HX-20 DeBug

41 53 59
52 00 OF
0B CO BP
OrR ~

REFERENCE MANUAL

HX-20 DeBug

REFERENCE MANUAL

DeBug Reference Manual:
First Edition © J.M. Wald January 1988

DeBug version:
1.0r © J.M. Walid January 1988

Assembler versions:
2.3r © J.M. Wald May 1987
2.4r © J.M. Wald January 1988

Epson is a trademark of Epson Corporation
Microcassette is a trademark of Olympus Optical Company

71 May Tree Close,
Badger Farm,
Winchester,

S022 4JF

United Kingdom

National: Winchester (0962) 52644
International: +44 962 52644

Introduction
Entering DeBug

Further information

Command interface
Editing the contents of windows
General command keys
The Register Display

Changing the register values
The calculator facility
Using the HX-20 Monitor

Exiting from DeBug

Assembling and Disassembling code
The Assembler/Disassembler window
Display modes
The display stack
Using the HX-20 Assembler interface

The Disassembler facility

Tracing and executing a program
The Single Step and Trace facility
Setting and clearing break points

Executing a program

Contents

Chapter 1
1.1

1.2

Chapter 2
2.1

22

2.3

2.3.1

2.4

2.5

2.6

Chapter 3

3.1

3.3

Chapter 4
4.1
4.2

4.3

Using the Program Profiler facility
Program Profiler commands

Hints on the use of the Program Profiler facility

Installing DeBug

Syntax for <value>

Error messages

Index

Chapter 5
5.1

5.2

Appendix 1

Appendix 2

Appendix 3

Introduction Chapter 1

DeBug is a program development system that consists of the following five
components:

Command This allows you to control the other modules. The command

interface interface (see Chapter 2) allows you to type in commands,
change register values, and exit from DeBug

Assembler This allows you to assemble programs using the HX-20
Assembler (see Chapter 3)

Disassembler This allows you to disassemble existing machine code

programs (see Chapter 3). The generated source code is fully
compatible with the HX-20 Assembler and includes labels

Single Step This allows you to single step and trace the execution of

and Trace programs during development (see Chapter 4). This facility
allows you to set break points, vary the speed of execution and
execute entire subroutines as if they are single instructions.
You can also toggle between DeBug's screen and your
program'’s screen

Program Profiler This allows you to obtain a profile of the execution of a program
(see Chapter 5). The profile shows you how much time is
spent in each section of the program. You can therefore
optimise the execution time of the program

In order to use DeBug it is esential that you have the HX-20 Assembler, also

available from J.M. Wald. Note that this manual assumes that you are familiar with
the contents of HX-20 Assembler Reference Manual.

Entering DeBug

Appendix 1 gives details of installing DeBug. There are five methods of entering
DeBug:

e Select DeBug from the main HX-20 menu
e Use the DEB command in BASIC, either interactively or in a program

e Automatically on completion of a program profile (see Chapter 5). The
Command and Status window displays the message: Profiled

-1

e Automatically on execution of an illegal op-code or break point instead of
entering the HX-20 Monitor. Note that this will only happen if you have already
selected DeBug or HX-20 Assembier since turning on the HX-20. The
Command and Status window displays one of the messages: Trap! or Break

e Pressing [T + EIXYE to escape from a program into DeBug. Note that this
will only happen if you have already selected DeBug or HX-20 Assembler

since turning on the HX-20. The Command and Status window displays the
message: Escape

1.2 Further information

The following manuals are a useful source of information:

HX-20 Assembler Memory Map J.M. Wald
HX-20 Technical Reference Manual Epson, H8294018-0 Y202990006

A help and information service is available by writing to:
Julian Wald,

71 May Tree Close,

Badger Farm,

Winchester,

S022 4JF

United Kingdom

Tel: Winchester (0962) 52644

enclosing a stamped addressed envelope.

