HX-20 ASSEMBLER

1638 'TEST FOR <RREAK> KEY

1649 TIM #BREAKFLAG,$MIOSTS
1650 BNE EXIT

1660 °

1670 °

1680

"DISPLAY v.

LDX #C{xr. 2Z)#256)+YPDS
JSR DSPLCH

LDA A #COLON

LDX #((XPOS+3)#256)+YP0OS
JSR DSPLCH

"READ AND DISPLAY TIME
BSR DISPLAYTIME

REFERENCE MANUAL

H~x—268 ASSEMBLER

REFERENCE MANUAL

HX~2R Assembler Refers

First Edition (C) I,

Second Edition (L)

fissembler wersions:
1 i and 1.1d <03 .
1.2c and 1.2d <) J.
A 0y JLHL idald
Jr (T 1M, Wald
2 (0 1M, Nald
3z, 2.3d and 2.3y

E‘-J!\JI\JI‘J'

Epson 15 3 trademark o
Microcassette is a tra

71 tay Tree Close,
Badger Farm,
Winchester,

5022 4JF

United Kingdom

Naticnal: Winches

nce Manual:
M. Wald October 1985
T, Hald July 1987

M. Wald August {983

M. Wald June 1986
December 1986
January 1987
February 1987

{C) J.M. Wald May 1987

f Epsor Corporation
demark of Olympus Optical

{0962} 5

ter 2544

Internaticnal:

2644

+44 962

Company

Introduction

Using the assesbler
Acsembler pasces
Assembler statements
Location courter
Offset
Labels
Local labels
Global labels
Symbal table
Numer 1c expressions
Operands
Monadic operators
Dyadic operators
5trings
ficcessing assembler operands from BASIC
Ubject code
Listing file
Page heading
Page body

Memory locations used by Assembler

fsseabler commands

Contents

Chapter |

[
"

N [N nN
-+ 4 £ Mo ok
Ny — P L

2
L

[
on

™

(XY
2 NY L LN
[

s S I

[

2

D

M)
] v [\=]
—

2.18

Chapter 3

Programming the HD6301
HO6301 instruction set

HD6301 ressing modes

Relocatable programs

Using multiple ce files
Header file
The first source file
The second source file

The final source file

Loading Assembler from ROM cartridge or microcassette

Making a back-up copy on microcasset

Loading fAssembler from disk

Making a back-up copy on disk

Installing Assembler on ROMW

HDA301 instruction set
Error messages

Clock program
Listing of the clock program

Multiple file clock program
Header file
First source file

Second source file

I1

te

Chapter 4
4.1
4.1.1

Chapter 5

Chapter 6
6.1

6.2
6.3

fppendix 1
ALt
At
Al.2
AlLZ.1
al.3

Appendix 2
fppendix 3

Appendix 4
fd. 1

Appendix 5
AS. 1
AS.2
AS5.3

Introduction Chapter 1

#ssembler is an extended BASIC module that allows you to inciude
HDA301 assembly language programs as in-line code within BASIC
programs. You can 3lso use Assembler as a corwentional assembler
for programs written entirely in assembly language. HAssembler
provides the following features:

® Assenbler is written in machine code and is linked into the
Epscn operating system. The area below MEMSET remains free
for use by other machine code routines

e The ability to include assembly language directly in a BASIC
program. The assembly language code is assembled when you run
the BASIC program

® Program editing using the standard full screen BASIC editor

e Full implementation of both local and global labels. Global
labels can be used to access routines defined in a separate
source file. You can also include lasbels in numeric
expressions

® Expressions can include any BASIC operator or function,
including user defined functions

¢ Ohject code is written to memory and can be saved in a file
using a8 SAVEM command

® Production of a listing file using any BASIC device

This manual is intended for use by programmers uho are already
familiar with the HDA3D1 family of processors.

The following manual is a useful source of additional information:
H&-20 Technical Reference Manual Epson, HS294818-B Y202990885

A help and information service is provided by writing to:

Julian Wald,

71 May Tree Close,

Badger Farm,

Winchester S022 4JF

Tel: Winchester {0962) 52644

enclosing 3 stamped addressed envelope.

1-1

2.1

Using the assembler Chapter 2

The assembler allows you to include an asseably language source
program in a BASIC program. The ASM command (see Chapter 3) is
used within a program to switch between assembly language and
BASIC. The source program is entered using the BASIC editor and
line numbering facilities. A1l the standard BASIC commands,
statements and functions are available for use in the assembler.
This means that you can use any function or operator in an
expression that 1s used as part of an assembler statement. The
source program is assembled by RUNning the BASIC program that
contains the source program.

Appendix 4 rontains a program that displays a clock on the LCD.

fissesbler passes

In order to assemble a program, the assembler normally reads the
source code in two passes. This can be per formed bgrenclnsing the
source code in a FOR..NEXT loop, where the loop con

used by the ASM command (see Chapter 3) to specify the pass number.
The pass numbers are as follows:

i This is used for the first pass. The assembler defines labels
and checks for syntax errars

2 This is used for the second pass in single file assembly. The
assembler may redefine labels, generate object code or
generate a listing file. The assembler aluways checks for
errors during this pass

3 This pass replaces pass 1 for the first source file in
multiple file assembly

4 This pass replaces pass 2 for the first source file in
multiple file assembly

5 This pass replaces pass | for the second and subsequent source
files in multiple file assembly

) This pass replaces pass 2 for the second and subsequent source
files in multiple file assembly

ol variable is

For example,
18 MEMSET &HB@8:FOR I=1 TO 2
15 A I

48 sFIRST LINE OF SOURCE CODE
;sLAST LINE OF SOURCE CODE

>

588 B
%z &
o

causss the assembler to read the source code twice using passes |
and 2.

fissembler statements

An assembler statement has the following form:

[{label>] [|{{assembler command>|] [{comment>]
{instruction>

where:

{label> is either a local or a global label (see section 2.4)

{assembler command> is one of the assembler commands described in
Chapter 3

{instruction? is 3n HD630! assembly language instruction described
in Chapter 4 and 2

{comment? 1s a comment, or remark, prefixed by a semicolon (;).
Hote that a comment is terminated by the end of the line or by a
colon (:). Comments differ from BASIC remarks in that comments can

be included within multiple statement lines

The assembler allows

re than one statement on a line, using a
colon {:) as a separa

or.

Location counter

indicates the memory address of the current assembler instruction
or command. The location counter contains the actusl address of

the instruction unless a non-zero offset is specified (see section
2.3.10.

The location counter is a predefined integer uaEiable that

The location counter is assigned an initial value in an ORG command
{see Chapter 3} and is updated automatically by the assembler.

The value of the location counter can be used in an expression {see
section 2.5.1) and is normally represented by *. The value of the
location counter is often used in an expression to produce a

position independant orogram.

2-2

2.3.1

2.4

For example,
STARTOFFS EQU START-*

calculates the t6-bit displacement to location START, and assigns
the displacement to the constant STARTOFFS.

Offset

The offset 1s a predefined integer variable that is added to the
value of the location counter to obtain the actual memory address
of the current assembler instruction or command.

The offset is assigned a value explicitly in an ORG command (see
Chapter 33, or modified implicitly by a command.

An offset 1s used either to force relocation in conjunction with a
relocation table {(see Chapter 3), or to assemble a program at a
location not normally available for user programs. For example,
you may need to produce a relocatable program, or a program that is
1o be run in ROM or below &HA48.

If you specify a non~zero offset, the assembler uses the offset to
relocate all references to locations in relocatable instructions
(see Appendix 2). For example, if the offset is &HiKEB, the
instruction

LD¥ #1808

will be assembled as

LDX #2608

Note that the assembler does not relocate references to locations
below the <lowest address limit> or above the <{highest address
limit» {see LMT command in Chapter 3).

The wvalue of the nffset can be used in an expression {see section
2.3.1) and 15 normally represented by “.

Labels

A label is a symbol, or name, that represents either an address or
an item of data. A label is assigned a value either explicitly
using an EQU command (see Chapter 3), or implicitly by labelling an
assembler instruction or command. For example,

COLON EQU *\:"

assigns the ASCII value of the colon character to the label COLOM.

Similarly,
START ORE &HAdE

assigns the value &HA4B to the label START. Hote that COLOW
represents an item of data, whereas START represents an address.

A labal is represented by a string of up to 16 alphanumeric
characters, including an underscore (_y. Mote that the first
charagter must be alphabetic. In addition, a label must not start
with 3 reserved word, nor contain a reserved word immediately
following an underscore. For example,

START
PRNTER_SET
SWITCHION

are valid labels, whereas
PRINTER.OFF
EXPRESSION
LETTER

are invalid labels.

Labels are often used fo repres
jump instructions. In other words, labels perform a similar
function to line numbers in GOTO and GOSUB instructions in BASIC.
Labels are also used to represent memory locations, and as data

ent the destination of brTnch and
i

A local label is held as an integer variable that contains the
value nf the label. A 13bel is always an integer varizble sven if
it is pot declared with a trailing percent sign (%). A local label
must be declared either in the first column of a statement, or with
a leading full stop (.}. For example,

18 DAAM ; DECLARED ON FIRST COLUMM

18 .LOOP LDA A #4 ;DECLARED WITH LEADING FURLL STOP

i@ y DAAM sDECLARED ON FIRST COLUMN WITH PERCENT
are all valid declarations of label LOOP.

You can usuwally include the value of a local label in an expression
in the same way as you would use any other integer variable in
BASIC. However, there are restrictions on the use in expressions
of local labels that contain underscore characters (see section
2.0,

l\i.)
£

2.4.2 Global labels

Global labels ailow cross references between source files (see
Chapter 6). For example, you may need to assemble a program that
has more source code than the available memory in the computer. In
this case, the source code must be assembled in small sections.
However , local labels are erased by BASIC whenever a new file is
loaded into memory, so you will need to use global labels to refer
1o routines and locations not defined in the current source file.
Global labels are stored in a RAM file which must be set up before
use {see section 3.1 in H¥~20 BASIC Reference Manual). HNote that
aach source file must contain the same RAM file specification.

