 THEN GOTO 550
500 IF C%=&H0000 THEN GOTO 520
510 NEXT A%
520 IF A%>DCBTAB%+28 THEN GOTO 570
530 POKE A%,&H0A : REM HIGH
540 POKE A%+1,&H40 : REM LOW
550 PRINT "STAT: @";A%;"installed"
560 RETURN
570 PRINT "Cannot install STAT:"
580 STOP
2141 DATA 0A40,53,54,41,54,30,0A,5A,0A,78,0A,79,0A,8F,0A,9F,0A,AB,00
2142 DATA 00,00,00,00,00,14,00,80,B6,06,8A,81,10,27,10,CE,0A,B1,86,FF
2143 DATA 6F,00,6F,01,08,08,4A,81,FF,26,F5,CE,0A,B1,FF,0C,B1,39,39,7F
2144 DATA 00,F5,FE,0C,B1,8C,0C,B1,27,07,A6,00,08,FF,0C,B1,39,7A,00,F5
2145 DATA 39,36,33,4F,05,C3,0A,B1,18,EC,00,F3,0A,AF,ED,00,39,5F,FE,0C
2146 DATA B1,8C,0C,B1,27,01,39,5A,39,CC,00,02,39,00,01,DONE

16.2. Some Details about HX-20 BASIC (Microsoft BASIC)

16.2.1. The Floating Point Accumulator

Microsoft BASIC maintains a so called “floating point accumulator” (FPACC). This is a memory area

used for intermediate results when working with 16-bit integer as well as single and double floating

point numbers. It is also used to transfer a numeric parameter to a USR function. Its length is 8 bytes to

hold a double precision floating point number. The arrangement of the bytes can be found in the

BASIC reference manual. The location of the FPACC is at address 0x00D5 in RAM.

16.2.2. Memory allocation of Arrays

Allocation of a one-dimensional INTEGER array:

DIM N%(5)
A%=VARPTR(N%(0))

The VARPTR function returns the address of the first array element (0). In memory this is followed the

next element (1).

Allocation of a two-dimensional INTEGER array:

DIM N%(5,6)

35

A%=VARPTR(N%(0,0))

The VARPTR function returns the address of the first array element (0,0). In memory this is followed

the next element (1,0), i.e. the first index is incremented first.

Note: the examples above use the default OPTION BASE 0 setting. If OPTION BASE 1 is used, the first

element is (1), respectively (1,1).

16.2.3. The BASIC Work Areas

Work Area (1)

Example memory dump:

 00000080 00 22 00 00 00 04 00 00 00 00 00 08 6C 08 69 1D ."..........l.i.
0085-0086: <---> TypeInfo for data in FPACC
 00000090 7E 1D 80 00 00 00 00 0A 00 00 7D 65 0B 0C 1D 7C ~.........}e...|
009C-009D: <---> HeadPointer:
 address of address-
 field of first line
009E-009F: <---> StringSpace:
 address of
 string space
 000000A0 1D 84 1D 84 7D 89 7E 51 7E 51 7E 51 07 DA 07 DA}.~Q~Q~Q....
00A0-00A1:<---> NextFree? address of next free entry in string space
00A2-00A3: <---> NextFree? address of next free entry in string space

 000000B0 07 D0 00 00 10 8D 00 00 0B 0B 00 00 01 1D 7E 1D~.
00B8-00B9: <---> DataPointer: address of separator
 of next line for READ
00BA-00BB: <---> TailPointer: address of last
 line (after program was run)
 000000C0 82 00 00 00 1D 84 1D 80 00 00 00 00 00 00 04 BD
 000000D0 00 00 00 00 00 88 00 00 D8 00 00 00 00 00 00 01
00D5-00DC: <------- FPACC -------> Floating Point
 Accumulator
 000000E0 7E 51 00 00 00 00 E6 00 00 00 00 00 00 00 10 76 ~Q.............v
 000000F0 1D 7D 08 5D 00 00 0E 00 5F 00 B6 10 9B 7E B3 D8 .}.]...._....~..

Work Area (2)

Example memory dump:

 000005B0 00 00 00 88 DF 00 00 00 88 DF 00 00 00 00 00 00
 000005C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000005D0 00 00 00 00 00 00 00 00 B4 F3 00 00 00 00 00 00
 000005E0 00 00 7E 8C 70 7E 8C 70 7E 8C 70 7E A6 71 7E A6 ..~.p~.p~.p~.q~.
 <---0--> <---1--> <---2--> <---3--> <---- 39 error handlers
 000005F0 71 7E A6 71 7E A6 71 7E A6 71 7E A6 71 7E A6 71 q~.q~.q~.q~.q~.q
 -> <------> <------> <------> <------> <------>
 00000600 7E A6 71 7E A6 71 7E A6 71 39 A6 71 39 A6 71 39 ~.q~.q~.q9.q9.q9
 <------> <------> <------> <------> <------> <-
 00000610 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 .q9.q9.q9.q9.q9.
 ----> <------> <------> <------> <------> <----
 00000620 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 q9.q9.q9.q9.q9.q
 -> <------> <------> <------> <------> <------>
 00000630 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 9.q9.q9.q9.q9.q9
 <------> <------> <------> <------> <------> <-
 00000640 A6 71 39 A6 71 39 A6 71 39 A6 71 7E 88 DF 7E 88 .q9.q9.q9.q~..~.
 ----> <------> <------> <------> <------> <----
 00000650 DF 7E 88 DF 7E 88 DF 06 9C 06 B6 06 D0 06 EA 07 .~..~...........
 -> <--37--> <--38--> <-0-> <-1-> <-2-> <-3-> <- 16 DCB Addresses
 00000660 04 07 1E 07 38 00 00 00 00 00 00 00 00 00 00 008...........
 -> <-5-> <-6-> <-7-> <-8-> <-9-> <-0-> <-1-> <-