12

21

Command interface Chapter 2

On entry DeBug displays the following screen:

STX &HFFFF
X:140 A:10 B:CO
S:4AF C:11HINZVC
P:0 >

There are two windows on the display that you can edit:
o The Assembler window on the top line (see Chapter 3)
e The Command and Status window on the right hand end of the bottom line

The rest of the screen contains the Register Display.

Editing the contents of windows

You can edit the contents of the Assembler window and the Command and Status
window. To toggle between the two windows use the EISJEIIED] key. Both
windows are windows to longer virtual lines. You can enter more than one
command on a line using a colon (:) to separate each command. Within a window,
you can edit using the following keys:

or [Moves the cursor to the left or right by one character

+[Moves the cursor to the left by the width of the window

+[Moves the cursor to the right by the width of the window

+f] Moves the cursor to the left end of the window

+[Moves the cursor to the right end of the window

+[d Deletes to the end of the line

Clears the entire line. The cursor moves to the left end of the window

Deletes the character to the left of the cursor

Toggles between insert and overwrite modes. In insert mode the
cursor flashes

HIALLL Enters the line

HE E
ma
sd EJ

CRilll Retrieves the last entered line for re-editing

2

2.2 General command keys

2.3

The following keys may be used at any time:

Aborts the current command. The Command and Status window
displays the message: Abort. Control always reverts to the Command
and Status window

Temporarily suspends the current command. Pressing any key
resumes the command. You can use a numeric key to alter the speed
with which the command is executed. This key is of particular use
when performing a trace (see Chapter 4)

Returns to the main HX-20 menu

The Register Display

The Register Display consists of output-only windows that display the values of the
registers in the current output base. The register display may be modified as

follows:

Toggles display of the Condition Code Register between displaying
the flags and the numeric value. The flags are displayed in the order
given in the following diagram:

[111]H[1|N]Z]Vvic] condition Code Register (CCR)

T_t Carry

Overflow

Zero

Negative
Interrupt mask
Half carry

If the flag is reset, the letter has a bar over the top. Otherwise the letter
has no bar.

Toggles the dispiay of Register A between ASCI| byte mode, numeric
byte mode, and combined mode where Register A is joined to
Register B to form Register D

Toggles the display of Register B between ASCII byte mode, numeric
byte mode, and combined mode where Register A is joined to
Register B to form Register D

2.3.1

2.4

2.5

2.6

Changing the register values

You can change the value of any register by entering the following in the
Command and Status window:

<register name>=<value>

where <register name> is one of A, B, C, D, P, S or X, and <value> is a numeric
expression in the form given in Appendix 2.

Note that for D, P, S and X <value> may be optionally followed by an apostrophe
() to select Bank 1 ROMSs. If the apostrophe is omitted, Bank 0 ROMs are selected.
The current bank is indicated by the absence or presence of an apostrophe
against the value displayed for the program counter.

The calculator facility

To use the Command and Status window as a calculator, type the following:
=<value>

where <value> is @ numeric expression in the form given in Appendix 2. The
answer is displayed in the Command and Status window in the current output
base (see the RAD command in Chapter 3 of HX-20 Assembler Reference
Manual) and in the form;

=<result>

In Symbolic mode (see section 3.1.1) the result may be displayed as a label.
To force the result as a number, select Numeric mode first.

Using the HX-20 Monitor

To enter the HX-20 Monitor use the M command in the Command and Status
window. You can now use the Monitor as normal. Note that the B command
(Back) returns you to DeBug and not to the HX-20 main menu or BASIC.

Exiting from DeBug

The usual way to exit from DeBug is to use the Q command in the Command and
Status window. Under certain circumstances it is possible to use either the C or G
command (see Chapter 4).

