REFERENCE MANUAL

!

-+
.
=

IR EE RN

BLEL ELE

b Kb RR R RE O EDORR O RLEL B RR ER_IIF

NOTICE

Apple Computer Inc. reserves the right to make improvements in the product described in this
manual at any time and without notice.

This manual 15 copyrighted and comuams proprietary information. All rights ure reserved. This document may mel, in
whole or part, be copled, photocopied, reproduced, transtited, or reduced 10 any electronic medium or machine resdable
form wilthoul prior consent., in writing, from Apple Computer Inc

1979 by Apple Computer Ine.
10260 Bandley Drive
Cuperting, €A 95014
LA0E) F96- 1010

Reorder Apple product number A2LOOTA (030-0004-01)

Written by Christopher Espinosa

= apple’” is a wrademark of Apple Computer Inc

AR AR EHOMMEHRNHNHN ARNPANRANTNRNNN

-

[ttt ottt nt ot ot bt ettt

Apple Il Reference Manual

A REFERENCE MANUAL
FOR THE APPLE II
AND THE APPLE 11 PLUS
PERSONAL COMPUTERS

TABLE OF CONTENTS

CHAPTER 1
APPROACHING YOUR APPLE

[HE POWER SUPPLY

THE MAIN BOARD

TALKING TO YOUR APPLE

HE KEYBOARD

6 READING THE KEYBOARD

9 THE APPLE VIDEO DISPLAY

9 THE VIDEQ CONNECTOR

10 EURAPPLE (50 HZ) MODIFICA TTON
10 SCREEN FORMAT

12 SCREEN MEMORY

12 SCREEN PAGES

12 SCREEN SWITCHES

14 THE TEXT MODI

17 THE LOW-RESOLUTION GRAPHICS (LO-RES) MODE
19 THE HIGH-RESOLUTION GRAPHICS (HI-RES) MODE
30 OTHER INPUT/OUTPUT FEATURES
200 THE SPEAKER

27 THE CASSETTE INTERFACE

23 THE GAME 1/O CX(INNMECTOR

23 ANNUNCIATOR QUTPL TS

74 ONE-BIT INPUTS

4 ANALOG INPUTS

5 STROBE OUTPUT

5 VARIETIES OF APPLES

5 AUTOSTART ROM / MONITOR ROM
26 REVISION @ / REVISION 1 BOARD
17 POWER SUPPLY CHANGES

27 THE APPLE 11 PLUS

L LA L L L

CHAPTER 2
CONVERSATION WITH APPLES

30
30
3l

32
32
32
33
34
i6
36
37
38

STANDARD OUTPUT

THE STOP-LIST FEATURE

BUT SOFT, WHAT LIGHT THROUGH YONDER WINDOW BREAKS!
(OR, THE TEXT WINDOW)

SEEING IT ALL IN BLACK AND WHITE
STANDARD INPUT

RDKEY

GETLN

ESCAPE CODES

THE RESET CYCLE

AUTOSTART ROM RESET

AUTOSTART ROM SPECIAL LOCATIONS
“OLD MONITOR™™ ROM RESET

CHAPTER 3
THE SYSTEM MONITOR

ENTERING THE MONITOR

ADDRESSES AND DATA

EXAMINING THE CONTENTS OF MEMORY

EXAMINING SOME MORE MEMORY

EXAMINING STILL MORE MEMORY

CHANGING THE CONTENTS OF A LOCATION

CHANGING THE CONTENTS OF CONSECUTIVE LOCATIONS
MOVING A RANGE OF MEMORY

COMPARING TWO RANGES OF MEMORY

SAVING A RANGE OF MEMORY ON TAPE

READING A RANGE FROM TAPE

CREATING AND RUNNING MACHINE LANGUAGE PROGRAMS
THE MINI-ASSEMBLER

bl B M TR M R @ OO OO K MmO W

TR R R AT

DERBUGGING PROGEAMS

EXAMINING AND CHANGING REGISTERS
MISCELLANEOUS MONITOR COMMANDS
SPECIAL TRICKS WITH THE MONITOR
CREATING YOUR OWN COMMANDS
SUMMARY OF MONITOR COMMANDS
SOME USEFUL MONITOR SUBROUTINES
MONITOR SPECIAL LOCATIONS
MINI-ASSEMBLER INSTRUCTION FORMATS

CHAPTER 4

MEMORY ORGANIZATION

CHAPTER J
INPUT/OUTPUT STRUCTURE

78 BUILT-IN 1YO

79 PERIPHERAL BOARD 1/O

80 PERIPHERAL CARD /0 SPACE

80 PERIPHERAL CARD ROM SPACE

81 1I/O PROGRAMMING SUGGESTIONS

82 PERIPHERAL SLOT SCRATCHPAD RAM
83 THE CSW/KSW SWITCHES

84 EXPANSION ROM

CHAPTER 0
HARDWARE CONFIGURATION

88 THE MICROPROCESSOR

90 SYSTEM TIMING

92 POWER SUPPLY

94 ROM MEMORY

95 RAM MEMORY

96 THE VIDEO GENERATOR

97 VIDEO OUTPUT JACKS

98 BUILT-IN I/O

99 *USER 1" JUMPER

100 THE GAME IJO CONNECTOR
100 THE KEYBOARD

102 KEYBOARD CONNECTOR
103 CASSETTE INTERFACE JACKS
104 POWER CONNECTOR

105 SPEAKER

105 PERIPHERAL CONNECTORS

U T I P 1

(A1 IH] IEY O IED OTED OTEYD OIRY Iml TRY IR ONMY ORYO'RY

in

—
&
=

Bl e e R R IR R

" APPENDIX A

THE 6502 INSTRUCTION SET

* APPENDIX B

SPECIAL LOCATIONS

* APPENDIX C

ROM LISTINGS

" GLOSSARY

* BIBLIOGRAPHY

INDEX

190
194
195
195
195

GENERAL INDEX
INDEX OF FIGURES
INDEX OF PHOTOS
INDEX OF TABLES
CAST OF CHARACTERS

m M " MR

veme e mr mr el 'EYIET EROFL 'R ')

B e e

INTRODUCTION

This is the User Reference Manual for the Apple 11 and Apple 11 Plus personal computers. Like
the Apple qsell, this book is a tool. As with all tools, you should know a little about it before
you start to use i,

This book will not teach you how to program. It is a book of facts, not methods. If you have
just unpacked your Apple, or you do not know how to program in any of the languages available
for it, then before you continue with this book. read one of the other manuals accompanying
your Apple. Depending upon which variety of Apple you have purchased, you should have
received one of the following:

Apple 11 BASIC Programming Manual
(part number A2L0O00DS)

The Applesoft Tutorial
(part number A2L0018)

These are tutorial manuals for versions of the BASIC language available on the Apple. They also
include complete instructions on setting up your Apple. The Bibliography at the end of this
manual lists other books which may interest you,

There are a few different varieties of Apples, and this manual applies to all of them. 1t is possible
that some of the features noted in this manual will not be available on your particular Apple. In
places where this manual mentions {eatures which are not universal to all Apples, it will use a
footnote to warn you of these differences.

This manual describes the Apple 11 computer and its parts and procedures. There are sections on
the System Monitor, the input/output devices and their operation, the internal organization of
memory and input/output devices, and the actual electronic design of the Apple itself. For infor-
mation on any other Apple hardware or software product, please refer to the manual accompany-
ing that product.

Wl W W W W W W W W W W W W W W W Eéiﬂﬂ

LB 1] L& (1] L& Ik L])] L}] s iLa

FIRIEIEIEIEIEIRIEEIEE

A LAY A | ke e 1 trrrlrrr

[[O | | | [

THE POWER SUPPLY

THE MAIN BOARD

TALKING TO YOUR APPLE

THE KEYBOARD

READING THE KEYBOARD

THE APPLE VIDEO DISPLAY

THE VIDEO CONNECTOR
EURAPPLE (50 HZ) MODIFICATION
SCREEN FORMAT

SCREEN MEMORY

SCREEN PAGES

SCREEN SWITCHES

THE TEXT MODE

THE LOW-RESOLUTION GRAPHICS (LO-RES) MODE
THE HIGH-RESOLUTION GRAPHICS (HI-RES) MODE
OTHER INPUT/OUTPUT FEATURES
THE SPEAKER

THE CASSETTE INTERFACE

THE GAME 1/O CONNECTOR
ANNUNCIATOR OUTPUTS

ONE-BIT INPUTS

ANALOG INPUTS

STROBE OUTPUT

VARIETIES OF APPLES
AUTOSTART ROM / MONITOR ROM
REVISION @ / REVISION 1 BOARD
POWER SUPPLY CHANGES

THE APPLE 11 PLUS

For detailed information on setting up your Apple, refer to Chapter 1 of either the Apple BASIC
Programming Manual or The Applesoft Tutorial.

In this manual, all directional instructions will refer to this orientation: with the Apple's
typewriter-like kevboard facing vou, “*front” and “*down’ are towards the kevboard, “*back™ and
“up™ are away. Remove the lid of the Apple by prving up the back edge until it **pops™, then
pull straight back on the lid and lift it off.

This is what you will see:

Power Supply

TipRa e

Main Board

Speaker

Photo 1. The Apple 11.

THE POWER SUPPLY

The metal box on the left side of the interior is the Power Supply. It supplies four voliages:
+3v, —5.2v, +11.8v, and —12.0v. It is a high-frequency ‘“‘switching”-type power supply, with
many prolective features to ensure that there can be no imbalances between the different sup-
plies. The main power cord for the computer plugs direetly into the back of the power supply.
The power-on switch is also on the power supply itself, to protect you and vour fingers from
accidentally becoming part of the high-voliage power supply circuit.

FE1 FEY PR PR F®) I® IED (@) (@1 (®1 (E1 P11 e el Pl P IFT Pl P T ITl TR

Fe.

[

110 volt model 110/220 valt model

Photo 2. The back of the Apple Power Supply.
THE MAIN BOARD

The large green printed circuit board which takes up most of the bottom of the case is the com-
puter itself. There are two slightly different models of the Apple I main board: the original
{(Revision @) and the Revision | board. The slight differences between the two lie in the elec-
tronics on the board, These differences are discussed throughout this book. A summary of the
differences appears in the section **Varieties of Apples’ on page 25,

On this board there are about eighty integrated circuits and a handful of other components. In
the center of the board, just in front of the eight gold-toothed edge connectors (*'slots™) at the
rear of the board, is an integrated circuit larger than all others. This is the brain of your Apple.
It is a Synertek/MOS Technology 6582 microprocessor. In the Apple, it runs at a rate of
1,023,000 machine cycles per second and can do over five hundred thousand addition or subtrac-
lion operations in one second. It has an addressing range of 65,536 eight-bit bytes. [is repertory
includes 56 instructions with 13 addressing modes. This microprocessor and other versions of it
are used in many computers systems, as well as other types of electronic equipment.

Just below the microprocessor are six sockets which may be filled with from one to six slightly
smaller integrated circuits. These ICs are the Read-Only Memory (ROM) ““chips™ for the Apple.
They contain programs for the Apple which are available the moment you turn on the power.
Many programs are available in ROM, including the Apple System Monitor, the Apple Autostart
Monitor, Apple Integer BASIC and Applesoft 11 BASIC, and the Apple Programmer's Al # 1 util-
ity subroutine package. The number and contents of vour Apple’s ROMs depend upon which
type of Apple vou have, and the accessories you have purchased.

Right below the ROMs and the central mounting nut is an area marked by a white square on the
board which encloses twenty-four sockets for integrated circuits. Some or all of these may be
filled with 1Cs. These are the main Random Access Memory (RAM) **chips™ for your Apple.
An Apple can hold 4,09 to 49,152 bytes of RAM memory in these three rows of components.®
Each row can hold eight 1Cs of either the 4K or 16K variety. A row must hold eight of the same

-
.
L
|
-
-
.
-
.
.
.
|
-
-
|
|
|
[
L.
|L=

* You can extend vour RAM memory to 64K by purchasing the Apple Language Card, part of the Apple
Langusge System (part number A2BOO0G).

type of memory components, but the two types can both be used in wvarious combinations on
different rows to give nine different memory sizes.” The RAM memory is used to hold all of the
programs and data which you are using al any particular time. The information stored in RAM
disappears when the power is turned off.

The other components on the Apple 11 board have various functions: they control the flow of
information from one part of the computer to another, gather data from the outside world, or
send information to you by displaying it on a television screen or making a noise on a speaker.

The eight long peripheral slots on the back edge of the Apple’s board can each hold a peripheral
card 1o allow you to extend your RAM or ROM memory, or to connect your Apple to a printer or
other input/output device. These slots are sometimes called the Apple’s “backplane™ or
“*mother board™.

TALKING TO YOUR APPLE

Your link to your Apple is at your fingertips. Most programs and languages that are used with
the Apple expect you to talk to them through the Apple's keyboard. 1t looks like a normal type-
writer keyboard, except for some minor rearrangement and a few special keys. For a quick
review on the keyboard, see pages 6 through 12 in the Apple 11 BASIC Programming Manual
or pages 5 through 11 in The Applesoft Tutorial.

Since you're talking with your fingers, you might as well be hearing with your eves. The Apple
will tell you what it is doing by displaying letters, numbers, symbols, and sometimes colored
blocks and lines on a black-and-white or color television set,

* The Apple 11 is designed 10 use both the 16K and the less expensive 4K RAMs, Howewver. due ta the greater
availshility and reduced cost of the 16K chips, Apple now supplies only the 16K RAMs

BT IFT IE iE1 1 (el 1® (®1 Pl Pl IF i irr irroirr 'wr EnOY el el

114

BT A O

THE KEYBOARD

The Apple Kevboard
Number of Keys: 52
Coding: Upper Case ASCII
Number of codes: 91
Output: Seven bits, plus strobe

Power requirements: +5v at 120mA |
—12v at 50mA

Rollover: 2 Key

Special keys: CTRL
ESC
RESET
REPT

——

Memory mapped locations: Hex Decimal
Data SCARN 49152 -16384
Clear $CP18 49168 -16368

The Apple 11 has a built-in 52-key typewriter-like keyboard which communicates using the Amer-
ican Standard Code for Information Interchange (ASCII}®. Ninety-one of the 96 upper-case
ASCII characters can be generated directly by the keyboard. Table 2 shows the keys on the key-
board and their associated ASCII codes. “‘Photo™ 3 is a diagram of the keyboard,

The keyboard is electrically connected to the main circuit board by a 16-conductor cable with
plugs at each end that plug into standard integrated circuit sockets. One end of this cable is con-
necled to the keyboard; the other end plugs into the Apple board’s keyboard connector, near the
very front edge of the board, under the kevboard itself. The electrical specifications for this con-
neclor are given on page 102,

Most languages on the Apple have commands or statements which allow your program to accept
input from the keyboard gquickly and easily (for example, the INPUT and GET statements in
BASIC). However, your programs can also read the keyvboard directly.

All ASCIH codes used by the Apple normally have their high bit sel. This s the same as stendard mark-
parity ASCII

5) & =
U)]] & 7 B 4
- P p— s e i =%
™o lo pwipE R Ly [PRLTI] (L) PR P atll| | Bl
- . T . e 7 —
o kA kSsihD F [) K L i
BN Y 1 g - L = I A
AT = = IR B -"
- x heilivills N TN [T I
- |
! ' I

“Photo”* 3. The Apple Keyhoard.

READING THE KEYBOARD

The keyboard sends seven bits of information which together form one character. These seven
bits, along with another signal which indicates when a key has been pressed, are available to most
programs as the contents of a memory location. Programs can read the current state of the key-
board by reading the contents of this location. When you press a key on the keyboard, the value
in this location becomes 128 or greater, and the particular value it assumes is the numeric code
for the character which was typed. Table 3 on page 8 shows the ASCII characters and their asso-
ciated numeric codes. The location will hold this one value until you press another key, or until
vour program tells the memory location 1o forget the character it's holding.

Once your program has accepted and understood a keypress, it should tell the keyboard’s memory
location to “release’’ the character it is holding and prepare Lo receive a new one. Your program
can do this by referencing another memory location. When you reference this other location, the
value contained in the first location will drop below 128. This value will stay low until you press
another key. This action is called “‘clearing the keyboard strobe™. Your program can either read
or write to the special memory location; the data which are written to or read from that location
are irrelevant. It is the mere reference to the location which clears the keyboard strobe. Once you
have cleared the keyboard strobe, you can still recover the code for the key which was last
pressed by adding 128 (hexadecimal $8@) 1o the value in the keyboard location.

These are the special memaory locations used by the keyboard:

[Table 1: Keyboard Special Locations
Location: . Description
Hex Decimal
SCOP@ 49152 -16384 Keyboard Data
5C010 49168 -16368 Clear Keyboard Strobe

The [RESET] key at the upper right-hand corner does not generate an ASCII code, but instead is
directly connected to the microprocessor. When this key is pressed, all processing stops. When
the key is released, the computer staris a reset cycle. See page 36 for a description of the RESET

L_Fi\ FELFEL IR0 PR JEL FRL I®L OI®L (€1 (P1 /P /P1 O'PLOTEL OfELOfELOTPLO'PLOPLO'RLOTLORL T

BT e e e eees

function.

The [CTRL] and [SHIFT| keys generate no codes by themselves, but only alter the codes produced
by other keys.

The [REPT| key, il pressed alone, produces a duplicate of the last code that was generated. If you
press and hold down the [REPT] key while you are holding down a character key, it will act as if
you were pressing that key repeatedly at a rate of 10 presses each second. This repetition will
cease when you release either the character key or |REPT

The POWER light at the lower lefi-hand corner is an indicator lamp to show when the power to
the Apple is on.

Table 2: Keys and Their Associated ASCII Codes

Key
space
@
1!
S
3#
4%
5%
i3
=

i baran
VIA+ 22

L
=

TmONE > -3

Alone CTRL__SHIFT

SAR
581
$B1
§B2
B3
B4
SBS
SB6
SB7
SBS
$B9
$BA
5BB
SAC
SAD
SAE
$AF
$C1
$C2
$C3
$C4
$C5
8C6

Both || Key | Alone CTRL SHIFT Both |
SAD SA® SA@ | RETURN | S8D S8D 58D S8D
SRR SB@ SBO | G| sC7 587 5C7 587 |
$B1 SAl SAl H | sCc8 588 5C8 £33 |
$B2 SA2 SA2 1| sco 589 §C9 589
$B3 SA3 SA3 1| sCA SEA SCA $8A
$B4 5A4 SAd K | SCB $88 SCE S8B
$BS SA5 SAS L | scC $8C SCC $RC
$B6 SA6 SAB6 M| SCD S8D $DD S9D
SB7 SAT SA7 N | SCE S8E SDE S9E
SBS SAE SAS 0 | SCF S8F SCF S$8F
SBY §A9 SA9 P@ | SD® 590 $CP 580
$SBA SAA SAA Q| s$DI $91 $D1 591
$BB SAB $AB R | $D2 92 §D2 592
SAC $BC SBC 5| $D3 593 §D3 593
SAD S$BD SBD T | $D4 £94 3D4 594
SAE SBE SBE U | $Ds 595 §D5 595
SAF SBF $BF v | $D6 %96 SD6 596
581 8C1 581 w | $D7 £97 D7 597
582 $C2 $82 X | $DB 598 SD8 598
$83 SC3 583 Y | $D9 599 $D9 599
584 SC4 584 Z | SDA §9A DA S9A
$85 $C5 585 — | 388 $88 $88 588
586 $ChH 586 — | %95 $95 595 595
ESC | $9B 598 598 S9B

All codes are given in hexadecimal. To find the decimal equivalents, use Table 3.

e pr—m—

Table 3: The ASCII Character Set

Decimal: 128 144 168 176 192 208 224 248

Hex: SB@ 98 SA@ SB? SC@ SD@ SE@ 5FO
'] @ nul dle @ @ p p
1 %1 soh dcl ! 1 A Q a q
2 $2 stx de2 ! 2 B R b T
3 §3 etx dcd # 3 c S c 5
4 S4 eot dcd 8 4 D T d 1
5 §5 eng nak 9% A E u ¢ u
6 $b ack syn & [F v f v
7 57 bel et) 7 G W £ w
8 58 bs can (8 H X h X
9 59 ht em) 9 | Y i ¥
19 SA If sub . :] Z j 3
11 SB vt ese + : K [k {
12 sC s . < L y 1 |
13 SD o gs = - M | m]
14 SE S0 rs . > N 2 n e
15 SF 5i us / ? 0 . o rub |

Groups of two and three lower case letlers are abbreviations for standard ASCII control charac-

lers.

Not all the characters listed in this table can be generated by the keyboard. Specifically, the char-
acters in the two rightmost columns (the lower case letters), the symbols [(lefi square bracket),
(backslash). _ (underscore), and the control characters “'fs”, “ys™', and “‘rub’’, are not available

on the Apple keyboard.

The decimal or hexadecimal value for any character in the above table is the sum of the decimal
or hexadecimal numbers appearing at the top of the column and the left side of the row in which

the character appears.

PECTRL IR IR TR IR MBI R R

B I rE e

THE APPLE VIDEO DISPLAY

The Apple Video Display
Display type: Memory mapped into system RAM

Display modes: Text, Low-Resolution Graphics,
High-Resolution Graphics

Text capacity: 960 characters (24 lines, 40 columns)
Character type: 5 x 7 dot matrix
Character set: Upper case ASCII, 64 characters
Character mod=s: Normal, Inverse, Flashing
Graphics capacity: 1,920 blocks (Low-Resolution)
in a 40 by 48 array

53,760 dots (High-Resolution)
in a 280 by 192 array

| Number of colors: 16 (Low-Resolution Graphics)
6 (High-Resolution Graphics)
I

THE VIDEO CONNECTOR

In the right rear corner of the Apple Il board, there is a metal connector marked “*VIDEO".
This connector allows you to attach a cable between the Apple and a closed-circuit video monitor.
One end of the connecting cable should have a male RCA phono jack to plug into the Apple, and
the other end should have a connector compatible with the particular device vou are using. The
signal that comes out of this connector on the Apple is similar to an Electronic Industries Associ-
ation (EIA)-standard, National Television Standards Committee (NTSC)-compatible, positive
composite color video signal. The level of this signal can be adjusted from zero to 1 volt peak by
the small round potentiometer on the right edge of the board about three inches from the back of
the board.

A non-adjustable, 2 volts peak version of the same video signal is available in two other places:
on a single wire-wrap pin* on the left side of the board about two inches from the back of the
board, and on one pin of a group of four similar pins also on the left edge near the back of the
board. The other three pins in this group are connected to —35 volts, +12 volis, and ground.
See page 97 for a full description of this auxiliary video connector,

* This pin is not present in Apple 11 sysiems with the Revision ® board

Auxiliary Video
Output Connector

Auxiliary Video Pin

Level Adjustment

Potentiometer

Color Trim
Adjustment

Photo 4. The Video Connectors and Potentiometer,

EURAPPLE (50 HZ) MODIFICATION

Your Apple can be modified to generate a video signal compatible with the CCIR standard used
in many European countries. To make this modification, just cut the two X-shaped pads on the
right edge of the board about nine inches from the back of the board, and solder together the
three O-shaped pads in the same locations (see photo 3). You can then connect the video con-
nector of vour Apple to a European standard closed-circuit black-and-white or ¢color video moni-
tor. 1f you wish, you can obtain a “*Eurocolor” encoder to convert the video signal into a PAL or
SECAM standard color 1elevision signal suitable for use with any European television receiver.
The encoder is a small printed circuit board which plugs into the rightmost peripheral slot (slot 7)
in vour Apple and connects to the single auxiliary video output pin.

WARNING: This modification will void the warranty on your Apple and reguires
the installation of a different main erystal. This modification is not for beginners.

SCREEN FORMAT

Three different kinds of information can be shown on the video display 10 which your Apple is
connected:

10

LTI BT L EL

IR TR OPRLOIMYOIEL /MY OIRL O/RLOTRL ORI OMYI MO

m

fEomom

R I I r R

Jjumper pads

(L LT I

Ll
Ll
L]
]
L
L]
L)
-
M

Photo 5. Eurapple (50 hz) Jumper Pads.

I} Text. The Apple can display 24 lines of numbers, special symbols, and upper-case letters
with 40 of these characters on each line. These characters are formed in a dot matrix 7 dots
high and 5 dots wide. There is a one-dot wide space on either side of the character and a one-
dot high space above each line.

2) Low-Resolution Graphics. The Apple can present 1,920 colored squares in an array 40
blocks wide and 48 blocks high. The color of each block can be selected from a set of sixieen
different colors. There is no space between blocks. so that any two adjucent blocks of the
same color look like a single, larger block.

3} High-Resolution Graphics. The Apple can also display colored dots on a matrix 280 dots
wide and 192 dots high. The dots are the same size as the dots which make up the Tex! char-
acters. There are six colors available in the High-Resolution Graphics mode: black, white, red,
blue, green, and violer.” Each dot on the screen can be either black, while, or a color,
although not all colors are available for every dat

When the Apple is displaying a particular type of information on the screen. it is said to be in
that particular “*‘mode™. Thus, if you see words and numbers on the screen, you can reasonably
be assured that your Apple is in Text mode. Similarly, if vou see a screen Tull of multicolored
blocks, your computer is probably in Low-Resolution Graphics mode. You can also have a four-
line ““caption” of text at the bottom of either tvpe of graphics screen. These four lines replace

For Apples with Revision @ boards, there are four colors: black. white, green, and violet

the lower B rows of blocks in Low-Resolution Graphics, leaving a 40 by 40 array. In High-
Resolution Graphies, they replace the bottom 32 rows of dots, leaving a 280 by 160 matrix. You
can use these “*mixed modes” to display 1ext and graphics simultaneously, but there is no way 1o
display both graphics modes at the same time.