36

 00000670 00 00 00 00 00 00 00 00 22 00 00 00 00 00 00 00".......
 -> <-3-> <-4-> <-5->
 00000680 00 00 00 00 00 00 00 00 00 00 20 01 FF 03 02 00
 00000690 38 4E 31 45 00 00 00 00 8C 70 00 00 4B 59 42 44 8N1E.....p..KYBD
069C: <---------> Name of D0
 000006A0 10 B3 E4 B3 E4 A9 69 B7 30 B3 E4 B3 E4 B3 E4 B3i.0.......
 000006B0 E4 00 00 00 00 80 53 43 52 4E 20 B3 E4 B3 E4 B3SCRN
06B6: <---------> Name of D1
 000006C0 E4 B7 30 B3 E4 B3 E4 B3 E4 00 00 00 28 0E 1C 80 ..0.........(...
 000006D0 43 4F 4D 30 30 B0 6A B0 B3 B0 43 B1 11 B0 13 B0 COM00.j...C.....
06D0: <---------> Name of D2
 000006E0 0D B1 28 B1 28 04 00 0E 00 40 43 41 53 30 30 AD ..(.(....@CAS00.
06EA: <---------> Name of D3
 000006F0 8D AD DA AE 32 AE 70 AE 7C B3 E4 FE F8 00 00 002.p.|.......
 00000700 00 01 00 C1 43 41 53 31 30 AD 8D AD DA AE 32 AECAS10.....2.
0704: <---------> Name of D4
 00000710 70 AE 7C B3 E4 FF 31 00 00 00 00 01 00 C1 50 41 p.|...1.......PA
071E: <---- Name of D5
 00000720 43 30 10 B1 95 B2 00 B2 09 B1 28 B0 1F B0 1B B1 C0........(.....
 ----> Name of D5 cont.
 00000730 28 00 00 00 00 00 00 C0 4C 50 54 30 20 B3 E4 B0 (.......LPT0 ...
0738: <---------> Name of D6
 00000740 24 B3 E4 B0 2F B3 E4 B3 E4 B3 E4 B3 E4 00 18 0E $.../...........
 00000750 0E 00 00 FF 07 D5 88 20 32 30 30 30 00 00 00 00 2000....
 00000760 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
 00000770 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 29)
 00000780 00 44 2C 42 44 2C 46 46 2C 37 30 2C 33 39 2C 46 .D,BD,FF,70,39,F
 00000790 46 2C 46 46 2C 30 30 00 00 00 00 00 00 00 00 00 F,FF,00.........
 000007A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000007B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000007C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000007D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000007E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000007F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000800 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000810 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000820 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000830 09 08 38 08 08 38 F4 6C 06 02 86 00 00 14 00 00 ..8..8.l........
 00000840 DE 41 D9 43 D8 5D 8C 22 08 E7 D7 C2 08 E7 FF B6 .A.C.]."........
 00000850 EF 7F 02 00 00 B3 58 00 00 00 00 00 41 25 00 00X.....A%..
 00000860 00 00 00 00 00 00 00 00 00 00 00 00 01 7E 51 00~Q.
 00000870 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000880 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00
 00000890 00 00 00 00 00 80 00 00 10 B3 00 07 DA 00 0A 1D
 000008A0 65 1D 7C 07 D5 00 00 00 00 05 07 DA 7D 75 00 10 e.|.........}u..
 000008B0 8D 00 00 10 9A 04 04 04 04 04 04 04 04 04 04 04
08B5- <------ type code table A-Z ----
 000008C0 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 8C
 -08CE:---> <- 10 addresses of
08CF- USR0-9 functions
 default 8C70: in BASIC ROM
 000008D0 70 8C 70 8C 70 8C 70 8C 70 8C 70 8C 70 8C 70 8C p.p.p.p.p.p.p.p.
 000008E0 70 8C 70 00 00 00 00 92 00 06 00 20 20 20 20 20 p.p........
 -08E2:------->
 000008F0 20 20 20 20 20 20 00 00 00 00 00 00 00 00 00 00
 00000900 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000910 06 D0 00 00 00 00 00 00 00 00 00 20 F9 68 00 00h..
 00000920 26 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 &...............
 00000930 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000940 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000950 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000960 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000970 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000980 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000990 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000009A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000009B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

37

 000009C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000009D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000009E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 000009F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000A00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000A10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000A20 00 00 00 00 00 00 00 FF 00 14 04 08 00 00 00 00
 00000A30 00 00 01 00 00 39 00 00 01 00 00 01 01 00 00 019..........