3.1

Assembling and Disassembling code Chapter 3

Debug is intended to be used for program development in the following way:
1 Enter your source code using the Epson BASIC full-screen editor

2 Assemble the source code using HX-20 Assembler. This automatically
creates a symbol table, which is the set of all labels currently defined. Debug
uses the symbol table to display labels in Symbolic mode (see section 3.1.1)

3 Enter DeBug and use the Single Step and Trace facility (see Chapter 4) to
verify that the code operates correctly

4 If the code does not work correctly you can do one of the following:

— Use the Assembler/Disassembler window to make minor changes and
re-assemblie single lines

~ Use the Epson BASIC full-screen editor to make major alterations to the
source code, and then re-assemble it using HX-20 Assembler

5 Repeat steps 3 and 4 until you have a working program

6 Use the Program Profiler facility (see Chapter 5) to identify the most frequently
executed sections of your program. To make the program run more
efficiently, continue from step 4

This chapter explains the commands required 1o perform the first part of step 4.

The Assembler/Disassembler window

The top line of the screen is used for the Assembler/Disassembler window.

This window displays the disassembled equivalent of the instruction or data at the
current value of the location counter (see section 2.3 of HX-20 Assembler
Reference Manual) modified by the offset.

The disassembled line is displayed in one of four display modes: Instruction, Byte,
Word or ASCII (see section 3.1.1). The disassembled line may contain numbers in
the current output base (see the RAD command in Chapter 3 of HX-20 Assembler

Reference Manual) and references to labels in Symbolic mode (see section 3.1.1)-

3

3.1.1

Display modes

There are five display modes used to display the contents of memory:

Instruction

Byte

Word

ASCII

Symbolic

The byte at the address held in the location counter is displayed as
an instruction mnemonic. If the instruction is a two or three byte
instruction, the subsequent bytes are displayed as the data for the
instruction. Note that DeBug scrolls backwards a byte at a time in
instruction mode, so some spurious instructions may be displayed

The byte at the address held in the location counter is displayed as
a data byte in an FCB statement

The byte at the address held in the location counter and the
subsequent byte are displayed as a data word in an FDB statement

The byte at the address held in the location counter is displayed as a
character in an FCB statement. Note that those byte values for
which there are no corresponding ASCII characters, or which are
Assembler metacharacters (see section 2.6 in HX-20 Assembler
Reference Manual), are displayed in Byte mode

Any value that can be interpreted as a label is displayed as a label.
This mode can be used in combination with the four modes above

You can change the display mode using the following keys:

PE4

Toggles the display between Instruction mode (see above) and the
most recently selected data mode (Byte, Word or ASCII)

Toggles the display between the three data modes in the order:
ASCII, Byte and Word

Sets the location counter to the address held in the Program
Counter and then selects Instruction mode

+ Toggles Symbolic mode on and off

You can also use the following commands in the Command and Status window to
change the display mode:

A Selects ASCIl mode

B Selects Byte mode

DL Turns on the labelling flag in Symbolic mode. This flag indicates that all
labels are to be displayed, even if they occur in the middle of instructions

DM Turns on the direct flag. This flag indicates that all direct mode addresses are
to be preceded by $ when displayed

i

1 Selects Instruction mode

NA Turns off address flag (see the PA command below)

ND Turns off direct mode flag (see the DM command above)

NL Turn off labelling flag (see the DL command above)

NM Turns off Symbolic mode (see the SM command below)

PA Turns on the address flag. This flag indicates that addresses that are not
labelled are to be displayed as a numeric comment. This means that the
address has a semi-colon (;) placed before it

SM Turns on Symbolic mode

W Selects Word mode

The display stack

The display stack is a last-inffirst-out stack. You can push the current value for the
location counter on to the display stack so that you can later pop the value to return
to your current position. This facility allows you to examine a subroutine and then
carry on examining the main routine.

In addition to popping a value from the display stack, you can also assign a new
value to the location counter using commands and control keys.