SCREEN MEMORY

The video display uses information in the system’s RAM memory lo generate its display. The
value of a single memory location controls the appearance of a certain, fixed object on the screen.,
This object can be a character, two stacked colored blocks, or a line of seven dots. In Text and
Low-Resolution Graphics mode, an area of memory containing 1,024 locations is used as the
source of the screen information. Text and Low-Resolution Graphies share this memory area. In
High-Resolution Graphics mode, a separate, larger area (8,192 locations) is needed because of
the greater amount of information which is being displayed. These areas of memory are usually
culled “*pages’’. The area reserved for High-Resolution Graphics is sometimes called the “*picture
buffer’” because it is commonly used to store a picture or drawing.

SCREEN PAGES

There are actually fwe areas from which each mode can draw its information. The first area is
called the *‘primary page’” or “‘Page 17, The second area is called the “‘secondary page’’ or
“Page 2" and is an area of the same size immediately following the first area. The secondary
page is useful for storing pictures or text which you want 10 he able to display instantly. A pro-
gram can use the Iwo pages to perform animation by drawing on one page while displaying the
other and suddenly flipping pages.

Text and Low-Resolution Graphics share the same memory range for the secondary page, just as
they share the same range for the primary page. Both mixed modes which were described above
are also available on the secondary page. but there is no way to mix the two pages on the same
screen.

| Table 4: Video Display Memory Hanges i
Begins at: Ends at:
sl hANE Hex . Decimal
Text/Lo-Res Primary sS40 1824 STFF 20847
Secondary S800 2048 SBFF 3871
Hi-Res Primary S2000 8192 $3FFF 16383
L Secondary S480@ 16384 $5FFF 24575

SCREEN SWITCHES

The devices which decide between the various modes, pages. and mixes are called “soft
swilches”. They are swilches because they have two positions (for example; on or off, text or
graphics) and they are called ““soft” because they are controlled by the software of the computer.

LTI T 71 M

M T

M mmomom

B 1E R

In
1}

I m

FE. L nem

BRI I T R R

A program can “‘throw™ a switch by referencing the special memory location for that switch, The
data which are read from or written to the location are irrelevant; it is the reference to the address
of the location which throws the switch,

There are eight special memory locations which control the setting of the soft switches for the
screen. They are set up in pairs, when vou reference one location of the pair you turn its
corresponding mode “on™ and its companion mode “‘off”". Thé pairs are:

| Table 5: Sereen Soft Switches
' Location: 2 Description:
Hex Decimal
SCOsH 49232 -16384 Display a GRAPHICS mode.
SC@51 49233 -16383 Display TEXT mode. .
8CB52 49234 -16382 Display all TEXT or GRAPHICS. |
SC@53 49235 -16381 Mix TEXT and a GRAPHICS mode.”
[$C@54 49236 -163080 Display the Primary page (Page 1).
[SCHs5 49237 -16299 Display the Secondary page (Page 2).
SCAS6 49238 -16298 Display LO-RES GRAPHICS mode.*
SCA57 49239 -16297 Display HI-RES GRAPHICS mode.*

There are ten distinct combinations of these switches:

Table 6: Sereen Mode Combinations) '

Primary Page | Secondary Page
Screen) Switches i Il screen Swilches
All Text SCO54 SCP51 || All Text SCASS $Ca51
All Lo-Res SC@54 SC@56 || All Lo-Res §CB55 3CAs6

Graphics SCP52 SC@50 | Graphics 5CA52 5Cos50
All Hi-Res SCO54 SCPS7 || All Hi-Res $C@A55 5CA57
| Graphics SCB52 SCOSO | Graphics SCP52 SCAse

Mixed Text SC@#54 SCO56 || Mixed Text 3C@55 SCB56
and Lo-Res $C@53 5C@50 || and Lo-Res SC@53 SC@50
Mixed Text SCB54 SC@57 || Mixed Text $C055 SC057 [
and Hi-Res SCPS3 SCBS0 || and Hi-Res $COS3 5C050 |

(Those of you who are learned in the ways of binary will immediately cry out, “*Where's the
ather six?!™", knowing full well that with 4 two-way swilches there are indeed sivieen possible
combinations. The answer to the mystery of the six missing modes lies in the
TEXT/GRAPHICS switch. When the computer is in Text maode, it can also be in one of six
combinations of the Lo-Res/Hi-Res graphics mode, “*mix™" mode, or page selection. But since
the Apple is displaying text, these different graphics modes are invisible.)

To set the Apple into one of these modes, a program needs only to refer to the addresses of the
memory locations which correspond to the switches that set thal mode. Machine language pro-
grams should use the hexadecimal addresses given above. BASIC programs should PEEK or
POKE their decimul equivalents (given in Table 5, *‘Screen Soft Switches”, above). The
switches may be thrown in any order; however, when switching into one of the Graphics modes,
it is helpful 1o throw the TEXT/GRAPHICS switch last. All the other changes in mode will then
take place invisibly behind the text, so that when the Graphics mode is set, the finished graphics

* These modes are only visible if the “Display GRAPHICS™ switch s “on™

13

SCreen appears all at once,

THE TEXT MODE

In the Text mode, the Apple can display 24 lines of characters with up to 40 characters on each
line. Fach character on the screen represents the conienls of one memaory location from the
ry range of the page being displayed The character set includes the 26 upper-case IelIErS,

med in 4

mer
the 10 digits, and 28 special characters for a total of 64 characters, The characters are [o
dot matrix 5 dots wide and 7 dots high. There is a one-dot wide space on both sides of each
t high space above each line of characters to

churacter to separate adjacent characters and a one-do
separate adjacent lines he characters are normally formed with white dots on a dark buck-
ground; however, each character on the screen can also be displayed using dark dots on a whiie
background or alternating between the two to produce a flashing character. When the Video
Display is in Text mode, the video circuilry in the Apple turns off the color burst signal to the

television monitor, giving you a clearer black-and-white display.”

The area of memory which is used for the primary lexl page slars at location number 1924 and
extends to location number 2@847. The secondary screen begins at location number 2848 and
extends up to location 3871, In machine language, the primary page is from hexadecimal address
$400 to address $TFF: the secondary page 18 from SR@@ to SBFF. Each of these pages 1s 1,024
bytes long. Those of you intrepid enough to do the multiplication will realize that there are only
960 characters displayed on the sereen. The remaining 64 bytes in each page which are nol
displayed on the screen are used as lemporary storage locations by programs stored in PROM on
Apple Intelligent Interface peripheral boards (see page 82)

Photo 6 shows the sixty-four characters available on the Apple’s screen

Photo 6. The Apple Character Set.

Table 7 gives the decimal and hexadecimal codes for the 64 characters in normal, inver
flashing display modes

* This fcature is not present on the Revision @ b

=1 er El (EY O IFY IFL IFT OIE1 O'F1 OTF1 Fl [I] [II rF].

T 3!

198 19RIEY) UG [[ISY L ML

i /) 0o i /) 0 i / 0 i / 0 |48

< . N < . N < . N < N 15 ¥l

= -1t w = -] W|= - 1 W|[= - [HN|®a

= \ 1 = \ 1 > \ | = ™ 1 . 3|

; +] A T] A : +] A +] | 43 1

s z [* Z [¢ Z [. Z [vig

6 { A | [(A | [(A I 6 (A I 656

8) X H 8) X H 8) X H 8 } X H LR “
L : Mmoo D L . MmO L M D L } Mmoo D | st -
9 ¥ A 4 9 ¥ A | 9 W A 4 9 ¥ A e 959

& o n q g "y n E| ¢ o n 4 § o n E| 856

¥ g L a L4 S L a L4 8 i ! a r S 1 a L

& # S 2 £ # S) £ # S 2 £ # g 2 £

{ " u i £ __ H d [' | i d) | d (24

1 i 0 ¥ | i 0 v 1 i 0 ¥ I i 0 v | isl

@ d @ @ d @ [d @) @ d @ L
#45 [ELY nas s fHs [L oS BLs Lol (131 s s as s pes IH
#e L4 BT 6l 9Ll 891 FHl 8i1 Tl 9 R] L0 43 a1 @ TR
[FEUIIIN0T | LT 1]

Aunyse 4 IRIIAU|
[ruoy
SI9JIEBIEY) U205 JIODSY R LT

S|) O T O T T T T Y Y T O O OO O O |

L 1

14

4 4

$400
$480
$500
$580
$600
$680
§700
$780
$428
$4A8
$528
$5A8
$628
S6A8
$728
§7A8
$450
$4D0
$550
$5D0
$650
$6D6
$750
$7D@

1l

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488
1616
1744
1872
2000

14 &4 1@

14l 1A Ll - -

9
w
il

S1E

SIF

528
s

n
EE}

522
323

4

35

524

36
7

525
526
71

£L]
39

Figure 1. Map of the Text Screen

16

B T T e

Figure 1 is a map of the Apple’s displuy in Text mode, with the memory location addresses for
gach character position on the screen.

THE LOW-RESOLUTION GRAPHICS (LO-RES)
MODE

In the Low-Resolution Graphics mode, the Apple presents the contents of the same 1,024 loca-
tions of memory as is in the Text mode, but in a different format. In this mode, each byte of
memory is displaved not as an ASCII character. but as two colored blocks, stacked one atop the
other. The screen can show an array of blocks 40 wide and 48 high. Euach block can be any of
sixteen colors. On a black-and-white television set, the colors appear as pallerns of grey and
white dots.

Since each byte in the page of memory for Low-Resolution Graphics represents two blocks on the
screen. stacked vertically, each byle is divided into two equal sections, called (appropriately
enough) “‘nybbles™. Each nybble can hold a value from zero o 15. The value which is in the
lower nybble of the byte determines the color for the upper block of that byte on the screen, and
the value which is in the upper nybble determines the color for the lower block on the screen
The colors are numbered zero to 15, thus:

Table 8: Low-Resolution Graphics Colors

Decimal]I_e_\' Color) [Decimal Hex Color
[} 1] Black 8 58 Brown
1 £1 Magenia 9 59 Orange
2 52 Dark Blue 16 SA Grey 2
3 53 Purple | 11 b1 Pink
4 %4 Dark Green 12 SC Light Green
5 85 Grey | 13 D Yellow
6 %6 Medium Blue 14 SE Aquamarineg
| 7 %7 Light Blue 15 SF White

(Colors may vary from television 1o television, particularly on those without hue controls. You
can adjust the tint of the colors by adjusting the COLOR TRIM control on the right edge of the
Apple board.}

So, a byte containing the hexadecimal value D8 would appear on the screen as a brown block on
top of a yellow block. Using decimal arithmetic, the color of the lower block is determined by
the quotient of the value of the byte divided by 16: the color of the upper block is determined by
the remainder

Figure 2 is a map of the Apple's display in Low-Resolution Graphics mode, with the memory
location addresses lor each block on the screen.

Since the Low-Resolution Graphics screen displays the same area in memory as is used for the
Text screen. interesting things happen if you switch between the Text and Low-Resolution
Graphics modes. For example, if the screen is in the Low-Resolution Graphics mode and is full
of colored blocks, and then the TEXT/GRAPHICS screen switch is thrown to the Text mode, the
sereen will be filled with seemingly random text characters, sometimes inverse or flashing. Simi-
larly, a screen full of text when viewed in Low-Resolution Graphics mode appears as long hor-
izontal grey, pink, green or yellow bars separated by randomly colored blocks.

WY W WWWWW W W W W W W E a3 1 Nee

$400
$480
$500
$580
$600
$680
$700
$780
$428
$4A8
$528
$5A8
$628
S6A8
$728
S7A8
5450
$4D@
§550
§$5D@
$650
$6D@
§750
$7D@

1024
152
1280
1408
1536
1664
1792
1928
1864
1192
1320
1448
1576
1704
1832
1964
1104
1232
1360
1488
1616
1744
1872
2000

EEERAEERER

R T TSR R

ABWDEFII.:
R R B Rl i e =

521
522
L ¥4]
4
¥4]
526
527

RE]
kL]

15

k]
w

38
9

Figure 2. Map of the Low-Resolution Graphics Mode

18

BRI I .

THE HIGH-RESOLUTION GRAPHICS (HI-RES)
MODE

The Apple has a second type of graphic display, called High-Resolution Graphics (or sometimes
“Hi-res™). When your Apple is in the High-Resolution Graphics mode, it can display 53,760
dots in a matrix 280 dots wide and 192 dots high. The screen can display black, white, violet,
green, red, and blue dots, although there are some limitations concerning the color of individual
dots.

The High-Resolution Graphics mode takes its data from an 8,192-byte area of memory, usually
called a *‘picture buffer”. There are two separate picture buffers: one for the primary page and
one for the secondary page. Both of these buffers are independent of and separate from the
memory areas used for Text and Low-Resolution Graphics. The primary page picture buffer (or
the High-Resolution Graphics mode begins at memory location number 8192 and extends up 1o
location number 16383; the secondary page picture buffer follows on the heels of the first at
memory location number 16384, extending up to location number 24575, For those of vou with
sixteen fingers, the primary page resides from $2088 1o S3IFFF and the secondary page [ollows in
succession at S4088 1o $5FFF, If your Apple is equipped with 16K (16,384 byies) or less of
memory, then the secondary puge is inaccessible to you: if its memory size is less than 16K, then
the entire High-Resolution Graphics mode is unavailable to you.

Each dot on the screen represents one bit from the picture buffer. Seven of the eight bits in each
byte are displayed on the screen, with the remaining bit used to select the colors of the dots in
that byte. Forty bytes are displayed on each line of the screen. The least significant bit {first bit)
of the first byte in the line is displayed on the left edge of the screen, followed by the second bit,
then the third, etc. The most significant (eighth) bit is not displayed, Then follows the first bit
of the next byle, and so on. A 1otal of 280 dots are displaved on each of the 192 lines of the
screen.

On a black-and-white manitor or TV set, the dots whose corresponding bits are “"on™ (or equal to
1) appear white; the dots whose corresponding bits are “*off”" or {equal to @) appear black. On a
color monitor or TV, it is not so simple. 1l a bit is “off™, its corresponding dot will always be
black. If a bit is ""on™", however, its color will depend upon the posiiion of that dot on the screen.
If the dot is in the leftmost column on the screen, called “*column @, or in any even-numbered
column, then it will appear violet. If the dot is in the rightmost column (column 279} or any
odd-numbered column, then it will appear green. II two dois are placed side-by-side, they will
both appear white, I the undisplayed bit of a byte is turned on, then the colors blue and red are
substituted for violet and green, respectively.® Thus, there are six colors available in the High-
Resolution Graphics mode, subject to the following limitations:

1} Dots in even columns must be black. violet, or blue.
2} Dots in odd columns must be black, green, or red,

3) Each byte must be either a violet/green byte or a blue/red byte. It is not possible to mix
green and blue, green and red, violet and blue, or violet and red in the same byle.

* On Revision @ Apple bourds, the colors red und blue are unavailable and the setting of the cighth bit is ir-
relevant

19

4) Two colored dots side by side always appear white, even if they are in different bytes.

5) On European-modified Apples, these rules apply but the colors generated in the High-
Resolution Graphics mode may differ.

Figure 3 shows the Apple’s display screen in High-Resolution Graphics mode with the memory
addresses of each line on the screen.

OTHER INPUT/OUTPUT FEATURES

Apple Input/Output Features

Inputs: Cassette Input
Three One-bit Digital Inputs
Four Analog Inputs

Qutputs: Cassette Output
Built-In Speaker
Four “*Annunciator”™ Quipuls
Utility Strobe Output

THE SPEAKER

Inside the Apple’s case, on the lefl side under the keyboard, is a small 8 chm speaker. [t is con-
nected to the internal electronics of the Apple so that a program can cause it o make various
sounds.

The speaker is controlled by a soft switch. The switch can put the paper cone of the speaker in
two positions: *‘in"" and “out™. This soft swiltch is not like the soft switches controlling the vari-
ous video modes, bul is instead a fogele switch. Each time a program references the memory
address associated with the speaker switch, the speaker will change state: change from “in™ 1o
“put’” or vice-versa. Each time the state is changed, the speaker produces a tiny “*click’. By
referencing the address of the speaker switch frequently and continuously, a program can gen-
erate a steady tone from the speaker.

The sof switch for the speaker is associated with memory location number 49288, Any reference
to this address (or the equivalent addresses -16336 or hexadecimal SC@3@) will cause the speaker
1o emit a click.

A program can “‘reference’” the address of the special location for the speaker by performing a
“read’ or “‘write' operation to that address. The data which are read or written are irrelevant, as
it is the address which throws the switch. Note that a *“*write” operation on the Apple’s 6502
microprocessor actually performs a “‘read”™ before the “‘write”, so that if you use a “‘write"”
operation to flip any soft switch, you will actually throw that switch rwice. For toggle-type soft
swilches, such as the speaker switch, this means that a *‘write’” operation to the special location

20

fer e fero el ofen fEL fEL e 'Rl O'ELOEL ML ML

e |

Sede ' i e e e

uaa1dg satydesny wopnjosay-ydy gy jo degy ¢ andg

[T RIEE CTTH g9l BALIS
PARIS vrI19[] rd6 @cETs
poris oTis[] zl6g @ATIS

B0a1S 96t [F8LS @578 o

R LR 1T — 9cog @AIZS 2

o0s0s shoT[] gzsy BSITS E

aavas +Tal [pers @aezs g

T — s 0SS

WNOG YR u) BZl6 SVELS m

go06 BIELS

7188 8VILS ¥

phig BIILS 8

9198 BVIZS - =
g8y STITS z &

pogg BVOLS |

7ezs BIAIS £

8886 @BLIS !

§968 BOETS 3

7688 O8TI8 s

vo8 BOTLS 3

9is8 O8IZS :

gppg BAILTS £

pres 0BT m

618 @00Is £

e D -t e iRl ol £

umsuumuwuuwmumuuuuuumnmmmmmmmmmunﬁm

[~ =

LIS
9I%
T4
14
£Zs

4
BT MOAER 990 20 b W= STMg

S| L O O T T O O T T T O

controlling the switch will leave the switch in the same state it was in before the operation was
performed.

THE CASSETTE INTERFACE

On the back edge of the Apple’s main board, on the right side next to the VIDEO connector, are
two small black packages labelled “IN" and “OUT"". These are miniature phone jacks into which
vou can plug a cable which has a pair of miniature phono plugs on each end. The-other end of
this cable can be connected to a standard cassetie tape recorder so that your Apple can save infor-
mation on audio cassetle tape and read it back again,

The connector marked “OUT"" is wired 1o yet another soft switch on the Apple board. This is
another toggle switch, like the speaker switch (see above)., The soft switch for the casselle out-
put plug can be toggled by referencing memory location number 49184 (or the equivalent -16352
or hexadecimal SC@2@). Referencing this location will make the voltage on the OUT connector
swing from zero to 25 millivolts (one fortieth of a volt), or return from 25 millivolts back to
zero. If the other end of the cable is plugged into the MICROPHONE input of a cassetie tape
recorder which is recording onto a tape, this will produce a tiny “click”™ on the recording. By
referencing the memory location associated with the cassette outpul soft switch repeatedly and
frequently, a program can produce a tone on the recording. By varying the pitch and duration of
this tone, infermation may be encoded on a tape and saved for later use. Such a program 1o
encode data on a tape is included in the System Monitor and is described on page 46.

Be forewarned that if you attempt to flip the soft switch for the cassette output by wriling 1o its
special location, you will actually generate rwo “'clicks™ on the recording. The reason for this is
mentioned in the description of the speaker (above). You should only use “‘read™ operations
when toggling the cassette output soft switch,

The other connector, marked “IN", can be used to “listen’ to a cassette tape recording. lis
main purpose is to provide a means of listening to tones on the tape, decoding them into data,
and storing them in memory. Thus, a program or data set which was stored on casselie tape may
be read back in and used again.

The input circuit takes & 1 volt (peak-lo-peak) signal fromn the cassette recorder’s EARPHONE
jack and converts it into a string of ones and zeroes. Each time the signal applied to the input
circuit swings from positive to negative, or vice-versa, the input circuit changes slate: il it was
sending ones, it will start sending zeroes, and vice versa. A program can inspect the state of the
casselle input circuit by looking at memory location number 49248 or the equivalents -16288 or
hexadecimal SCA6@. If the value which is read from this location is greater than or equal to 128,
then the state is a *‘one’™: i the value in the memory location is less than 128, then the state is a
“zero'’. Although BASIC programs can read the state of the cassetie input circuit, the speed of a
BASIC program is usually much too slow to be able to make any sense out of whal it reads.
There is. however, a program in the System Monitor which will read the tones on a casscile tape
and decode them. This is described on page 47.

22

L Seu R e de ey bec ec den e Ter fer el fEn el ofL fRLOMELOMELVELOELOEL LML

U U U U L 1

THE GAME 1/0 CONNECTOR

The purpose of the Game [/0O connector is to allow you to connect special input and output dev-
ices to heighten the effect of programs in general, and specifically, game programs. This connec-
tor allows you to connect three one-bit inputs, four one-bit outputs, a data strobe, and four ana-
log inputs 1o the Apple, all of which can be controlled by your programs. Supplied with vour
Apple is a pair of Game Controllers which are connected to cables which plug into the Game 1/0
connector. The two rotary dials on the Controllers are connected to two analog inputs on the
Connector; the 1two pushbutions are connected to two of the one-bit inputs.

EEERGEERARAARE
EESISEEENEEE

Photo 7. The Game 1/0 Connector.

ANNUNCIATOR OUTPUTS

The four one-bit outputs are called “‘annunciators’, Each annunciator output can be used as an
input to some other electronic device, or the annunciator outputs can be connected to circuits to
drive lamps, relays, speakers, elc.

Each annunciator is controlled by a soft switch. The addresses of the soft switches for the annun-
ciators are arranged into four pairs, one pair for each annunciator. If vou reference the first
address in a pair, you turn the output of its corresponding annunciator *off™"; if vou reference the
second address in the pair, you turn the annunciator’s output “‘on”. When an annunciator is

23

“off™, the voltage on its pin on the Game 1/0 Connector is near 0 volts; when an annunciator is
“an’, the voltage is near 5 volts. There are no inherent means to determine the current setting
of an annunciator bit. The annunciator soft switches are:

Table 9: Annunciator Special Locations
Address:
Decimal Hex
@ off 49240 -16296 SC@5E
on 49241 -16295 $C@59
1 off 49242 -16294 SCO5A
on 49243 -16293 BCHBSH
2 off 49244 16292 SCB5C |
on 49245 -16291 SCB5D
3 off 49246 -16299 SC@5E
on 49247 -16289 SCOSF |

Ann. State

ONE-BIT INPUTS

The three one-bit inputs can each be connected to either another electronic device or to a push-
button. You can read the state of any of the one-bit inputs from a machine language or BASIC
program in the same manner as you read the Cassette Input, above. The locations for the three
one-bit inputs have the addresses 49249 through 49251 (-16287 through -16285 or hexadecimal
$CP61 through SCH63).

ANALOG INPUTS

The four analog inputs can be connected to 150K Ohm variable resistors or potentiometers. The
variable resistance between each input and the +5 volt supply is used in a one-shot timing cir-
cuil. As the resistance on an input varies, the timing characteristics of its corresponding timing
circuit change accordingly. Machine language programs can sense the changes in the timing loops
and obtain a numerical value corresponding to the position of the potentiometer.

Before a program can start to read the setting of a poientiometer, it must first reset the timing
circuits, Location number 49264 (-16272 or hexadecimal $C@7@) does just this. When you resel
the timing circuits, the values comained in the four locations 49252 through 49255 (-16284
through -16281 or SC#64 through $C@67) become greater than 128 (their high bits are set).
Within 3.060 milliseconds, the values contained in these four locations should drop below 128.
The exact time it 1akes for each location to drop in value is directly proportional to the setling of
the game paddle associated with that location. If the potentiometers connected to the analog
inputs have a greater resistance than 150K Ohms, or there are no potentiometers connected, then
the values in the game controller locations may never drop Lo Zero.

24

L. Tl

fELOIE1 OET O'EY O'ELO'EY OTEY OTEY OTEDOTEY OTEY OTEY O'ED R O'E1 ORI

IF!

FE. IEI

R

STROBE OUTPUT

There is an additional output, called C#4@ STROBE, which is normally +5 volts bul will drop to
zero volts for a duration of one-half microsecond under the control of a machine language or
BASIC program. You can trigger this “*strobe’™ by referring to location number 49216 (-16328 or
SCO4F). Be aware thut if you perform a “‘write” operation to this location, you will trigger the
strobe iwice (see a description of this phenomenon in the section on the Speaker).

Table 10: Input/Output Special Locations |

S Address: ; e |
I-le.ljo-n.. "~ Decimal Hex Read/Write
Speaker 49200 -16336 SCR3@ R

Casselle Out 49184 -16352 SCaze R

Cussette In 49256 -16288 SCH6@ R
Annunciators® | 49249 -16296 SC@58 R/W
through through through
40247 -16289 SCOSF

Flag inputs 40249 -16287 SCHo61 R
49259 -16286 $Ca62 R

49251 -16285 $C@63 | R

Analog Inputs | 49252 -16284 SCho64 R

49253 -16283 SCh65
49254 -16282 SCh66
49255 -16281 SCO67

| Analog Clear 49264 -16272 S5Ca78 R/W
__Ulil'ug Strobe | 49216 _—IErJEE_ SC040 R

VARIETIES OF APPLES

There are a few variations on the basic Apple Il computer. Some of the variations are revisions
or modifications of the computer itself: others are changes 1o its operating software. These are
the basic variations:

AUTOSTART ROM / MONITOR ROM

All Apple I1 Plus Systems include the Autostart Monitor ROM. All other Apple systems do not contain
the Autostart ROM, but instead have the Apple System Monitor ROM, This version of the ROM
lacks some of the features present in the Autostart ROM, but also has some features which are not
present in that ROM. The main differences in the two ROMSs are listed on the following pages.

* See the previous table

25

e Fditing Controls. The ESC-1, J, K, and M sequences, which move the cursor up, left. right,
and down, respectively, are not available in the Old Monitor ROM.