17. Using a Printer

An Epson P-40 printer (or any other printer with serial interface) can easily be connected to the RS-

232C port of the HX-20. However, as the buffer of the P-40 is only 2 bytes, data transfer will only

work properly if you wire the cable for hardware handshaking. This requires the connection of the

printer handshake signal DTR to the HX-20 input signal DSR on pin 6 of the DIN connector.

You can then use commands like

LIST “COM0:(68N2B)”

to list a program on a printer set to 4800 baud and 8 data bits, no parity and two stop bits

Similarly, the statement

OPEN “O”,#1,”COM0:(68N2B)”

can be used in a program to open a file for output with subsequent PRINT #1 statements. When done

with printing, you should close the serial port with a CLOSE #1 statement.

18. MH-20 – A Peripheral Emulator

The “MH-20” software runs on a PC and mimics two different peripherals for the HX-20:

 a display controller for text and graphics output and,

 a disk drive units with four disk drives (which equals two TF-20 drives).

While the display function is readily available with the HX-20, the disk drive emulation requires the

setting of the switch SW4 to the ON position. This switch is accessible from the bottom of the HX-20.

See the “Operating Manual”, page 2-1.

Figure 20: Schematic of the HX-20 with the MH-20 software.

38

18.1. Required Hardware for HX-20

The MH-20 program listens on the serial RS-232C port of your computer which must be connected to

the high speed serial port of the HX-20. The emulator sets the serial port on the PC side to 38400

baud, 8 data bits, 1 stop bit, no parity and no handshaking. The wiring of a cable connecting the HX-

20 with a standard IBM-AT-style D-SUB 9 pin male connector is shown in Figure 21. The common

USB-RS-232C converter cables usually come with a matching male D-SUB connector and can be

used.

Figure 21: Cable to connect to HX-20 to a PC running the MH-20 screen and disk emulator. Only 3 wires are needed.

18.2. Using the MH-20 Software

MH-20 is written in Java and therefore is executable on many common platforms. You need a Java

Runtime Environment (JRE) of Version 1.8 or higher. For the serial communication it relies on the

jSSC (Java Simple Serial Connector) serial port communication library. This library includes system

dependent hardware drivers for Linux, Mac OS/X, Solaris and Windows 32 as well as Windows 64.

You can start the simulator from a command line and supply these optional command line arguments:

 -port PORT

default: PORT=COM1

The device name of your serial port. You must use the proper syntax for your operating

system, e.g. for higher port numbers under Windows: “/..//COM38”, omit any trailing

colon.

 -width WIDTH

The width of the window in character columns. Default: WIDTH=80

 -height HEIGHT

The height of the window in character rows. Default: HEIGHT=48

 -diskconfig TYPE

The arrangement of disk drives. Use TYPE=0 for HX-20 (you can use the emulator also

for the PX-8 and for this application other configurations are available)

 -debug

Activates output of debug information.

39

In a Windows command prompt you can enter a command line for the HX-20 like

java -jar MH-20-Display-Controller.jar -port /..//COM38 -width 80 -height 24

Of course you can and should wrap this long command into a .cmd script file.

Under Linux you might have the problem that the serial port is usually not accessible by normal users.

You have to be a super-user to work with it. Two options to handle this problem are listed below.

 Create a shell script (text file) e.g. “mh20dc.sh” with the desired command line options. Port

access may require administrator rights. Therefore, you can use sudo which asks for the

superuser password.

#!/bin/sh
sudo java -jar MH-20-Display-Controller.jar -port /dev/ttyS0

or

 You can also make your script file “mh20dc.sh” set the superuser-bit by itself:

sudo chmod +s mh20.sh

Then your script would need no sudo command, but just the command line

#!/bin/sh
java -jar MH-20-Display-Controller.jar -port /dev/ttyS0

In both cases you can run the program by executing your script

./mh20.sh

18.3. Display Controller Emulation

The MH-20 program mimics an external display controller similar to the ones which were available in

its day. One such device was the Oval HO-80 from Oval Ltd., a British company, which delivered its

video output in form of UHF or PAL signals. Its screen was able to show 32×16 characters or 128×64

pixels in 4 colors or 128×96 pixels in monochrome.

My goal was not a faithful representation of this device (which I even don’t own) and its limitations

but mainly to allow for easier reading and editing of programs for the HX-20. Editing programs on the

small built-in LCD screen is not really fun – at least for me.

The HX-20 display system supports two operating modes: text mode and graphics mode. Both are

partially implemented in the MH-20 software. The text mode offers all cursor movement and editing

functions. The special graphics characters are also displayed, but no attempt has been made to

implement user defined characters. I even don’t know whether the original display controller was able

to handle those.

After the text mode worked sufficiently well for practical application I added some of the graphics

functions. These allow clearing the screen (GCLS), drawing lines (LINE) and setting points (PSET) and

inquiring the color of pixels (POINT).