You can use the following keys to operate on the display stack and location
counter:

PF 1] Pushes the location counter counter on to the display stack
IPF 2| This combines the effect of using followed by] DeBug

pushes the location counter on to the display stack, and then moves
to the address in the data field in the current instruction. This key is
normally used to examine the subroutine referred to in a JSR

instruction

Moves to the address in the Program Counter and selects
Instruction display mode

PF6 Pops a value for the location counter from the display stack

Moves to the address in the data field in the current instruction. This

key is normally used to examine the routine referred to in a JMP or
branch instruction. Note that the current value for the location
counter is not pushed on to the display stack

3.2

[HOME] Moves to the address in the Program Counter
Moves back one byte

Moves down according to current display mode. The location
counter is advanced by one byte in ASCIl and Byte modes, and two
bytes in Word mode. In Instruction mode the location counter is
advanced by the length of the current instruction

You can also use the following command in the Command and Status window to
change the value of the location counter and offset:

[<origin>][,<offset>]

where <origin> and <offset> conform to the syntax for <value> (see Appendix 2).
This command works in the same way as the ORG command in HX-20 Assembler
(see the ORG command in Chapter 3 of HX-20 Assembler Reference Manual)

Using the HX-20 Assembler interface

The Assembler/Disassembler window provides an interactive interface to HX-20
Assembler so that you can assemble single lines of code as you make changes to
them. You can do this simply by editing the line displayed in the window, or by
entering a new line, and pressing . The HX-20 Assembler interface
allows you to use all the HX-20 Assembler commands and instructions, with the
exception of the ASM command.

For major changes you will still need to use HX-20 Assembler from BASIC, as
described in HX-20 Assembler Reference Manual.

You can use the HX-20 Assembler interface for the following:
e Patching program code to correct minor errors

e Setting up and controlling listing files (see section 2.9 of HX-20 Assembler
Reference Manual) for use by other DeBug facilities

e Defining new labels. Note that you may need to set up the RAM file area first
if you want to define global labels and have not already used HX-20
Assembler

e Controlling the memory locations that can be changed. This prevents you
from accidentally overwriting important locations, such as program code

The HX-20 Assembler interface automatically generates object code and optionally
a listing file.

3.3 The Disassembler facility

The Disassembler facility allows you to do the following:

Examine memory locations in mnemonic form

Re-create the source code for a program if you have lost the original source
code

Set up the RAM file area for the symbol table so that you can use global
labels in the HX-20 Assembler interface

The Disassembler facility allows the following commands to be used in the
Command and Status window:

D Sets up the RAM file area for the global label symbol table and erases the

definitions of all current global labels. The syntax is as follows:
D[<record length>][,<offset>]

Where <record length> is an integer in the range 1 to 255, and <offset> is an
integer in the range O to the current RAM file size. A default RAM file of 256
bytes is automatically set up when you initaialise the HX-20. The minimum
size of the RAM file required is given by the following formula:

(<number of global labels> * <record length>) + <offset>

where <number of giobal labels> is the maximum number of global labels you
are likely to define.

Note that this command is similar to the DEFFIL command in BASIC (see
section 5.1 in HX-20 BASIC Reference Manual)

Generates global labels from the object code. The syntax is as follows:
L[<first address>][,<last address>]

where <first address> and <last address> conform to the syntax for <value>
(see Appendix 2). If either or both are omitted, the previous value specified in
al,P,PL, or PN command is used. The labels are generated either on the
basis of instructions in Instruction mode, or data in ASCII, Byte or Word mode.
Note that it may take some time to generate the labels for a large block of
memory

PN

Generates global labels from the object code and then produces a
disassembly. The syntax is as follows:

P[<first address>][,<last address>]

where <first address> and <last address> conform to the syntax for <value>
(see Appendix 2). If either or both are omitted, the previous value specified in
al, P, PL, or PN command is used.

The labels are generated either on the basis of instructions in Instruction
mode, or data in ASCII, Byte or Word mode. Note that it may take some time
to generate the labels for a large block of memory. The disassembly is
produced in the current display mode, and is both displayed on the
Assembler/Disassembler window and sent to the current listing file

Produces a disassembly. The syntax is as follows:
PN[<first address>][,<last address>]

where <first address> and <last address> conform to the syntax for <value>
(see Appendix 2). If either or both are omitted, the previous value specified in
al, P, PL, or PN command is used. The disassembly is produced in the
current display mode, and is both displayed on the Assembler/Disassembler
window and sent to the current listing file

4.1

Tracing and excuting a program Chapter 4

Single stepping and trace are two type of simulated program execution. In single
step mode, a single instruction is executed each time you press the pf:Y:] key and
then control returns to DeBug. In trace mode, when you press the |f:Y:] key DeBug
automatically single steps through the program at a predetermined rate. You
terminate the trace operation by pressing the 1z]¥:Yq key. You can also seta
break point at a particular address so that DeBug traces the program until it
reaches the break point and terminates the trace operation.