® Stop-List. The Stop-List feature (invoked by a [CTRL S}), which allows you to introduce a
pause into the output of most BASIC or machine language programs or listings, is not available
in the Old Monitor ROM.

® The RESET cycle. When vou first turn on your Apple or press RESET]. the Old Monitor
ROM will send you directly into the Apple System Monitor, instead of initiating a warm or
cald starl as described in **“The RESET Cycle™ on page 36.

The Old Manitor ROM daes, however, support the STEP and TRACE debugging features of the
Sysitem Monitor, described on page 51, The Autostart ROM does not recognize these Monitor

commands.

REVISION # / REVISION 1 BOARD

The Revision @ Apple Il board lacks a few [eatures found on the current Revision 1 version of
the Apple 1l main board. To determine which version of the main board is in your Apple, open
the case and look at the upper right-hand corner of the board, Compare what you see to Photo 4
on page 10. If your Apple does not have the single metal video connector pin between the four-
pin video connector and the video adjustment potentiometer, then you have a Revision § Apple.

The differences between the Revision @ and Revision 1 Apples are summarized below.

& Color Killer. When the Apple’s Video Display is in Text mode, the Revision # Apple board
leaves the color burst signal active on the video output circuit. This causes lexi characters to
appear tinted or with colored fringes.

s Power-on RESET. Revision @ Apple boards have no circuit to automatically initiate a RESET
cycle when you turn the power on. Instead, you musl press RESET]| once to starl using your
Apple.

Also, when vou turn on the power to an Apple with a Revision @ board, the keyboard will
become active, as if you had typed a random character. When the Apple starts looking for
input, it will accept this random character as if you had typed it. In order 1o erase this charac-
ter, you should press [CTRL X]after you [RESET| vour Apple when you turn on its power.

® Colors in High-Resolution Graphics. Apples with Revision @ boards can generate only four
colors in the High-Resolution Graphics mode: black, white, violet, and green. The high bit of
each byte displayed on the Hi-Res screen (see page 19) is ignored.

e 24K Memory Map problem. Systems with a Revision @ Apple 11 board which contain 20K or
24K bytes of RAM memory appear o BASIC 10 have more memory than they actually do.
See “*Memory Organization™, page 72, for a description of this problem.

® 50 Hz Apples. The Revision @ Apple I board does not have the pads and jumpers which you
can cut and solder to convert the VIDEOQ OUT signai of your Apple to conform to the Euro-
pean PAL/SECAM television standard. Tt also lacks the third VIDEO connector, the single
metal pin in front of the four-pin video connector.

26

ML M1 ML F1 BT Bl P11

JEL TEL OIEL OEDOTEL OYEL OTEL MR OTREL TR

IF. IF

IFl

FELTFL TR

|

o ot o o

Y

o Speaker and Cassette Interference. On Apples with Revision @ boards, any sound generated
by the imernal speaker will also appear as a signal on the Cassette Interface’s OUT connecior
If you leave the tape recorder in RECORD mode, then any sound generated by the internal
speaker will also appear on the wape recording.

® Cassette Input. The input circuit for the Cassetie Interface has been modified so that it will
respond with more accuracy 1o a weaker inpult signal,

POWER SUPPLY CHANGES

In addition, some Apples have a version of the Apple Power Supply which will accept only a 110
voll power line input. These are are not equipped with the voltage selector switch on the back of
the supply

THE APPLE II PLUS

The Apple 11 Plus is a standard Apple 11 computer with a Revision 1 board, an Autostart Moni-
tor ROM, and the Applesoft 11 BASIC language in ROM in lieu of Apple Integer BASIC. Euro-
pean models of the Apple Il Plus are equipped with a 110/220 volt power supply. The Apple
Mini-Assembler, the Floating-Point Package, and the SWEET-16 interpreter, stored in the
Integer BASIC ROMSs, are not available on the Apple 11 Plus

L]
-~

HWHEWEWWWW W W W W W W W W W W sy

28

CHAPTER 2
CONVERSATION WITH APPLES

(LS O | P R R IR R IR R R IR PR IR PRI PR A

Almost every program and language on the Apple needs some sort of input from the keyvboard,
and some way to print information on the screen. There is a set of subroutines stored in the
Apple’s ROM memory which handle most of the standard input and output from all programs
and languages on the Apple.

The subroutines in the Apple’s ROM which perform these input and output functions are called
by various names, These names were given to the subroutines by their authors when they were
written, The Apple itsell does not recognize or remember the names of its own machine
language subroutines, but 1t's convenient for us to call these subroutines by their given names,

STANDARD OUTPUT

The standard output subroutineg is called COUT. COUT will display upper-case letters, numbers,
and symbols on the screen in either Normal or Inverse mode. It will ignore control characters
except RETURN, the bell character, the line feed character, and the backspace character.

The COUT subroutine maintains its own invisible “‘output cursor™ (the position at which the
next characier is 1o be placed), Each time COUT is called, it places one character on the screen
ul the current cursor position, replacing whatever character was there, and moves the cursor one
space to the right. If the cursor is bumped off the right edge of the screen, then COUT shifis the
cursor down to the first position on the next line. If the cursor passes the bottom line of the
screen, the screen “‘scrolls™ up one line and the cursor is set to the first position on the newly
blunk bottom line.

When a RETURN character is sent to COUT, it moves the cursor 1o the first position of the next
line. If the cursor falls off the bottom of the screen, the screen scrolls as described above.

THE STOP-LIST FEATURE

When any program or language sends 8 RETURN code 10 COUT, COUT will take a quick peek at
the keyboard. If you have typed a since the last time COUT looked at the keyboard,
then it will stop and wait for you to press another key., This is called the Stop-List feature**
When you press another key, COUT will then output the RETURN code and proceed with nor-
mal output. The code of the key which you press Lo end the Stop-List mode is ignored unless it
is o [CTRLC]. 1f it is, then COUT passes this character code back to the program or language
which is sending output, This allows vou to terminate a BASIC program or listing by typing
{CTRL C| while vou are in Stop-List mode.

A line feed character causes COUT to move its mythical output cursor down one ling without any
horizontal motion at all. As always, moving bevond the bottom of the screen causes the screen
to scroll and the cursor remains at its same position on a resh bottom line.

A backspace character moves the imaginary cursor one space to the left. If the cursor is bumped
off the left edge, it is reset to the rightmost position on the previous line. If there is no previous
line (if the cursor was at the top of the screen), the screen does nov scroll downwards, but instead

* From Litin coesis, runmer””
** The Stop-list feature is not present on Apples without the Autostart ROM

30

el B B R R S S P B P T HE AR THREARREHET R

BRI

the cursor is placed again at the rightmost position on the top line of the screen.

When COUT is sent a ““bell” character (CTRL G), it does not change the screen at all, but
instead produces a tone from the speaker. The tone has a frequency of 100Hz and lasts for
1/10th of a second. The output cursor does not move for a bell character,

BUT SOFT, WHAT LIGHT THROUGH YONDER
WINDOW BREAKS!

(OR, THE TEXT WINDOW)

In the above discussions of the various motions of the output cursor, the words “‘right™, *‘left’™”,
“1op™”, and “bottom’” mean the physical right, left, top, and bottom of the standard 40-character
wide by 24-line tall screen. There is, however, a way 1o tell the COUT subroutine that you want
it 10 use only a section of the screen, and not the entire 960-characier display. This segregated
section of the text screen is called a “*window™, A program or language can set the positions of
the top, bottom. left side, and width of the text window by storing those positions in four loca-
tions in memory. When this is done, the COUT subroutine will use the new positions to calcu-
late the size of the screen. It will never print any text outside of this window, and when it must
scroll the screen. it will only scroll the text within the window. This gives programs the power 1o
control the placement of text, and to protect areas of the screen from being overwritien with new
texi.

Location number 32 (hexadecimal $28) in memory holds the column position of the leftmost
column in the window. This position is normally position @ for the extreme left side of the
screen. This number should never exceed 39 (hexadecimal $27), the leftmost column on the
lext screen, Location number 33 (hexadecimal $21) holds the width, in columns, of the cursor
window. This number is normally 48 (hexadecimal 528) for a full 40-character screen. Be care-
ful that the sum of the window width and the leftmost window position does not exceed 40! 1f it
does, it is possible for COUT to place characters in memory locations nol on the screen,
endangering vour programs and data,

Location 34 (hexadecimal $22) contains the number of the top line of the text window. This is
also normally @, indicating the topmost line of the display. Location 35 (hexadecimal $23) holds
the number of the bottom line of the screen (plus one), thus normally 24 (hexadecimal $18) for
the bottommost line of the screen. When you change the text window, you should take care that
you know the whereabouts of the output cursor, and that it will be inside the new window.

Table 11: Text Window Special Locations
Fuiction: I__cc;;u'rm: Min_imum."Normﬂh‘Muximunr\f’ulue
Decimal Hex | Decimal Hex |
Left Edge | 32 $20 | 8/0/39 S0/30/517
" Width 33 521 | B/40/40 S0/528/528
Top Edge | 34 $22 | 0/0/24 SB/30/S18
Bottom Edge | 35 $23 | 0/24/24 S0/S18/318
31

SEEING IT ALL IN BLACK AND WHITE

The COUT subroutine has the power to print what's sent to it in either Normal or Inverse text
modes (see page 14). The particular form of its output is determined by the contents of location
number 5@ (hexadecimal §32), If this location contains the value 255 (hexadecimal $FF), then
COUT will print characters in Normal mode; if the value is 63 (hexadecial S3F), then COUT will
present its display in Inverse mode. Note that this mode change only affects the characters
printed after the change has been made. Other values, when stored in location 38, do unusual
things: the value 127 prints letters in Flashing mode, but all other characters in Inverse; any
other value in location 5@ will cause COUT to ignore some or all of its normal characier sel.

Tahle 12: Normal/Inverse Control Values
Value: Effect:
Decimal Hex
255 SFF | COUT will display characters in Normal mode.
63 83F | COUT will display characters in Inverse mode,
127 §7F | COUT will display letiers in Flashing mode, all
other characters in Inverse mode.

The Normal/Inverse "‘mask’ location, as it is called, works by performing a logical “"AND"
between the bits contained in location 50 and the bits in each outgoing character code. Every bit
in location 5@ which is a logical “*zero™ will force the corresponding bit in the character code to
become ““zero’ also, regardless of its former setting. Thus, when location 5@ contains 63 (hexa-
decimal $3F or binary 8@111111), the top two bits of every output character code will be turned
“off"*, This will place characters on the screen whose codes are all between 0 and 63. As vou
can see from the ASCII Screen Character Code table (Table 7 on page 15), all of these characters
are in Inverse mode.

STANDARD INPUT

There are actually two subroutines which are concerned with the gathering of standard input:
RDKEY, which fetches a single keystroke from the keyboard, and GETLN, which accumulates a
number of keystrokes into a chunk of information called an input line.

RDKEY

The primary function of the RDKEY subroutine is to wail for the user to press a key on the key-
board, and then report back to the program which called it with the code for the key which was
pressed. But while it does this, RDKEY also performs two other helpful tasks:

1}, Input Prompting. When RDKEY is activated, the first thing it does is make visible the hid-
den output cursor. This accomplishes two things: it reminds the user that the Apple is waiting
for a key to be pressed, and it also associates the input it wants with a particular place on the
screen. In most cases, the input prompt appears near a word or phrase describing what 15 being
requested by the particular program or language currently in use. The input cursor itself is a
flashing representation of whatever character was at the position of the output cursor. Usually
this is the blank character, so the input cursor most often appears to be a flashing square.

32

Fl

1 1 El

[Fl /1 (F1 E1 E1 TH1

[F1

IFl IEl IF\ IFL FE\ IF1 [(Fl [F1 IF1 [Fl

Ff. m

B i

When the user presses a key, RDKEY dutifully removes the input cursor and returns the
value of the key which was pressed to the program which requested it. Remember that the
oulpul cursor is just a position on the screen, but the input cursor is a flashing character on the
screen. They usually move in tandem and are rarely separated from each other, but when the
input cursor disappears, the output cursor is still active.

2). Random Number Seeding. While it waits for the user to press a key, RDKEY is continually
adding 1 to a pair of numbers in memory. When a key is finally pressed, these two locations
together represent a number from @ to 65,535, the exact value of which is quite unpredictable.
Many programs and languages use this number as the base of a random number generator.
The two locations which are randomized during RDKEY are numbers 78 and 79 (hexadecimal
S4E and $4F),

GETLN

The vast majority of input to the Apple is gathered into chunks called /npur fines. The subroutine
in the Apple’s ROM called GETLN requests an input line from the keyboard, and after getting
one, returns to the program which called it. GETLN has many features and nuances, and it is
good to be familiar with the services it offers.

When called, GETLN first prints a prompring character, or “‘prompt”’. The prompt helps you to
identify which program has called GETLN requesting input. A prompt character of an asterisk
(«) represents the System Monitor, a right caret (>) indicates Apple Integer BASIC, a right
bracket (1) is the prompt for Applesoft 11 BASIC, and an exclamation point (!) is the hallmark of
the Apple Mini-Assembler. In addition, the question-mark prompt (?) is used by many programs
and languages to indicate thal a user program is requesting input. From your (the user’s) point
of view, the Apple simply prints a prompt and displays an input cursor. As you lype, the charac-
ters you type are printed on the screen and the cursor moves accordingly. When you press
[RETURN], the entire line is sent off to the program or language you are talking to, and you get
another prompt.

Actually, what really happens is that after the prompt is printed, GETLN calls RDKEY, which
displays an input cursor. When RDKEY returns with a keycode, GETLN stores that keycode in
an inpur duyffer and prints it on the screen where the input cursor was. It then calls RDKEY again.
This continues until the user presses [RETURN]. When GETLN receives a RETURN code from
the keyboard, it sticks the RETURN code at the end of the input buffer, clears the remainder of
the screen line the input cursor was on, and sends the RETURN code to COUT (see abovel.
GETLN then returns to the program which called it. The program or language which requested
input may now look at the entire line, all at once, as saved in the input buffer.

At any time while you are typing a line, you can type a [CTRL X]| and cancel that entire line,
GETLN will simply forget everything you have typed, print a backslash (1), skip to a new line,
and display another prompt, allowing vou to retype the line. Also, GETLN can handle a max-
imum of 255 characters in a line. If you exceed this limit, GETLN will cancel the entire line and
you must start over, To warn you that you are approaching the limit, GETLN will sound & tone
every keypress starting with the 249th character.

GETLN also allows you to edit and modify the line you are typing in order to correct simple
typographical errors. A quick introduction to the standard editing functions and the use of the
two arrow keys, [—] and [=], appears on pages 28-29 and 53-55 of the Apple 11 BASIC Program-
ming Manual, or on pages 27-28, 52-53 and Appendix C of The Applesoft Tutorial, at least one

33

of which you should have received. Here is a short description of GETLN's editing features:
THE BACKSPACE ([—]) KEY

Each press of the backspace key makes GETLN *‘forget”™ one previous character in the input line.
It also sends a backspace character to COUT (see above), making the cursor move back to the
character which was deleted. At this point, a character typed on the keyboard will replace the
deleted character both on the screen and in the input line. Multiple backspaces will delete succes-
sive characters; however, if you backspace over more characters than you have typed, GETLN
will forget the entire line and issue another prompt.

THE RETYPE ([=]) KEY

Pressing the retype key has exactly the same effect as typing the character which is under the cur-
sor. This is extremly useful for re-entering the remainder of a line which you have backspaced
over to correct a typographical error. In conjunction with pure cursor moves (which follow), it is
also useful for recopying and editing data which is already on the screen.

ESCAPE CODES

When you press the key marked on the keyboard, the Apple’s input subroutines go into
escape mode. In this mode, eleven keys have separale meanings, called “escape codes™. When
you press one of these eleven keys, the Apple will perform the function associated with that key.
Afier it has performed the function, the Apple will either continue or terminate escape mode,
depending upon which escape code was performed. If you press any key in escape mode which is
not an escape code, then that keypress will be ignored and escape mode will be terminated.

The Apple recognizes eleven escape codes, eight of which are pure cursor moves, which simply
move the cursor without altering the screen or the input line, and three of which are screen clear
codes, which simply blank part or all of the screen. All of the screen clear codes and the first four
pure cursor moves (escape codes @, A, B, C, D, E. and F) terminate the escape mode after
operating. The final four escape codes (I, K, M, and J} complete their funciions with escape
mode active.®

A press of the key followed by a press of the [A] key will move the cursor one space
to the right without changing the input line, This is useful for skipping over unwanted
characters in an input line: simply backspace back over the unwanted characlers, press
[ESC|[Al 1o skip each offending symbol, and use the retype key lo re-enter the remainder
of the line,

Pressing followed by [B] moves the cursor back one space, also without disturbing
the input line. This may be used to enter something twice on the same line without
retyping it: just type it once, press [ESC][B] repeatedly to get back to the beginning of the
phrase, and use the retype key to enter it again,

* These four escape codes are not available on Apples without the Autostart Monitor ROM.

34

Y IEY IER ER (3] Er Eyx EY EN

e h

- -

L0 L O AL T L L L L L L

[ESC|[C] The key sequence moves the cursor one line directly down, with no horizontal
movement. If the cursor reaches the bottom of the text window, then the cursor
remains on the botiom line and the text in the window scrolls up one line. The input
line is not modified by the [ESC|[C] sequence. This, and [ESC][D] (below), are useful for
positioning the cursor at the beginning of another line on the screen, so that it may be
re-eniered with the retype key.

[ESC| [B] The [ESC] [B] sequence moves the cursor directly up one line, again without any horizon-
tal movement. If the cursor reaches the top of the window, it stays there. The input
line remuins unmodified. This sequence is useful for moving the cursor Lo 4 previous
line on the screen so that it may be re-entered with the retype key.

[ESC] [E] The [ESC] [E] sequence is called “clear to end of line”. When COUT detects this
sequence of keypresses, it clears the remainder of the screen line (sof the input line!)
from the cursor position to the right edge of the text window. The cursor remains
where it is, and the input line is unmodified. [ESC| [E] always clears the rest of the line 1o
blank spaces, regardless of the setting of the Normal/Inverse mode location (see above).

[ESC| [F] This sequence is called “*clear 10 end of screen’™™. 1t does just that: it clears everything in
the window below or to the right of the cursor. As before, the cursor does not move
and the input line is not modified. This is useful for erasing random garbage on a clut-
tered screen after a lot of cursor moves and editing.

ESC The [ESC sequence is called **home and clear”. It clears the entire window and
places the cursor in the upper left-hand corner, The screen is cleared to blank spaces,
regardless of the setting of the Normal/Inverse location, and the input line is not

changed (note that **[@]" is [SHIFT P]).

These lour escape codes are synonyms for the four pure cursor moves given above.

EsC| [K]
ESC When these four escape codes finish their respective functions, they do net turn off the

ESC escape mode; you can continue typing these escape codes and moving the cursor around
ESC the screen until you press any key other than another escape code, These four keys are
placed in a **directional keypad™ arrangement, so that the direction of each key from the
center of the keypad corresponds to the direction which that escape code moves the cur-
SOT.

- =] (5]

B] [@] == =[] [A]

O] 2] -

Figure 4. Cursor-moving Escape Codes.

35

THE RESET CYCLE

When you turn your Apple’s power switch on® or press and release the key, the Apple’s
6502 microprocessor initiates a RESET cyele. [t begins by jumping into a subroutine in the
Apple’s Monitor ROM. In the two different versions of this ROM, the Monitor ROM and the
Autostart ROM, the RESET cycle does very different things.

AUTOSTART ROM RESET

Apples with the Autostart ROM begin their RESET cycles by flipping the soft switches which
control the video screen to display the full primary page of Text mode, with Low-Resolution
Graphics mixed mode lurking behind the veil of text. It then opens the text window to its full
size, drops the output cursor to the bottom of the screen, and sets Normal video mode. Then it
sels the COUT and KEYIN switches to use the Apple’s internal keyboard and video display as the
standard input and output devices. It flips annunciators @ and 1 ON and annunciators 2 and 3
OFF on the Game 1/0O connector, clears the keyboard strobe, turns off any active 1/O Expansion
ROM (see page 84), and sounds a “‘beep!”’.

These actions are performed evety lime you press and release the key on your Apple. At
this point, the Autostart ROM peeks into two special locations in memory to see if it's been
RESET before or if the Apple has just been powered up (these special locations are described
below). If the Apple has just been turned on, then the Autostart ROM performs a “‘cold start’™;
otherwise, it does a “‘warm start™.

1) Cold Start. On a freshly activated Apple, the RESET cycle continues by clearing the screen
and displaying “*APPLE II"" top and center. It then sets up the special locations in memory to
tell itself that it’s been powered up and RESET. Then it starts looking through the rightmost
seven slots in your Apple’s backplane, looking for a Disk Il Controller Card. It starts the
search with Slot 7 and continues down to Slot 1, If it finds a disk controller card, then it
proceeds to bootstrap the Apple Disk Operating System (DOS) from the diskette in the disk
drive attached to the controller card it discovered. You can find a description of the disk
bootstrapping procedure in Do’s and Don’ts of DOS, Apple part number A2L0012, page 11.

If the Autostart ROM cannot find a Disk 11 controller card, or you press again before
the disk booting procedure has completed, then the RESET cycle will continue with a
“lukewarm start’. It will initialize and jump into the language which is installed in ROM on
your Apple. For a Revision @ Apple, either without an Applesoft 11 Firmware card or with
such a card with its controlling switch in the DOWN position, the Autostart ROM will start
Apple Integer BASIC. For Apple [1-Plus systems, or Revision @ Apple 1ls with the Applesoft
Il Firmware card with the switch in the UP position, the Autostart ROM will begin Applesoft
11 Floating-Point BASIC.

2) Warm Start. If you have an Autostart ROM which has already performed a cold start cycle,
then each time you press and release the [RESET] key, you will be returned to the language
you were using, with your program and variables intact.

* Power-on RESET cycles occur only on Revision | Apples or Revision @ Apples with at least one Disk 11 con-
troller card.

36

Tl I TFl T

L ™1 ™1 "F1 F1 Tl

1 ¥l

IF. IF1 FL T TFL TFI

IF

IFl TF

Il

fi. M

BRI

AUTOSTART ROM SPECIAL LOCATIONS

The three “special locations™ used by the Autostart ROM all reside in an area of RAM memory
reserved for such system functions, Following is a table of the special locations used by the
Autostart ROM:

i Table 13: Autostart ROM Special Locations =)
Location: > N
Decimal Hex Contems:

1810 $3F2 Soft Entry Vector. These two locations conlain
1@11 $IF3 the address of the reentry point for whatever
= language is in use. Normally contains SER83. |
| 1812 $3F4 Power-Up Byte. Normally contains 545, See

below.
64367 $FB6F This is the beginning of a machine language
(-1169) subroutine which sets up the power-up location.

When the Apple is powered up, the Autostart ROM places a special value in the power-up loca-
tion. This value is the Exclusive-OR of the value contained in location 1811 with the constant
value 165. For example, if location 1811 contains 224 (its normal value), then the power-up
value will be:
Decimal Hex Binary

Location 1811 224 SE@ 11108008

Constant 165 $AS l_fnlﬂﬂlﬂl

Power-Up Value 69 $45 dlved1a1

Your programs can change the soft entry vector, so that when you press [RESET] you will go to
some program other than a language. If you change this soft entry vector, however, you should
make sure that you set the value of the power-up byte to the Exclusive-OR of the high part of
your new sofl entry vector with the constant decimal 165 (hexadecimal SAS). If you do not set
this power-up value, then the next time you press the Autostart ROM will believe that
the Apple has just been turned on and it will do another cold start.

For example, vou can change the soft entry vector to point to the Apple System Monitor, so that
when you press [RESET]| you will be placed into the Monitor. To make this change, you musi
place the address of the beginning of the Monitor into the two soft entry vector locations. The
Monitor begins at location SFF69, or decimal 65385, Put the last two hexadecimal digits of this
address ($69) into location $3F2 and the first two digits (8FF) into location $3F3. Il you are
working in decimal, put 105 (which is the remainder of 65385/256) into location 181@ and the
value 255 (which is the integer quotient of 65385/256) into location 1811.

Now you must set up the power-up location. There is a machine-language subroutine in the
Autostart ROM which wil automatically set the value of this location to the Exclusive-OR men-
tioned above. Al you need to do is to execute a JSR (Jump to SubRoutine} instruction to the
address $FB6F. If you are working in BASIC, you should perform a CALL -1169. Now every-
thing is set, and the next time you press [RESET], you will enter the System Monitor.

To make the [RESET] key work in its usual way. just restore the values in the soft entry vector to
their former values (SE@®3, or decimal 57347) and again call the subroutine described above.

37

“OLD MONITOR” ROM RESET

A RESET cycle in the Apple 11 Monitor ROM begins by setting Normal video mode, a full screen
of Primary Page text with the Color Graphics mixed mode behind it, a fully-opened text window,
and the Apple’s standard kevboard and video screen as the standard input and output devices. [t
sounds a ““beep!”, the cursor leaps to the bottom line of the uncleared text screen, and you find
voursell facing an asterisk (+) prompt and talking 1o the Apple System Monitor.

38

b BECJFY TFL TEL TRL PEL URL TR TEL EL OTFL TFLOYEL FEL TEL L OTEL YEL L L EL 'EL L R

CHAPTER 3
THE SYSTEM MONITOR

T T R H R HHHHHEHH WA

Buried deep within the recesses of the Apple’s ROM is a masterful program called the System
Monitor. It acts as both a supervisor of the system and a slave to it; it controls all programs and
all programs use il. You can use the powerful features of the System Monitor to discover the
hidden secrets in all 65,536 memory locations, From the Monitor, you may look at one, some,
ar all locations; you may change the contents of any location; you can wrile programs in Machine
and Assembly languages to be executed directly by the Apple’s microprocessor, you can save vast
quanltities of data and programs onto cassette tape and read them back in again; you can move
and compare thousands of byles of memory with a single command; and you can leave the Moni-
tor and enter any other program or language on the Apple.