A global label is held as a single record in the RAM file. The
format of a record is a tuo b%te integer that represents the value
of the label, followed by a string that represents the name of the

1abel.
Figure 2-1
Global label RAM file record structure
Label value Label name
(Integer) {String)
i [] L { J
' 2 bytes n~2 bytes
1
n b&tes

The name is truncated or space-filled to fit the record size
specified in the DEFFIL statement. Note that you should specify a
record length of at least three bytes and not more than 18 bytes.
The record length that you select will affect the number of
significant characters in global label names. For example, a
record length of 18 bytes allows global label names where only the
first eight characters are significant. The size of the RAM file
is the number of global labels multiplied by the record size.

A global label is declared with a leading exclamation mark {!).
For example,

'CLOCK ORG &HAde
'HERE EQU *

are both valid declarations of global labels. Hote that a
reference in a3 source file to a global label must always include
the leading exclamation mark, for example

JSR CLOCK

Global labels can be included in expressions (see section 2.5.1).

2-3

2.4.3

2.5

2.5.1

Symbo] table
The symbol table is the set of

can obtain 3 listing of the symbol table using the SYM g

Chapter 3).

ic essions
The assembler accepts any numer
following syntax:

{operand>

{monadic operator> {oper
{operand> {dyadic oper
{{operand>}

where:

{mona
section 2.5.2
{dyad1i

perator> is one of the
secti 5

The assembler allous you to use
addition, you can treat an enti
d.

umer ic constants. The fg

re aliowed:

- In the default input
Chpater 3), and start

T Hexadecimal, preceded
- Decimal, preceded by

- Octal, preceded by &

quotation marks, for
character in the stri
section 2.6

<operEnd} is one of the operands described in section 2.

ic operator? is one of the monadic operators descr

+ Binary, preceded by &B or %

A one or two character string enclosed in doub

all labels currently defi

ned. You
ommand (see

ic expression that conforms to the

>
> {operand>

dyadic operators describ

an extensive range of operands.

re BASIC expression as a

the following operands:
1lowing types of numeric
base {see the RA} command
ing with 3 numeric digit
by 8Hor by $
&

or &0

example "AB®. HNote that
ng may be 3 metacharacter

5.1
ibed in

ad in

In

single

constants

n

ie
either
{ses

2.3.3

Labels. Hote that references to udefined labels are currently
assigned a value of zero, and are flagged by a U in the flag
field of the listing

The location counter, represented by *
The offset, represented by *

The memory address, that is the location counter plus the
offset, represented by @

The count of the rumber of global labels defined in the
program, represented by !

A BASIC expression enclosed in parenthesis. # BASIC
expression is any numeric expression accepted by the standard
HX-20 BASIC interpreter. Note that a BASIC expression is
evaluated by the HX-20 BASIC interpreter and not by the
assembler. For example, (6144888\256) returns the value 2488

A numeric expression

Monadic operators

A monadic operator is an operator that takes a single value as an
argument and returns a single value as 3 result.

The asembler accepts the following monadic operators:

+

EXT

BYT

NOT

Honadic identity
Negation

Sign extension. This operator extends an 8-bit unsigned
number to a 16-bit signed number

Sign reduction. This operator converts a signed 16-bit number
to an unsignad 8-bit number

Logical inversion

Dyadic operators

A dyadic operator is an operator that takes a pair of walues as
arguments and returns a single value as a result.

The assembler accepts the following dyadic operators:

2.6

+ 16-bit signed addition

- 16-bit signed subtraction

* , 16-bit signed multiplication

¢ 16-bit signed integer divis

hY

MID 16-bit signed remainder after division

AND Logical AND

OR Llogical OR

EQV Logical XOR

IMP Lopgical implication

<

{=

> Signed comparisons. These

»= and 8 1f false

O

L0

LS Unsigred comparisons.

Hl and 8 if false

HS

AR Arithmetic and Logical shift right.

LSR shifted right by the numbe
magnitude of the right argument,
produces a shift left

ROR Rotate right. The low ord
rotated right through the
places specified by the ma
negative right argument oroduces a rotate left

Strings

A string is a collection of one or more characters enclo

double quotation marks ("),

may be a special character know

These return a value of -1 1f

sion {(truncates result tou

return a value of -1 if t

The left argum
of places specified bg 3
A negative righ

Metacharacters allow you to inc

outsid
might
in your program.
symbol

find it useful to be able

followed by an alphanumel

interprets both the special cha
character as one character.

2-8

Note that any character in

e the range for alphanumeric characters.

The metacharaiters usually consist of a

r byte of the left argum
igh order byte by the nﬂa
1tude of the right arg

as 3 metacharacter.

ude character codes that
For examp
to include control charac

1c character. The assenb
acter and the alphanumeri

ards zerol

rue

true

nt is
he
rgument

nt is
bar of
ent. A

ed in
he string

fall

le, you
ter codes
special
ler

C

The five types of metacharacters are:

*Schar >

z{char >

{char>

{char>

A single aponstrophe (7) represents the double quotation
mark character {"). The double quotation mark is
normally not allowed in a string as it is used to delimit
the start and end of the string

A character preceded b% a caret (*) represents the
character with an ASCII code 64 less than the ASCII code
of the specified character. For example,

IA"AJ‘I

is a string containing the control codes for carriage
return {ASCII code 13) and line feed (ASCII code 18}

A character preceded by a percent si%n (%) represents the
character with an ASCII code 64 greater than the ASCII
code of the specified character. For example,

Iml
is)a string containing the code for a lower case letter P
p

A character preceded by a vertical bar (i) represents the
character with an ASCII code 128 greater than the ASCII
code of the specified character. In other words the
vertical bar sets the most significant bit in the
specified character code to one. For example,

I:JI

is a string containing a single letter J that has the
most significant bit set to one

The reverse snlidus {7} enables you to_include a symbol
that normally has a special meaning. The reverse solidus
is used to include the metacharacter symbels, the colon,
and the HX-20 graphic symbols in a string. For example,

"This string contains a ’*’ character"”

is a string containing:

This string contains a "** character

Hote that you can change the double quotation marks into
apostrophes by preceding each apostrophe by a reverse
solidus as follows:

This string contains a \>\’ character"”

2.7

2.8

ﬂctlssing fAisseabler operands

from BASIC

To include assembler operands,
BASIC expression you must eng

1 label !CLOCK. Maote th
“+) and a local label by
type of operand in parenthesi

For example,

(+"A")
(.STARD)

represent the values of the s
respectively.

Note that you can refer to a
an expression. However, you
contains an underscore charac
prefixed by a full stop, inp

in passes 2, 4 and 6 using th
can disable the production of

for example global labe
lose the operand in paren

cation counter and the va

a full stop
s.

local label as an integer
cannot refer to a local i
ter except by enclosing t
arenthesis.

code in memory, if
Object code production
DBJ command {see Chapter
object code using the NOE

memory, and no more, for the
routine can be used:

to reserve enough memory
sembler.

bject code. To do this th

188 DEFINT A-Z2:1=1:605U8 208: ()

118 DEFINT A-2:FOR I=1 TD 2: 208:NEXT |

128 EXEC START PROGRAN

138 END

148 °

208 A I

218 START ORG &HA4E ;STﬂR OF PROGRAM

222 08J OBJECT CODE
: LINE OF SOURCE CODE

968 ASH OFF

998

nd (see Chapter 3 and sect

Is, in 3
thesis.

For

lue of the
at you must precede a strin

by a plus

€.} 1f you enclose either

tring "A" and the local label START

variable in
bel that
£ nane,

U have enabled

i5 enabled
3. You
5 command.

ion 3.3.1 in
for the

enou?h
e following

2.9

2.9.1

In this routine line 188 partially assembles the code using pass 1.
This ensures that the address of the last location used plus cne is
knoun. The MEMSET command is %iuen this value as the first
available location for BASIL, thus ensuring that no memory is
wasted. Houever, MEMSET has the side effect of erasing all
variables and declarations, so the assembler is re-run using both
pass 1 and pass 2. MNote that you can use a similar routine to
reserve memory in multiple file assembly (see Chapter &).

Listing file

The assembler allows you to request a listing file when the program
is assembled. A listing file is produced only during passes 2, 4
and 6. The listing file contains a formatted copy of the source
program and object code. You can specify that the listing file is

divided into pages and specify a page title. The page title
includes the date and time of assembly. .

The format of each page is given in the following sections.

Page heading

The assembler prints a heading at the top of every page of the
listing file. The farmat of a page heading is as follous:

{Page-number > {Date> {Time> {Title’>
where:

<Page-number > is the rumber of the current page. Note that the
page number is given as 3 five digit number with leading zeroes,
starting with page 8@3@81. The page number is reset to BBBA1 at the
start gf pass 2, but retains i1ts current value at the start of pass
4 and

{Date> is the current date and is obtained from the HX-20 internal
clock. The format of the date is mmddryy where mm is the month,
dd 1s the day, and yy 15 the year in the century

{Time» is the current time and is obtained from the HX-28 internal
clock. The format of the time is hhvmm/ss where bh is the hour in
the 24 hour clock, mm is the minute, and s5 is the second

{Title> is either blank or contains the user-specifed title. The
title is specified by the TTL command (see Chapter 3)

The heading i5 separated from the remainder of the page by a blank

line. HNote that the page heading is truncated if the page width
specified in the FMT command {see Chapter 3) is too small.

2-11

2.9.2 Page body
The format of each line in the page body is as follows:

{Line > {Flag> {Address> <Object-code> <{Label?> {Source-statement>

2.18

where:

{Line-number > is the BASIC line nu
given as a five digit number with leading zeroes

<Flag» is either blank or contains one of the following:

D

ber of the current statement,

The line contains a reference to an undefined label

A JMP or JSR instruction is within the range for a branch
instruction, so a branch instruction can be used inste

The range of a branch instruction is within 16 bytes of the
maximum allowed. Note that a J flag may change to a B flag
where appropriate

The label has been defined more than once

{Address> is either blank or contains the hexadecimal value of the

location counter {see section 2.3)

However, if the curren

instruction is an EQU command (see Chapter 3), {Address> contains
the hexadecimal value assigned to the label. HNote that if the
address is relocated, the address is flagged by a plus sign (#)

{Object-code> is either blank or contains the hexadecimal

representation of the object code.