Like with the original display controller, graphics and text screen are handled as exclusive entities.

The MH-20 is either in text or in graphics mode - you cannot mix graphics and text.

However, to allow writing text in graphics mode I implemented an additional command to write a

string of characters to the graphics screen. However, this requires the usage of a machine code

subroutine to send out the proper data frames.

40

18.3.1. Applicable BASIC Keywords and Commands

Selecting the Output Device Purpose

SCREEN 1,0 Send subsequent text output to the display controller.

SCREEN 0,1 Send subsequent graphics output to the display controller.

SCREEN 0,0 Send all subsequent output to the LCD display.

 The SCREEN command also selects the character set according to the

current system settings.

Text Mode Purpose

CLS Clear the screen.

PRINT Print output to the screen.

LIST List the current program on the screen.

WIDTH width,height Set the dimensions of the text screen in character cells.

POS Return the horizontal position x of the cursor.

CRSLIN Return the vertical position y of the cursor.

LOCATE x,y,cursor Place the cursor at (x,y), e.g. for a following PRINT statement.

Graphics Mode Purpose

GCLS Clear the graphics screen.

COLOR fore,back,set Select foreground and background color for the given color set.

PSET (x,y),index Set the pixel at (x,y) with the given color [0…3].

PSET (x,y) Set the pixel at (x,y) with the current foreground color.

PRESET (x,y) Set the pixel at (x,y) with the current background color.

LINE (x1,y1)-(x2,y2),PSET Draw a line from (x1,y1) to (x2,y2) with the foreground color.

LINE (x1,y1)-(x2,y2),PRESET Draw a line from (x1,y1) to (x2,y2) with the background color.

POINT (x,y) Return the color index of the pixel at (x,y). [0…3, 10…13]

Figure 22: MH-20 in text mode after a SCREEN 1,0 and a LIST command.

The caption bar shows the dimensions in character cells as well as in pixels.

41

Some differences from the Epson Specifications:

 Only a subset of the possible commands has been implemented. The program may handle

unknown commands ungracefully.

 Text lines extending over multiple screen lines are not supported. Each line must fit on one

line.

 In graphics mode, all dimensions have been doubled for better visibility – i.e. a line is drawn

two pixels wide. The screen dimensions in pixels as shown in the title bar reflect this scaling

and show the available coordinate space.

 The screen size can be considerably larger than that of the original display controller. Its size

was limited to a text display of 16×32 characters respectively resolutions of 128×96 for

monochrome graphics or 128×64 for color graphics.

 The size of the graphics screen is directly linked to the text screen size and cannot be changed.

No movable window is implemented as this does not make too much sense on this larger

screen.

 Both color sets of 4 colors each have been implemented as per specification. As they are only

vaguely specified the default background color “green” has been made dark to have the

default text color “yellow” stand out sufficiently. It is possible to use both color sets on the

same screen, which was probably not possible on the original hardware.

 The POINT function returns 0…3 for colors in the color set 0, and 10…13 for colors from set

2. This allows distinguishing between the two color sets. The original hardware probably only

returned values within 0…3.

 A context menu (right mouse button) allows copying the contents of the display to the

clipboard. Depending on the current display mode, text and/or bitmap format are available.

Figure 23: Result of running a simple plot programs.

Left: The same program runs on the internal LCD. For the external screen only a SCREEN 0,1

command and individual scaling factors for the x- and y-direction have been added.

Right: The two color palettes (0 and 1) with 4 colors each, selected by using the COLOR command. The first

bar (color index 0) represents the default background color of each color set.

42

Figure 24: In contrast to the original Display Controller the software emulator can also display characters if a special

machine language subroutine is used.

The example shown in Figure 24 uses a machine language subroutine to send a special data packet to

the MH-20 Display Controller. The parameters of this subroutine are the X, and Y coordinates as well

as the string to output (up to 32 characters). These are packed into a string because USR functions only

allow for one parameter.

 ; a09 outchar.asm -loutchar.lst
 ; python LST2BAS.py outchar.lst > outchar.bas
 OPT H01

 ORG $0A40

 BUFLEN EQU 32 ; max. string length
 SERSND EQU $FF70 ; operating system function
 ; BASIC floating point accumulator to return result
 FPTYP EQU $0085 ; 2 bytes: type of # in FPACC
 FPACC EQU $00D5 ; floating point accumulator

 ; Epson HX-20
 ; USR function for sending a string with leading
 ; 16-bit x-y coordinates via serial interface.
 ; The string may have up to BUFLEN characters.
 ; Returns the length of the output string
 ; (minus the 4 leading bytes)
 ;
 ; Usage:
 ; DEFUSR1=&H0A40
 ; DEFFNLO$(X%)=CHR$(X% AND 255)
 ; DEFFNHI$(X%)=CHR$((X%\256) AND 255)
 : X=25 : Y=50
 ; M$=FNHI$(X)+FNLO$(X)+FNHI$(Y)+FNLO$(Y)
 ; L=USR1(M$+"Hello World")
 ;
 ; X points to string descriptor:
 ; 0,X: length of string, must be >4
 ; 1,X: address of string
 0A40 8103 CMPA #$03 ; do we have a string?
 0A42 2653 BNE OOPS ; no: leave
 0A44 E600 LDAB 0,X ; length of string -> B
 0A46 5A DECB ; minus 1 = data length
 0A47 F70A9E STAB CNT ; store data length