ENTERING THE MONITOR

The Apple System Monitor program begins at location number 8FF69 (decimal 65385 or —151)
in memory. To enter the Monitor, you or your BASIC program can CALL this location. The
Monitor’s prompt (an asterisk [+]) will appear on the left edge of the screen, with a flashing cur-
sor to its right. The Monitor accepls standard input lines (see page 32) just like any other system
or language on the Apple. It will not take any action until vou press [RETURN]. Your input lines
to the Monitor may be up to 255 characters in length. When you have finished your slay in the
Monitor, you can return to the language you were previously using by typing [CTRL C||[RETURN)

{or, with the Apple DOS, [3][D][#][G][RETURN]), or simply press [RESET] *

ADDRESSES AND DATA

Talking to the Monitor is somewhat like talking 10 any other program or language on the Apple:
you type u line on the keyboard, followed by a [RETURN], and the Monitor will digest what you
typed and act according to those instructions. You will be giving the Monitor three types of
information: addresses, values, and commands. Addresses and values are given to the Monitor in
hexadecimal notation. Hexadecimal notation uses the ten decimal digits (#-9) 1o represent them-
selves and the first six letters (A-F) to represent the numbers 10 through 15. A single hexade-
cimal digit can, therefore, have one of sixteen values from 0 to 15. A pair of hex digils can
assume any value from 0 to 255, and a group of four hex digits can denote any number from 0 to
6£5.536. 1t 50 happens that any address in the Apple can be represented by four hex digits, and
any value by two hex digits. This is how you tell the Monitor about addresses and values. When
the Monitor is looking for an address, it will take any group of hex digits. 1f there are fewer than
four digits in the group, it will prepend leading zeroes, if there are more than four hex digits, the
Monitor will truncate the group and use only the last four hex digits. It follows the same pro-
cedure when looking for two-digit data values.

The Monitor recognizes 22 different command characters. Some of these are puncluation marks,
others are upper-case letters or control characters. In the following sections, the full name of u
command will appear in capital letters, The Monitor needs only the first letter of the command
name. Some commands are invoked with control characters. You should note that although the
Monitor recognizes and interprets these characters, a control character typed on an input line will
not appear on the screen,

* This does not work on Apples without the Auwtosturt ROM,

40

MWW MEME M| MW P OFELFOM TUF P LT EL L

B I R

The Monitor remembers the addresses of up to five locations. Two of these are special: they dre
the addresses of the last location whose value you inquired about, and the location which is next
o have its value changed. These are called the fast opened location and the nexr changeable loca-
tipn, The usefulness of these two addresses will be revealed shortly

EXAMINING THE CONTENTS OF MEMORY

When yvou type the address of a location in memory alone on an input ling to the Monitor, it will
reply® with the address you tyvped, a dash, a space, and the value*® contained in that location,
thus:

«EQRA

Eddd— 2¢
300

Hide— 99

Each time the Maonitor displays the value contained in a location, it remembers that location as
the last opened locaiion. For technical reasons, il also considers that location as the next change-
able locaiion,

EXAMINING SOME MORE MEMORY

If you type a period (.) on an input line to the Monitor, followed by an address, the Monitor will
display a memory dumyp: the values contained in all locations from the last opened location to the
location whose address you typed following the period. The Monitor then considers the last loca-
tion displayed to be both the last opened location and the next changeable location.

® In the examples, your queries are in normal type and the Apple replies in boldface
** The values printed in these examples may differ from the values displaved by your Apple for the same in-
slructions

41

=28

HAZH— H#
= 2B

HH21— 28 ## 18 #F d4C ## d48
HH28— AR #6 DH 87
<384

d3dd— 99
« 315

#381— BY #4d #8 #A HA HA 99
WIR8— HH 88 C8 DH F4 A6 1B AY
#318— #9 85 27 AD CC #3

= 32A

#316— 85 41

H318— B4 48 8A 4A 4A 4A 4A 09
H32d— CH 85 3F A9 5D 85 3E 14
#328— 43 @3 24

You should notice several things about the format of a memory dump. First, the first line in the
dump begins with the address of the location foflowing the last opened location; second, all other
lines begin with addresses which end alternately in zeroes and eights; and third, there are never
more than eight values displayed on a single line in a memory dump. When the Monitor does a
memory dump, it starts by displaying the address and value of the location following the last
opened location. [t then proceeds to the next successive location in memory. If the address of
that location ends in an 8 or a @, the Monitor will “*cut™ 10 a new line and display the address of
that location and continue displaying values. After it has displayed the value of the location
whose address you specified, it stops the memory dump and sets the address of both the last
opened and the next changeable location to be the address of the last location in the dump. If
the address specified on the input line is less than the address of the last opened location, the
Monitor will display the address and value of only the location following the last opened location.

¥ou can combine the two commands (opening and dumping) into one operation by concatenating
the seecond to the first; that is, type the first address, followed by a period and the second address.
This two-addresses-separated-by-a-period form is called a memory range.

«300.32F

B3dl— 99 BY #4 #8 #A HA #A 99
#3g8— #d #8 C8 DH F4 A6 1B A9
#318— #9 85 17 AD CC #3 85 41
HI18— B4 48 BA 4A 4A 4A 4A #9
#324— C# 85 3F A9 5D 85 3IE 24
#328— 43 #3 24 46 #3 A5 3D 4D
=3 449

HH3d— AA H8 FF AA d5 C2 #5 C2
A838— 1B FD DH #3 3C #H 44 ##
fe4d— 34

+EB15.EP25

42

1B I1El (@1 iFD 1P IFL 'ED UEL IEY TEY IED EY ET 'EL ERD 'ERDTEL TE1

1E!

TS .

BRI R R e e e e

E#15—= 4C ED FD
E#18— A9 24 C5 24 B# #C AY BD
E#20— AW 87 28 ED FD AY

EXAMINING STILL MORE MEMORY

A single press of the [RETURN] key will cause the Monitor to respond with one line of a memory
dump; that is, a memory dump from the location following the last opened location o the nexl
eight-location “‘cut’”. Once again, the last location displayed is considered the last opened and
next changeable location.

.5
LLL L
=[RETURN]
[THIE
«[RETURN]|

GAAB— dd A9 AW WA dAd A8 AP #H
=32

##32— FF

AA ¥ C2 #5 C2

+[RETURN|

#438— 1B FD D@ #3 3C #d 3F @4

CHANGING THE CONTENTS OF A LOCATION

You've heard all about the **next changeable location™; now you're going to use it. Type a
colon followed by a value.

=0

fRdd— wo
«: 5F

Presto! The contents of the next changeable location have just been changed to the value you
typed. Check this by examining that location again:

@

#epE— SF

43

-

You can also combine opening and changing into one operation:

«3B2:42
«ip2
#igi— 412

When you change the contents of @ location, the old value which was contained in that location
disappears, never Lo be seen again. The new value will stick around until it is replaced by another
hexadecimal value.

CHANGING THE CONTENTS OF
CONSECUTIVE LOCATIONS

You don't have to type an address, a colon, a value, and press [RETURN] for each and every loca-
tion you wish to chunge. The Monitor will allow you to change the values of up to eighty-five
locations at a time by typing only the initial address and colon, and then all the values separated
by spaces. The Monitor will duly file the consecutive values in consecutive locations, starting at
the next changeable location. Afller it has processed the siring of values, it will assume that the
location following the last changed location is the next changeable location. Thus, you can con-
tinue changing consecutive locations without breaking stride on the next input line by typing
another colon and more values.

«300:69 B1 28 ED FD 4C @ 3
«300

Hidd— 69

*[RETURN]

#1 28 ED FD 4C 44 #3
«10:0 1 2 3

=:4 5 6 7

=10, 17

HAT1H— AW #1 H2 H3 A4 #5 H6 @7

MOVING A RANGE OF MEMORY

You can treal a range of memory (specified by two addresses separated by a period) as an entity

44

IEl 'El

'Ell

[E1 IEl I[E

Fl

IEl 1 1) IE. 1E1 IEFL 'FYO'ELOTEDOTEYO'EY O

IF

FEoom

LR A A

unto itself and move it from one place to another in memory by using the Monitor’s MOVE
command. In order 1o move a range of memory [rom one place to another, the Monitor must be
told both where the range is situated in memory and where it is to be moved. You give this
information to the Monitor in three parls; the address of the destination of the range, the
address of the first location in the range proper, and the address of the last location in the range.
You specify the starting and ending addresses of the range in the normal fashion, by separating
them with a period. You indicate that this range is o be placed somewhere else by separating the
range and the destination address with a left caret (<), Finally, vou tell the Monitor that you
wanl (o move the range to the destination by typing the letter M, for “MOVE"., The final com-
mand looks like this:

{destination] < {start] . lend} M

When you type this line to the Monitor, ol course, the words in curly brackets should be replaced
by hexadecimal addresses and the spaces should be omitted. Here are some real examples of
MEmaory moves:

0. F

WHHH— S5F #Wd H5 W7 H9 Wd We wd
HHHE— HH W Hd Wl BH W A W
«3@@:A9 BD 20 ED FD A9 45 28 DA FD 4C 48 @3

«300.30C

WIR#— A9 KD 24 ED FD A9 45 14
W3iAB— DA FD 4C ¥4 #3
«P<308.30CM

B.C

WHHE— A9 BD 28 ED FD A9 45 14
WHHE— DA FD 4C ## #3
«31@<8.AM

«310.312

#ile— DA FD 4C
27 9M

«B3.C

#dddA— A9 8D 24 DA FD A9 45 24
WEHE— DA FD 4C #@ 83

=

The Monitor simply makes a copy of the indicated range and moves il 1o the specified destina-
tion. The original range is lef1 undisturbed. The Monitor remembers the last location in the ori-
ginal range as the last opened location, and the first location in the original range as the nexl
changeable location. Il the second address in the range specification is less than the first, then
only one value (that of the first location in the range) will be moved.

If the destination address of the MOVE command is inside the original range, then strange and
{sometimes) wonderful things happen: the locations between the beginning of the range and the

45

destination are treated as a sub-range and the values in this sub-range are replicated throughout
the original range. See *‘Special Tricks'", page 55, for an interesting application of this feature.

COMPARING TWO RANGES OF MEMORY

You can use the Monitor 1o compare two ranges of memory using much the same format as you
use to move a range of memory from one place to another. In fact, the VERIFY command can
be used immediately after 8 MOVE 1o make sure that the move was successful.

The VERIFY command, like the MOVE command, needs a range and a destination. 1n short-
hand:

[destination} < |start] . [end] V

The Monitor compares the range specified with the range beginning at the destination address. If
there is any discrepancy, the Monitor displays the address a1 which the difference was found and
the two offending values.

«@:D7 F2? E9 F4 F4 E5 EE A® E2 F9 AB C3 C4 C5

«300<0.DM

«300<d.DV

o6 B4

«300<® . DV

ddd6—E4 (EE)

Notice that the VERIFY command, if it finds a discrepancy, displays the address of the location
in the original range whose value differs from its counterpart in the destination range. If there is
no discrepancy, VERIFY displays nothing. 1t leaves both ranges unchanged. The last opened and
next changeable locations are sel just as in the MOVE command. As before, il the ending
address of the range is less than the starting address, the values of only the first locations in the
ranges will be compared. VERIFY also does unusual things if the destination is within the origi-
nal range: see ‘‘Special Tricks™, page 53.

SAVING A RANGE OF MEMORY ON TAPE

The Monitor has two special commands which allow you to save a range of memory onto cassetie
tape and recall it again for later use. The first of these two commands, WRITE, lets you save the
contents of one 10 65,536 memory locations on standard casselle Lape.

To save a range of memory io iape, give the Monitor the starting and ending addresses of the
range, followed by the letter W {for WRITE):

46

= wer 1Er tEr TEL TEL OIEL OIEL OTEL 'E1'E1 'E1 O TEL _TEL

o]

L

{start] . lend] W

To get an accurate recording, you should put the tape recorder in record mode belore you press
RETURN] on the inpui line. Let the tape run a few seconds, then press [RETURN]|. The Monitor
will write a ten-second *“‘leader’” tone onto the tape, followed by the data. When the Monitor is
finished, it will sound a "'beep!” and give vou another prompt. You should then rewind the tape,
and label the tape with something intelligible about the memory range that's on the tape and what
it's supposed (o be,

+@ . FF FF AD 38 C@ 88 D@ @4 Co @1 Fa B8 C
A DB F6 A6 90 4C H2 b0 69

«B.14

WiAd— FF FF AD 38 CH 88 DH #4
HAAR— Co W1 FH #8 CA DH F6 Ab
HATH— Wl 4C W2 HE 6

0. 14w

It takes about 35 seconds total 1o save the values of 4,096 memory locations preceded by the
ten-second leader onto tape. This works out to a speed of about 1,350 bits per second, average.
The WRITE command writes one extra value on the tape after it has written the values in the
memory range. This extra value is the checksum, 1t is the partial sum of all values in the range.
The READ subroutine uses this value to determine il @ READ has been successful (see below).

READING A RANGE FROM TAPE

Once you've saved a memory range onto tape with the Monitor’s WRITE command, you can
read that memory range back into the Apple by using the Monitor’s READ command. The dula
vilues which you've stored on the tape need not be read back into the same memory range from
whence they came: vou can tell the Monitor to put those values into any similarly sized memory
range in the Apple’s memory.

The formai of the READ command is the same as that of the WRITE command, except that the
command letter is R, not 'W:

|start] . lend] R

Once again, after typing the command, don’t press [RETURN]. Instead, start the tape recorder in
PLAY mode and wait for the tape's nonmagnetic leader 1o pass by. Although the WRITE com-
mand puts a ten-second leader tone on the beginning of the tape, the READ command nceds
only three seconds of this leader in order to lock on to the frequency. So vou should let a few

down L0 a steady Lone.

L I O T T A O I
]

«f3. 14

47

HAWA— dF dH dHF GF G0 dAH HH B9
HHABE— AF dAF dAF AA dH HAH H@ He
HA1d— A AF d4 Ad d4

«@P.14R

0. 14

HoWd— FF FF AD 38 C# 83 D# #4
Hi8— Co W1 FA B8 CA DB F6 A6
HE1d— H@ 4C H2 dH od

After the Monitor has read in and stored all the values on the tape, it reads in the extra check-
sum value., It compares the checksum on the tape to its own checksum, and if the two differ, the
Monitor beeps the speaker and displays “ERR™. This warns you that there was a problem during
the READ and that the values stored in memaory aren’t the values which were recorded on the
tape. I, however, the two checksums match, the Monitor will give you another prompt,

CREATING AND RUNNING MACHINE
LANGUAGE PROGRAMS

Machine language is certainly the most efficient language on the Apple, albeit the least pleasant in
which to code. The Monitor has special facilities for those of you who are determined to use
machine language to simplify creating, writing, and debugging machine language programs.

You can wrile a machine language program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the commands covered above. You can get a hexade-
cimal dump of your program, move it around in memory, or save it 10 tape and recall it again
simply by using the commands you've already learned. The most important command, however,
when dealing with machine language programs is the GO command. When you open a location
from the Monitor and tvpe the letter G, the Monitor will cause the 6382 microprocessor to start
executing the machine language program which begins at the last opened location. The Monitor
treats this program as a subroutine: when it's finished, all it need do is execute an RTS (return
from subroutine) instruction and control will be transferred back to the Monitor.

Your machine language programs can call many subroutines in the Monitor to do various things.
Here is an example of loading and running a machine language program to display the letters A
through Z:

«30@:A9 C1 20 ED FD 18 69 1 CY DB D@ Fo6 6@

<300 . 30C

BidP— A9 C1 24 ED FD 18 69 #1

WiRB8— C9 DB D¥ Fo6 o

300G

ABCDEFGHI JKIMNOPQRSTUVWXYZ

{The instruction set of the Apple’s 6502 microprocessor is listed in Appendix A of this manual.)

48

El 1 'E1 "E1 [EL _'El

'F1 [E1 'E1 TE1 TE1 [El TEl [El [El

. FL_IF

|

AR E N E R R R R R

Now, straight hexadecimal code isn’t the easiest thing in the world to read or debug. With this in
mind, the creators of the Apple’s Monitor neatly included a command to list machine language
programs in assembly language Torm. This means that instead of having one, two, or three bytes
of unformatted hexadecimal gibberish per instruction you now have a three-letter mnemonic and
some formatted hexadecimal gibberish to comprehend for each instruction. The LIST command
to the Monitor will start at the specified location and display a screenfull (20 lines) of instruc-
Lons

« 3001

HIdd— A9 (1 LDA #8C1
Hidl-— 4 ED FD JSR SFDED
HIW5— 18 CLC

Wido— 69 #1 ADC #5401
LRLE b C9 DB P #5DB
BIRA— Dd Fa BNE $HIN2
HIRC— a# RTS

LRY D)oy LL BRK

WIRE= e BRK

LR L1 BRK

Wile— L1 BRK

#ill— e BRK

#312- o BRK

#3ili— o BRK

#3ila— o BRK

#315— i BREK

#3l16— e BRK

#317— we BREK

#ils— L BRK

#319— L BRK

Recognize those first few lines? They're the assembly language form of the program vou typed
in a4 page or so ago. The rest of the lines (the BRK instructions) are just there to fill up the
screen. The address that you specify is remembered by the Monitor, but not in one of the ways
explained before. It's put in the Program Coumter, which is used solely to point to locations
within programs. Afiter a LIST command, the Program Counter is set to point to the location
immediately following the last location displayed on the screen, so that if you do another LIST
command it will continue with another screenfull ol instructions, starting where the first screen
left off

THE MINI-ASSEMBLER

There is another program within the Monitor* which allows you to type programs into the Apple
in the same assembly format which the LIST command displays, This program is called the
Apple Mini-Assembler. It is a ““muint”"-assembler because it cannot understand symbaolic labels,
something that a full-blown assembler must do. To run the Mini- Assembler, type:

The Mini-Assembler does nol actually reside i the Monitor ROM, but 5 pari of the Integer BASIC ROM
szl Thus, it i not available on Apple 11 Plus systems or while Firmware Applesolt 11 is in use

49

«Fb660G

You are now in the Mini-Assembler. The exclamation point (!) is the prompt character. During
your stay in the Mini-Assembler, you can execute any Monitor command by preceding it with a
dollar sign (8), Aside from that, the Mini-Assembler has an instruction set and syntux all its
oW,

The Mini-Assembler remembers one address, that of the Program Counter. Before you starl to
enter 4 program. you must sel the Program Counter 1o point to the location where you want your
program 1o go. Do this by typing the address followed by a colon. Follow this with the
mnemonic for the first instruction in your program, followed by a space. Now type the operand
of the instruction (Formats for operands are listed on page 66), Now press [RETURN|. The
Mini- Assembler converts the line you typed into hexadecimal, stores it in memory beginning at
the location of the Program Counter, and then disassembles it again and displays the disassem-
bled line on top of your input line. It then poses another prompt on the next line. Now iU's
ready 1o accept the second instruction in your program. To tell it that you want the next instruc-
tion to fallow the first, don't type an address or a colon, but only a space, followed by the next
instruction's mnemonic and operand. Press [RETURN]. It assembles that line and waits for
another.

If the line vou type has an error in it, the Mini-Assembler will beep loudly and display a
circumflex (") under or near the offending character in the input line. Most common errors are
the result of typographical misiukes: misspelled mnemonics, missing parentheses, etc. The
Mini- Assembler also will reject the input line il you forget the space before or after a mnemonic
or include an extraneous characler in a hexadecimal value or address. If the destination address
of & branch instruction is out of the range of the branch (more than 127 locations distant from
the address of the instruction), the Mini-Assembler will also flag this as an error.

1309 LDX #82

LR S Al B2 LDX #5482
! LDA 58.X

Hid2— BS ## LDA SHe X
! STA §518.X

LEEE 95 14 STA S1#.X
! DEX

Hin6— CA DEX

! STA SC@3@

Higr— 8D 34 C# STA SCH3H
! BPL 5382

#ida— 18 Fb BPL S#3d2
! BRK

#INC— LT BRK

!

Ta exit the Mini-Assembler and re-enter the Monitor, either press [RESET] or type the Monitor

50

EOIE1 IFE. 1ED WE IR el IED IED UED TED TET TED TE1 1EL 'E1 TE1 'E1 'E1l 'E1 JEL TE]

3!

L. e

LR A

commuand (preceded by a dollar sign) FF69G;

'SFF69G

Your assembly language program is stored in memory. You cun look at it again with the LIST
command:

=300L

HIiWd— A2 #2 LDX #iW2
Higl— B5 #4# LDA SHe ., X
Hid4— 95 14 STA 514.X
Hide— CA DEX

#ipg7— 8D 34 C# STA SCH3d
#3PA— 18 Fé BPL S#3e2
#IgC— L1 BRK

H3IRD— L1 BRK

#INE— L] BRK

WiWF— L] BRK

#ile— e BRK

#iln— o BRK

#311— o BRK

#ili— o BRK

#3ila— L1 BRK

#ils— L1 BRK

Wile— LI BRK

LED Bk LL BRK

Wilg— LL BRK

#ilo-— L1 BRK

DEBUGGING PROGRAMS

As pul so concisely by Lubarsky®, ““There’s always one more bug.”” Don’t worry, the Monitor
provides facilities for stepping through ornery programs to find that one last bug. The Monitor’s
STEP** command decodes, displays, and executes one instruction at a time, and the TRACE®®
command steps quickly through a program, stopping when a BRK instruction is executed

Each STEP command causes the Monitor to execute the instruction in memory pointed 1o by the
Program Counter. The instruction is displayed in its disassembled form, then executed. The
contents of the 6582's internal registers are displayed after the instruction is executed. After exe-
cution, the Program Counter is bumped up to point to the next instruction in the program.

Here's what happens when you STEP through the program you entered using the Mini-
Assembler, above:

* In Murpine's Law, and COther Reasons why Things Go Wrong, edited by Arthur Bloch Price/Stern/Sloane 1977
** The STEP and TRACE commuands are not available on Applés with the Autostart ROM

«3085

LELE b Al #2 LDX #8541
A=#A X=#1 Y=D8 P=3id# S5=F8

L

#im2— B5 H# LDA $H#,X
A=#C X=§1 Y=DR P=34 S=F8§

L]

#ida— 95 19 STA $14.X
A=#C X=01 Y=D8 P=314# S=F8§

=12

#é12— #C

=5

Hide— CA DEX

A=#C X=#1 Y=DB P=34 S=F8

5

d3#7— BD 384 CH STA SCH3d
A=HC X=#1 Y=DE P=3# S=F3§

5

HIRA— 18 Fé BPL SHIp2
A=HC X=#1 Y=D8& P=34 S5=F8

+5

Hig2— B5 dd LDA SHH.X
A=#B X=d1 Y=D8 P=3# S=F8

«5

Hidd— 95 14 5TA $1#.X

A=#B X=#1 Y=D8 P=3# S5=F§

Notice that after the third instruction was executed, we examined the contents of location 12,
They were as we expected, and so we continued stepping. The Monitor keeps the Program
Counter and the last opened address separate from one another, so that you can examine or
change the contents of memory while you are stepping through vour program.

The TRACE command is just an infinite STEPper. It will stop TRACEing the execution of a pro-
gram only when you push [RESET] or it encounters a BRK instruction in the program. If the
TRACE encounters the end of a program which returns to the Monitor via an RTS instruction,
the TRACEing will run off into never-never land and must be stopped with the button.

T

Hido— CA DEX

A=#B X=## Y=DB P=32 S=F8§

Hig7— BD 34 C# STA SCa3p
A=#B X=## Y=DB P=32 S=F8§

d3I8A— 14 Fo BPL SH3p2

El 'E1 "E1 [El TF1

[El

[E1 [E] TE1 [El

| CFEFL TR OTED OIED OIED OIED OIEL OIFL OIEF1 OIF1 OVEL 0

T rrirrrsrrrrrrrrrery

A=#B X=d# Y=D8 P=31 S=F8&

Bini— B5 WH LDA SH#. X
A=HA X=#§ Y=D8 P=3# S=F8

Hidda— 95 1# STA S16.X
A=HA X=HH Y=D8 P=3# S=F8

Hido— CA DEX

A=#A X=FF Y=D8§ P=B# 5=F8

Hid7— 8D 38 CH STA SCHI
A=#A X=FF Y=D8 P=B# 5=F48

HidA— I# F6 BPL SH3H2
A=#A X=FF Y=D§ P=B# S=F8§

Hido— L BRK

HIHC— A=#A X=FF Y=D8B P=B# 5=F8

EXAMINING AND CHANGING REGISTERS

As you saw above, the STEP and TRACE commuands displayed the contents of the 6582°s inter-
nal registers after cach instruction. You can examine these registers at will or pre-sel them when
you TRACE, STEP, or GO a machine language program.

The Monitor reserves five locations in memaory for the five 6582 registers: A, X, Y, P [processor
stutus register). and S (stack pointer). The Monitor's EXAMINE command, invoked by a
CTRL E|, tells the Monitor 1o display the contents of these locations on the screen, and lets the
location which holds the 6582°s A-register be the next changeable location. If you want to
change the values in these locations, just type a colon and the values separated by spaces. Next
time you give the Monitor a GO, STEP, or TRACE command, the Monitor will load these five
locations into their proper registers inside the 6582 before it executes the first instruction in your
program.