Hote that any object code that

15 relocated is listed in its unrelocated form and is flagged by a

plus sign ()

{Label> is either blank or contains the name of the label defined

in the current source statement.

{Source-statement? is a copy of the current source statement,
axcluding any label defined in the current source statement.

Note that a line is truncated if the page width specified in a FMT

command (see Chapter 3) is too small

Mesory locations used by Assesbler

The assembler uses locations &HEB to &HEF, 2H2CH to BHZCF and the

area above RAMADR as 3 temporary
of these areas, you must ensure that you save any important
contents before you use the Assembler.

rk area. If you need to use any

Assembler commands Chapter 3

This chapter provides you with full details of the assembler
commands avallable. The commands are described in alphabetic order
and are in the same format as Chapter 3 and Chapter 4 of HX-20
BASIC Reference Manual.

3-1

FORMAT AM

PURPOSE To
EXAMPLE ASH
REMARKS The

Ta

Usy
enc

The
BAS

The
OFF

See also OBJ

start, continue or termin

enter the assembler from
numer iC expression to specif
ally specified as the con
loses the code to be assembled.

EEE?[J |

1{numer ic expression>!
{CONT
10FF

I

ate assembly

ASM command is used to switch betusen BASIC and the assembler.

IC

BASIC use the ASM command followed by a
y the current pass.
trol wariable in a FOR..MNEXT loop which

The pass number is

ASM OFF command is used to terminate assembly and return to

ASM CONT command is used to re-enter the assembler after an ASM

command.

, LST and section 2.1 Assembler passes

FORMAT (1

PURPOSE To assign a specified value t

1> EQU <{numeric expression>

EQU &HFF19

0 3 label

EQU command assigns the value specified by <numeric expression)
(label>. HNote that a MO error occurs if no label is specified.

Note also that a DD error occurs if a label is re-defined in RDF W

EXAMPLE

REMARKS The
to
mode,

See aiso ROF

ORG and section 2.4 Labels

FORMAT

EXAMPLE

See 3lso

FORMAT
PURPOSE

See also

FCB

FCB i{mumeric expression>i{, i{numeric expressxon).....]
{string> 1 string '

To fill contiguous bytes with the specified data

FCB 18,23,5,8
FCB'ﬂlhssage 13,18,8
FCB "“Another Hessage‘H*J‘E'

The FCB command fills contiguous bytes with the given data. The
data can include either numbers or strings, or any combination of
the two types of data.

Mumer ic expressions must evaluate to zero or a positive number less
than 296, otherwise a FC error occurs.

Strings must be enclosed in double quotation marks (") and may
include metacharacters. For example, "*W*J*8" is a string
containing a carriage return followed by 3 line feed and null
character.

FDB, RMB, RDB, section 2.5 Humeric expressions and section 2.6
Strings

FDB

FDB <{numeric expression}[,{numeric expression’....]
To fill contiguous double bytes with the specified data

FDB 18,23,5,8
FDB SNSCOM, *-START,FETCH-HERE ;LABEL UALUES

The FDB command fills contiquous double bytes with the given data.
This command is particularly useful for setting up a table of
addresses, as in the second example above.

FCB, RMB, ROB and section 2.5 Humeric expressions

FORMAT

See also

Fi+

(<page length>1L, [{page wi
[,[<header string>1(,<{traj
To spacify the page size
68, 90

bs : IA["H, lAL.

FHT 255,32,1

The
is g

iven.
?nfi

nage length is set to <pag
lven. The default page le
Hote that a page lengt
nite page length.

The default page width
Any value greater thar
device width is smaller than 1
to fit the device. The value

is given. The default start ¢
Any value greater than 128 is
plus| the start column exceeds

ader string sent at the
string>, or to the default val
r string is " or the las
trailer string sent at the
ing>, or to the default val
iler string is "" or the 13

LST

3-4

idth>1L, [{start col>]
iler stringd11]

ongth 1s 68 lines or the |1
th of 255 lines is interpr

page width is set to {page width>, or 1o the defaul

is 88 characters or the
v 128 15 truncated to 128.
the line width, the line i

bart col?, or to the defau
olumn is 1 or the last va
truncated to 128. If the
{28, the page width is tr

start of every page is se
ue if nore is given. The
t value given.

end of every page is set
ue if none is given. The
st value given.

= lengthr, or to the default if none

ast value
eted as an

t 1f none ic

1ast value
If the

s truncated

of <page width> must be at least 3.

1t if none

lue given.

page width
uncated.

1t to <{header
default

to {trailer
default

FORMAT

EXAMPLE

See also

FORMAT

EXAMPLE

See also

LMT

LMT [{lowest address limit>){,<highest address limit>]
To specify the lowest and highest addresses used in relocation
LMT &HAd0,8-1

The LMT command is used to specify the lowest and highest addresses
to be relocated when using a non-zero offset in an ORG command.

At the start of a program, after an ASM command using pass 1 or 2,
the éouest address limit is &HA48, and the highest address limit is
&HPFFF.

If you specify a new <{lowest address limit> but no rew <highest
address limit>, the current value of <highest address limit> is
retained. Similarly, if you specify a new <highest address limit>
but no new {lowest address limit> the current value of {lowest
address limit?> is retained.

ORG, TBL, Section 2.3 Location Courter and Chapter 5 Relocatable
programs

LST

LST [IL#)BASIC file rnumber>)]
i{device descriptor> |

To generate 3 listing file during pass 2, 4 and 6

LST "68N1B"

The L3T command enables the production of a listing file.

The listing file is sent to the specified device or BASIC file, or
the default if none is given, The default is the RS232 port or the
last file or device specified. The file descriptor is either "I"
for the microprinter, or "BLPSC" for the RS232 port. BLPSC are the
parameters used in the BASIC OPEN "COMB:" statement

FHT, NOL, PAG, TTL and section 2.9 Listing file. Refer also to the

OPEN and CLOSE statements in Hx-28 BASIC Reference Manuwal, and to
section 5.2 Seguential files in the same manual.

3-5

FORMAT

See also

See also (BJ

ME

MEM

To specify the range of memory
MEM $088, $7FFF

The MEM command specifies the
allnwed for object code, chang
defaults

At the start of assembly, aft
HEWMSET-1.

If you specify a new {lowest m
limit» the current value of <h
Similarly, if ¥ou specify a <h
memory limit)> the current valuy
retained.

LMT

NO

(lowest memory limit>[,<highest memory limit>]

allowed for ohject code

lowest and highest meuor?
ing the previosly set va

an ASM command using pass
the lowest memory limit is &HA4@ and the highest address

mory limit> but no <high
ighest memory limit}» is r

e of {lowest memory limit

addresses

Uas of

1or?2
limit is

st memory
tined.

ighest memory limit> but no {lowest
> is

NOB
To disable the production of o
NOB

The
2, 4 or 6. This command is pa3
assemble part of a file. Hote
inpass 2, 4 or 6 if no 0BJ co
assemhler assumes a NOB comman

bject code during pass 2,

that 3 NOB command is not
nd has been given, as t

l::cularlg useful if you o
and does not produce obj

4 0r 6

command disables the production of object code during pass

nly want to
necessary
the

ect code.

FORMAT

See also

FORMAT

See also

NOL

NOL
To disable the production of the listing file during pass 2, 4 or 6
NOL

The NOL command disables the production of the listing file enabled
by 3 L5T command. This command is particularly useful if you only
require part of the file to be printed out, for example when you
are using a routine for which you already have a listing. Hote
that a NOL command 1s not necessary if no LST command has been
given, as the assembler assumes a NOL command and does not produce
a listing file. To re-enable the production of the listing file
use the LST command. '

LSt

oBJ

0aJ
To enable the production of object code during pass 2, 4 or 6
08J

The 0BJ command enables the production of object code during pass
2, 4 or 6 of the assembler. The object code produced is stored in
memory at the address calculated by adding the value of the
Incation counter to the offset walue given in an ORG command. Note
that if you specify a non-zero offset, the assembler automatically
relocates the object code. Any relocated references in the object
tode are flagged by a + sign in the listing file,

MOB, ORG, LST, section 2.8 Object code and section 2.9 Listing file

ORG

FORMAT ORG [<origin>1[,{offset>]

PURPOSE To specify the vwalue of the location counter and the offset

EXAMPLE ORS &HAd8

REMARKS #it the start of the program, after an ASM command using pass 1 or
2, both the location counter| and the offset are zero. The ORG
comnand allows you to specify a new value for the location counter
(<originz) and offset {({offsetr). You must specify <origin> and
<offset? as numer ic expressions.
If you specify a new {origin} but no new {offset’, the current
value of the offset is retained. Similarly, if you specify a neuw
{offset> but no new {origin?, the current value of the location
counter is retained.
Note that if you define a label in the same statement as an ORG
command, the label is assigned the naw value of the location
counter and not the location of the ORG command. In other words,
the 1abel is assigned a wvalue after the ORG command is executed.

See also Sections 2.3 Location counter, 2.3.1 Offset and 2.4 Labels
PAaG

FORMAT PAG

PURPOSE To start a new page in the listing file

EXAMPLE PAB

REMARKS The PAG command forces a new page in the listing file. The command
takes effect at the point at|which the command 15 given. HNote that
this command is ignored if an infinite page length has been
selected using the LST command.

See also LST and TTL

3-8

RAD

FORMAT RAD i<input basel>[,<{output base)]'
i,<{output base)

PURPGSE To specify the input and output numer ic base

EXAMPLE RAD 8D18

REMARKS The RAD command sets the default input and output bases. The
defaults are initially &D18 and &H1@ respectively. The output base
is used only in the HD6381 Debugger.

See also Section 2.5.1 Operands

RDB

FORMAT RDB {numeric expression’

PURPOSE To reserve a specified number of double bytes of storage

EXAMPLE RDB 258

REMARKS The ROB command advances the location counter by the number of
double bytes specified by <{numeric expression?. HNote that the
reserved space is not initialised to any particular value.

See alsop RMB, FCB and FOB

3-9

FORMAT

See also EQU and section 2.4 Labels

v
N

RDF N

a program without causing a
re-definition of labels,
re~definition of labels.