43

 0A4A C003 SUBB #$03 ; minus X,Y
 0A4C 2F49 BLE OOPS ; less than one character?
 0A4E C120 CMPB #BUFLEN ; up to BUFLEN chars
 0A50 2F02 BLE LENOK
 0A52 C620 LDAB #BUFLEN ; min(N,BUFLEN)
 ;
 0A54 9602 LENOK: LDAA $02 ; return data type: integer
 0A56 9785 STAA FPTYP ; type of # in FPACC
 0A58 4F CLRA ; store integer in FPACC+2,3
 0A59 97D7 STAA FPACC+2 ; high byte = 0
 0A5B D7D8 STAB FPACC+3 ; low byte = length
 ;
 0A5D EE01 LDX 1,X ; address of string -> X
 0A5F A600 LDAA 0,X
 0A61 B70A9F STAA XPNT ; high byte of X
 0A64 A601 LDAA 1,X
 0A66 B70AA0 STAA XPNT+1 ; low byte
 0A69 A602 LDAA 2,X
 0A6B B70AA1 STAA YPNT ; high byte of Y
 0A6E A603 LDAA 3,X
 0A70 B70AA2 STAA YPNT+1 ; low byte

 0A73 37 PSHB
 0A74 CC0AA3 LDD #CHAR ; starting address of CHAR
 0A77 FD0A98 STD CPTR ; store pointer
 0A7A 33 PULB ; length of string -> B

 ; address of source char is (X+4)
 ; address of destination is in CPTR

 0A7B A604 NEXT: LDAA 4,X ; get next character A=*(X+4)
 0A7D 3C PSHX ; save source address
 0A7E FE0A98 LDX CPTR ; destination address X=CPTR
 0A81 A700 STAA 0,X ; store character code *CPTR=A
 0A83 38 PULX
 0A84 08 INX ; increment source address
 0A85 7C0A99 INC CPTR+1 ; increment low byte of target
 0A88 2803 BVC NOVER ; V=0: no overflow
 0A8A 7C0A98 INC CPTR ; else: increment high byte
 0A8D 5A NOVER DECB ; decrement character count
 0A8E 26EB BNE NEXT ; next character

 0A90 4F CLRA ; A=0: send a packet
 0A91 CE0A9A LDX #PACKET ; address of PACKET
 ; FCB $00 ; DEBUG: force HX-20 Trap!
 0A94 BDFF70 JSR SERSND ; send packet
 0A97 39 OOPS: RTS

 0A98 FFFF CPTR: FCB $FF,$FF ; pointer to current CHAR
 ;
 PACKET:
 0A9A 00 OP: FCB $00 ; 0: send
 0A9B 30 DID: FCB $30 ; destination ID
 0A9C 20 SID: FCB $20 ; source ID
 0A9D EE FCN: FCB $EE ; my own function code
 0A9E 03 CNT: FCB $03 ; data length - 1

 DATA: ; the actual payload
 0A9F FFFF XPNT: FCB $FF,$FF ; X
 0AA1 FFFF YPNT FCB $FF,$FF ; Y
 0AA3 FFFFFFFFFFFFFF CHAR: FILL $FF,BUFLEN ; buffer[BUFLEN]
 0AAA FFFFFFFFFFFFFF
 0AB1 FFFFFFFFFFFFFF
 0AB8 FFFFFFFFFFFFFF
 0ABF FFFFFFFF
 END

44

The corresponding BASIC loader and test program as created by the python script LST2BAS.py is:

10 REM --- Epson HX-20 ---
20 REM --- String Output to MH-20 ---
30 REM --- M. Hepperle 2018 ---
40 GOSUB 70
50 PRINT USR1(CHR$(0)+CHR$(32)+CHR$(0)+CHR$(64)+"Hello World")
60 STOP
70 REM --- Hex Code Loader ---
80 N%=0
90 MEMSET &HAC3
100 READ C$
110 IF C$="DONE" THEN 160
120 N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0
130 C%=VAL("&H"+C$)
140 IF LEN(C$)=4 THEN A%=C% : GOTO 100
150 POKE A%,C% : A%=A%+1 : GOTO 100
160 PRINT
170 DEFUSR1=&H0A40
180 RETURN
190 DATA 0A40,81,03,26,53,E6,00,5A,F7,0A,9E,C0,03,2F,49,C1,20,2F,02
191 DATA C6,20,96,02,97,85,4F,97,D7,D7,D8,EE,01,A6,00,B7,0A,9F,A6,01
192 DATA B7,0A,A0,A6,02,B7,0A,A1,A6,03,B7,0A,A2,37,CC,0A,A3,FD,0A,98
193 DATA 33,A6,04,3C,FE,0A,98,A7,00,38,08,7C,0A,99,28,03,7C,0A,98,5A
194 DATA 26,EB,4F,CE,0A,9A,BD,FF,70,39,FF,FF,00,30,20,EE,03,FF,FF,FF
195 DATA FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
196 DATA FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,DONE

18.4. Disk Drive Emulation

The second function of the MH-20 program is the emulation of disk drive units. This gives you four

simulated floppy disk drives.