«[CTRL E

A=#A X=FF Y=D8 P=B# 5=F8
« B @2

+[CTRL E]

A=BH X=H2 Y=D8 P=B# S5=F8
3065

Winoe— CA DEX

A=HB# X=#1 Y=DB P=34 S=F8

+5

Wig7— 8D 3@ C# STA SCa3n
A=B# X=#1 Y=D§ P=34 S=FB

5

WigA— 14 F6 BPL S#3n2
A=B# X=#1 Y=DR P=3# S=F8

53

MISCELLANEOUS MONITOR COMMANDS

You can control the setting of the Inverse/Normal location used by the COUT subroutine (see
page 32) from the Monitor so that all of the Monitor’s output will be in Inverse videa. The
INVERSE command does this nicely. Input lines are still displaved in Normal mode, however.
To return the Monitor's output to Normal mode, use the NORMAL command.

«B.F

AEdd— BA HB WC WD HE #F D# H4
HHHE— C6 H1 FH HB CA D# Fo A6
.|

.ﬂ_l—'

HEdd— #A #B #C #D #E #F D# H4
##AB— C6 #1 F# #8 CA DB F6 A6
*N

8. F

HHHE— HA #B HC #D HE #F D# #4
HHAE— Co #1 FH #8 CA DH# Fo A6

The BASIC command, invoked by a [CTRL B], lets you leave the Monitor and enter the language
installed in ROM on your Apple, usually either Apple Integer or Applesoft 11 BASIC. Any pro-
gram or variables that you had previously in BASIC will be lost. If you've left BASIC for the
Monitor and you want to re-enter BASIC with your program and variables intact, use the
(CONTINUE BASIC) command. If you have the Apple Disk Operating System (DOS)
active, the *3DRG’ command will return you to the language you were using, with your program
and variables intact.

The PRINTER command, activated by a [CTRL P|, diverts all output normally destined for the
screen to an Apple Intelligent Interface® in a given slot in the Apple’s backplane. The slot
number should be from | to 7, and there should be an interface card in the given sloi, or you will
lose control of vour Apple and your program and variables may be lost. The format for the com-
mand is:

|slot number| [CTRL P

A PRINTER command to slol number @ will reset the flow of printed output back to the Apple's
video screen.

The KEYBOARD command similarly substitutes the device in a given backplane slot for the
Apple’s keyboard. For details on how these commands and their BASIC counterparts PR# and

IN# work, please refer 1o “CSW and KSW Switches™, page 83. The format for the KEYBOARD
command is:

|slot number| [CTRL K

54

Fl

Fl

Ml [El TE1 'El "E1 'El1 TEl

MEl

lEl

IEl TEIl

IE. IFI

IF|

IFl

FE..TL. IW

BRI e e

A slot number of @ for the KEYBOARD command will force the Monitor to listen for input from
the Apple's buili-in keyboard.

The Monitor will also perform simple hexadecimal addition and subtraction, Just type a line in
the format:

|value} + [value]
{value} — [value]

The Apple will perform the arithmetic and display the result:

+20+13
=33
+4A—C
=3E
+FF+4
=#3
*3—4
=FF

-

SPECIAL TRICKS WITH THE MONITOR

You can put as many Monitor commands on a single line as yvou like, as long as you separate
them with spaces and the total number of characters in the line is less than 254, You can inter-
mix any and all commands freely, except the STORE () command. Since the Monitor takes all
values following a colon and places them in consecutive memory locations, the last value in a
STORE must be followed by a letter command before another address is encountered. The
NORMAL command makes a good separator; it usually has no effect and can be used anywhere.

«30@.307 308:18 69 1 N 399, 302 3045 S

A380— A9 A8 A A8 HE HE HH HE
A38A— 18 69 #1

d3pe— 18 CLC
A=#4 X=#1 Y=DB P=3# S=F8
LR B 69 W1 ADC #541

A=#5 X=#1 Y=DB P=3# S=F8

-
Single-letter commands such as L, 5, 1, and N need not be separated by spaces.
If the Monitor encounters a character in the input line which it does not recognize as either a
hexadecimal digit or a valid command character, it will execute all commands on the input line up
to that character, and then grind to a halt with a noisy beep, ignoring the remainder of the input

line.

The MOVE command can be used Lo replicate a pattern of values throughout a range in memory.

To do this, first store the pattern in its first position in the range:

*3éd:11 22 33

Remember the number ol values in the pattern: in this case, 3. Then use this special arrange-
ment of the MOVE command:

[start+number] < {start] . lend—number] M
This MOVE command will first replicate the pattern at the locations immediately following the
original pattern, then re-replicate that pattern following itsell, and so on until it fills the entire
range,
« 303388 32DM
«30@.32F

g3ge— 11 22 33 11 22 33 11 22
gig8— 33 11 22 33 11 22 33 11
gxig— 22 33 11 22 33 11 22 33
g318— 11 22 33 11 22 33 11 22
§328— 33 11 22 33 11 22 33 11
#328— 22 33 11 22 33 11 22 33

A similar trick can be done with the VERIFY command to check whether a pattern repeats itself
through memory. This is especially useful to verify that a given range of memory locations all
contain the same value:

«300:08

«301<388. 31FM

«301<3B8 31FV

31402

«301<308.31FV

Widi—pd (H2)

Hidd—H2 (H¥)

You can create a command line which will repeat all or part of itself indefinitely by beginning the
part of the command line which is to be repeated with a letter command, such as N, and ending it
with the sequence 34:n, where # is a hexadecimal number specifying the character position of the
command which begins the loop; for the first character in the line, n=8. The value for # must
be followed with a space in order lor the loop to work properly.

«N 300 392 34:9

#ife— 11

26

M1l L F1 F1 E1 L M1

IEl IFL (E1 |E1l 'El [TF1 [E1 TE1 (F1 [Fl

IFl

IFl IFl

IFl

LJF1 TR

W W W W

BIRREER R

#3fg2— 3
#igd— 1
#igl— 3
Higd— 1
#id2— 3
#idd— 1
#igz— 3
Hide— 11
#ig2— 33
Hige— 11
#iw2— 33
Wig

-

The only way to stop a loop like this is 1o press

[RESET .

Lt

CREATING YOUR OWN COMMANDS

The USER ([CTRL Y|} command, when encountered in the input line, forces the Monitor to
jump 1o location number $3F8 in memory. You can put your own IMP instruction in this loca-
tion which will jump to your own program
registers and pointers or the input line itself. For example, here is a program which will make
the [CTRL Y| command act as a “comment” indicator; everything on the input line following
the [CTRL Y] will be displayed and ignored.

sFoh6G
1308 :LDY 534

H3dH— Ad 34
! LDA 289.Y

Hidz-— BY #d
! J5R FDED

Hips5— 28 ED
! INY
Wids— []

I OMP #S8D

Wigo— c9 8D
! BNE 302

#3dB— D@ F5
! JMP SFF69

A3pD— 4C 69
PIFS:IMP $300

#3iF8— 4C e

FD

FF

#3

LDY

LDA

JS5R

INY

MP

BNE

JMP

JMP

Your program can then either examine the Monitor’s

$34

SHIWH,Y

SFDED

#58D

SH3H2

$FFo69

SH3pe

'SFF69G

«[CTRLY| THIS 15 A TEST.

THIS 15

A TEST.

58

Fl IFL 'F1 TFL O(MEL OPEL OCEL OTEL OMEL /L OFLO'FE R ML ML

M1_IEl IEl IEL T'EL IE. IFl IF

FI.

TR WA oW W w W W ww W

SUMMARY OF MONITOR COMMANDS

Summary of Monitor Commands.

Examining Memory.
ladrs)

ladrs1] . ladrs2|

RETURN

Changing the Contents of Memory.

{adrs]:{val} |val} ...

dfval] fval] ...

Moving and Comparing.

[dest) < |start]. lend]M

[dest] < [start]. lend]V

Saving and Loading via Tape.

[start).lend}W

[start].lend|R

Running and Listing Programs.

{adrs|G

[adrs|L

Examines the value contained in one location.

Displays the wvalues contained in all locations
between [adrsl) and {adrs2)

Displays the values in up to eight locations fol-
lowing the last opened location.

Stores the values in consecutive memory loca-
tions starting at |adrs].

Stores values in memory starting at the next
changeable location,

Copies the values in the range |start}. {end] into
the range beginning at |dest],

Compares the values in the range [start].lend]
to those in the range beginning at {dest|

Writes the walues in the memory range
|start].lend] onto tape, preceded by a ten-
second leader

Reads values from tape, storing them in
memory beginning at {start] and stopping at
lend]. Prints “ERR™ il an error occurs.

Transfers contral to the machine language pro-
gram beginning at {adrs}

Disassembles and displays 20 instructions, start-

ing at ladrs]. Subsequent L’s will display 20
more instructions each.

59

Summary of Monitor Commands.

The Mini-Assembler

Fob6G

S|command]|

SFF69G

|adrs) §

ladrs] T

CTRL E

Miscellaneous.

Z

CTRL B

{val} + {val]

{val}—{val}

(slot]

|slot) [CTRL K

Invoke the Mini-Assembler.*

Execute a Monitor command from the Mini-
Assembler.

Leave the Mini-Assembler.

Disassemble, display, and execute the instruc-
tion at ladrs], and display the contents of the
65027s internal registers. Subsequent S8's will
display and execute successive instructions,

Step infinitely. The TRACE command stops
only when it executes a BRK instruction or

when vou press RESET|.""

Display the contents of the 6582’s registers.

Set Inverse display mode.
Set Mormal display mode.

Enter the language currently installed in the
Apple’s ROM,

Reenter the lunguage currently installed in the
Apple's ROM.

Add the two values and print the result.

Subtract the second value from the first and
print the result.

Divert output to the device whose interface
card is in slot number [slot. If [slot]=8, then
route outpul to the Apple’s screen.

Accept inputl from the device whose interface
card is in slot number [slot}. If [slot]=@, then
accepl input from the Apple's keyboard.

Jump to the machine language subroutine at
location $3F8.

* Not avaulable in ihe Apple I Plus.
** Not available n the Autostart ROM

60

ML ML ML FL"FL EL TFL_TFL

M /FL 'FI ™1 TR ML TR

IF

IFL IE IH

IF

L‘ﬂ M. 1k IR

B R

SOME USEFUL MONITOR SUBROUTINES

Here is a list of some uselul subroutines in the Apple’s Monitor and Autostart ROMs, To use
these subroutines from machine language programs, load the proper memory locations or 6502
registers as required by the subroutine and execute a JSR to the subroutine’s starting address. It
will perform the function and return with the 6502's registers setl as described,

SFDED CoOuUT Ouiput a character

COUT is the standard character output subroutine. The character to be output should be in the
accumulator. COUT calls the current character output subroutine whose address is stored in
CSW (locations $36 and $37), usually COUT] (see below),

SFDF@ COUT1 Output to screen

COUT1 displays the character in the accumulator on the Apple’s screen at the current output cur-
sor position and advances the output cursor. It places the character using the setting of the
Normal/Inverse location. It handles the control characters RETURN, linefeed, and bell. It
returns with all registers intact

SFER# SETINY Set Inverse mode

Sets Inverse video mode for COUTI1. All output characters will be displayed as black dots on a
white background. The Y register is set to $3F, all others are unchanged.

SFER4 SETNORM Set Normal maode

Sets Normal video mode for COUTL. All output characters wwill be displayed as white dots on a
black background. The Y register is set to 3FF, all others are unchanged.

SFDRE CROUT Generate a RETURN
CROUT sends a RETURN character to the current output device.
SFDSB CROUTI1 RETURN with clear

CROUTI clears the screen from the current cursor position to the edge of the text window, then
calls CROUT.,

SFDDA PRBYTE Print a hexadecimal byte

This subroutine outputs the contents of the accumulator in hexadecimal on the current output
device. The contents of the accumulator are scrambled.

SFDE3 PRHEX Print a hexadecimal digit

This subroutine outputs the lower nybble of the accumulator as a single hexadecimal digit. The
contents of the accumulator are scrambled.

SFu41 PRNTAX Print A and X in hexadecimal

This outputs the contents of the A and X reisters as a four-digit hexadecimal value, The accu-
mulator contains the first byte output, the X register contains the second. The contents of the

61

accumulator are usually scrambled.
$F948 PRBLNK Print 3 spaces

Outputs three blank spaces to the standard output device. Upon exit, the accumulator usually
contains 3A@, the X register contains 9.

$Fo4A PRBL2 Print many blank spaces

This subroutine outputs from 1 to 256 blanks to the standard output device. Upon entry, the X
register should contain the number of blanks to be output. If X=35@@, then PRBL2 will output
256 blanks.

SFF3A BELL Output a **bell” character

This subroutine sends a bell (CTRL G) character to the current output device. It leaves the
accumulator holding $87.

SFBDD BELLI1 Beep the Apple's speaker

This subroutine beeps the Apple’s speaker for .1 second at 1KHz. It scrambles the A and X
regisiers.

SFDRC RDKEY Get an input character

This is the standard character input subrouting. It places a flashing input cursor on the screen at
the position of the output cursor and jumps to the current inputl subroutine whose address is
stored in KSW (locations 38 and $39), usually KEYIN (see below).

SFD3s RDCHAR Get an input character or ESC code

RDCHAR is an alternate input subroutine which gets characters from the standard input, but also
interprets the eleven escape codes (see page 34),

SFD1B KEYIN Read the Apple’s keyboard

This is the keyboard input subroutine. It reads the Apple’s keyboard, waits for a keypress, and
randomizes the random number seed (see page 32). When it gets a keypress, it removes the
flashing cursor and returns with the keycode in the accumulator.

SFD6A GETLN Get an input line with prompt

GETLN is the subroutine which gathers input lines (see page 33). Your programs can call
GETLN with the proper prompt character in location $33; GETLN will return with the input line

in the input buffer (beginning at location $28@) and the X register holding the length of the input
line.

SFD&7 GETLNZ Get an input line

GETLNZ is an alternate entry point for GETLN which issues a carriage return to the standard
output before falling into GETLN (see above).

62

ML ML /ML M ML T T T ML M

14

Fl F

[F1

FE..EY_IF. IED VFL IFL TEL OIFL IFD TRD

B R R R R R

SFD6F GETLN1 Get an input line, no prompt
GETLNI is an alternate entry point for GETLN which does not issue a prompt belore it gathers
the input line. If, however, the user cancels the input line, either with too many backspaces or

with a [CTRL X], then GETLN] will issue the contents of location $33 as a prompt when it gets
another line.

SFCAR WAIT Delay
This subroutine delays lor a specific amount of time, then returns to the program which called it,
The amount of delay is specified by the contents of the accumulator. With A the contents of the

accumulutor, the delay is 12(26+27A+5A7) useconds. WAIT returns with the A register zeroed
and the X and Y registers undisturbed.

SF864 SETCOL Set Low-Res Graphies color

This subroutine sets the color used for plotting on the Low-Res screen 1o the color passed in the
accumulator. See page 17 for a table of Low-Res colors.

SF85F NEXTCOL Increment color by 3

This adds 3 to the current color used for Low-Res Graphics.

SFRpd PLOT Plot a block on the Low-Res screen

This subroutine plots a single block on the Low-Res screen of the prespecified color. The block’s
vertical position is passed in the accumulator, its horizontal position in the Y register. PLOT
returns with the accumulator scrambled, but X and Y unmolested.

$F819 HLINE Draw a horizontal line of blocks

This subroutine draws a horizontal line of blocks of the predetermined color on the Low-Res
screen. You should call HLINE with the vertical coordinate of the line in the accumulator, the

leftmost horizontal coordinate in the Y register, and the rightmost horizontal coordinate in loca-
tion $2C. HLINE returns with A and Y scrambled, X intact.

SF828 VLINE Draw a vertical line of blocks

This subroutine draws a vertical line of blocks of the predetermined color on the Low-Res screen.
You should call VLINE with the horizontal coordinate of the line in the Y register, the top verti-
cal coordinate in the accumulator, and the bottom vertical coordinate in location $2D. VLINE
will return with the accumulator scrambled.

§F832 CLRSCR Clear the entire Low-Res screen

CLRSCR clears the entire Low-resolution Graphics screen. If you call CLRSCR while the video
display is in Text mode, it will fill the screen with inverse-mode ““@"" characters. CLRSCR des-
troys the contents of A and Y.

SF836 CLRTOP Clear the top of the Low-Res screen

CLRTOP is the same as CLRSCR (above), except that it clears only the top 40 rows of the
screen.

63

SFRTI SCRN Read the Low-Res screen

This subroutine returns the color of a single block on the Low-Res screen. Call it as you would
call PLOT (above). The color of the block will be returned in the accumulator. No other regis-
lers are changed.

SFBIE PREAD Read a Game Controller

PREAD will return a number which represents the position of a game controller. You should
pass the number of the game controller (@ to 3) in the X register. If this number is not valid,
strange things may happen, PREAD returns with a number from $88 1o $FF in the Y register.
The accumulator is scrambled.

SFF2D PRERR Print “ERR"

Sends the word “"ERR", followed by a bell character, to the standard output device. The accu-
mulator is scrambled.,

SFF4A 10SAVE Save all registers

The contents of the 6582's internal registers are saved in locations $45 through $49 in the order
A-X-Y-P-S. The contents of A and X ure changed: the decimal mode is cleared.

SFF3F IOREST Restore all registers

The contents of the 6502's internal registers are loaded from locations $45 through $49,

04

Tl Tl F1 T

El 'Fl

Fl IF1 [(F1 (F1 TR0 M1 TF1 M1 TRl TR1

FE..M_IE IFl TPl IEL IEL IEL

BRI A R R e

MONITOR SPECIAL LOCATIONS

B _Table 14: Page Three Monitor Locations
| Address: Use:
Decimal Hex Monitor ROM Autostart ROM
1808 S3FR Holds the address
1999 S3F1 of the subroutine
. which handles
None | :
machine language
| “BRK" requesis
(normally SFA39)
: :::T ;1:‘3 Nong. Soft Entry Vector.
L1122 5314 MNone, 1 Power-up Byie.
[1813 $3F5 | Holds a “JuMP™ instruction to the
[0 $3F6 | subroutine which handles Applesoft 11
1815 §3F7 | & commands.® Normally $4C $58
| SFF.
1816 £3F8 | Holds a “JuMP™ instruction to the|
1817 $3F9 | subroutine which handles **USER™]
1418 S3FA | ([CTRL Y|) commands.
18019 $3FB | Holds a “*JuMP™ instruction to the
1028 SIFC | subroutine which handles Non-
1421 S3FD | Maskable Interrupts. |
1022 S3FE | Holds the address of the subroutine
1823 S3FF | which handles Interrupt ReQuests.

* See page 123 i1 the Applesoft 11 BASIC Reference Manual

MINI-ASSEMBLER INSTRUCTION FORMATS

The Apple Mini-Assembler recognizes 56 mnemonics and 13 addressing formats used in 6392
Assembly language programming. The mnemonics are standard. as used in the MOS
Technology/Synertek 6500 Programming Manual (Apple part number A2L0003), but the
addressing formats are different. Here are the Apple standard address mode formats for 6502
Assembly Language:

Table 15: Mini-Assembler Address Formats

Maode: Formal:
Accumulilor None.
Immediate #8Ivalue]
| Absolute $laddress|
Zero Page Sladdress|

[Tndexed Zero Page Sladdress). X
Sladdress).Y
Indexed Absolute Sladdress|.X

Sladdress].Y
Implied ~ None.
Relative Sladdress|
Tndexed Indirect ($laddress|. X)
Indirect Indexed ($laddress}).Y

Absolute Indirect (S{address))

An [address| consists of one or more hexadecimal digits. The Mini-Assembler interprets
addresses in the same manner that the Monitor does: if an address has fewer than four digits, it
adds leading zeroes; if it has more than four digits, then it uses only the last four.

All dollar signs (8), signifying that the addresses are in hexadecimal notation, are ignored by the
Mini- Assembler and may be omitted,

There is no syntactical distinction between the Absolute and Zero Page addressing modes. If vou
give an instruction to the Mini-Assembler which can be used in both Absolute and Zero-Page
mode, then the Mini-Assembler will assemble that instruction in Absolute mode if the operand
for that instruction is greater than SFF, and it will assemble that instruction in Zero Page mode if
the operand for that instruction is less than 58100,

Instructions with the Accumulator and Implied addressing modes need no operand.

Branch instructions, which use the Relative addressing mode, require the rarger address of the
branch. The Mini-Assembler will automatically fgure out the relative distance to use in the
instruction. If the target address is more than 127 locations distant from the instruction, then the
Mini-Assembler wil sound a “*heep™, place a circumfex (7) under the target address, and ignore
the line.

If you give the Mini-Assembler the mnemonic for an instruction and un operand, and the

addressing made of the operand cannot be used with the instruction you entered, then the Mini-
Assembler will not accept the line.

66

IFl IF1

El 'Fl

IF1 TE]

El

1 IF1 [F1

¥l

Fl IFIl

Fi

IFl TRl IR IR

CHAPTER 4
MEMORY ORGANIZATION

sttt sttt sttt et e bt ettt

The Apple’s 6502 microprocessor can directly reference a total of 65,536 distinct memory loca-
tions. You can think of the Apple’s memory as a book with 256 **pages™, with 256 memory loca-
tions on each page. For example, “‘page $30"" is the 256 memory locations beginning at location
$30@¥ and ending at location $3@FF. Since the 6582 uses two eight-bit bytes to form the address
of any memory location, you can think of one of the bytes as the page number and the other as
the focation within the page.

The Apple’'s 256 pages of memaory fall into three categories: Random Access Memory (RAM),
Read-Only Memory (ROM), and Input/Qutput locations (L/0). Different areas of memory are
dedicated to different functions. The Apple’s basic memory map looks like this:

System Memory Map

Page Number:

Decimal Hex

@ 506

1 501

2 $02

! ' RAM (48K)
199 SBE

191 SBF

192 SCo

193 5CI

' 1/0 (2K)

198 $C6

199 $C7

200 SC8

201 $C9

1/0 ROM (2K)

206 SCE

207 SCF

208 SD@

209 DI

. ROM (12K)

254 SFE

255 SFF

Figure 5. System Memory Map

RAM STORAGE

The area in the Apple’s memory map which is allocated for RAM memory begins at the bottom

[

IFL 1El IFL (F1 'EY (PD OTRY OIMPYD OORL OIEY OTEY D1 'ED TED TR ITL

R O I

of Page Zero and extends up to the end of Page 191. The Apple has the capacity to house Itom
4K (4,096 bytes) to 48K (49,152 bytes) of RAM on its main circuit board. In addition, you can
expand the RAM memory of vour Apple all the way up 1o 64K (63,536 bytes) by installing an
Apple Language Card (part number A2B0006). This extra 16K of RAM 1akes the place of the
Apple’s ROM memory, with two 4K segments of RAM sharing the 4K range from 3D@@@ to
SDFFF.

Most of your Apple’s RAM memory is available to you for the storage of programs and data
The Apple, however, does reserve some locations in RAM lor use of the System Monitor, vari-
ous languages, and other system functions. Here is a map of the available areas in RAM
memaory.

Table 16: RAM Organization and Usage Sevess
Page NMumber: :)
Decimal Hex Lsed Far: .
e SMd | Svsiem Programs
[1 %01 | System Stack
|2 92 | GETLN Input Buffer
!_ 3 503 Monitur Vector Locations
4 S04 |
5 S05 | Text and Lo-Res Graphics
3] %36 | Primary Page Storage
7 567
8 508
9 509 | Text and Lo-Res Graphics
18 $@A | Secondary Page Storage
11 0B
- FREE
12 ShC
through
31 $1F
- - e RAM
32 5280 | Hi-Res Graphics
through Primary Page
‘63 53F Smragc”)
64 540 | Hi-Res Graphics
through Secondary Page
95 $5F | Storage |
96 560
through
191 SBF

Following is a breakdown of which ranges are assigned to which functions:

Zero Page. Due to the construction of the Apple’s 6582 microprocessor, the lowermost page in
the Apple’s memory is prime real estate for machine language programs, The System Monitor
uses about 20 locations on Page Zero: Apple Integer BASIC uses a few more: and Applesoft 11
BASIC and the Apple Disk Operating System use the rest. Tables 18, 19, 20, and 21 show the
locations on zero page which are used by these system functions.

Page One. The Apple’s 6582 microprocessor reserves all 256 bytes of Page 1 for use as a

“stack””. Even though the Apple usually uses less than half of this page at any one time, il i5 nol
easy to determine just what is being used and what is lying fallow, so you shouldn’t try 1o use

69

Page 1 1o store any data.

Page Two. The GETLN subroutine, which is used to get input lines by most programs and
languages, uses Page 2 as its input buffer. If you're sure that you won't be typing any long input
lines, then you can (somewhat) safely store temporary data in the upper regions of Page 2.

Page Three. The Apple’s Monitor ROM (both the Autostart and the original) use the upper six-
teen locations in Page Three, from location S3FP to $3FF (decimal 1088 1o 1823). The
Monitor’s use of these locations is outlined on page 62.

Pages Four through Seven. This 1,024-byte range of memory locations is used for the Text and
Low-Resolution Graphics Primary Page display, and is therefore unusable for storage purposes.
There are 64 locations in this range which are not displayed on the screen. These 64 locations are
reserved for use by the peripheral cards (see page 82).

RAM CONFIGURATION BLOCKS

The Apple’'s RAM memory is composed of eight 1o 24 integrated circuits. These 1C's reside in
three rows of sockets on the Apple board, Each row can hold eight chips of either the 4.096-bit
(4K) or 16,384-bit (16K) variety, The 4K RAM chips are of the Mostek “*4096™ family, and
may be marked “*MK409%6"" or “MCM6604". The 16K chips are of the “'4116™ type, and may
have the denomination “*MK4116™ or “UPD4160"", Each row must have eight of the same type
of chip, although different rows may hold different types.

A row of eight 16K 1C’s represents 16,384 eight-bit bytes of RAM. The leftmost IC in a row
represents the lowermost (least significant) bit of every byie in that range, and the rightmost 1C
in a row represenis the uppermost (most significant) bit of every byte. The row of RAM IC's
which is frontmost on the Apple board holds the RAM memory which begins at location @ in the
memory map: the next row back continues where the first left off.