Normally the assembler assi

ar| 5. The RDF Y command forces the assembler to re-g

value of SIZE durin% pass 2
TBLEND are known. The RDF b
other labels are re-defined
N commands in pairs.

The assembler assumes a RDF

enable or disable the re-definition of labels

ROF command allows you to re-define the values of

and the N parameter disables

DD error. The Y paramete

tuation in which the RDF

;ENABLE RE-DEFINITION
; TRBLE SIZE
;DISABLE RE-DEFINITION

; RESERVE TABLE SPACE
;END OF TRBLE + 1

ns values 1o labels durin
4 or 6 when the values 0

N command is used to ensur
Note that you must use

N command if no ROF comma

labels within
r enables the
the

Y command is

q pass 1, 3
alculate the

f TBLSTART and
e that no

RDF ¥ and RDF

nd is given.

See also

FORMAT

EXAMPLE
REMARKS

See also

RMB

RMB {numeric expression’

To reserve 3 specified number of bytes of storage

RMB 508

The RMB command advances the location counter by the number of
bytes specified by {mumeric expression>. HNote that the reserved
gpace 1s not initialised to any particular value.

RDB, FCB and FDB

SYM

S [IL1]
16

To produce a3 symbol table listing
SYM B

The S¥M command produces a symbol table listing in the listing

file at the point at which the SYM command is given. The format of
the table is one label per line together with its current value
(address) in hexadecimal. The L parameter produces a symbol table
for local labels only, and the & parameter for global labels only.
If no parameter is given, the symbol table contains both local and
global labels. MNote that the labels are listed in alphabetical
order of initial letter only; global labels first, followed by
local labels.

Section 2.4 Labels and section 2.4.3 Symbol table

5-11

FORMAT

See alsp

FORMAT

See also PAG, LST and section 2.6 Stri

TBL

TBL [{rwmeric expression’]

enable production of ar
£H6088

The TBL command 15 used to
link table is used to relog
assembled with an origin of
value of <origin} and {off

memory 3t {origin>+{offsety.

{gffcet’ is zern.

and <highest address limit» are relocated.

altered by the TBL comma

elocation table

enable production of a link table. The

ate programs. The cbject
{numer 1 expressiony, re
et?. The object code is

The val
d to {old aoffset>+(<hi

code is
ardless of the

laced in

The TBL command has no effect if
Only references between <{lowest address limit)

of {offset)

st address

limit>-<lowest address limit>)x8+1. This alteration is made to
enable the correct amount of memory to be reserved for the link
table. The {origin? is NOT affected.

ORG, LMT, TBL, and Chapter 5 Relocatable programs

TTL

TIL <string>

To set up a title and start a new page on the listing file

TTL *Simple Clock Program®

The TTL command sets up the title which is printed at the top of
every subsequent page on the listing file, if a listing file has
been opered. The title will also include the date and time of the
listing. The time given will be the time that the title is set up,

and not the time at which t
you set up several titles u
contain a different time.

3-12

he file is actuall
ithin one listing

i

nqs

listed.
le, each title will

Thus, if

4.1

Prograssing the HD6301 Chapter 4

The Hitachi HD6301 is an eight-bit processor based on the Motornla
MC6800. The HDB30{ can access 3 maximum of 63536 eight-bit memory
locations. The Epson HX-20 contains two HD6301 processors in a
master and slave relationship. However, the user can program only
the master processor. The slave processor is reserved for
input-output operations.

HD6301 Instruction set

There are 81 instructions in HDE301 assembly language {see Appendix
2y, Each instruction 1s represented inside the computer as a
unigue eight bit binary number known as the op-code. Houwever, 3
program written as a series of op-codes can be confusing and so
each 1nstruction is also represented by a mnemonic. Thus the rwo
operation instruction is written as NOF and has the op-code &HA1.
The purpose of an assembler is to convert a program written using
mnemonics into the internal op-code representation.

Appendix 2 provides details of the HD6301 instruction set divided
into the following six categories:

* Data movement. The data movement instructions move data)
betueen two registers, or between a register and memory. This
section includes instructions to set or clear flags

[Arithmetic. The arithmetic instructions perform arithmetic
operations. This section includes the arithmetic shift
instructions

¢ logical. The logical instructions perform the logical
operations AND, OR and exclusive OR. This section includes
the logical shift and rotate instructions

L] Comparison and tast. The comparison and test instructions
compare the contents of a register with another register or
memory. This section includes instructions to test the value
of individual bits in a register or memory location

] Branch. The branch instructions transfer program control to
anather part of the program

® Program transfer and miscellaneous. This section contains

instructions to transfer program control and control
interrupts

4-1

4.1.1 HD6301 addressing modes

following six addressing

mediate.
the instruction. The ii
prasented by a numeric ex)
), or a pound sign (f) o
ample,

dexed. In this mode the
cation with an address s

preceeded by a letter X and
ample,

loads accumulator A with tiy
accunulator B with the cont

Extended. In this mode the
location. The extended add
numer ic expression.

SHDFFD

th
aul

(A

ation of data used in an instruction is specified

In this mode the data is contained as a

For esample,

transfers program control 4
extended address is bel
tomatically use direct ad

using one
modes:

constant
S .
ash sign
or

nediate addressing mode i
oression preceedad by 3 h
the English keyboard.l F

data is contained in a memory
=Cified as a constant positive
the index register. The indexed
ted by a numeric expression

an optional plus sign {+}. For

2 contents of location &HiB84 and
znts of location 3HIGBE

data is contained in a
ressing mode 1s represent

o location SHOFFD. HNote
o &H1B8 the assembler wil
dressing where possible

Implied. In this mode the data is contained in a register or
memory location implicitly specified by the instruction. For
example,

CR A
INC B

clears accumulator A and increments accumulator B

Relative. This mode is used to specify the destination of
branch instructions. The data is the offset from the address
of the branch instruction to the destination address. The
assembler does not use relative addressing, but expects an
extended mode address to be supplied as the destination of a
branch. The assembler converts the supplied extended mode
address into the relative offset required by the HD6301. The
extended mode address is usually a label. For example,

BRA START :
transfers program control to label START

Relocatable Programs Chapter 5

A relocatable program is 3 program that makes no references to any
fixed memory locations within the program area, and can therefore
be run anywhere in memory. Relocatable programs are particuarly
suitable for use an the HX-20 as all application files must be
relocatable.

One problem caused by relocatable programs is that all addresses
must be ultimately be specified as cffsets from a particular
location. This location aust be calculated. This is difficult as
the HDA301 does not aliow you tn read the contents of the program
counter to obtain the current location of the program.

gn? method of finding the current location of a table is given
e]ou:

BSR LABELL

TABLE :
LABEL] PUL X or PIL A
PUL B

;% or D contains absolute address of TABLE

Note that a pseudo subroutine call is used to push the address of
TABLE on the stack. This address is then later pulled off the
stack. The program continues to run from LABEL which is the first
address after the table.

The two locations LABEL and TABLE could be the same location, as
follous: :

BSR LABEL1
LABEL1 PUL ¥ o PUL A
PUL B
;# or D contains absolute address of LABEL]

In this case the routine is used merely to find the address of
LABELL.

fissembler provides an alternative s?stem to enable you to write
relocatable programs. Assembler allows you 1o write a3 relocatable
program as if it is an absolute program, and use a link table to
relocate absclute references at run time. The assembler can
automatically produce a link table using the LWT and TBL commands
(see Chapter 3). Hote that the format of the link table produce is
compatible with that regquired by the LOAD OPEN command in the Epson
TF-20 Disk drive.

A suitable routine to perform the relocation is listed below:

ORIGIN

PEMSTRT
LMKSTRT
113, 3

START

. LNKLOOR

.BYTLOOP

NONREL

EXIT

LNKTBL

o
:

£8 &R%

;W:DE-F
3 A

£-START)
TBL-PEHSTRT)

3e~F3k BE EEE BE

§

253358
ek

EBszessasa
SRR

:

® mmg@;ﬁ:ﬂm
Lk
3F

- BREEFFIEREIEE
-

LMT START,LNKTBL-1

; 0BJECT CODE ORIGIN
; PLACE DBJECT CODE @ sad@ i

:ADDR OF
;ADDR OF
;ADOR OF

; POINTER
; POINTER

START OF PROGRAM
END OF PROGRAM
START OF LINK TABLE

TO PROGRAM
TO LINK TABLE

;s INITIALISE STACK

;D = START
;D = LNKTBL

;SAVE PRI
sBIT COUN]
3GET LINK

SRAM POINTER
TER
BYTE

sUPDATE L
sRESTORE

INK TABLE POINTER
POINTER

; TERMINATE LOOP IF ALL DONE
;BET LINK BIT INTO (C)
;IF 8 NO RELOCATION

sSAUE LI
sBET

s SAVE

3

BYTE + BIT COUNT
S5 TO RELOCATE

TED ADDRESS

;RESTORE LINK BYTE + BIT COUNT
s NEXT BYTE

ST
:EXECUTE PROGRAM

;RELOCATION LIMITS
;ENABLE LINK TABLE
;MEMSET MUST BE SET TO (&)

Using sultiple source files Chapter 6

You can assemble a program in several sections if there is
insufficient memory in the computer for the complete socurce code.
The sourrce code is divided into several small files, and a header
file is written. The header file contains initialisation
information and is RUN to assemble the source code. Appendix 3
contains a nultiple source file program that continuously displays
a clock on the LCD.

Multiple source file assembly operates as follows:

The header file initialises a pass flag to 1. The pass flag
indicates the current assembler pass required. The header file
also sets up 3 RAW file and opens a file for the listing file. The
header file then RUNs the first source file.

The first source file defines 1ts RAM file to be the same as that
set up by the header file. The first file then examines the pass
flag. If the pass flag is i, the source code in the first file 1s
assembled using pass { only. Otherwise, the source code in the
first file is assembled using pass 3 followed by pass 4. The first
source file then RUNs the second source file.

The second source file defines its RAM file to be the same as that
set up by the header file. The second file then examines the pass
flag. If the pass flag is 1, the source code in the second file is
assembled using pass 5 only. Otheruwise, the source code in the
second file is assembled using pass 5 followed by pass 6. The
second file then RUNs the next source file.