Before tracing, single stepping or excuting a program proceed as follows:
1 Set the following registers (see section 2.3.1):

— The Program Counter to the address you want to start tracing or single
stepping from

— The Stack Pointer with the initial stack location
— Any other registers
2 Set up the listing file using the Assembler/Disassembler window

3 Perform the single stepping, trace or execution

The Single Step and Trace facility

You can use the following keys:

+[d&] Toggles the screen flag. This flag indicates that your program's
screen is displayed during single stepping and tracing instead of
DeBug's screen

+[d3 Toggles the subroutine flag. This flag indicates that a subroutine
called by a JSR or BSR instruction is executed as if the entire
subroutine is a single instruction. This facility is useful for calling
working subroutines, such as in the operating system. Note that
when the subroutine is called, the return address on the stack will be
to an address in DeBug and not in your program

You can use the following commands in the Command and Status window:

NG Turn off the subroutine flag (see the SG command below)

NS Turns off the screen flag (see the SS command below)

§ Selects single step mode. Note that this command does not actually start the
single stepping. To do this you press the [lXE] key (see section 4.3)

4

4.2

§G

Turns on the subroutine flag

SS Turns on the screen flag

T

Selects trace mode. Note that this command does not actually start the
trace. To do this you press the [fXE] key (see section 4.3)

Setting and clearing break points

You can use the following commands in the Command and Status window:

BC

BS

Clear one or more break points. The syntax is as follows:
BC<break point number>[,<break point numbers>] ...

Where <break point number> is an integer in the range 14 representing the
break point you want to clear

Sets a break point. The syntax is as follows:

BS[| <| J<address>[[[,[<count>]],[<flag>]],<break point numbers]
16l

Where:

<address> is the break point address. If you specify < or > the break point is
set for all addresses below or above the specified address. If the Program
Counter enters this range a break occurs, but only in single step or trace
mode. [n normal execution, no break occurs. If you do not specify < or > the
break point is set at the specified address. The @ option sets the break point
by replacing the op-code with an illegal op-code so that a break will always
occur, even in normal program excution.

<count> is the number of times that the break point must be true before it is
acted upon. The default value is one. @ option break points are always
acted upon on the first occasion in addition to the specified count. For
example, if <counts> is 1000, a break will occur on the first execution and the
thousandth execution

<flag> represents a branch condition, for example EQ or MI, that must be true
before the break point is acted upon. The default condition is RA, that is the
condition is always true

<break point number> is the number of the break point that you wish to set. If
<break point number> is omitted, the next available break point is set. There
are a maximum of four break points allowed, numbered 1-4

4.3 Executing a program

You can use the key to execute a program in single step or trace mode.

You can use the following commands in the Command and Status window:

(o]

Continues with your program. The syntax is as follows:

C[<execution address>][,<break point address>]

where:

<execution address> is the address you want to execute the program from
normally. If <execution address> is omitted, the Program Counter value is

used as the execution address.

<break point address> is the address at which you want control to return to
DeBug. Note that <break point address>, if supplied, must be in RAM.

This command automatically clears the break point that caused your program
to terminate :

Returns to your program. The syntax is as follows:

G[<execution address>][,<break point address>]

where:

<execution address> is the address you want to execute the program from
normally. If <execution address> is omitted, the Program Counter value is

used as the execution address.