Note that a tooltip with a short directory listing is shown when you hover the mouse pointer over one

of the drive images.

18.4.1. Technical Background

The Epson TF-20 dual 5-¼" disk drive unit is actually a small computer which runs a variant of the

CP/M operating system. It communicates with the HX-20 over a “high-speed” serial connection at

38400 baud using the EPSP Protocol developed by Epson. This protocol underwent some extensions

for later Epson computers and is only sparingly documented.

When the HX-20 boots up, it first asks the TF-20 for a short boot loader program. After this has been

received, it asks for a longer machine language program containing the code to extend the BASIC of

the HX-20. This program implements the additional or modified keywords and commands to support

the disk drive.

The extension code is loaded into the memory of the HX-20. Its actual location depends on the size of

the RAM installed in the HX-20. Therefore, the HX-20 also asks the TF-20 to relocate the code

according to its memory configuration. Thus, the TF-20 has to recalculate the affected addresses in the

code before sending it to the HX-20. The MH-20 emulator supports all logical disk functions as

required for operation of the HX-20.

45

18.4.2. The Emulation

The MH-20 emulator emulates two floppy units, i.e. a total of four disk drives. These are mapped to

four directories:

DISK_A

DISK_B

DISK_C

DISK_D

Each directory contains individual files.

While the original floppy disks have a limited capacity, the capacity of the mapped drives is only

limited by the mass storage capacity of the host computer. Of course it makes sense to limit the

number of files in each directory to a reasonable number.

For this purpose each file is directly represented by a disk file on the host computer - no disk image

files are used. Therefore, physical disk functions, like formatting and sector reading/writing, do not

make much sense and produce no result.

The main applications of the disk emulation are

 saving and loading programs,

 creating, writing and, reading of data files.

18.4.3. Applicable BASIC Keywords and Commands

Keyword Purpose

CLOSE close file(s)

CVI, CVD, CVS convert a string to numeric data

DSKF return free space on disk (has no effect, always returns 320 KB)

DSKI$ direct input of one record (has no effect, returns "Read Error")

DSKO$ direct output of one record (has no effect, returns "Disk write protected")

EOF return end of file code

FIELD define fields for the record buffer used by random access file

FILES display disk directory

FILNUM define number of FCBs in advance

FRMAT format a disk (has no effect)

GET read one record from random access file

INPUT# read data item from sequential access file

INPUT$ read a string from a sequential access file

KILL delete a file

LINE INPUT# read line of characters from sequential access file

LIST output a program listing to a file

LOAD load a program from a file

LOADM load a machine language program from a file

LOC return the current record number of a file

46

LOF return the largest record number of a file

LSET store data in file buffer for random access file

MERGE merge a program into current program

MKI$, MKD$, MKS$ convert numeric data to a string

NAME rename a file

OPEN open a file

PRINT# print data to a sequential access file

PRINT# USING print formatted data to a sequential access file

PUT write one random record from file

RESET enable replacement of disk

RSET store data in file buffer for random access file

RUN load and execute a program from disk

SAVE save a program to a file in binary or ASCII format

SAVEM save memory range to a file

SYSGEN create a new system disk (has no effect)

WHILE...WEND conditional loop statement

Note that

 record numbers are 0-based

 each record is 128 bytes long

 the FIELD statement defines the structure of a complete record

 the PUT and GET statements write resp. read a complete record

18.5. Credits

Copyright notice for the serial library used in MH-20:

/* jSSC (Java Simple Serial Connector) - serial port communication library.
 * © Alexey Sokolov (scream3r), 2010-2014.
 *
 * This file is part of jSSC.
 *
 * jSSC is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * jSSC is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with jSSC. If not, see <http://www.gnu.org/licenses/>.
 *
 * If you use jSSC in public project you can inform me about this by e-mail,
 * of course if you want it.
 *
 * e-mail: scream3r.org@gmail.com
 * web-site: http://scream3r.org | http://code.google.com/p/java-simple-serial-connector/
 */

47

19. Map of the System RAM

The HX-20 system uses the lower part of its RAM for storage of various system variables. When

writing assembler programs it is useful to have a complete picture of the RAM usage. The following

Table was compiled from the Technical Manual.

Figure 25: Global memory map of the HX-20 system.

Usage Addr. Len. Name

Clock I/O ports 40 1 seconds

41 1 alarm seconds

42 1 minutes

43 1 alarm minutes

44 1 hours

45 1 alarm hours

46 1 day

47 1 date

48 1 month

49 1 year

4A 1 control register A

4B 1 control register B

4C 1 control register C

4D 1 control register D

Clock 4E 50 RTC RAM

Basic interpreter 80 128

Interrupt processing 100 3 INTCLK

103 3 INTEXT

106 3 TRAP

109 3 IRQ1 SCI

10C 3 IRQ1 TOF

10F 3 IRQ1 OCF

112 3 IRQ1 ICF

115 3 IRQ1 == INTCLK

118 3 SW1

11B 3 NMI

Usage Addr. Len. Name

Vectors 11E 2 user defined chars.