The last source file is similar to the second source file.
However , once it has assembled its source code, it increments the
pass number. If the pass number is now 2, the last source file
RUNs the first source file. Otheruise the last source file closes
the listing file and assembly is completed.

Mote that the third and subsequent source files, if any, are
handled in the same way 35 the second source file. HNote also that
the second source file may be the last source file.

The following sections contain details of the format of each file
required in multiple file assembly.

g

5.1

Header file

The header file corsists of the following program:

18 CLEAR 204, 825544
28 DEFFIL 2,8:PUTZ 8,
38 OPEN “0%,1,"COW8: "
48 VIDTH "COM8: ",80

58 T=TAPCNT:PUT% 1,T
68 RUN "FILE1.SRC",R

The first source file

"MAY 255 GLOBAL LABELS
*PASS NUMBER
’LISTING FILE CHANNEL
*LISTING FILE WIDTH
*TAPE COUNT VALUE

The first source file consists of the following program:

28 DEFFIL 2,8:6ET% 8,P

P={ THEN I=1:G0SUS 108
IF P=2 THEN FOR I=3 TO 4:6G05U8 188:NEXT 1

GET PASS NUMBER
*SET UP RN FILE

: LE2.SRC",R
ASH I
118 ORG 2HAMB
128 08J
138 'START ;START OF PROGRAM
: sMth SOURCE CODE LINE

988 ASH OFF
998 RETURN

The second source file

The second source file consists of the following program:

18 DEFINT A-2

28 DEFFIL 2,8:6ETx 8,P ’GET PASS NUMBER

38 DEFFIL 8,4 *SET UP RAH FILE

48 IF P=1 THEN I=5:605U8 108

58 IF P=2 THEN FOR I=5 TO 6:605UB 188:NEXT I

G?g l,il.H "FILE3.SRC",R

108 ASM I
: ;M+1th SOURCE CODE LINE
: ;Hth SOURCE CODE LINE

968 ASH OFF

998 RETURN

6.4 The final source file

The final source file consists of the following grogram:

18 DEFINT A-2
15 DEFFIL 2,8:6ET% 8,P ’GET PASS NUMBER
28 DEFFIL 8,4 *SET UP RAM FILE
15 IF P=1 THEN 58
38 FOR I=5 T0 6:60SU8 188:MEXT I:CLOSE
35 EXEC (!START) ’EXECUTE OBJECT CODE
48 G60TO 88
58 1=5:605U8 168
55 DEFFIL 2,8
68 PUT: 8,2 YSET UP PASS 2
65 GETx {,T:NIND T "UIND TO START
78 MEMSET LIMIT *ALLOCATE OBJECT CODE SPACE
73 RUN "FILE1.SRC",R
89 END
% 3
108 ASH I
: ;N+1th SOURCE CODE LINE
: ;LAST SOURCE CODE LINE
978 LIMIT EQU * s FIRST UNUSED MEMORY LOCATION
964 ASH OFF
998 RETURN

Loading fissembler

Appendix 1

Loading Assembler from ROM cartridge or microcassette

To load Assembler from a ROM cartridge or microcassette perform the
following steps:

1

L&)

Switch off the HX28 and connect either the ROM cartridge or
microcassette drive to the HX-28,

Switch the HX28 on, and save any important machine code
programs or data held below MEMSET as these are destroyed when
you link Assembler

Enter BASIC

If you are loading from microcassette, place the program
cassette in the microcassette drive and wind the cassetts to
the start of tha tape

Type
MEMSET £H2B80:L0ADM ", ,R
and press the RETURN key

This loads Assembler and runs the linker routine. Assembler
then returns to the main menu and re-enters BASIC. The linker
moves Assembler to a protected area of memory above BASIC, and
resets MEMSET to the base address of &HBA48. The linker is
destroyed and is not copied to the protected area. Hote that
you can rnow change MEMSET so that you can use the area of
memory below MEMSET for your own programs.

WARNING: The linker unlinks all ROM
application programs except BASIC and the
monitor. The reason for this is that some ROM
programs are not implemented in 3 manner
consistent with the use of application files
as described in H¥-28 Technical Reference
Manual (Section 2, sub-section 18.4)

If you are using the microcassette drive, rewind the program
tape and remove it from the microcassette drive. If you are
using the ROM cartridge, you may now switch off the Hx-28, and
replace the ROM cartridge with the microcassette drive

Al 1.1

Al.2

Making a back-ug C

To make a back-up
This utility is pr
designed to be run

0py on microcassette

copy of Assembler you mus
avided as part of the lin

To load the copy utility perform the follow

i Switch off th
HA28

Suitch the HX
programs or d
when you load

(2%

e H%28 and connect the mi

28 on and save any import
ata held below MEMSET, as
the copy utility

3 Enter BASIC
4 Place the program cassette in the micr
the cassette to the start of the tape
3 Type
MEMSET : LOADM: EXEC &HA48
and press the RETURH key

This loads and run
the following:

utilitg ui.e
Device (MC) ?

File = ASSEMBLR.RE
Size = 84788 Bytes

Press either B to
record on an exter

s the copy utility. The

nal cassette recorder.

on the specified cassette and the copy util

You can now link the program into the system

fol lowing:
EXEC &HB48
and pressing the R

Loading Assembler

ETURN key.

from disk

Assembler is provi
run Assembler, you
both Assaabler and
per form the follou

ded on a master disk. Ho
must create an Assembler
Disk BASIC.
ing steps:

1 Enter Disk BASIC (see section 4.2 of H

Reference Mar

wall

Al-2

before you run the linker.

t use the copy utility.
er routine and Is

ing steps:

crocassette drive to the

ant machine code
these are destroyed

pcassette drive and wind

copy wtility displays

record on the internal microcassette, or C to
The program is then saved

lt¥ returns to BASIC.
or use by tuping the

wever, before you can
system disk containing

To create an Asseabler system disk

N-20 Disk BRSIC

fl.2.1

AlL.3

2 Place the Assembler master disk in drive A
3 Type
RUN "SYSGEN. BAS"

and press the RETURM key. Follow the instructions provided by
the program to oreate an Assembler system disk. HNote that you
will require a blank disk that is not write protected, a Disk
?ﬂgéc system disk and the supplied Assembler system disk

abel.

4 The SYSGEM.BAS program conwerts the blank disk into an
fissembler system disk and automatically re-boots BASIC. On
entry to BASIC the Assembler is automatically loaded along
with Disk BASIC, and displays a copyright message to indicate
successful loading. The BASIC program "SYSGEM.BAS" is
automatically cleared from memory. HNote that if there is
insufficient memory available you might find that either Disk
BASIC, or Disk BRSIC and Assembler, will not load (see section
4.2 in HX-26 Disk BASIC Reference Manual).

You can now use the Assembler system disk as a replacement for the
standard Epson system disk.

Making a back-up copy on disk

Back-up copies of the new Assembler system disk can be made using

gither the SYSBEM command or the volume cop facilit%_(see saction
i

3.3 (2) in H¥-29 Disk BASIC Reference Manua!l and section 4.6 in the
same manual).

Back-up copies of the supplied Assembler master disk can only be
made using the volume copy facility.
Installing Assesbler on ROM

To install Assembler on ROM you should perform the following steps:

i Switch the HX28 off and install the supplied ROM or ROMs
according the instructions given in the document Installing
EFPROMS supplied with the product

2 Perform a Cold start {see section 1.1.2 of H¥-28 BASIC
Reference Manual)

3 Select BASIC-ASSEMBLER from the system menu

You can now use the Assembler whenever you enter BASIC

Al-3

HD6301 instruction set fAppendix 2

This appendix contains details of all HDE30L instructions for use

with the assembler. The instructions are given in tabular form

and are divided into the following six categories:

® Data movement

s Arithmetic

¢ logical

L Comparison and test

. Branch

¢ Program transfer and miscellaneous

The tables are divided into four main columns. The first column

provides a brief description of the operation. The second column

lists the mnemonic, including the register if required.

The third column is divided inte five sub-columns, one for each

possible addressing mode. The addressing modes are: immediate

{Imm), direct (Dir), indexad {Ind}, extended (Ext) and implied

{Imp}. The possible entries in a sub-column are as follows:

s} The addressing mode is walid for the instruction

. The addressing mode is valid for the instruction. The
instruction may be relocated if a non-zero offset is
specified in an ORG command

Blank The addressing mode is not valid for the instruction

The fourth calumn is used to specify the effect of the instruction

on the six flags: half carry (H), interrupt (I), negative (M),

zero {2), overflow (U) and carry (C>, The possible entries under

each flag are as follows:

R The flag is reset to zero

oy

The flag is set to one

% The flag may be set or reset depending on the result of
the operation performed by the instruction

¢ The flag is unchanged by the instruction

Table A2-1

Data movement instruction

Qperation Mnemonic Mode Flags
Imm{Dir | Ind|Ext| Imp KiZlv|c
Clear carry cLe 0 0
Clear imterrupt CLI 0 I
Clear accumulatar| CLR A 0 RISIR{R
or memory
location CLR B 0 RISIRIR
CLR o e RISIR[R
Clear overflow CLY 0 +(+[Rie
Load accumulator | LDA A clojo]|e A{RIRI e
LDA B ojolafwe ZIX{R| e
Load double LbA D 0
accumulator cloje X{RIR[*
LoD L]
Load 5P LDS e ajaie ZIKIRI ¢
Load =~ LBX eloloie AIXIR+
Push register on | PSH A 0 sieiele
to stack
PSH B 0 ¢[ele]e
PSH ¥ 0 slefefe
Pull register PUL A o oeee
from stack
PUL B 0 slee]e
PUL ¥) sielele
Set carry SEC] slee5
Set interrupt SET 0 sieiele
Set overflow SEV v} *e]|5(e