<break point address> is the address at which you want control to return to
DeBug. Note that <break point address>, if supplied, must be in RAM

5.1

Using the Program Profiler facility Chapter 5

The Program Profiler facility enables you to determione the most frequently
executed sections of your program. This information helps you optimise the
program code so that the program runs in the most efficient way.

To use the Program Profiler facility, you specify the memory range in which the
profile is to be taken. The Program Profiler then subdivides this area into smaller
partitions. When you run the program, the Program Profiler takes regular samples
of the Program Counter (PC) register. On taking each sample, the Program
Profiler checks whether the Program Counter is currently in one of the partitions in
the chosen memory range, and if so updates the appropriate partition count.

When the Program Profiler has taken a predetermined number of samples, it stops
sampling, enters DeBug if necessary, and displays the following message on the
Command and Status window: Profiled. You can then print a listing of the profile.
This indicates how many samples fell in each partition of the address range.

You can then select the partitions with the highest number of samples as the

memory ranges for further profiles. These additional profiles may give a more
accurate profile of your program.

Program Profiler commands

You can use the following commands in the Command and Status window:

PP Prints a listing of the profile in the same format as the following diagram:

E000 0= 0%
E1FF 19 = 3%
E3FF 0= 0%
First address g?}gg g = g:
in partition EOFD. o= os
EBFD: 0= 0%
EDFC: 0= 0%
EFFC: 0= 0%
F1FB: 0= 0%
F3FB: 102 = 20%
F5FA: 0= 0%
F7FA: 359 = 71%
FIF9: 20 = 4%
FBF9 0= 0%
Last address in FDF8: 0= 0%
last partition P rEFe AL
Number of
samples in I Percentage
partition of total samples

541

5.2

PS Starts or terminates a program profile. The syntax is as follows:
PS[<first address>,<last address>[,[<samples>][,<frequency>]]]
where:
<first address> is the lowest address in tﬁe memory range for the profile
<last address> is the highest address in the memory range for the profile

<samples> is the total number of samples required. If <samples> is omitted
the default is 1024

<frequency> is the number of samples per second. If <frequency> is omitted
the default value is 128. The minum value for <frequency> is 2 and the
maximum value is 256

If no parameters are given, any existing profile is cancelled.

Hints on the use of the Program Profiler facility

e The profile is only for the memory range specifed, and gives no indication of
how much processor spends elsewhere in memory. The processor could, for
example, be spending 95% of the time in the operating system and only 5% in
your program code. Therefore, a figure of 50% on the profile listing would
represent only 2.5% of the total running time

e Choose the maximum number of samples per second so that the processor
does not spend most of the time in Program Profiler. Each sample takes
approximately one millisecond

e Choose enough samples to obtain reasonable accuracy bearing in mind the
program size and the total running time

e To obtain more accurate resuits, carry out a profile on each subsection of the
first profile

e Sections of code with masked interrupts will be listed as 0% on the profile
listing, irrespective of the actual percentage time these sections may occupy,
as the sampling interrupt will also be masked. Furthermore, the section of
code executed after a section with masked interrupts will have its profile
count artificially raised

e You cannot use the Program Profiler with any program that uses the real time
clock chip interrupt as this is used to perform the sampling

Installing DeBug Appendix 1

To install DeBug on ROM you should perform the following steps:

1 Switch the HX-20 off and install the supplied ROM or ROMSs according to the
instructions given in the document Installing EPROMSs supplied with the
product

2 Perform a cold start (see section 1.1.2 of HX-20 BASIC Reference Manual)

3 Select either DeBug or BASIC/ASSEMBLER from the main HX-20 menu.
Selecting DeBug reserves memory and enters DeBug. If you select
BASIC/ASSEMBLER, the following message is displayed:

Press TAB to reserve
memory for DeBug
otherwise press
RETURN to continue.

If you do not want to reserve memory for DeBug, press the RN key,
otherwise press the key. Note that if you do not reserve memory for
Debug, you will be unable to use any of its facilities. This facility is provided so
that you can run the Assembler with the maximum amount of memory
available.

You can now enter DeBug in any of the ways described in section 1.1.