120 2 BRKADR

122 2 MENADR MENU

124 2 PAUADR BREAK

126 2 CT3ADR PF3

128 2 CT3ADR PF4

12A 2 CT3ADR PF5

12C 2 CT3ADR PF5rmbadr

12E 2 PRMCNT

130 2 WAKADR

132 2 POFADR

134 2 BSWTAD

136 2 BSWBAD

138 2 no name

Menu and link tables 13A 2 BITMP0

13C 2 BITMP1

13E 2 LNKTBL

Keyboard 140 1 KSTKSZ

141 1 KICNT1

142 1 KICNT2

143 2 KICNTM

145 10 NEWKTB

14F 10 OLDKTB

159 10 CHKKTB

163 2 KYISAD

165 1 KYISFL

78 Bytes
50 Bytes

RAM for BASIC 128 Bytes

RAM for I/O buffers 944 Bytes
RAM for BASIC 1424 Bytes

RAM for user programs
13760 Bytes

not used
8192 Bytes

ROM 5: option ROM
8192 Bytes

ROM 4: BASIC 2
8192 Bytes

ROM 3 BASIC 1

8192 Bytes

ROM 2: Menu, Monitor
8192 Bytes

ROM 1: I/O routines
8192 Bytes

RAM for I/O routines
I/O ports

optional
memory board(s)