A2-2

Operation Mremonic Hode Flags
Imm{Dir i Ind{Ext|Imp |H]T|N|Z]V
Store accumulator| STA A ainde +{¢X[X[R
STA B o{nle ¢4 X[XIR
Store double STR D
accumulator olofe | ¢|3IKIR
STD
Store 5P STS ool e #[¢[XIXIR
Store ¥ STX ajale #|¢[XIX|R
Transfer A to B 6B o |ejeX|RIR
Transfer A to CCR| TAP 0§ See (D
Transfer B to A TBA 0 lele[¥|X|R
Transfer CCR to A} TPA O [sleie{ele
Load ¥ with 5P+ | TSX 0 |efeieie]e
Load 9P with X-1 | TXS 0 |e]e|e]e]e
Exchange D and X | XDX
QO [eleleele
®&D X

{13 CCR is loaded
Bit in A

TR oren NI LN B LT

with the contents of A as

Flag in CCR

TICTPZZ—T

follous:

Table A2-2

Arithmetic instructions

Boeration Mnemonic fode Flags
InmiDir | Ind|Ext]Imp{H|1 N2 |UIC

Add B to A ABA) XK
Add B to X ABX 0 le[e|eie|eie
Add with carry to| ADC A sjolo|e Xle|R[RIXI%
accumulator

ADC B ojo|ole Kle|RIRIRIX
Add to ADD A clo|ole Xie X HI%{%
accumulator

ADD B pijofolfe AL ES RS R ES
Add double ADD D ofolole ¢ |RIRIRIK
Arithmetic shift | ASL A o lele|d{R]|RIX
left accumulator
or memory ASL B o |ele|R|KIXR
location

ASL ol e YCIEIEI TS
Double ASL ASL D o lelelXIRIRIX
frithmetic shift | ASR A D {ele|R]XIK]X
right accumulator
or memory ASR B 0 [#]e|R|R{X|X
location

ASR ofle I IESEIESES
Decimal adjust A | DAA 0 |e]e|R|K[X]K
Decrement DEC A o |e|e[R|K]|X]e
accumulator or
memory location | DEC B 0 [e]e|K]|KiX]e

DEC e ¢|e|R[XI%1e
Decrement 5P DES 0 [eleleleis]e
Decrement DEX O {e[ejeikle]e
Increment INC A O jele|XIRIR]e
accumulator or
memory location INC B 0 ojele|RiX{%]|e

INC ol *le[XIRIX]e

A2-4

Operation Mremonic Hode Flags
Imm|Dir | Ind|{Ext|Imp NjZIVIC
Increment 5P INS 0 sleieie
Increment % INX 0 Yp4L3L]
Multiply A by B | MUL o +[e]e(X
Negate NEG A Q PRI Eg b
accumulator or
memory location | NEG B 0 AR LR
NEG o e b F g P B
Subtract B from A] 5BA 0 PR B RS
Subtract with SBC A oclojaie RIRIRIR
carry from
accumulator SBC B gjololie #R[RIRIR
Subtract from SUB A oloinie RIXIXI¥
accumulator
SUB B ojo|oie XXX
Subtract double SUB D n|lofjole XXX

f2-3

Table A2-3
Logical instructions
Operation Mnemonic Mode Flags
Imm|D1r | Ind|Ext]imp NIZ|IVIC
AND immediate AIl #n, aln +IRIXIR|e
AND accumulator | AND A cfojlole XIX[Rie
AND B njololoe XIXiR|e
nes complement] COM A b RIXIRIS
ccumulator or
mory location| COM B 0 XIXIRIS
CcoM ale XIRIRIS
EOR immediate EIt #n, ol o XIX[Rie
Exclusive OR EOR A o{n]oie BXIR|*
ccumulator or
%emorg location| EOR B olojofw AR [R (e
ogécal shift | LSR A n R{®IK|X
ight
ccumulator or | LSR B 0 RiRixI®
emory location
LSR 0| e RIZ[®I®
Double LSR LSR B 0 R[RIXIR
(R immediate OIM #n, o0 X(X[R|#
Inclusive OR ORA A ololn|foe X|X|Rls
ﬂccumulator or
emory location| ORA B o{o|ole RIX|R ¢
Rotate left ROL A 0 RIRIRIK
accumulator or
emory location| ROL B 0 XIR]RX
? ROL 0| e XRiKIX
otate right ROR A 0 XX [R1X
gccumulator or
emory location] ROR B 2 KR {X}R
ROR ole RIRER X

A2-6

Table A2-4

Compar ison and test instructions

Operation Mnemonic Hode Flags
Iom|Dir {Ind {Ext|Ing N|Z{WC

Bit test BIT A clolole XiX(R|e
accumulator

BITB njocflofe XIx[Rie
Compare B with A | CBA D LS PA RSB
Compare ChP A o|lojo|e AlR%[K
accumulator

CHP B olol{ale XiR{R I
Compare ¥ PR oiofole PR [R]H
BIT immediate TIN #n, o{o RixIR|+
Test acoumulator | TST A s} SIXIRIR
or memory
location for TST B 0 KIXIRIR
positive, zero or
negative 15T cqe XIXIR[R

A2-7

Table A2-5
Branch instructions

Operation Mnemonic Branch test Flags
Unsigned | Signed [H|I|N|Z|VIC
Branch if C clear | BCC = gy
Branch if C set | BCS < slaje|e(eie
Branch if 2 set BER = = sio(ele|eis
Branch if »= 2ero| BRE = so(e|efels
Branch if » zero | BGT » sleieleinie
Branch if > 2ero | BHI H sioje[a]ele
Branch if {= 2ern| BLE (= sioielelete
Branch if <= zero| BLS 4= sieielaele
Branch if < zero | BLT < sisisieeie
Branch if minus | BMI {0 jeleiojelels
Branch if 2 clear| BNE L9 < siois el
Branch if plus BFL =0 lelsjelefele
Branch always BRA sisiele|ele
Branch never BRN sieinjeiele
Branch subroutine| BSR siojeiefeie
Branch 1f U clear] BUC No error [eisis|e[ee
Branch if U set | BUS Error lelefe|e{els

Note: The assembler
supplied as the de
automatically conv
required by the HDé

expects an extended mode

address to be

tination of 3 branch instruction, and
rts the address into the relative offset

301.

Table A2-6
Program transfer and miscellaneous instructions

Operation Mnemonic Mode Flags
Tam|Dir | Ind)Ext| Imp|H] T {N|ZIY|L
- Jump P ol e sielejalele
Jump subroutine | JSR ofjole tlejeialefe
No operation NOP C |ejejefele]s

Interrupt return | RTI 0 | See (1)
Subroutine return| RTS 0 |e{efe[sie|s
Sleep SLP o |elefe[ejele
Interrupt SWI 3 [#[S[elele]e
Auwait interrupt | UAI o [#[S{e[e]e]s

{1> The CCR is loaded from the stack

A2-9

BF 51

BS 9

N 17

FC S

10 53

U 59

MO 22

NO 57

Error_sessages Aopendix 3

Division by zero
The divisor i3 zero
® The divisor is an undefined label

Bad fil2 mode
The file number used in a LST command refers to a file not opened
for output.

Bad file number
The file number used in a LST command either refers to 3 file not
opered for output, or is not an integer in the range { 1o 16.

Bad subscript

fin error has occurred when using global iabels with the RAM file
¢ The RAM file is too small for the number of global labels used
¢ The RAM file record size is less than thres bytes

Cannot continue
An attempt is made to restart assembly after 3 break-in or error

Buplicate definition

A label is assigned a value tuwice in RDF N mode

¢ The same label is defined more than once

® A label is assigned a different value in pass 1 and 2

Furction call error

fin incorrect value has been used as a parameter

¢ The destination of a branch instruction is out of rangs

* A value less than zero, or greater than 255, is used as an eight
bit data item

¢ The value of MEMSET is too low for the assemblad ohject code

¢ The assesbled object code is located below ZHA4B or above the
current value of MEMSET

Device I/0 error
The device used for the listing file is faulty or has responded to
the break key

Device in use
The device used for the listing file is being used by another
process, or has been incorrectly aborted

Missing operand , _
A parameter is missing from a command or an instruction

File not open

The BASIC file used for the listing file has been closed or was
never opened

A3-1

M 7 Out of memory
Insufficient memory space f

W 6 Overflow
The result of an expression

SN

2

Syntax error

The format required for the
fol lowed

Missing or incorrect register name or parameter

A label starts with a keyword or is missing a "."

Il1legal mnamenic or comm
Missing space after comm

or the symbcl table

13 outside the range -327

command o instruction hz

d name 4
d or mnhemonic

(3]

768 ta 32767

35 not heen

or "1

fd. 1

Clock Prograe Appendix 4

This appendix gives the complete listing for 3 simple clock
program. The listing is entered using the standard BASIC screen
editor. The clock program is executed automatically once the
sgurce code is assembled by RUNming the program. You can stop
the clock program by pressing the BREAK key. The clock ran be
re—started by pressing CTRL PF3.