You can tell the Apple how much memory it has, and of what type it is, by plugging Memory
Configuration Blocks into three IC sockets on the left side of the Apple board. These
configuration blocks are three 14-legged critters which look like big, boxy integrated circuits. Bui
there are no chips inside of them; only three jumper wires in each. The jumper wires “*strap”
each row of RAM chips into a specific place in the Apple’s memory map. All three configuration
blocks should be strapped the same way. Apple supplies several types of standard configuration
blocks for the most common svstem sizes. A set of these was installed in your Apple when it was
built, and you get a new set each time you purchase additional memary for your Apple. If, how-
ever, you want to expand your Apple’s memory with some RAM chips that you did not purchase
from Apple, you may have to construct your own configuration blocks (or modify the ones
already in your Apple).

There are nine different RAM memory configurations possible in your Apple. These nine

memory sizes are made up from various combinations of 4K and 16K RAM chips in the three
rows of sockets in vour Apple. The nine memory configurations are:

70

'E1 'El [IE1 'El

1 IR IFL O IF IFL OIEC 1EL IFL IFL IFL IFY TEL IFL TEL OIEL O ITEL TE1 TEl 'E]

N

MR

sCod — ‘

SRO0A
SA000 | 16K

0006 '—
4K

SE0dd

S70a0
S6000

16K | 16K | 16K 4K

S5p0a —
4K 4K

S4008

Siaoe =
4K

S2008 | 16K | 16K | 16K | 16K | 16K | 16K |

4K | 4K
51000 [

4K | 4k | 4K
50009 i 1
5‘;‘;;”" 48K 36K 32K 24K 20K 16K 12K 8K 4K

Figure 6. Memory Configurations

Of the fourteen “‘legs’ on each controller block, the three in the upper-right corner (looking at it
from above) represent the three rows of RAM chips on the Apple’s main board. There should
be a wire jumper from each one of these pins to another pin in the configuration block. The
“‘other pin"* corresponds to a place in the Apple’s memory map where vou want the RAM chips
in each row to reside. The pins on the configuration block are represented thus:

4K range S0000-SOFFF

10 14 | Frontmost row (**C")
4K range S1008-51FFF | 2 13 | Middle row ('D”)
4K range S2000-52FFF | 3 12 | Backmost row (*E')
4K range S3I00A-83FFF | 4 Il | No connection,

3

(/]

4K range S4000-54FFF 10 | 16K range SO808-53FFF
4K range S53000-55FFF | 9 | 16K range $4808-37FFF
4K range SBODB-S8FFF | 7 & | 16K range S8000-5BFFF
Figure 7. Memory Configuration
Block Pinouts

If a row contains eight chips of the 16K variety, then you should connect a jumper wire from the
pin corresponding to that row 1o a pin corresponding to a 16K range of memory. Similarly, if a
row contains eight 4K chips, you should connect a jumper wire from the pin for that row to a pin
corresponding 1o a 4K range of memory. You should sever put 4K chips in a row strapped for
16K, or vice versa. Il is also not advisable to leave a row unstrapped, or to strap two rows into
the same range of memory.

You should always make sure that there is some kind of memory beginning at location 8. Your

Apple’s memory should be in one contiguous block, but it does not need to be. For example, if
you have only three sels of 4K chips, but you want to use the primary page of the High-

Tl

Resolution Graphics mode, then vou would strap one row of 4K chips to the beginning of
memory (4K range $S808@ through SBFFF), and strap the other two rows o the memory range
used by the High-Resolution Graphics primary page (4K ranges $200@ through $2FFF and 53080
through $3FFF). This will give you 4K bytes of RAM memory to work with, and 8K bytes of
RAM to be used as a picture bufTer.

Notice that the configuration blocks are installed into the Apple with their front edges (the edge
with the white dot, representing pin 1) towards the front of the Apple.

There is a problem in Apples with Revision @ boards and 20K or 24K of RAM. In these systems,
the 8K range of the memory map from $480@ 1o S5FFF is duplicated in the memory range 56806

to $7FFF, regardless of whether it contains RAM or not. So systems with only 20K or 24K of

RAM would appear to have 24K or 36K, but this extra RAM would be only imaginary. This has
been changed in the Revision 1 Apple boards.

ROM STORAGE

The Apple, in its natural state, can hold from 2K (2,048 bytes) 1o 12K (12,288 bytes) of Read-
Only memory on its main board. This ROM memory can include the System Monitor, a couple
of dialects of the BASIC language, various system and utility programs, or pre-packaged
subroutines such as are included in Apple’s Progranuner's Aid #1 ROM,

The Apple’s ROM memory resides in the top 12K (48 pages) of the memory map, beginning at
location $D@@®. For proper operation of the Apple, there must be some kind of ROM in the
upppermost locations of memory. When you turn on the Apple’s power supply. the microproces-
sor must have some program to execute. [t goes to the top locations in the memory map for the
address of this program. In the Apple, this address is stored in ROM, and is the address of a pro-
gram within the same ROM. This program initializes the Apple and lets you start to use it. (For
a description of the startup cycle, see ““The RESET Cycle™, page 36.)

Here is a map of the Apple’s ROM memory, and of the programs and packages that Apple
currently supports in ROM:

o Table 17: ROM Organization and Usage o]
Page Number:; % .
Decimal Hex sed By:
g?g ggg Programmer’s Aid #1
216 SDE
220 sDC Applesoft
224 SE@ 11
228 $E4 BASIC
232 SES8 Integer BASIC
236 SEC
24@ SFd
244 $F4 Utility Subroutines
248 SF8 q
252 SFC Monitor ROM Autostart ROM

12

I m

'El1_[E1 IE]l TF! IFl 1E. IFEl IFl 1F1 1Fl IF1 IF1 IEF1 [TEY TE1 IE!l TE1 IEl T E1 'El1 IE

BRI RN

Six 24-pin IC sockets on the Apple’s board hold the ROM integrated circuits. Each socket can
hold one of a type 93168 2,048-byle by B-bit Read-Only Memory. The lefimost ROM in the
Apple’s board holds the upper 2K of ROM in the Apple’s memory map; the rightmost ROM IC
holds the ROM memory beginning at page SD@ in the memory map. If a ROM is not present in
a given socket, then the values contained in the memory range corresponding to that socket will
he unpredictable.

The Apple Firmware card can disable some or all of the ROMs on the Apple board, and substi-
tute its own ROMSs in their place. When vou have an Apple Firmware card installed in any slot in
the Apple’s board, you can disable the Apple's on-board ROMs by fipping the card’s controller
switch 1o its UP position and pressing and releasing the [RESET]| button, or by referencing location
SCH80 (decimal 49280 or -16256). To enable the Apple’s on-board ROMs again, flip the con-
troller switch to the DOWN position and press [RESET), or reference location $CP81 (decimal
49281 or -16255). For more information, see Appendix A of the Applesoft 11 BASIC Program-
ming Reference Manual.

I/0 LOCATIONS

4,096 memory locations (16 pages) of the Apple’s memory map are dedicated to input and output
functions. This 4K range begins at location SCO®@ (decimal 49152 or -16384) and extends on up
to location SCFFF (decimal 53247 or -12289). Since these functions are somewhat intricate, they
have been given a chapter all to themselves. Please see Chapter 5 for information on the alloca-
tion of Input/Output locations.

73

ZERO PAGE MEMORY MAPS

Table 18: Monitor Zero Page Usage

Decimal @ 1 2 3
Hex S8 %1 $2

§3 54 %5 56 57 38

§ 5 6 7 B 9 1@ 11 12 13
$9 $A SB SC

14 15
SD SE SF

o Se0
16 10
32 S0
48 S30
64 S4B
8 S50
9% S60
112 $70
128 $80
144 90
160 SAD
176 SBO
192 SC@
208 SDP
224 SED
1240 SFO

L BN B BN

L B BN BN
L]
-
L]
-
]
L]
L]
L]

Table 19:

h.pp:lcsoﬂ 11 BASIC Zero Page Usage

Decimal [3
Hex S@ §1 52 83

4 5 6 71 8 9 18 11 12 13
S4 S5 S6 $7 S8 $9 SA SB- SC 8D

'] SPa . . L] []
16 51@ "« s e @
12 520
48 830
64 sS40
iﬂﬂ S50
96 S68
112 578
128 S88
144 399
1680 SA@
176 SB@
192 SC@
288 5D@
224 SE@
240 SF@

[BN BN BN BN BN BN BN B BN BN]
®® ® % 8 0 0 80N
L] L B BN BN B B BN
L] " ® 8@ & 8 8 80
LB B BN B BN BN BN BN BN AN
8 8 8 " 8 "8 0w
[N BN B BN BN BN BN BN AN)
L BN BN BN BN BN BN BN

e % & 0 00 80
LI BN BN BN BN BN BN BN

14

m1OIE O IEl OIF O IFL IED IEL UED IFL TEL JED OIED TED OTEY O OTED OIED OTEY O OTEL OTE1 OTEL OTE1 OTEl TR

B AR

Decimal
Hex
S06
16 S1@
32 $20
48 538
64 5408
8@ 558
96 S68
112 870
128 388
144 39@
168 SAQ
176 SB@
192 SC@
208 sDa@
224 SE@
248 SF@

2 3 4 5 6 7 8 9 18 11 12 13
$2 S3 S4 S5 S6 ST S8 59 SA S$B SC $D

14 15§
SE §F |

) Table 21: Integer BASIC Zero Page Usage

Decimal
Hex

[S0
16 s1@
32 s
48 S30
64 sS40
80 S50
96 S60
112 878
128 580
144 594
168 SAB
176 SB@

08 SD@
224 SE#

240 SF9

192 sC@ |

2 3 4 5 6 71 & 9 18 11 12 13
§2 83 S$4 S5 S6 57 S8 S9 SA SB SC SD

" 00 0 00

[B BN BN B BN B BN]

L B B BN BN BN BN]

s 8 5 0 ® 8 0 80
® 9 8 8 0 8 0 80
e 8 8 0 8 08 80
® 8 8 8 % 8 ® 80
® 8 8 8 8 00 00
® 8 & & 8 8 5 0 &8
8 8 8 8 8 8 0 080
o8 @ 8 & 8 80 00w
a9 8 9 9 " " 08

4 15
SE SF

L BN BN BN B BN B BN N
. ® % 0 0 8 @

75

ETRE |

1

E

14

Ell

1l

F 1]

1

14l

1di

F

i

i

dl

76

CHAPTER J
INPUT/OUTPUT STRUCTURE

et mt bttt ettt et et

The Apple's Input and Output functions fall into two basic categories: those functions which are
performed on the Apple’s board itself, and those functions which are performed by peripheral
interface cards plugged into the Apple’s eight peripheral “slots’”. Both of these functions com-
municate to the microprocessor and your programs via 4,096 locations in the Apple's memory
map. This chapter describes the memory mapping and operation of the various input and output
controls and funciions;, the hardware which executes these functions is described in the next
chapter.

BUILT-IN 1/0

Most of the Apple's inherent 1/0 facilities are described briefly in Chapter 1, **Approaching your
Apple”. For a short description of these facilities, please see that chapier.

The Apple’s on-board 1/0 functions are controlled by 128 memory locations in the Apple’s
memory map, beginning at location SCM® and extending up through location $CB7F (decimal
49152 through 49279, or -16384 through -16257), Twenty-seven different functions share these
128 locations. Obviously, some functions are affected by more than one location: in some
instances, as many as sixteen different locations all can perform exactly the same function. These
128 locations fall into five types: Data Inputs, Strobes. Soft Switches, Toggle Switches, and Flag
Inputs,

Data Inputs, The only Data Input on the Apple board is a location whose value represents the
current state of the Apple’s built-in keyboard. The uppermost bit of this input is akin 1o the Flag
Inputs (see below): the lower seven bits are the ASCII code of the key which was most recently
pressed on the Kevboard.

Flag Inputs. Most built-in input locations on the Apple are single-bit “flags’. These flags appear
in the highest (eighth) bit position in their respective memory locations. Flags have only two
values: ‘on’ and ‘off”. The setting of a flag can be tested easily from any language. A higher-
level language can use a “PEEK™ or similar command to read the value of a flag location: if the
PEEKed value is greater than or equal to 128, then the flag is on; if the value is less than 128,
the flag is off. Machine language programs can load the contents of a flag location into one of the
6582°s internal registers (or use the BIT instruction) and branch depending upon the setting of
the N (sign) flag. A BMI instruction will cause a branch if the flag is on, and a BPL instruction
will cause a branch if the flag is off.

The Single-Bit (Pushbutton) inputs, the Cassette input, the Keyboard Strobe, and the Game Con-
troller inputs are all of this type.

Strobe Outputs. The Ultility Strobe, the Clear Keyboard Strobe, and the Game Controller Strobe
are all controlled by memory locations. If your program reads the contents of one of these loca-
tions, then the function associated with that location will be activated. In the case of the Utility
Strobe, pin 5 on the Game 1/O connector will drop from 45 wvolis to 0 volts for a period of .98
microseconds, then rise back to +35 again: in the case of the Keyvboard Strobe, the Kevboard's
flag input (see above) will be turned off; and in the case of the Game Controller Strobe, all of the
flag inputs of the Game Controllers will be turned off and their timing loops restarted.

Your program can also trigger the Kevboard and Game Controller Strobes by writing to their con-
trolling locations, but you should not write to the Utility Strobe location. If you do, you will pro-
duce rwe 98 microsecond pulses, about 24.43 nanoseconds apart, This is due to the method in
which the 6582 writes to a memory location: first it reads the contents of that location, then it

78

F1_IFl IF1 TE! IFl IF. IEl [IE I|EI IEI IEl IFl IFl IE' IFl IEl [IEl IEl [Fl1 I[F1 IEF1 IFl IFl

wriles over them. This double pulse will go unnoticed for the Kevbhoard and Game Controller
Strobes, but may cause problems il it appears on the Utility Strobe,

Toggle Switches. Two other strobe outputs are connected internally 1o two-state “‘Nip-flops™".
Each time you read from the location associated with the strobe, its flip-Nop will *“togele™ to its
other state. These toggle switches drive the Cassette Output and the internal Speaker. There is
no practical way 1o determine the setting of an internal togele switch. Because of the nature of
the toggle switches, vou should only read from their controlling locations, and not write to them
(see Strobe Outputs, above).

Soft Switches, Soft Switches are 1wo-position switches in which each side of the switch is con-
trolled by an individual memaory location. Il you reference the location for one side of the
switch, it will throw the switch that way: il vou reference the locaton for the other side, it will
throw the switch the other way. It seis the switch without regard to its former setting, and there
is no way to determine the position a soft switch is in. You can safely write to soft switch con-
trolling locations: two pulses are as good as one (see Strobe Outputs, above). The Annunciator
outputs and all of the Video mode selections are controlled by soft switches,

The special memory locations which control the buili-in Input and Output functions are arranged
thus:

Table 22: Built-In 1/0 Locations

'S0 SI 52 3 S4 S5 S6 S7 S8 S9 SA SB SC SD SE SF
SCHMB | Keyboard |-J'-Elt'cl.|l'liiul -
SCA1@ | Clear Kevboard Strobe
Sf‘ﬁi'ﬁd Casselle Output Togele
SCP30 | Speaker Toggle
SCP4# | Utility Strobe

SCASH | &r % nomix | mis [pri | sew | lores | hires uni I unl inl and
; T
SCR6D | cin | pnl ph2 | pbd | gcl | gcl gcd : grd repeat SCAGR-2CH6T

SC@7@ | Game Controller Strobe

Key to abbreviations:

gr Set GRAPHICS mode tx Set TEXT mode
nomix Selt all text or graphics mix Mix text and graphics
pri Display primary page sec Display secondary page

lores Isplay Low-Res Graphics hires Display Hi-Res Graphics

an Annunciator outpuls pb Pushbution inputs
ge Game Controller inputs cin Cassetle Input

PERIPHERAL BOARD 1/0

Along the back of the Apple’s main board is a row of eight long **slots™, or Peripheral Connec-
tors. Into seven of these eight slots, you can plug any of many Peripheral Interface boards
designed especially for the Apple. In order 10 make the peripheral cards simpler and more versa-
tile, the Apple’s circuitry has allocated a total of 280 byte locations in the memory map for each

79

ol seven slots. There is also a 2K byte *“‘common area™, which all peripheral cards in your Apple
can share.

Each slot on the board is individually numbered, with the lefimost slot called “*Slot @ and the
rightmost called **Slot 7. Slot @ is special: it is meant for RAM, ROM, or Interface expansion.
All other slots (1 through 7) have special control lines going to them which are active at different
times for different slots.

PERIPHERAL CARD I/0 SPACE

Each slot is given sixteen locations beginning at location $C@8@ for general input and output pur-
poses. For slot @, these sixteen locations fall in the memory range $C@88 through SC@8F; for
slot 1, they're in the range SCO9@ through SCB9F, er cefera. Each peripheral card can use these
locations as it pleases. Each peripheral card can determine when it is being selected by listening to
pin 41 (called DEVICE SELECT) on its peripheral connector. Whenever the voltage on this pin
drops to 0 volis, the address which the microprocessor is calling is somewhere in that peripheral
card’s 16-byte allocation, The peripheral card can then look at the bettom four address lines to
determine which of 1ts sixteen addresses is being called.

B Table 23: Peripheral Card 1/0 Locations
3@ sl 52 53 54 B85 %6 57 38 $9 $A $B $C SD SE S5F
SCaRa @
SCA9@ 1
SChAR 2
SCAB Input/Output for slot number 3
sCeca 4
SCODa@ 5
SCOER 6
SCOFe 7

PERIPHERAL CARD ROM SPACE

Each peripheral slot also has reserved for it one 256-byte page of memory. This page is usually
used to house 256 bytes of ROM or Programmable ROM (PROM) memory, which contains driv-
ing programs or subroutines for the peripheral card. In this way, the peripheral interface cards
can be “‘intelligent™ they contain their own driving software; you do not need to load separate
programs in order to use the interface cards.

The page of memory reserved for each peripheral slot has the page number $Cn, where #» is the
slot number. Slot @ does not have a page reserved for it, so you cannot use most Apple interface
cards in that slot. The signal on Pin 1 (called [0 SELECT) of each peripheral slot will become
active (drop from +35 volts to ground) when the microprocessor is referencing an address within
that slot’s reserved page. Peripheral cards can use this signal to enable their PROMs, and use the
lower eight address lines to address each byie in the PROM.

80

IF. IEL [EI F1 IFiL 1F1 IF1 'El IE1 1E1 IEl [IEl IE1 'E1 T'E1 'El IElL [IEI

1Kl

IE!

IE.. "El

i

M

|

K

R

o Table 24: Peripheral Card PROM Locations -
TSO0 SIP 520 530 4 550 560 570 580 590 SA@ SBA SC@ SD@ SEQ SF@
SC100 1
SC200 2
|SC3I00 3
SC400 PROM space for slot number 4
SCS0R 5
SCHRA 6
SC700 7

I/0 PROGRAMMING SUGGESTIONS

The programs in peripheral card PROMSs should be portable; that is, they should be able 1o func-
tion correctly regardless of where they are placed in the Apple’s memory map. They should con-
tain no absolute references to themselves. They should perform all JuMPs with conditional or
forced branches.

Of course, vou can fill a peripheral card PROM with subroutines which are nof portable, and your
only loss would be that the peripheral card would be slot-dependent. If you're cramped for space
in a peripheral card PROM, you can save muny bytes by making the subroutines slot-dependent.

The first thing that a subroutine in a peripheral card PROM should do is to save the values of aff
of the 6582°s internal registers. There is a subroutine called I0SAVE in the Apple’s Monitor
ROM which does just this. It saves the contents of all internal registers in memory locations 545
through $49, in the order A-X-Y-P-S. This subroutine starts at location SFF4A. A companion
subroutine, called IORESTORE, restores alfl of the internal registers from these storage locations.
You should call this subroutine, located at SFF3F, before your PROM subroutine finishes.

Most single-character input and outpul is passed in the 6582°s Accumulator. During output, the
character to be displayed is in the Accumulator, with its high bit set. During inpui, your
subrouting should pass the character received from the input device in the Accumulator, also
with its high bit set.

A program in a peripheral card’s PROM can determine which slot the card is plugged into by exe-
cuting this sequence of instructions:

Bineg- 28 4A FF JSR SFF4A
Bipi- 78 SEI

higa- 28 58 FF ISR $FF58
hi|7- BA TSX

Bigs- BD @8 @1 LDA 501008, X
#i@8- 8D F8 @7 STA $BTF8
BI0E- 29 @F AND #S0OF
gile- AR TAY

After a program executes these steps, the slot number which its card is in will be stored in the
6562°s Y index register in the format S@n, where # is the slot number. A program in the ROM
can further process this value by shifting it four bits to the left, to obtain $08.

A3tt- 98 TYA

81

#312- BA ASL
#313- BA ASL
#314- (L ASL
#315- #a ASL
B3il6- AA TAX

A program can use this number in the X index register with the 6502°s indexed addressing mode
o refer to the sixteen 1/0 locations reserved for each card. For example, the instruction

8317- BD 8¢ C@ LDA SCARG, X

will load the 6502's accumulator with the contents of the first /O location used by the peripheral
card. The address SCO8@ is the base eddress Tor the first location used by all eight peripheral
slots. The address SCBB1 is the base address for the second 1/0 location, and so on. Here are
the base addresses for all sixteen /0 locations on each card:

Table 25: 1/0 l_wali@_']]_u_a_se Addresses

| Base Slot
Address # 1 2 3 4 5 6 7
SCHRR SCASP SCa9n SChAD sCepe SCaCe SCADA SCOER SCAFQ
8Casl SCAR1 SCP91 SCOAL SCOB1 SCBCI SCaD1 SCRE! SCHF1
SC@82 SC@82 SC@P92 SCPA2 SC@B2 SCAC2 SCOD2 $COE2 SCAF2
SCAR3 SC@83 SCA93 SCPA3 SCAB3 5CAC3 SCAD3 SCOE3 SCAF3
SCA84 SC@84 SCH94 SCPA4 SC@B4 SCRC4 S5COD4 SCAE4 SCOF4
SCP8S SC@8S 8CP9s SCOAS SC@aB5 SCOCS 5CODS SCRES SC@F5
SCa86 SCA86 SCHY6 SCPAG SCOR6 $CACH SCOD6 SCOEG SCAro
SC@sT SCAR7 SCH97 SCOAT SCART SCecCT sCaD? SCRE7 SCAFT
SCass SCBRS SCH98 SCOAS SCOBR SCACE $CADE SCOLES SCAFS
SCOR9 SCHR9 SCH99 SCOA9 SCABY SCHCY SCAD9 SCOE9 SCBFY
SCHRA SCAEA SCP9A BCPAA SCABA SCACA SCYDA SCREA SCHFA
SC@SB SCOSB SC@9B 5COAB SCOBB SCOCB SCWDB SCREBR SCOFB
SCORC SC@8C SC@9C SCRAC SCABC SCPCC SCODC SCPEC SCRFC
SCASD | SCERD SCE9D SC@AD SCOBD SCACD SCADD SCOED SCBFD
SCOMSE SCPRE SC@9E SCAAE SCOBE SCMCE SCADE SCPEE SCOFE
SCO8F SCOBF SCM9F SCBAF SCOBF SCBCF SCADF SCREF SCOFF

1/0 Locations

PERIPHERAL SLOT SCRATCHPAD RAM

Each of the eight peripheral slots has reserved for it 8 locations in the Apple’s RAM memory,
These 64 locations are actually in memory pages S84 through $87, inside the area reserved for the
Text and Low-Resolution Graphics video display. The contents of these locations, however, are
noi displayed on the screen, and their contents are not changed by normal screen operations.®
The peripheral cards can use these locations for temporary storage of data while the cards are in
operation. These “*scratchpad™ locations have the following addresses:

* See "But Soft._."", page 31

82

E el IEl IF e T 4 IEl IE EL O IE IEr IEl IF1 IE 1 IE IF1 1EI [E1 [IF1 IF1 IFl TIE)l

[S— | |

L Table 26: 1/0 Scratchpad RAM Addresses
Base Slot Number

Address | 1 2 3 4 5 6 7
SA478 SP479 SP4TA SP4TB S4TC SMTD SB4TE S@4TF
SB4F8 SPAF9 SP4rA SM4FB O SMFC SMHFD SBIFE S@4FF
SB578 SP579 S@STA SBSTB S@STC S@STD S@STE S@STF
SO5F8 SPSF9 S@SFA S@5FB SPSFC S@SFD SBSFE SASFF
SP6TS | SP6T9 SPETA S@6TB SM6TC SBETD SB6TE SB6TF
SO6FR $P6F9 SP6FA S@6FB S@6FC SBEFD SBeFE SB6FF
S9778 0779 S@77A SRTIB S@77C SBTTD S@7TE SATTF |
SOTFR SATF9 SATFA SATFE BOTFC SOTFD SATFE S@TFF |

Slot @ does not have any scratchpad RAM addresses reserved for it. The Base Address locations
are used by Apple DOS 3.2 and are also shared by all peripheral cards. Some of these locations
have dedicated functions: location STF8 holds the slot number (in the format $Cn) of the peri-
pheral card which is currently active, and location $5F8 holds the slot number of the disk con-
troller card from which any active DOS was booted.