At

Syntax for <value> Appendix 2

This appendix gives the syntax for values used as parameters to commands in the
Command and Status window. The syntax given here supplements the syntax in
section 2.5 of HX-20 Assembler Reference Manual.

The syntax for <value> is:

[f<]|]J<assembler expression>
[>]

where <assembler expression> is any expression that conforms to the syntax
given in section 2.5 of HX-20 Assembler Reference Manual.

An <assembler expression> preceded by a left angle bracket (<) is unrelocated if
you have specified a non-zero offset. An <assembler expression> preceded by a
right angle bracket (>) is relocated if you have specified a non-zero offset.

Note that the syntax for <operand> given in section 2.5.1 of HX-20 Assembler
Retference Manual is extended to allow the use of register names (A, B,C, D, P, S
and X) as operands.

NB 132

NR 131

OoP 130

SuU 129

SV 128

Error messages Appendix 3

This appendix gives the error messages generated by DeBug. The error
messages given here supplements the error messages listed in Appendix 3 of
HX-20 Assembler Reference Manual.

No break points
There are no unused break points available

Not RAM

An operation that requires RAM has been attempted in a non-RAM area
e The user program's stack is in ROM or in the I/O area

e You are trying to set an @ option break point in ROM

Bad op-code

The Single Step and Trace facility is unable to proceed

e The user program counter is below address &H80

e The user program counter is pointing at an illegal op-code

Stack underflow
There are no more display addresses on the dispiay stack

Stack overflow
The display stack is full

Index

Index entries refer to chapters or to sections within chapters. The main reference is
listed first. Note that Cn refers to Chapter n, and An to Appendix n.

A command 3.1.1
ASCIl mode 3.1.1, 3.1
Assembiler 3.2,C1,C3
Assembler/Disassembler window 3.1, 2.1
B command 3.1.1
Bank selection 2.3.1
BC command 4.2
Break key 22, C4
Break point 42, 1.1
BS command 4.2
Byte mode 3.1.1, 341
C command 43, 26
Calculator facility 24
Clearing register values 2.31
Command and Status window C2, 1.1,
21, 3.1.2,
4142, 43
Command interface C2, C1
Command keys 2.2
Condition Code Register 2.3
CTRL key
with PAUSE key 1.1
with PF3 4.1
with PF4 3.1.1
with PF5 4.1
D command 1.1
DEB command 1.1
DeBug
entering 1.1
exiting from 2.6
installing A1
Disassembler 3.3, C1
Display stack 3.1.2
Display modes 3.1.1, 3.1
DL command 3.1.1
DM command 3.1.1
Entering DeBug 1.1
Editing contents of a window 21, 2.6
Emor messages A3
Exiting from DeBug 2.6
Flags
in the Condition Code Register 23
Screen 4.1
Subroutine 4.1
G command 43, 26
HOME key 3.1.2
Hx-20 Assembler 1.1
HX-20 Monitor 25, 11
I command 3.1.1
llega! op-code 1.1
Installing DeBug A1
Instruction mode 3.1

Index-1

L command
Labels

Listing files
Location Counter

M command
MENU key
Monitor

NA command
ND command
NG command
NL command
NM command
NS command

Offset

Origin

P command
PA command
PAUSE key
PF1 key

PF2 key

PF3 key

PF4 key

PF5 key

PF6 key

PF7 key

PF8 key

PF9 key
PF10 key

PN command
PP command
Program Profiler
PS command

Q command

RAM file area
Register Display
Relocater

S command
Screen flag

SG command
Single Step facility
SM command

SS command
Subroutine flag
Symbolic mode

T command
TAB key
Trace facility

Unrelocated expression

<Value> syntax

w
py
L

g
we ww &

Lw

»w N 'momg,;m!gm_‘_;'_,g_._;_;m_nw LL pLlLpaLalL LN W@

SR LLLLdLLh N o LldLpwwwhNNELaNNN DR NN meLaLLLn LA whw

Q
o

w
»