Listing of the clock program

1888 DEFINT A-Z2:1=1:605U8 1#859: HEMSET CLOCKEND
1818 WIDTH "LPT8:",24:0PEN *0",1,"LPT8: "

1828 DEFINT A-Z2:FOR I=1 TO 2:605UB 1858:NEXT 1
1838 EXEC CLOCK

1848 END

1658 *
1868 °
1878 ’
1858 ASH 1

1898 ;

}{?g TTL “PROGRAM TO DISPLAY CLOCK ON LCD*
1128 FNT 255,24,,"","" : LST 1

1138 ;

1148 8]

1156 ;

1168 SNSCOM EQU $FF19 ;SEND BYTE TO SLAVE

1178 DSPLCH EQU $FF49 ;CLEAR SCREEN

1188 DSPLCH EQU sFF4C ;DISPLAY CHARACTER

1198 CNTIQ EQU $FFAF ;CONTINUE I/0 AFTER BREAK
12688 LCRECY EQU $DFEE ;
1218 RDCLK EQU sEIFfA ;READ TIME

}% SLEEP EQU $FFA9 ;

1248 TICK EQU 888 ;TICK FREQUENCY

1258 DURATION EQU S s TICK DURATION

1268 SLUSPCOM EQU $31 ;SLAVE SPEAKER COMMAND
1278 ¥P0S EQU 6 ;¥ CO~ORD OF CLOCK OM LCD
1268 ¥POS Fu 1 ;¥ CO-0RD OF CLOCK ON LCD
1298 COLON EQU "\:™ ;SEPARATOR

1388 BREAKFLAG EQU $88 ;<BREAX> KEY FLAG

1318 PHYSFLAG EQU $48 ;PHYSICAL SCREEM FLAG
1328 UIEFLAG EQJ $18 ;CLOCK INTERRUPT ENABLE FLAG
1338 CLXINTFLG EQU 8 ;CLOCK INTERRUPT FLAG

1348 CLXREGB EQU $4B ;CLOCK REGISTER

1358 RNMOD EQU $78 ;RUN MODE UARIABLE

1368 NIOSTS EQU 7D ;MASTER 10 STATUS

1378 CT3ADR EQU $126 ;CONTROL PF3 VECTOR

iggg BUFFER EQU $198 ;6 BYTE BUFFER CLOCK BUFFER
1398 ;

Ad~1

1419 ;
1‘428 ORE $Ad8
1‘433 3
1 L.ocK
1458 ;
1 ;SET PHYSICAL SCREEN FLAG
} 78 OIM #PHYSFLAG, RNMOD
1498 ;CLEAR PHYSICAL SCREEN
1506 CLR B
} JSR DSPLCN
1538 ;ENABLE CLOCK INTERRUPTS ONCE PER SECOND
0IM RUIEFLAG,
68 ;SET UP CONTROL PF3 VECTOR
B L DX #CLOCK
STX CT3ADR

638 ;TEST FOR <BREAK> KEV
: TIH #3REAKFLAG, HIOSTS
BNE EXIT

478 3SLEEP UNTIL INTERRUPT
08 JSR SLEEP

3 sCHECK CLOCK INTERRUPT
TIM ¥CLKINTFLG, MIOSTS
MATNLOOP

3 :RESET CLOCK INTERRUPT FLAG
: EIM #CLKINTFLE, NIOSTS

8 ;DISPLAY COLONS OM LCD
LDA A #COLON
LDX #{XPOS+23x256 VP05
JSR DSPLCH

b ke ke e s e ke o ke s o ke (ke ke ok e P ol e ke
™ O O O OO O 0
- »e - ! N (S > CD B
vy 3 .

Pl e e ke Pk b ot
_H..
© X

:READ AND DISPLAY TIME
BSR DISPLAYTIME

g..........._._.,......
u

—

§

%
%

5

Ad-

[}

1958 EXIT

1968 ;

ig sRESTORE STATUS BEFORE RETURNING TO BASIC
1998 ;RESET BREAK FLAG
2000 JSR CNTIO

2018 ;

2820 sRESET PHYSICAL SCREEN FLAG
% EIM #PHYSFLAS, RNMOD
2859 ;DISABLE CLOCK INTERRUPT
% EIM SUIEFLAG, CLKREGB
2008 sRESTORE VIRTUAL SCREEN
2098 JSR LCRECV

21886 ;

2118 sRETURN TO BASIC
2128 RTS

2138 ;

2149 ;

2158 ;

2168 DISPLAYTIME

2178 ;

g{g ;DISPLAY TINE ON LCD

2208 ;DISABLE INTERRUPTS
2218 SEI

2220 ;

2238 ;READ TIME

2248 LDX #BUFFER

2258 JSR ROCLK

2268 ;

2278 s DISPLAY HOURS

2208 LDA A R43

2298 LDA B #¥P0OS

2388 BSR DISPLAY

2318 ;

2320 sDISPLAY MINUTES
2338 LDA A X4

2348 LDA B #4P05+3

2358 BSR DISPLAY

2368

2378 s DISPLAY SECONDS
2388 LDA A B45

2358 LDA B #2P05+6

2408 BSR DISPLAY

2418 ;

2428 sENABLE INTERRUPTS
2438 CLI

2448 ;

2458 RTS

2468 ;

2478 ;

2488 ;

2498 DISPLAY

x
£l

2518 ;DISPLAY 2 DIBITS ON LCD
2528 ;A = 2 BCD DIGITS
g sB = POSITION ON LCD
il PSH A
6@ LR A
nld: ISR A
2 LSR A
259 LSR A
b BSR DIGIT
2618 PUL A
2628 DIGIT
2630 PSH X
AND A AsF
AD A 48"
2668 PSH A
2678 TBA
268 LDA& B #VPOS
263 %60 X
Be PUL A
2718 JSR DSPLCH
" XD X
2736 TAB
2748 PUL ¥
2768 RTS
B ;
988 PLAYTICK
2618 ;
:fi sPRODUCE TICX
gy ;
848 LDA A #SLUSPCOM
858 JSR SNSCDM
2066 LDA A #TICK \ 256
874 JSR SNSCOM
Gl LDA A #TICK MOD 256
2096 JSR SNSCOM
08¢ LDA A SDURATION \ 256
2918 JSR SNSCOM
920 LDA A #DURATION MOD 256
0 ¢ Jm m
¥ e RTS
998 CLOCKEND E@J) »
30 M OFF
38i8 °
328
a3e
848 RETURN
f4-4

A3.2

Multiple file clock Program fppendix 5

This appendix gives the complete listing for aultiple file
assembly of the simple clock program described in Appendix 4.

The listings of the three files are entered using the standard
BASIC screen editor. The clock program 15 executed automatically
once the sowrce code is assembled by RUNning the header program.
You can stop the clock program by pressing the BREAK key. The
clock can be re-started by pressing CTRL FF3.

Header file

The header file consists of the following program:

18 CLEAR 208,8%12+4 *12 GLOBAL LABELS

28 DEFFIL 2,0:PUT4B,1 ’SET UP PASS NUMBER
38 OPEN "0",1,"LPT18:" *OPEN LISTING FILE

48 VIDTH "LPT@:", 24 *WIDTH OF LISTING FILE
958 T=TAPCNT:PUTZ1,T *SAUE TAPE PQSITION

68 RUN “CLOCKi.SRC",R

First source file

1888 DEFINT A-2
1818 DEFFIL 2,8:6ET/8,P *PASS NUMBER
1815 DEFFIL 8,4 SET UP RAM FILE

1829 IF P=1 THEN I={ GOSUB 1858

1838 IF P=2 THEN FOR 1=3 TO 4:G05UB 1BS8:MEXT I
1848 RUN “CLOCK2.SRC™,R

1858 °
1668 °’
ig78 °’
1888 ASH
1188 TTL “PROGRAM TO DISPLAY CLOCK ON LCD"
i12@ FMT 235,24, ,"","" : LST |

i148 08J

1158 ;

1168 ISNSCON EQU $FF19 ;SEND BYTE TO SLAVE

1218 'RDCLK EQU sEifa ;READ TIME

1188 'DSPLCH EQU $FF4C ;DISPLAY CHARACTER

1198 CNTID EQU $FFAF ;CONTIMUE 1.0 AFTER BREAK
1178 DSPLCN EQU $FF49 ;CLEAR SCREEN

12688 LCRECY EQU $DFEE ;RECOVER VIRTUAL SCREEN
{% SLEEP EQU $FFA9 ;SLEEP MODE ROUTINE

13838 !'BUFFER EQU $194 ;6 BYTE CLOCK BUFFER

1248 'TICK EQt) 808 s TICK FREQUENCY

1258 'DURATION EQU S sTICK DURATION

1268 'SLUSPCOM EQU $31 sSLAVE SPEAKER COMWND
1278 '¥POS EQU 6 sX CO-0RD OF CLOCK ON LCD

| 'YPOS EQU 1 ¥ CO-0RD OF CLOCK ON LCD
1298 COLON EQU “\:" 3 SEPARATOR

1380 BREAKFLAG EQU $88 {BREAK> KEY FLAG

1318 PHYSFLAG EQU $46 PHYSICAL SCREEN FLAG

1328 UIEFLAG EQU s18 CLOCK INTERRUPT ENABLE FL
1338 CLKINTFLE EQU B ;CLOCK INTERRUPT FLAG
1348 CLKREGE EQU 4B ;CLOCK REEBISTER

1 RUN MODE UARIABLE
MASTER 10 STATUS
CONTROL PF3 VECTOR

RNMOD EQU $7B
1368 MIOSTS EQU $7D
1378 CT3ADR FQU $126

e

1418 ;
1428 ORE $448
1448 1CLOCK
1468 ;SET PHYSICAL SCREEN FLAG
1478 oM & ,RNMOD
1498 ;CLEAR PHYSICAL SCREEN
1 CLR B
1518 JSR DSPLCN
1538 ;EMABLE CLOCK INTERRUPTS ONCE PER SECOND
1548 OIM #UI CLKREGB
1568 ;SET UP CONTROL PF3 VECTOR
LDX #'CLOCK
i STX CT3ADR
1618 MAINLOOP

; TEST FOR <$lIZﬁPK} KEY
BNE EXIT
sSLEEP UNTIL INTERRUPT

,MIBSTS

78 ;DISPLAY COLONS ON LCD
e 1DA A #COLON

LDK #{!1XPOS+2 3256+ YPOS
JSR 'DSPLCH

LDA A #C0OL

LDX #(! S3x 256+ 1YPOS
386 JSR 'DPSPLCH

858 :READ AND DISPLAY TIME

868 B5R DI IE
Y ;WJCE TIEK
898 BSR 'PLAYTI

18 ;BRANCH BACK FOR NEXT SECOHD
078 BT BRA MAIMLOOF

578 sRESTORE STATUS BEFORE RETURNING TO BASIC
998 ;s RESET FLAG

JSR CNTIO
;RESET PHYSICAL SCREEN FLAG
EIM RNMOD

2888 ;RESTORE VIRTUAL SCREEN

2998 JSR LCRECV

2119 ;RETURN TO BASIC
2128 RTS

2138 ;

2159 ASM OFF

2165 °

2178 RETURN

Second source file

The second source file ("CLOCK2.5RC") consists of the following
Or ogram:

1888 DEFFINT A-Z2
1818 DEFFIL 2,8:6ET%8,P *GET PASS NUMBER
1828 DEFFIL 8,4 *SET UP RAM FILE

1638 IF P=1 THEN 1888
1648 FOR I=3 TO 6:60SUB 2188:NEXT [:CLOSE

18958 EXEC (!CLOCK) *EXECUTE OBJECT CODE
1868 G0TO 1148

1888 1=5:60SUB 2188

1898 DEFFIL 2,8

1189 PUT8,2 *SET UP PASS 2
1110 GETL, T:4IND T ’WIND TO START
1128 MEMSET CLOCKEND *ALLOCATE OBJECT CODE SPACE
1138 RN "CLOCK1.SRC",R

1148 END

2188 °’

2185 °

2118 °

2128 ASM

2138 ;

2168 'DISPLAYTIME

2188 ;DISPLAY TIME ON LCD

2208 ;DISABLE INTERRUPTS

22i8 SEI

2238 ;READ TIME

2248 LDX #!'BUFFER

2258 JSR 'RDCLK

2278 sDISPLAY HOURS

2269 LDA A X+3

2296 LDA B #!XP0S

2388 BSR DISPLAY

2328 ; DISPLAY HINUTES

2338 LDA A X+

2348 LDA B #'XP0S+3

2350 BSR DISPLAY

2378 ; DISPLAY SECONDS

2380 LDA A X+5

2398 LDA B #'8¥POS+6

2488 BSR DISPLAY

2428 ;ENABLE INTERRUPTS

2438 CLl

>
ok
a)

EEr
23
=

—
o
—
-

L]
=
<
=

DX DDPPX PODDD>DD
L J

FRBEFBSPEEEE FRLLY
g
&

KX K

LDA A #!SLUSPCOM
LDA A BITICK \ 256
LDA A #ITICK MOD 256

LA A #! ION \ 256
JSR 'SNSCOM
LDA A #!DURATION MOD 256

48 RETURN

A-4

Index

Index entries refer to chapters or to sections within chapters.

The main reference is listed first.

n, An to Appendix n and TA2-n to table A2-n in Appendix 2.

ABX Instruction TR2-2
AT instruction Th2-2
ADD D instruction Ta2-2
ACD instruction TAZ-2
Addresing modes 4,1.1
AIM instruction TAZ-3
AND
instruction TAz-3
oper atar 2.5.3
Apostrophe, use of 2.6
Ari1thmetic instructions TA2-2, 4.3
ASL D instruction TA2-2
ASL instruction TR2-2
ASM command £3, 2.1
ASK
instruction TA2-2
oper ator 2.3.3
Assembler
commands £s3, 2.2
features ci
installation on ROM Al.3
instructions A2, 2.2, 4.1
loading from disk A2
lnading from microcassette Al.d
Inading from ROM cartridge Al.1
memory locations used by 2.8
passes 2.1
statements 2.2
Assembling code cz
Back-up
on disk Al.2.1
on microcassette fplltd
BASIC
accessing assembler operands 2.7
commands 1
functions 2
orogr ams £z
BCC instruction TAZ-5
BC3 ingstruction TAZ-5
BE@ instruction TAZ2-5
BGE instruction TR2-5
BGT instruction TAZ-5
BHI 1nstruction TAZ-5
BIT instructicn TA2-4

Note that Cn refers to Chapter

BLE 1nstruction Ta2-3
BLS instruction TA2-5
I BLT instruction TA2-5
BMI instruction TAa2-5
BNE instruction TRZ-5
- BFL instruction TA2-5
BRA instruction TA2-5
(Branch instructions TRZ-5
BRN instruction TAZ-5
- B3F instruction TR2-5
. BUC instruction TAZ2-5
BUS instruction Ta2-5
BYT operator 2.5.2
Caret symbol, use of 2.6
Carry flag A2
CBA instruction TA2-4
CCR A2
CLC instruction TA2-1
CLI instruction ThA2-1
Clock program A4, A3
(LR instruction TA2-1
CLY 1nstruction TA2~1
CHPE instruction TAZ-4
COM instruction TA2-3
Commertt 2.2
Compar isan instructicns TA2~4
CP% instruction TAZ2-4
DA instruction TAZ-2
Data movement instructions TA2-1
DEC instruction Té2-
DES tnstruction Th2-2
DEX instruction Ta2-2
Direct addressing mode 4.1.1
Dyadic nperators 2.5.2, 2.5
EIM instruction TAZ2-3
EOR instruction TA2-3
E6ll command £3, 2.4
EQV cperator 2.5.3
Error messages A3
Expressions 2.3, 02
EXT operator 2.5.2
Extended addressing mode 4.3.2

Index-1

FCB command 3
FOB command £3
Final source file 2.6.4
First source file 2.6.2
Flags A2
FMT command C3

ry flag
F eSS0
ssing modes 4.1,
uction set :

I tor 2.
Highest address limit 2.
HS operator 2.

aphic symbols

Immediate addrassing mode 4.1.1
Impl ied addressing mode 4.1.1
IMF operator 2.8.3
INC instruction Taz-2
Indexed addressing mode 4.1.1
IMS instruction Th2-2
Instructions A2, 2.2, 4.1
Interrupt mask flag A2
[HX instruction TAZ-2
JMP instruction TAZ-6
J5R instruction TAR-6
Labels 2.4, 2.1, 2.2
global 2.4.2, 2.5.1
loca 2.4.1, 2.56.1
LD& instruction TAZ-1
LDD instruction TARZ-1
L0S instruction TA2-1
LI instruction TAZ-1
Link table s
Listing file 2.9, 2.1
LMT command L3
L0 operator 2.9.3
Loading Assembler Al.1, A1.2, AL.3
Location counter 2.3, 2.5.1
Logical instructions TA2-3
Lowest address limit 2.3.14
LS operator 2.5.3
ISR D instruction 4,3.1, TARZ2-3
L5R
instruction TA2-3
aper ator 2.5.3
LST command C3, 2.9

Index-~2

Memory locations used 2.19
MEH command =3
MEMSET command 2.3, 2.5
Metacharacters 2.
Miscellaneous instructions TR2-
Monadic operators 5.2, 2.
MUL instruction TA2-
Multipla file assembly Of, 2.1, A
Negative flag A2
MEG instruction TA2-2
MOB command £3, 2.3
MOL command £3
MOP instruction TA2-6
MOT operator 2.5.2
Mumer ic

base 2.59.14, .3

constant 2.5.1, 2.5

axpressions 2.59.1
0BJ command £3, 2.
Ibject code 2.8, 2.

- Offset 2.3.4, 2.5.1, C
OIM instruction TA2-
Op-code 4.
Operands 2.5.1, 2.
Operators 2.

dyadic 2.3,
aonadic 2.5.
OR operatar 2.9.
ORA instruction Ta2-
ORG command £3, 2.
Over flow flag A
PRS command 3
Pags c2
heading 2.9.1
hody 2.9.2
Pass numbers 2.1
Percent sign, use of 2.6, 2.5.1
Progr am
position independent cs, 2.3
relocatable £s, 2.3.1
transfer instructions TA2-6
PSH 1nstruction TA2-1
P5H ¥ instruction TA2-1
P instruction TAZ-1
PUL ¥ instruction

N (AR) e e

P ek Crd Ll 1D Lal 0T LA - L) £ - Q0

TA2-1

RAM file

RAD command
RDB command
ROF command

Relative addressing mode
Relocatable program

Relocation
table

Reserving memory
Reverse solidus, use of

RMB command
ROL instruction
ROR
instruction
operator
RTI instruction
RTS instruction

SBA instruction
SBC instruction
SEC instruction

Second source file

SEI instruction
SEV instruction
SLP instruction
STA instruction
STD instruction
String

2.4.2, C6
C3
3

£3,
€3,

N

m!\.’l\.’ltmls.di.ah-‘
L«!U‘»Dﬁ»mﬂmaﬁ.

g g
BPaS B
O D L (Al (8N}

-y
o o3

"

TR2-2

6.3, A3.3
TAZ2-1
TA2-1 !
TAZ-6 |
TAZ2-1
TR2~1 |

2.6, 2.5.1

—t =
T T T
R
R

STS 1nstruction
57X instruction

508 U instruction

SUB instruction
SWI instruction
Symbol table
S command

TAB instruction
TAP instruction

: TBA tnstruction

TBL operatar

Test instructions

TIM instruction
TPA 1instruction
T5T instruction
158 instruction
TTL command

TXS instruction

Uertical har, use of

WAI instruction

WGD ¥ instruction

Zero flag

Index-3

[wr]

Th2-1
Thz-1
Th2-2
Th2-2
TH2-A
2.4.3
2.4.3
TA2-1
TAZ2-1
TR2-1

3
TAZ2-4
TA2-4
TA2~1
Ta2-4
Ta2-1
2.9.1
TAZ2-1

© J.M. Wald 1985
71 May Tree Close

, Winchester,

S022 4JF

	HX-20 Assembler Reference Manual
	Contents
	1-Introduction
	2-Using the Assembler
	Assembler Passes
	Assembler Statements
	Location Counter
	Offset

	Labels
	Local Labels
	Global Labels
	Symbol Table

	Numeric Expressions
	Operands
	Monadic Operators
	Dydadic Operators

	Strings
	Accessing Assembler Operands from Basic
	Object Code
	Listing File
	Page Heading
	Page Body

	Memory Locations used by the Assembler

	3-Assembler Commands
	ASM
	EQU
	FCB
	FDB
	FMT
	LMT
	LST
	MEM
	NOB
	NOL
	OBJ
	ORG
	PAG
	RAD
	RDB
	RDF
	RMB
	SYM
	TBL
	TTL

	4-Programming the HD6301
	Instruction Set
	Addressing Modes

	5-Relocatable Programs
	6-Using Multiple Source Files
	Header File
	The First Source File
	The Second Source File
	The Final Source File

	A1-Loading Assembler
	From ROM Cartridge or Microcassette
	Making a Backup-Copy on Microcassette

	From Disk
	Making a Backup Copy on Disk

	On ROM

	A2-HD6301 Instruction Set
	Data Movement
	Arithmetic
	Logical
	Comparison and Test
	Branch
	Program Transfer and Miscellaneous

	A3-Error Messages
	A4-Clock Program
	Listing

	A5-Multiple File Clock Program
	Header File
	First Source File
	Second Source File

	Index