By using the slol number $Bn, derived in the program example ubove, a subroutine can directly
reference any ol its eight scratchpad locations:

A3l1A- B9 78 @4 LDA $0478.Y
WilD- 99 F& @4 STA 304FB .Y
Wize- B9 78 @5 LDA S@5TRY
Bi2i- 99 F& @5 5TA SOSF8 .Y
#ile- B9 78 @6 LDA SPOTE.Y
93i29- 99 FR #e STA SPOFR .Y
@32C- B9 78 A7 LDA S@77R.Y
@32F- 99 FR @7 STA SPTFR.Y

THE CSW/KSW SWITCHES

The pair of locations $36 and $37 (decimal 54 and 55) is called CSW, for **Character output
SWitch”. Individually, location $36 is called CSWL (CSW Low) and location $37 is called
CSWH (CSW High). This pair of locations holds the address of the subroutine which the Apple
is currently using for single-character output. This address is normally SFDF@, the address of the
COUT subroutine (see page 30). The Monitor’s PRINTER ([CTRL P|) command, and the
BASIC command PR#, can change this address to be the address of a subroutine in 4 PROM on
a peripheral card. Both of these commands put the address 3C+B@ into this pair of locations,
where # is the slot number given in the command, This is the address of the first location in
whatever PROM happens 1o be on the peripheral card plugged into that slot. The Apple will then
call this subroutine every time it wishes lo output one character. This subroutine can use the
instruction sequences given above to find its slot number and use the 1/O and RAM scratchpad
locations for its slot. When it is finished, it can either execute an RTS (ReTurn from
Subroutine) instruction, to return to the program or language which is sending the output, or it
can jump to the COUT subroutine at location SFDF@®, 1o display the character on the screen and
then return to the program which is producing output,

Similarly, locations $38 and 39 (decimal 56 and 57), called KSWL and KSWH separately or KSW

83

(Keyboard input SWitch) together, hold the address of the subroutine the Apple is currently
using for single-character input. This address is normally $FDI1B, the address of the KEYIN
subroutine. The Monitor's KEYBOARD command ([CTRL K|} and the BASIC command IN#
both change this address 1o SC@, again with n the slot number given in the command. The
Apple will call the subroutine at the beginning of the PROM on the peripheral card in this slot
whenever it wishes to gel a single character from the input device. The subroutine should place
the input character into the 6502°s accumulator and ReTurn from Subroutine (RTS). The
subroutine should set the high bit of the character before it returns.

The subroutines in a peripheral card’s PROM can change the addresses in the CSW and KSW
switches to point to places in the PROM other than the very beginning. For example, a certain
PROM could begin with a segment ol code to determine what slot it is in and do some initializa-
tion, and then jump in to the actual character handling subroutine. As part of its initialization
sequence, it could change KSW or CSW (whichever is applicable) to point directly to the begin-
ning of the character handling subroutine. Then the next time the Apple asks for input or output
from that card, the handling subroutines will skip the already-done initialization sequence and go
right in to the task at hand. This can save time in speed-sensitive situations.

A peripheral card can be used for both input and output if its PROM has seperate subroutines for
the separate functions and changes CSW and KSW accordingly, The initialization sequence in a
peripheral card PROM can determine if it is being called for input or output by looking at the
high parts of the CSW and KSW switches. Whichever switch contains $Cu is currently calling
thut card to perform its function. If both switches contain $Cn, then your subroutine should
assurmne that it is being called for output.

EXPANSION ROM

The 2K memory range from location SC88® to SCFFF is reserved for a 2K ROM or PROM on a
peripheral card, to hold' large programs or driving subroutines. The expansion ROM space also
has the advantage of being absolutely located in the Apple’s memory map, which gives you more
freedom in writing your interface programs.

This PROM space is available to all peripheral slots, and more than one card in your Apple can
have an expansion ROM. However, only one expansion ROM can be active at one time.

Each peripheral card’s expansion ROM should have a flip-flop to enable it. This flip-flop should
be turned **on’’ by the DEVICE SELECT signal (the one which enables the 236-byte PROM).
This means that the expansion ROM on any card will be partially enabled after you first reference
the card it is on. The other enable to the expansion ROM should be the I/O STROBE line, pin
20 on each peripheral connector. This line becomes active whenever the Apple’s microprocessor
is referencing a location inside the expansion ROM’s domain, When this line becomes active,
and the aforementioned flip-flop has been turned **on’", then the Apple is referencing the expan-
sion ROM on this particular board (see figure 8),

A peripheral card’s 256-byte PROM can gain sole access to the expansion ROM space by referring
to location $CFFF in its initialization subroutine. This location is a special location, and all peri-
pheral cards should recognize it as a signal to turn their flip-flops *'off”" and disable their expan-
sion ROMs. Of course, this will also disable the expansion ROM on the card which is trying to
grab the ROM space, but the ROM will be enabled again when the microprocessor gets another
instruction from the 256-byte driving PROM. Now the expansion ROM is enabled, and its space
is clear. The driving subroutines can then jump directly into the programs in the ROM, where

84

=u [A} [, =3}

- [T =i "=y

U T T T L L L L L

h FaRELE |
LATCH |————_tem

YT
H

ENABLE 2

Figure 8. Expansion ROM Enable Circuit

they can enjoy the 2K of unobstructed, absolutely located memory space:

#332- 2C FF CF BIT SCFFF
#335- 4C @@ C8 IMP SCE0@

It is possible 1o save circuitry (at the expense of ROM space) on the peripheral card by not fully
decoding the special location address, $CFFF. In fact, if you can afford to lose the last 256 bytes
of your ROM space, the following simple circuit will do just fine:

}_ T RESET, ROM INABLE
LiP-FLOF

Figure . SCFXX Decoding

85

[E /IRE VI F |
14 4 14
4] 14 14 |
F TR E VR T F VI IR P TR (I |
(Y I [
F IV TR T '
| | S

86

CHAPTER 0
HARDWARE CONFIGURATION

s 0 0 O M HHHHH A

THE MICROPROCESSOR

The 6582 Microprocessor

Maodel:

Manufactured by:

Number of instructions:
Addressing modes:
Accumulators:

Index registers:

Other registers:

Stack:

Status fNags:

Other Mags:

Interrupts:

Resets:
Addressing range:
Address bus:

Data bus:

Voltages:
Power dissipation:

Clock frequency:

MCS6562/5Y 6582
MOS Technelogy, Inc.
Svnertek

Rockwell

56

13

1 (A)

2 (XY)

Stack pointer (S)
Processor status (P)

256 hytes, fixed

N (sign)

C (carry)

Vo loverflow)

I (Interrupt disable)

D (Decimal arithmetic)
B (Break)

2 (IRQ, NMI)

1 (RES)

2! (64K locations

16 bits, parallel

8 bits, parallel
Bidirectional

+5 volts
25 walt

1.023MHz

BR

The microprocessor gets its main timing signals, ®@ and @1, from the liming circuits described
below, These are complimentary 1.023MHz clock signals. Various manuals, including the MOS

My IE i®E1 e IRl fE0 I TED TEDL O TEL IEN IFL TED ED E1 OIEL IFEDL O TEL O (FET (EL TE1 IF

Peripheral Connectors /S ——Casselte
Interface

Jacks
Power ik
Connector vide

Ouatput

Connectors

Crame [/O
Connectlor

USER |
Jumper

Eurapple
Jumpers

Speaker
Connector

Kevboard
Connector

Figure 10. The Apple Main Board

ninin'y

89

Technology Hardware manual, use the designation @2 for the Apple’s @@ clock.

The microprocessor uses its address and data buses only during the time period when @@ is
active. When @@ is low, the microprocessor is doing internal operations and does not need the
data and address buses.

The microprocessor has a 16-bit address bus and an 8-bit bidirectional dats bus. The Address bus
lines are buffered by three 8T97 three-state buffers at board locations H3, H4, and H5. The
address lines are held open only during a DMA cycle, and are active at all other times. The
address on the address bus becomes valid about 300ns after ®1 goes high and remains valid
through all of ¢@,

The data bus is buffered through two 8T28 bidirectional three-state buffers at board locations H10
and HI1. Data from the microprocessar is put onto the bus about 300ns after @1 and the
READ/WRITE signal (R/W) both drop to zero. At all other times, the microprocessor is either
listening to or ignoring the data bus,

The RDY. RES, IRQ, and NMI lines to the microprocessor are all held high by 3.3K Ohm resis-
tors to +35v. These lines also appear on the peripheral connectors (see page 105).

The SET OVERFLOW (S0) line to the microprocessor is permanently tied lo ground.

SYSTEM TIMING

Table 27: Timing Signal Descriptions _
14M: Master Oscillator output, 14,318 MHz. All timing signals are
derived from this signal,

T™: Intermediate timing signal, 7.159 MHz.

COLOR REF: Color reference frequency, 3.580MHz. Used by the video gen-
eration circuitry.

i (h2) . Phase @ system clock, 1.023MHz, compliment 1o @],
Pl Phase 1 system clock, 1.023 MHz, compliment to &@.
Q3: A general-purpose timing signal, twice the Irequency of the sys-

tem clocks, but asymmetrical.

All peripheral connectors getl the timing signals TM, @@, &1, and Q3. The timing signals 14M
and COLOR REF are not available on the peripheral connectors.

Bl TR TEL CED IR DED IEL EL TED TED (EI TET Bl IE. O 'Er O IED (EL TFL F1 O IFL ITEL TEY OTFEN

B

| 1

| |
500 nsec 500 nsec

I

L] —] |

I
I
|
|
|
!
|
|
I
I
|
|

1
|
|
|
. : l
|
|
I

]

300
nsec

I

I

|

:)
6502 Address X_ 1X

|

300
. nsec
Data from 6502 (read) x |><

100 nsec ‘1 \-—

Q3

>

Data to 6502 (write))@C/

See 65¢2 Hardware
manuals for details,

Figure 11. Timing Signals and Relationships

91

POWER SUPPLY

The Apple Power Supply (U, S, Patent #4,130,862)

Input voltage: 107 VAC 1o 132 VAC, or
214 VAC to 264 VAC
(switch selectable®)

Supply voltages: +5.0
+11.8
-12.0

—3.2

Power Consumption: 60 watts max. (full load)
79 watts max. lintermittent**)

Full load power output: +5v: 2.5 amp
—5v: 250ma
+12v: 1.5 amp (— 2.5 amp intermittent®*)
—12v: 250ma

Operating temperature; 35¢ (131° Farenheit)

The Apple Power Supply is a high-voltage “*switching’ power supply. While most other power
supplies use a large transformer with many windings to convert the input voltage into many lesser
voltages and then rectify and regulate these lesser voltages, the Apple power supply first converls
the AC line voltage into a DC voltage, and then uses this DC vollage to drive a high-frequency
oscillator. The output of this oscillator is fed into a small transformer with many windings. The
voltages on the secondary windings are then regulated to become the output voltages.

The +35 volt output voltage is compared to a reference vaoltage, and the difference error is fed
back into the oscillator circuit, When the power supply’s outpul starts to move out of its toler-
ances, the frequency of the oscillator is altered and the voltages return 1o their normal levels.

If by chance one of the output voltages of the power supply is short-circuited, a feedback circuit
in the power supply stops the oscillator and cuts all output circuits, The power supply then
pauses for about % second and then attempis to restart the oscillations, If the output is still
shorted. it will stop and wait again. It will continue this cycle until the short circuit is removed or
the power is turned off.

If the output connector of the power supply is disconnected from the Apple board, the power
supply will notice this “‘no load™ condition and effectively shoert-circuit itself, This activates the
protection circuits described above, and cus all power output. This prevents damage to the
power supply’s internals,

" The voltage selecior switch is not present on some Apples.
"* The power supply can run 20 minutes with an intermittent load if followed by 10 minutes a1 normal load
withou! damage.

02

Fi IFl

IFl I1F1 IEl IFL (FI IFI |EI IFI IFl1 IEl [IEI IF. IEl 1EI IEY IEl1 IE

IE|

i T s !
[
¥
&

” » t
w4 . e -
= . i " i}
o » e ami= H
ar ™
. PR — =
i i Eie
i e s - Gl i
+ 1 vl]
" i - - e
= La .u_ sE = —
e - S [|
§ & ek 3
+ — I

F
|
Figure 12. Power Supply Schematic Drawing

|
BN |) T T T T O T T T T O O O O\

If one of the output voltages leaves its tolerance range, due to any problem either within or
external 1o the power supply, it will again shut itsell down to prevent damage to the components
on the Apple board. This insures that all voltages will either be correct and in proportion, or they
will be shut offl’

When one of the above faull conditions occurs, the internal protection circuits will stop the oscil-
lations which drive the transformer. After a short while, the power supply will perform a restart
cyele, and attempt Lo oscillate again. IT the fault condition has not been removed, the supply will
again shut down. This cycle can continue infinitely without damage to the power supply. Each
time the oscillator shuts down and restarts, its frequency passes through the audible range and
you can hear the power supply squeal and squeak. Thus, when a Tault occurs, you will hear a
steady “‘click click click™ emanating from the power supply., This is your warning that something
15 wrong with one of the voltage outputs.

Under no circumstances should vou apply more than 140 VAC to the input of the transformer
{or more than 280 VAC when the supply’s switch is in the 220V position), Permanent damage 1o
the supply will result,

You should connect your Apple’s power supply to a properly grounded 3-wire outlet. Tt is very
imporiant that the Apple be connected 10 a good earth ground.

CAUTION: There are dangerous high voltages inside the power supply’s case. Much of the
internal circuitry is nor isolated from the power line, and special equipment is needed for service.
DO NOT ATTEMPT TO REPAIR YOUR POWER SUPPLY! Send it 1o your Apple dealer for
service.

ROM MEMORY

The Apple can support up to six 2K by 8 mask programmed Read-Only Memory ICs. One of
these six ROMSs is enabled by a T4LS138 at location F12 on the Apple’s board whenever the
microprocessor’s address bus holds an address between SDP@® and SFFFF. The eight Data out-
puts of all ROMSs are connected Lo the microprocessor's data line buffers, and the ROM’s address
lines are connected to the buffers driving the microprocessor's address lines A® through A0,

The ROMs have three *‘chip select™ lines to enable them. CS1 and CS3, both active low, are
connected together to the 7415138 at location FI12 which selects the individual ROMs, CS2,
which is active high, is common to all ROMs and is connected to the INH (ROM Inhibit) line on
the peripheral connectors. Il a card in any peripheral slot pulls this line low, all ROMs on the
Apple board will be disabled.

The ROMs are similar to type 2316 and 2716 programmable ROMs. However, the chip selects
on most of these PROMs are of a different polarity, and they cannot be plugged directly into the
Apple board.

94

IFT ¥, 1P IF. (IFl I1E| ¥1 IFl (E1 Pl F1 I1E. [F1 I1E! [E1 [IF1 [F1 [F1 'F1 IFI

B e e

AT | 1O 24 | +5v
Ab | 2 27 | AS
AS | 7 22 | A9
Ad | 4 2 | C53
A3 | § 20 | €51
A2 | 6 19 | Al@
Al | 7 18 | CS2
AB | & 17| D7
DB | o 16 | D6
DI | 10 15 | D5
D2 | it 14 | D4
Gnd | 12 13| D3

Figure 13. 93168 ROM Pinout.

RAM MEMORY

The Apple uses 4K and 16K dynamic RAMs for its main RAM storage. This RAM memory is
used by both the microprocessor and the video display circuitry. The microprocessor and the
video display interleave their use of RAM: the microprocessor reads from or writes to RAM only
during ©@, and the video display refreshes its screen from RAM memory during 1.

The three 74LS153s at E11, E12, and E13, the 74L5283 at E14, and half of the 7T4LS257 at C12
make up the address multiplexer for the RAM memory. They take the addresses generated by
the microprocessor and the video generator and multiplex them onio six RAM address lines. The
other RAM addressing signals, RAS and CAS, and the signal which is address line 6 for 16K
RAMSs and CS for 4K RAMSs, are generated by the RAM select circuit. This circuit is made up of
two T4LS5139s at E2 and F2, halfl of a 74LS153 at location C1, one and a half 74L5257s at C12
and J1, and the three Memory Configuration blocks at 1, E1, and F1. This circuil routes sig-
nals 1o each row of RAM, depending upon what type of RAM (4K or 16K) is in that row.

The dynamic RAMs are refreshed automatically during €1 by the video generator circuitry. Since
the video screen is always displaying at least a 1K range of memory, it needs to cycle through
every location in that 1K range sixty times a second. It so happens that this action automatically
refreshes every bit in all 48K bytes of RAM. This, in conjunction with the interleaving of the
video and microprocessor access cycles, lets the video display, the microprocessor, and the RAM
refresh run at full speed, without interfering with each other.

The data inputs to the RAMs are drawn directly off of the system’s data bus, The data outputs of
the RAMs are latched by two 74LS5174s at board locations BS and B8, and are multiplexed with
the seven bits of data from the Apple’s keyboard. These latiched RAM outputs are fed directly to
the video generator’s character, color, and dol generators, and also back onto the system data bus
by two 74L5257s at board locations B6 and BT,

95

-5v | 1O 16 | Gnd —5v | 'O {6 | Gnd
Dataln | 2 13 | CAS Dataln | 2 15 | CAS
R/W | 7 {4 | Data Out R/W | 3 14 | Data Out

RAS | 4 13| C5 RAS | 4 13| Ab

AS | § 12] A2 AS | § 12| A2

Ad | 6 1] Al Ad | & | Al

A} | 7 | A Al | 7 0| Ad
+12v | 8 91 +5v +12v | ¥ 9| +5v

4096 4K RAM 4116 16K RAM
Pinout Pinout

Figure 14. RAM Pinouts

THE VIDEO GENERATOR

There are 192 scan lines on the video screen, grouped in 24 lines of eight scan lines each. Each
scan line displays some or all of the contents of forty bytes of memory,

The video generation circultry derives its synchronization and timing signals from a chain of
74LS161 counters at board locations D11 through D14, These counters generate fifteen syn-
chronization signals;

H® HI H2 H3 H4 HS
Ve VI V2 Vi V4
VA VB VC

The "H" family of signals is the horizontal byte position on the screen, from G@00EQ o binary
188111 (decimal 39), The signals V@ through V4 are the vertical line position on the screen,
from binary ®8@@® 1o binary 18111 (decimal 23). The VA, VB, and VC signals are the vertical
scan line position within the vertical screen line. from binary @00 10 111 (decimal 7).

These signals are sent to the RAM address multiplexer, which turns them into the address of a
single RAM location, dependent upon the setting of the video display mode soft switches (see
below). The RAM multiplexer then sends this address to the array of RAM memory during @1,
The latches which hold the RAM data sent by the RAM array reroute it to the video generation
circuit, The 7415283 at location rearranges the memory addresses so that the memory mapping
on the screen is scrambled.

If the current area on the screen is to be a text character, then the video generalor will route the
lower six bits of the data 1o a type 2513 character generator al location A5, The seven rows in
each character are scanned by the VA, VB, and VC signals, and the output of the character gen-
erator is serialized into a stream of dots by a 74166 at location A3. This bit stream is routed lo
un exclusive-OR gate, where it is inverted if the high bit of the data byte is off and either the
sixth bit is low or the 535 timer at location B3 is high. This produces inverse and flashing charac-
ters, The text bit stream is then sent to the video selector/multiplexer (below).

If the Apple’s video screen is in a graphics mode, then the data from RAM is sent lo two
7415194 shift registers at board locations B4 and B9. Here each nybble is turned into a serial
daty stream. These two data streams are also sent to the video selector/multiplexer.

F1 MF1

IEy TEL IEDL TEL TED TE1 TE1 'FI

| TEl

fE] 'E1 I1EY TE} I1El IEl |El 'El [Fl [El IE

BRI e e

The T4LS257 multiplexer ut board position A8 selects between Color and High-Resolution graph-
ics displays. The serialized Hi-res dot stream is delayed one-hall clock cyele by the 74L874 at
location ALL if the high bit of the byte is set. This produces the alternate color set in High-
Resolution graphics mode.

The video selector/multiplexer mixes the two data streams from the above sources according to
the setting of the video screen soft switches. The T4L5194 at location A10 and the T4LS151 at
A9 select one of the serial bit streams for text, color graphics, or high-resolution graphics
depending upon the screen mode, The final serial output is mixed with the composite synchroni-
zation signal and the color burst signal generated by the video sync circuits, and sent to the video
DULPUL CONNECLOTS.

The wvideo display soft switches, which control the video modes, are decoded as part of the
Apple’s on-board /0 functions. Logic gates in board locations B12, B13, B11, A12, and All are
used to control the various video modes.

The color burst signal is created by logic gates at B12, B13, and C13 and is conditioned by RS,
corl L1, €2, and trimmer capacitor C3, This trimmer capacitor can be tuned 1o vary the tint of
colors produced by the video displuy. Transistor Q6 and its companion resistor R27 disable the
color burst signal when the Apple is displaying text,

VIDEO OUTPUT JACKS

The video signal generated by the aforementioned circuitry is an NTSC compatible, similar 1o an
ElA standard, positive composite video signal which can be led to any standard closed-circuit or
studio video monitor. This signal is available in three places on the Apple board:

RCA Jack. On the back of the Apple board, near the right edge, is a standard RCA phono jack.
The sleeve of this jack is connected to the Apple’s common ground and the tip is connected to
the video output signal through a 200 Ohm potentiometer. This potentiometer can adjust the
voltage on this connector from 0 to 1 voll peak.

Auxiliary Video Connector. On the right side of the Apple board near the back is a Molex
KK100 series connector with four square pins, .257 tall, on . 10” centers. This connector supplies
the composite video output and two power supply voltages. This connector is illustrated in figure
15

Tahle 28: Auxiliary Video Output Connector Signal Descriptions

Pin Name Description |
| GROUND System common ground; 0 volis.

2 VIDEO NTSC compatible positive composite video. Black level is
about .75 volt, white level about 2.0 volt, sync tip level is 0
volts. - Output level s not adjustable. This is not protected
against short circuits,

| 3 +12v +12 volt power supply.
|4 —5v —5 volt Ii|1_c___|'_r_qr_1]__|_1_q\g|.:r supply.
97

Auxiliary Video Pin. This single metal wire-wrap pin below the Auxiliary Video Output Connec-
tor supplies the same video signal available on that connector. It is meant 1o be a connection
point for Eurapple PAL/SECAM encoder boards.

IDEO

>
in

o

z

[
EIEIEIE — L _Connector

+12V

__Pin

Figure 15, Auxiliary Video Output Connector and Pin.

BUILT-IN 1/0

The Apple’s built-in 1/O functions are mapped into 128 memory locations beginning at SCAR@.
On the Apple board, a 74LS138 at location F13 called the 1/0 selector decodes these 128 special
addresses and enables the various functions.

The T4LS138 is enabled by another "138 at location H12 whenever the Apple’s address bus con-
tains an address between SCHO® and SCOFF. The 1/0 selector divides this 256-byte range into
eight sixteen-byle ranges, ignoring the range SCB8@ through SCAFE. Each output line of the 138
becomes active (low) when its associated 16-byte range is being referenced.

The “@" line from the 1/0 selector gates the data from the keyboard connector into the RAM
data multiplexer.

The **1"" line from the 1/0 selector resets the 741874 Nip-fop at B10, which is the keyboard Nag,

The **2" line toggles one half of a 74LS74 at location K13, The output of this flip-flop is con-
nected through a resistor network to the tip of the casseite outpul jack,

The 3" line togeles the other hall of the 74LS74 at K13. The output of this flip-flop is con-
nected through a capacitor and Darlington amplifier circuit 1o the Apple’s speaker connector on
the right edge of the board under the keyboard,

The “*4*" line is connected directly to pin 5 of the Game 1/O connector. This pin is the utility

T30 STROBE .

The **5"" line is used to enable the 7415259 at location F14, This 1C contains the soft switches
for the video display and the Game /0 connector annunciator outputs, The swilches are selected

9%

Tl OIE O El O IEl OIEl O IE O IEL IE! O'E1OIEDL OIED OIED OTEL OIEY OTFD OIEL OTEL OTEl O'E1 'El ORI OJEL TE]

BRI R e e

by the address lines 1 through 3 and the setting of each switch is controlled by address line §

The 6" line is used to enable a 7418251 eight-bit muliplexer at location H14. This multi-
plexer, when enabled, connecls one of its eight input lines to the high order bit (bit 7) of the
three-state system data bus. The bottom three address lines control which of the eight inpuis the
multiplexer chooses, Four of the mux’s inputs come from a 353 quad timer at location H13,
The inputs to this timer are the game controller pins on the Game 1/0 connector. Three other
inputs to the multiplexer come from the single-bit (pushbutton) inputs on the Game I/O connec-
tor. The last multiplexer input comes from a 741 operational amplifier at location K13. The
input to this op amp comes from the cassetie inpul jack

The “*7" line from the 17O selector resets all four nmers in the 533 quad timer at location H13.
T'he four inputs to this timer come from an RC network made up of four 0.022uF capacitors,
four 100 Ohm resistors, and the variable resistors in the game controllers attached 1o the Game
I/0 connecior. The total resistance in each of the four timing circuits determines the timing
characteristics of that circuil.

“USER 1” JUMPER

There is an unlabeled pair of solder pads on the Apple board, to the left of slot @, called the
“User 1" jumper. This jumper is illustrated in Photo 8. If you connect a wire between these two
pads, then the USER 1 line on each peripheral connectors becomes active. Il any peripheral card
pulls this line low, ali internal 1/0 decoding is disabled. The T70 SELECT and the DEVICE
SELECT lines all go high and will remain high while USER 1 is low, regardless of the address on
the address bus.

B =
B E
B B

| B
= B
3 B
B n
= =
]]
B =

Illjl'lﬂ‘ﬂl'l‘llllﬂ

The USER 1 Jumper

s BTE

Photo 8. The USER 1 Jumper.

99

THE GAME 1I/0 CONNECTOR

+ 5v NC
PBO ANG
PBI AN1
PB2 AN2
C#4d STROBE AN3
GCo GC3

GC2 GCl

Gnd NC

Figure 16,

Game 1/0 Connector Pinouis

Table 29: Game 1/0 Connector Signal Descriptions

Pin: Name: Description:

1 +5v +35 volt power supply. Total current drain on this pin must be
less than 100mA.

2-4 PB@-PB2 Single-bit (Pushbutton) inputs. These are standard T4LS series
TTL inputs.
5 C@4@ STROBE A general-purpose strobe, This line, normally high, goes low

during @@ of a read or write cycle to any address from $SC@49
through SC@4F. This is a standard 74LS TTL output.