(¢}
wH

w
L
Y

g.‘*
P
P 0OOF wWhh2abhab

>
N

© J.M.Wald 1988
71 May Tree Close, Winchester, SO22 4JF

	HX-20 DeBug Reference Manual
	Contents
	1: Introduction
	1.1: Entering DeBug
	1.2: Further Information

	2: Command Interface
	2.1: Editing the Contents of Windows
	2.2: General Command Keys
	2.3: The Register Display
	2.3.1: Changing Register Values

	2.4: The Calculator Facility
	2.5: Using the HX-20 Monitor
	2.6: Exiting from DeBug

	3: Assembling and Disassembling Code
	3.1: The Assembler/Disassembler Window
	3.1.1 Display Modes
	3.1.2: The Display Stack

	3.2: Using the HX-20 Assembler Interface
	3.3: The Disassembler Facility

	4: Tracing and Executing a Program
	4.1: The Single Step and Trace Facility
	4.2: Setting and Clearing Breakpoints
	4.3: Executing a Program

	5: Using the Program Profiler Facility
	5.1: Program Profiler Commands
	5.2: Hints on the Use of the Program Profiler Facility

	A1: Installing DeBug
	A2: Syntax vor <value>
	A3: Error Messages
	Index
	Commands Summary
	Entering
	DEBUG from HX-20 main menu
	DEB command in Basic
	On illegal opcode
	Ctrl-Pause (DeBug or Asm must have been run since power-on)

	Editing
	< >: Move cursor left/right
	Ctrl-< Ctrl->: Move cursor left/right by width
	Ctrl-A Ctr-lF: Move cursor to left/right end
	Ctrl-E: Delete to end of line
	DEL: Delete character to left of cursor
	INS: Toggle insert/overwrite
	CR: Enters the line
	Shft-SCRN: Retrieve last entered Line
	SCRN: Toggle assember and command mode

	General Command Keys
	PAUSE: Temporarly suspend current command
	BREAK: Abort current command
	MENU: Return to HX-20 menu
	Q: Exit DeBug

	Register Display
	Shft-F3: Toggle CCR between bits and value
	Shft-F4: Toggle A between ASCII, byte and combined
	Shft-F5: Toggle B between ASCII, byte and combined
	Reg=Value: Change register (A,B,C,D,P,S,X)

	Calculator
	=Value: Calculate expression to current RAD
	=Result: In symbolic mode display as label

	Display Modes
	PF3: Toggle between instruction and last data mode
	I: Select instruction mode
	PF4: Toggle data mode ASCII, byte, word
	A: Select ASCII mode
	B: Select byte mode
	W: Select word mode
	PF5: Set location counter to P and select instrcuction Mode
	Ctrl PF4: Toggle symbolic mode
	SM: Turn on symbolic mode
	NM: Turn off symbolic mode
	DL: Turn on labelling in symbolic mode
	NL: Turn off labelling flag
	DM: Turn on direct mode flag
	ND: Turn off direct mode flag
	NA: Turn off address flag
	PA: Turn on address flag

	Display Stack
	PF1: Push location counter to stack
	PF2: Push location counter to stack, move to addr in Data Field
	PF6: Pop location counter from stack
	PF7: Move to address in data of current instruction
	HOME: Move to the address in program counter
	^: Move back one byte
	\/: Move forward according to current display mode

	Disassembler
	D: Setup RAM file area for global symbols
	L: Generate global symbols from object code
	P: Generate global symbols and produce disassembly
	PN: Produce disassembly

	Tracing and Executing
	TAB: Start trace or perform a single step
	BREAK: Terminate trace
	BC: Clear breakpoint(s)
	BS: Set a breakpoint
	C: Continue
	G: Return to user program
	Ctrl PF3: Toggle screen flag
	SS: Turn on screen flag
	NS: Turn off screen flag
	Ctrl PF5: Toggle subroutine flag
	NG: Turn off subroutine flag
	SG: Turn on subroutine flag
	S: Select single step mode
	T: Select trace mode