RAM for user programs

16348 Bytes

RAM for BASIC

E000

FFFF

C000

DFFF

A000

BFFF

8000

9FFF

6000

7FFF

4000

5FFF

0A40

3FFF

0000

48

Usage Addr. Len. Name

166 1 KYISCN

167 1 KYISPN

168 1 STKCNT

169 1 KEYMOD

16A 1 ONKFLG

16B 1 KPRFLG

16C 1 KEYRPT

16D 2 CKEYRD

16F 18 KYISTK

181 8 CHRSTK

189 7 no name

Microprinter 190 6 CHRPTN

196 1 COLCNT

197 24 CHRDAT

RS 232C 1AF 2 RSBAUD

1B1 2 RSCRC

1B3 2 RSBCC

1B5 1 RSBITL

1B6 1 RSMODS

1B7 1 RSSTSR

1B8 2 RSBFAD

1BA 2 RSBFBT

1BC 2 RSBFSZ

1BE 2 RSINP

1C0 2 RSOUP

1C2 2 RSDCNT

High Speed Serial 1C4 1 SRFMT

1C5 1 SRDDEV

1C6 1 SRSDEV

1C7 1 SRFNC

1C8 1 SRSIZ

1C9 1 SRACKC

1CA 1 SRTRCN

1CB 1 SRTIMO

1CC 1 SRETMO

1CD 1 SRATMO

1CE 1 SRMODE

1CF 1 STETDL

1D0 1 SRBLCN

1D1 1 SRERMD

1D2 1 SRRVFL

1D3 2 SREIX

External Cassette 1D5 1 CSMOD

1D6 2 CSBLNO

1D8 2 CSBCC

1DA 2 CSBLSZ

1DC 1 CSSTP

1DD 1 CSSTS

1DE 2 CSBFAD

1E0 2 CSBFRT

1E2 2 CSBFSZ

1E4 2 CSBFIP

1E6 2 CSBFOP

1E8 2 CSBFCM

1EA 1 CSRDTR

1EB 1 CSRDCN

Internal Cassette 1EC 1 MSMOD

1ED 2 MSGLNO

1EF 2 MSBCC

1F1 2 MSBLSZ

1F3 1 MSBSTP

1F4 1 MSSTS

1F5 2 MSBFAD

1F7 2 MSBFBT

1F9 2 MSBFSZ

1FB 2 MSBFIP

1FD 2 MSBFOP

1FF 2 MSBFCM

201 1 MSRDIR

202 1 MSRDCN

203 2 MSCNTR

Usage Addr. Len. Name

205 1 MSMNCM

206 1 MSTOFCN

207 1 MSPLMD

ROM Cartridge 208 1 PRMSTS

209 2 STAPRS

20B 2 FTADRS

20D 2 EDADRS

Binary Dump/Load 20F 2 DLTPAD

211 2 DLBTAD

213 2 DLOPAD

215 2 DLSTAD

217 1 DLDVID

218 1 DLSTS

219 2 DLDVIX

RESERVED 21B 5 reserved

LCD 220 80 PSBUF

270 2 SCRTOP

272 2 SCRBOT

274 2 DISTOP

276 1 VSCRX

277 1 VSCRY

278 1 CURX

279 1 CURY

27A 1 LRMODE

27B 1 UDMOD

27C 1 CURMRG

27D 1 SSPEED

27E 1 DISPX

27F 1 DISPY

280 1 DISSTS

281 5 no name

286 6 CHRPTN

Screen work area 28C 20 no name

Monitor work area 2A0 48 no name

External Cass. Headers 2D0 1 CHBLID

2D1 2 CHBLNO

2D3 1 CHBLBU

2D4 4 CID

2D8 8 CFNAME

2E0 8 CFTYPE

2E8 1 CRTYPE

2E9 1 CBMODE

2EA 5 CBLNG

2EF 5 no name

2F4 6 CDATE

2FA 6 CTIME

300 6 no name

306 2 CVOLN

308 8 CSYSN

310 20 no name

Internal Cass. Headers 324 1 MHBLID

325 2 MHBLNO

327 1 MHBLBU

328 4 MID

32C 8 MFNAME

334 8 MFTYPE

33C 1 MRTYPE

33D 1 MBMODE

33E 5 MBLNG

343 5 no name

348 6 MDATE

34E 6 MTIME

354 6 no name

35A 2 MVOLN

35C 8 CSYSN

364 20 no name

378 260 CASBUF

Total RAM used

1148 bytes

Table 2: Detailed RAM usage by the HX-20 operating system.

49

20. News and Commercial Announcements

Note: The following figures contain company and product names which are reproduced here only for

historic documentation and archival purposes. These companies may not exist anymore and the

products mentioned are surely not available anymore.

50

51

Figure 26: Can these eyes lie? The dark color scheme of the HX-20 seems to have been composed specifically for this

advertisement.

52

Figure 27: This ad in the February 1982 issue of “Practical Computing” obviously aims at British customers,

following Winston Churchill’s famous words.

53

Figure 28: And another extraordinary one lifted from the October 1982 issue of “Dr. Dobbs Journal”.

54

Figure 29: This ad was taken from the March 1983 issue of “CE”.

55

Figure 30: The quest for finding more technical information shows up in letters to the German magazine c’t.

Figure 31: The company “time-soft” had many special offers for HX-20 owners.

56

Figure 32: Besides a display controller, Mirwald also sold memory expansion boards for the HX-20.

Figure 33: More accessories like EPROM programmer and data acquisition systems were available from 3rd parties.

57

Figure 34: And, another 12-bit A/D data acquisition system with digital I/O ports from CSM.

58

Figure 35: Another video controller was developed by KK Systems in the north of Germany.

Figure 36: Also available from KK Systems: RAM disks for the HX-20.

59

Figure 37: Obviously, there were other disk drives available besides the Epson TF-20

21. References and Further Reading

[1] Epson HX-20 - Technical Manual – Hardware.

[2] Epson HX-20 - Technical Manual – Software.

[3] Eratosthenes Sieve Benchmark Program, BYTE 1/1983.

[4] E. Balkan, “Using and programming the Epson HX-20”, Van Nostrand Reinhold, 1985.

[5] http://electrickery.xs4all.nl/comp/hx20/

[6] Brenndörfer, Knut, “Mehr Speicher für den HX-20”, Magazin “mc” 4/1984, pp. 119-121.

[7] Jebautzke, Michael, “Drucker am High-Speed Interface”, Magazin “mc” 7/1985, pp. 82-83.

[8] Bahmann, Wolfram, “Disassembler für HX-20”, Magazin “mc” 7/1983, pp. 66-67.

[9] Rohlfs, Kristen, “HX-20 plottet Funktionen”, Magazin “mc” 1/1984, pp. 86-87.

[10] Gründler, Rolf, “Datenbank-Dialog mit dem HX-20”, Magazin “mc” 12/1983, pp. 56-58.

[11] Schnieder, Hermann, “HX-20 als Terminal”, Magazin “mc” 2/1984, pp. 58-60.

[12] Wald, Elizabeth, “Slipping Sideways”, PCN February 1984.

	Contents
	1-General
	2-Power Supply
	Transformer Unit
	Replacing the Battery
	Charging the Battery

	3-Variations of the ROMs
	4-New Printer Paper
	5-New Printer Ribbons
	6-Internal RAM Boards
	'mc' 8k RAM Board
	16k RAM Board Type 1
	16k RAM Board Type 2

	7-HX-20 for the Bundeswehr
	8-Replacing the Capcitors
	9-Replacing the Cassette Drive Belt
	10-Character Sets and Keyboards
	11-Keyboard Types
	12-Loading BASIC Programs via RS-232
	13-Controlling External Devices
	14-Some Useful Subroutines
	User Defined Characters
	Get the Time in Seconds
	Obtain Low and High Byte of an Integer
	Decoding a String with a HEX Number

	15-Some Benchmark Results
	16-Writing Machine Language Routines
	Extending the Operating System
	Some Details about HX-20 BASIC
	The Floating Point Accumulator
	Memory Allocation of Arrays
	The BASIC Work Areas

	17-Using a Printer
	18-MX-20 A Peripheral Emulator
	Required Hardware for HX-20
	Using the MH-20 Software
	Display Controller Emulation
	Applicable BASIC Keywords and Commands

	Disk Drive Emulation
	Technical Background
	The Emulation
	Applicable BASIC Keywords and Commands

	Credits

	19-Map of System RAM
	20-News and Commercial Announcements
	21-References and Further Reading