6,7,10,11 GCB-GCI Game controller inputs. These should each be connected
through a 150K Ohm variable resistor to +5v,

8 Gnd System electrical ground.

12-15 ANB-ANI Annunciator outputs. These are standard T4LS series TTL out-
puts and must be buffered il used to drive other than TTL
inputs,

g.16 NC No internal connection.

THE KEYBOARD

The Apple’s buill-in keyboard is built around a MM5740 monolithic keyboard decoder ROM.

The inputs to this ROM, on pins 4 through 12 and 22 through 31, are connected 1o the matrix of

keyswitches on the keyboard. The outputs of this ROM are buffered by & 7404 and are connected
o the Apple’s Keyboard Connector (see below).

The keyboard decoder rapidly scans through the array of keys on the kevboard, looking for one
which is pressed. This scanning action is controlled by the free-running oscillator made up of
three sections of a 7400 at keyboard location U4, The speed of this oscillation is controlled by
C6, R6, and R7 on the keyboard's printed-circuit board.

IE: (F1 IED TF1 TEl TE1 TE1 TEl TF1 [FI

]

IFl [IF

IFl

[FI IFl 'Fl [FI IE. [(Fl IF |Fl

IE.._"Fl

101

Figure 17. Schematic of the !IApple Keyboard

BN |)) T T T T T T T O O R

The key on the keyboard is connected 1o a 555 timer circuit at board location U3 on the
keyboard. This chip and the capacitor and three resistors around it generate the 10Hz “REPeaT™
signal. If the 220K Ohm resistor R3 is replaced with a resistor of a lower value, then the [REPT
key will repeat characters at a faster rate.

See Figure 17 for a schematic diagram of the Apple Keyboard,

KEYBOARD CONNECTOR

The data from the Apple’s keyboard goes directly to the RAM data multiplexers and laiches, the
two 74152575 at locations B6 and B7. The STROBE line on the keyboard conneclor sels a
741574 flip-Nop at location B10. When the 1/0 selector activates its **®" line, the data which is
on the seven inputs on the keyboard connector, and the state of the strobe flip-flop, are multi-
plexed onto the Apple’s data bus,

Table 30: Keyboard Connector Signal Descriptions
Pin: Name: Description: __
| +5v +5 volt power supply. Total current drain on this pin must be
less than 120mA.

2 STROBE Strobe output from keyboard. This line should be given a pulse
at least 10us long each time a key is pressed on the keyboard.
The strobe can be of either polarity.

3 RESET Microprocessor’'s RESET line. Normally high, this line should
be pulled low when the [RESET] button is pressed.

4.9 16 NC No connection.

5-7.10-13 Data Seven bit ASCII keyboard data input,

8 Gnd System electrical ground.

15 —12v —12 wolt power supply. Keyboard should draw less than
S0mA.

102

'Fl IF1 (P MEL TEL ML TFLO'FL'FLTFLOMPLML

| IF_ 'F1 IFl IFl FI IFl IE [FI

+5v | 1 O 16 | NC
STROBE | 2 15| —12v

RESET | 3 14 | NC
NC | 4 {13 | Datal
Datad | § 12] Data @
Datad | 6 11| Data 3
Data & | 7 1| Data 2

Gnd | 8 9 | NC

Figure 18.
Keyboard Connector Pinouts

CASSETTE INTERFACE JACKS

The two female miniature phone jacks on the back of the Apple 11 board can connect your Apple
to a normal home cassetle tape recorder

Cassette Input Jack: This jack is designed to be connected to the ““Earphone’ or ~"Monitor™
output jacks on most tape recorders. The input voltage should be 1 volt peak-to-peak (nominal)
The input impedance 15 12K Ohms

Cassette Output Jack: This jack is designed to be connected lo the “*Microphone™ inpul on
most tape recorders. The output voltage is 25mv into a 100 Ohm impedance load.

R R e e e e

03

POWER CONNECTOR

This connector mates with the cable from the Apple Power Supply. This is an AMP #9-35028-1
six-pin male connector.

Table 31: Power Connector Pin Descriptions

Pin: Name: Description:

1,2 Ground Common electrical ground for Apple board.

3 +5v +5.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws —1.5 amp from this supply.

4 +12v +12.0 volis from power supply. An Apple with 48K of RAM
and no peripherals draws —400ma from this supply.

5 —12v —12.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws —12.5ma from this supply.

] —5v —5.0 volts from power supply. An Apple with 48K of RAM |
and no peripherals draws —0.0ma from this supply. |

—
5 [}

- 12V @ @ -5V
a 4

+ 5V @ 2] +12V
7 2

GND @] GND

m
o e ¥

Figure 19. Power Connector

104

Il IF IF1 IE IF1 IFl F1 IF1 [F1 IF1 [IFI

IFi

IF IF1l

IFi

Tl IFi il 1ri Iri

r

BRI e

SPEAKER

The Apple's internal speaker is driven by hall of a T4LS74 Nip-Nlop through a Darlington amplifier
circuit. The speaker connector is a Molex KK100 series connector, with two square pins, .257
tall, on .10 centers

[Pin: Name Description:
! SPKR Speaker signal. This line will deliver about .5 wall into an 8
Ohm load.

1
1
| 2 + 5y + 5 volt power supply.

| o | sPkR
E B

Figure 20, Speaker Connector

PERIPHERAL CONNECTORS

The eight peripheral connectors along the back edge of the Apple’s board are Winchester
#IHW25C0-111 50-pin PC card edge connectors with pins on 107 centers. The pinout for these
connectors is given in Figure 21, and the signal descriptions are given on the following pages.

105

o7
D8
D5
D4
D3
D2
D1
Do
+12V

nonnonnonnonnoanaonnnononnn

[6 {annummmummmﬁ Ol

- th g ==
kLo & o~ =

+5V
DMA OUT
INT OUT
DMA
RDY
70 STROBE
N.C.

R/W

A15

Al4

Figure 21. Peripheral Connector Pinout

106

FL i

El

'Fl

(BT T JUT JRT O T SUNT TT TUNRT . TR <O - N | o T { ol O O ol A | PO | S|

VO O O 3 A Lt L L

Table 33: Peripheral Connector Signal Description

Description:

Pin: Name:

1 170 SELECT
2-17 A@-AlS

18 R/W

19 SYNC

20 170 STROBE
21 RDY

22 DMA

23 INT OUT
24 DMA OUT
25 +35v

26 GND

This line, normally high, will become low when
the microprocessor references page SCn, where
i is the individual slot number. This signal
becomes active during @@ and will drive 10
LSTTL loads®. This signal is nol present on
peripheral connector @,

The buffered address bus. The address on
these lines becomes valid during &1 and
remains valid through ®@. These lines will
each drive 5 LSTTL loads®.

Buffered Read/Write signal. This becomes
valid at the same time the address bus does,
and goes high during a read cycle and low dur-
ing a write. This line can drive up to 2 LSTTL
loads®.

On peripheral connector 7 only, this pin is con-
nected to the video timing generator’s SYNC
signul.

This line goes low during & when the address
bus contains an address between $C30@ and
SCEFF. This line will drive 4 LSTTL loads®.

The 6502's RDY input. Pulling this line low
during @1 will halt the microprocessor, with the
address bus holding the address of the current
location being fetched,

Pulling this line low disables the 6502's address
bus and halts the microprocessor, This line is
held high by a 3K {2 resistor to +35v.

Daisy-chained interrupt output to lower priority
devices. This pin is usually connected lo pin 28
(INT INL.

Daisy-chained DMA output to lower priority
devices. This pin is usually connected Lo pin 22
(DMA IN).

+3 volt power supply. S00mA current is avail-
able for all peripheral cards.

System electrical ground.

* Loading limits are for each peripheral curd

107

Table 33 (cont'd):

Peripheral Connector Signal Description

Pin: Name:

Description:

27 DMA IN
26 INT IN
29 NMI
Eli] TRQ
31 RES
32 INH
33 —12v
34 —5Sv

35 COLOR REF

Daisy-chained DMA input from higher priority
devices. Usually connecied to pin 24 (DMA
ouT).

Daisy-chained interrupt input from higher
priority devices. Usually connected to pin 23
(INT OUT).

Non-Maskable Interrupt, When this line is
pulled low the Apple begins an interrupt cycle
and jumps 1o the interrupt handling routine at
location $3FB.

Interrupt ReQuest. When this line is pulled
low the Apple begins an interrupt cyvcle only if
the 6502°s 1 (Interrupt disable) flag is not set,
If so, the 6582 will jump to the interrupt han-
dling subroutine whose address 15 stored in
locations 33FE and S3FF.

When this line is pulled low the microprocessor
begins a RESET cycle (see page 36).

When this line is pulled low, all ROMs on the
Apple board are disabled. This line is held high
by a 3K (1 resistor to +35v.

—12 volt power supply. Maxmum current s
200mA for all peripheral boards.

—5 wvolt power supply. Maximum current 15
200mA for all peripheral boards.

On peripheral connector 7 enfy, this pin is con-
nected to the 3.5MHz COLOR REFerence sig-
nal of the video generator.

** See page 99

6 ™ TMHz clock. This line will drive 2 LSTTL
loads®.

37 Q3 2MHz asymmetrical clock. This line will drive
2 LSTTL loads®.

38 ¢] Microprocessor’s phase one clock., This line
will drive 2 LSTTL loads®,

9 USER 1 This line, when pulled low, disables a/l internal
1/0 address decoding®®. |

* Loading limits are for each peripheral card
108

‘F1 IF: !Fl IFI IFI IFL IF1 !Fi IF1 IF. IF1 IFI IF1 IT: (F1 [IFL IFL IF1 1 F1 [F1 1 IF]

fr.

WO WG S d & &8 AR E A

Description:

| Pin: Name:
40 d
4 DEVICE
SELECT
|
4249 DP-D7
50 +12v

Microprocessor's phase zero clock. This line
will drive 2 LSTTL loads®.

This line becomes active (low) on each peri-
pheral connector when the address bus is hold-
ing an address between SC@M and SC@nF,
where n is the slol number plus 38, This line
will drive 10 LSTTL loads®.

Buffered bidirectional data bus. The data on
this line becomes valid 300nS into ®# on a
write cycle, and should be stable no less than
100ns before the end of ®@ on a read cycle.
Each data line can drive one LSTTL load.

+12 volt power supply. This can supply up to
250mA total for all peripheral cards.

* Louading limits are for each peripheral card.

109

L= I I VI VI VA = VA = VI VA = VA { R T VR VO VO VI TR TRt [IR VR VT I

5
NEFTE (minns ot mont s 10w } _-_n ._u mt R
N e e Bl oy owm e LT o
VR _._I.n.,_-H_u_..—._..: .nu._E_n — = e
= - - R —
_ L
~ 1| Ao SELTET
i o _ -
—— | = . .
L 1 iy —
= N e o
_ =+ | T _._H..h
— D —— <A
_ B T »w Eadr o
— — _— e — —— | 3 a0 2ibr F=
—] A= _—
__ "I 2
_ a1 -
nile =
1M TaL g _ | HE -
- e N2 u
W | o &=
= -
; ¥ -
us =
~an
] i g
| — .“
——— e
——— =
[m L
s i i a
| — = —— T e -
] = an “
| - —
—% g
— — o
=T [hﬂ
LI P R TP e un

Figure 22-1.

110

il

-F.F

i
|

K

Ir-
i

Bl b] L] L] L]]) !

i

K

.
l!

K

K

K

K

RN

Vi

|

u

\

u

A

\

A

A

Figure 22-2. Schematic Diagram of the Apple 11

3

mn
!

bl

111

1% VA VU VA VI - VO VI T 7 O | R VI VR VA VO TR N /T VONNY [ONV VO IO TR [/R ||

T g
[3G
SOTE (munse conmwmms s v |
VI o ek wh e |
l_ﬁ_l__.il- |..ip
filn
{
I _ e 1
_ [
| | 1
|
{ -_—
| —
L] “ -
=
=
il <
e L o
] q (i1 =
| H -
_ Hi 5
| | | m
| | g - [~
| I 2
| (e, =
] NI o
5] It il."
1 o
, A :
" — ———1 £
| e sl e nM
_ | et R rmisa b
| L= | —ed ST 7
™) 4 =~
| ! | PR TItTE] - 2 1 pﬂl T -.m
b e I ..r. i’ " P
T — %< S e s
o o
[

T T) TTT 5 ! Lemiz J
1 T T 7T =
R C] e] L1} Am_ n _.H i a7 L |k I—-l._q.-.-_-.ﬂ il
WV W W el onl e IDPE CEL CWEEER W L R T - pinl i — -

112

1 L | ! | S
|
|
| . | :
o e || R
| ..\.<
0
| = " - L] L
=4

| q o

BT ||) T T T O O O O O O OO O

TOAIIIITEN] g

VI

v

o=

"t

| T | J.W....

_.
i1

=, =1
' 3

| . L2
T . 1

Schematic Diagram of the Apple 11

Figure 22-4.

113

Figure 22-5. Schematic Diagram of the Apple 11

114

Figure 22-6. Schematic Diagram of the Apple 11

BN} OO O T O O L T Y O O OV

115

116

1 [F1 TPl |

| O

IF|

I

Fl

'FI IFI TEl IFi 1Fl 1FI

])

APPENDIX A
THE 6502 INSTRUCTION SET

| T T A P PR L L R R L L L L R R L

6502 MICROPROCESSOR INSTRUCTIONS

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMi
BNE
BPL
BRK
BvC
BYS
cLc
CLD
cLl
CLv
CMP
CPX
CPY
DEC
DEX
DEY

EQR

INC
INX
INY
JMP
J5R

Agd Memary to Accumglglion with
Carry

TANDT Migmory wilh Accumulaior
Shitt Lett One B iMemory or
Ascumulator!

Branch on Carry Clear
Brancn on Carry Sel

Branch an Aesull Zero

Test Bits in Momory with
Accumulmion

Branch on Assul Mg
Branch on Result fot Zero
Branch on Aesull Plus

Force Break

Branch pn Overflow Clear
Branch on Overfiow Sei

Ciear Carry Flag

Dacimal Mooe

Chear intarcupt Disabie Biy
Crear Overflow Fiag

Compare Memory and Aol Blor
Compare Memory and index X
Compais Memory and Index ¥
Decramani Mamory by One
Decremant index X by One
Decramant Indek ¥ oy Dine

"Exthitrve-Or" Memory with
Agcumulator

Incremsnt Mamory by One
increment indax X by One
imsrement Index ¥ by Ona
Jump to New Location

Jumg to New Locabon Saving
Retuth Address

LDA
LDX
LDY
LSA

NOP
ORA
PHA
PHP
PLA
PLP

ROL

ROR

ATI
ATS

SBC

SEC
SED
SEI

ETA
ETX
STY
TAX
TAY
TSX
TEA

TWA

Load Accumudaior with kemary
Lowd Index X wilth Memory
Load indax ¥ wiin Memory
Shaft Aighl one Bif IMamoary or
Accumuistor!

No OpEration

“OR" Memary with Accumulaior
Push Accumulnior Br Sisck
Fush Processor Stalus on Stack
Full Accumulator trom Stack
Puli Processor Status from Stachk

RAmate One Bit Lett IMemary ar
Accumulnion

Aotaie One Bit Right IMamaory or
B OO

Redurn from interrupt

Feturm from Subroutine

Subiract Memory from Accurmulisios
with Barrow

Sel Carry Flag

Sel Decimal Mode

Se interrupd Desatie Status
Store Accumuislor in Memary
Store ingex X if Memary

Stare index ¥ in Mamaory

Transler Accumaulator 1o Indes X
Transler Accumuiator 1o Index ¥
Tranaler Steck Pointer fo Index X
Transier index X b0 Ascumlmtor
Transier Index X t0 Stack Poinist
Transier Inder ¥ bo Accumuiaion

118

|

ML ML Ml ML

(Fi (F1 TFL (FL (FL TFD [P0 TF1 IPL MEL TP TEL TEL (EL TEL

| J

..M [

U A A L

¢

O T T VI A

=

LB BOIT e

PCL
OFER

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

ACcumulator

Indes Ragisters
Mamony

Borrow

Processor S1atus Aagister
Stack Pointer
Change

Mo Change

Agd

Logical AMD
Subtract

Logical Exclusave D
Trarsfer From Siack
Tranated To Si&ck
Transier To

Transier To

Logical OR

Frogram Counier
Program Counter High
Program Counier Low
Operand

te Addressing bMods

FIGLIRE 1 ASL-SHIFT LEFT ONE BIT OPERATION
FHEE LT

FIGURE 2 AOTATE ONE BIT LEFT [MEMORY
Of ACCUMLULATOR

[W OR A

eTele [[o]

FIGURE 3

MNOTE 1 BIT — TEST BITS

Brl 6 and 7 e iransterred 1o the StEtis registar 11 the
rosull af A A M s pero then 250, otherwise 2=0

119

PROGRAMMING MODEL

0
'| ' J ACCUMULATOR

7 o
¥ INDEX REGISTER ¥
7 0
® INDEX REGISTER X
15 7 [+]
[PCH [PCL] PROGRAM COUNTER
1
7 0
| o1 | [STACK POINTER
7 0

n[v[B[p[1[z]c] PROCESSOR STATUS REGISTER. "
L camny
ZERO
- — INTERAUPT DISABLE
— DECIMAL MOCE
BREAK COMMAND

OVERFLOW
MEGATIVE

120

P (Pl (F (EL TEL [E1 [E1 [E1 TEL

¥

Tl IFI 'EL IFL IEL IED IEL VED IFL IFL TFI

L])

il

[

O O O e e e e e i

INSTRUCTION CODES

—— =L 1
| Agsembly WX | |
Dperation Addrzasing Langasge OF | Ko | P Staha Beg
| Mads | Form Code |Byles| WICIDV
| AOC l |
Add memody to A-M-C =&AL ! Immed:ate | ADC wilper | 2 Wiy
BCCumulAIE: with carry | Zero Page | ADC Oper L] 2
| Tera Page X | ADC Oper % 75 2
| Absokute ADC Oper ED |
| Absolute X ADC Dper X i 3
| Absokte Y ADC Dper.¥ T8 1|
(ndirect. X} ADC [Diper X) L)l 2 |
iingiect ¥ | ADC fOpeii¥ | 71| 7 |
| —t B I ce Al oo 1B —r
AND
AND" memory wiih AAM =4 | Immeduate AND =Dpe 2 2 Wy
accumulator | Tera Page AND Oper 25 2
Fero Page X | AND Oper.X 35 2
Absabute | AND Oper 20 3 |
Absalute.X AND Dper. X o 3 |
Ahsokate ¥ AND Oper ¥ 3l 3
{Indirsc1 X) | AND (OperX) | 21 2 1
(ndireci) ¥ A!d[_)_ @pm ¥ n 2 |
ASL |
Shitt 1eft ane it |See Figure 1) | Accumufator | ASL A [1 Wy
{Memory or Accumulatar) Jero Page | ASL Oper] 2
Zera Page X | ASL OperX 16 ?
Absolute | ASL Oper L3 3
leuu x | ASL Operx | E | 3
BCC
Branch oo cany clear Branch on C=0 | Aslatve BCC Ogpar ! L]
BCS | |
 Branch on carry s | Branch on C=1 | Aelative Bﬁsmﬂﬂ!f | BO 2 =
BEQ |
Branch oo result rero Branch on Z:1 | Aelatve | BED Oper Fo| 2
BIT
Tesi bits in memory AAM W; =N | Tera Page BIT* Oper el 'y Mo My
wilh accumulatar My =¥ Absplute BIT* Dper x| 3]
BMI
Branch on resull minus Branch on N-1_| Relative BMI Dper 0 2 1 _'
BNE | |
Branch on resuli not zere | Branch on 7-0 | Relative BNE Oper [2 SR
e ko et Bl B B L o S
BPL | |
__B_repfn on resull phus | Branch on N=0 | Belative BPFL oper w2 e
BRK ; .
|- Farce Break | Foroed Implied BRE" o 1 1-
| Interrupl
| P24 i
BVC |
th on V-0 | Relative BYC Oper = 2 + B
[y T —————————

Lasently | WEL |
| Name Operation Addrezaing Linguage | OF | We | F Sizius Reg
| Beacrigiion Made farm | Code |Byim| NZCIDV
L bl R | | S o R W o] Bl I,
BYS | |
L Branch an overfiow set | _Ii_laucﬂ an Vo1 | Reldtive BvSOper | 70 | 2 |
CLC |
| Glear carry tag | 0t mphss CLe e o
CLD
Clear decimal mode | O0—=D0 Imaled O b | 1 -
| €L
| 0=l Implied cii w1 o
| 1 g 2 —1
CLv
I:!eirlﬁ\.l_zll_[llr:m_llan [| Implied o ;L] T R |
CMP
Compare memary and A =M Immediate | CMP #0peér cs 2 Wiy
accumulator Iero Pape | CMP Oper €5 2
fero Page X | CMP Oper X b 2 |
Ahsolute CMP Oper ch 3
Absolute X CMP Oper X oo 3
Absolute ¥ CMP Oper ¥ [i.:] i
(Indirect X} CMP {Oper.X) €1 2
___|_1||_d|r_ec_r| Y CMP (Oper) ¥ [14] 2
CPX
Compare memary and X—M Immediane CFX s(per =] 2 i
index X Zaro Page CPX Dper E4 2
Absolute | CPX Oper EC 3 o
CPY
Compare memory and Y¥—M™ Immediate CPY elper [vi] 2 vy
index ¥ lere Page CPY Oper 4 2
I Abzolute CPY Oper ce 3
DEC
Decremant memary M=t -—=M Zern Pagn DEC Oper CE 2 W
by one Zero Page X | DEC OperX] 2
Abspiute DEC Oper CE 3
| | Absobute X DEC Oper.X DE a
DEX
Decrement sdes X i—1-=X implied DEX ca 1 W
| by ane _— el =
DEY
Decrement nden ¥ ¥—1—=¥ Implee | DEY B2 1 wind——
By o 1)
122

) 2 =1 mw e e e e e e e] o 1]

=i

Tl 1FI mi U [T (1 3

e

O

Agzambly KEX l
| Name Operstion Agdrealng Lasguige op Ma. | P Staius Rag
Deserigtian Mode Form Code [Byms | WICI LA
| EOR |
; Exciusive-Dr' mamary ANM =i Immediale EOR s0per | a9 2 W'y
| with accumylator Zeio Fage EDHA Dpet 45 2
| Zero Pagex | EOR Dperk 55 2
| | Absoluie EOR Opar 40 3
| Mbsoluie X EOR Qoer X 50 3
Atsolute ¥ EOR Oper¥ = 3
findmect X} EOR (Oper,X) 41 2
| frdirec) ¥ | EDR (Dper)Y 51 2
b — TR 1 :
| INC |
| Increment memary M1 =M 2emn Fage INC Opet EE 2 W ———
by one Zero Page.X | INC OperX F& 2
| Absoiute INC Dpes EE k]
| o Absolute X INC Cipae.X FE]
INX | |
Incremeni mdex X By one | X - § =X ! Impleed INX | 8 1 v
INY
Ing r|'.|EI'-I noEs Y by ane | ¥+ 1 =Y Iriplied INY Eﬂ 1 y oy
JMP |
Jump 1o new locaton [PC=1) == PCL Anhsolue JMP (per AC 3
[PC+2) —=PCH | Indarect JMP [Dpar) 6L 3
| JSR
| dump to new location PC-2 4 Abzolute JSA Oper 20 3
saving refurn address {PC+1) ==PCL
{PL+2) —PCH
e
LDA
| Load accumalator M4 | Immediate LOA aiper A 2 W=
wilh memary Iero Page LOA Dper AS 2
Zero PageX | LDA OperX BS 2
Absalule LDA Dper aD k|
Absolule X LOA OperX BO 3
| Mbsolule¥ | LDA Oper¥ Ba 3
(Inditgct.X) | LDA [Oper.X) Al 2
(Indinectl.y | LDA (Oper)¥ B1 2 o
LDX |
Load index X M =X Immadiate LOX alipar a2 2 iy ——
with memary fern Page LDN Oper A0 2
Zero Page¥ | LDX OperY BE 2
Absolute LDX Diper AE i
Absolute Y | LDX OperY BE | 3 B
Loy
Load sndex ¥ M =Y Immeduate LY wOper A 2 'y
willl mEMEry Zera Fage LOY Diper Ad 2
Zerg Page.X LDY DiperX B4 2
Absolute LOY Dpes AL a
Absolute. ¥ LOY Operx | BC 3

123

Essambly HER |
Name Dperation Addressing Language o Np P Sualus Bag |
Uesctipies Made form cooe |Byies| NICIOV |
LSR |
Shilt right pne bl {See Figure 1) | Accemutator | LSA A ik 1 vy
Imemary of accumuladar) ZTere Page LSA Oger 46 2
Zeto Fage X | LSA OgerX 56 ?
Absalute LSA Oper 4E 3
| LSA Oper.X SE i
HOP
No aperaton Mo Operation Implied NOP Ea 1 - |
ORA
“OH° memniy with AVM =& Immediate ORa whper L] 2 iy ———-
accumidator Zeto Page 0fa, Dper 05 2
Tern Page X ORA Oper X 15 2
Absalute 0 Oger o 3
Ansolute, X OfA Oper ¥ 10 3
Absolute ¥ 0RA Oper ¥ 14 3
findirect ¥ 0/ {Oper X) a ?
tindiret) Y ofA (Dper ¥ | 11 ? -
PHA
Push accumulatar Ay Impdied FHA, L] 1 e
an stack
PHP
Push precessor slatus Fi Implied PHP] 1
on stack 1
PLA
Pull accumulator At Imphied PLA =] 1 Wi
from stack
PLP
Pull processar stajus Py Iinphied PLP . 1 From Stack
from stack
ROL
Fntate one bl fedt [See Figure 71 | Accumulatos | AOL A 24 1 i ——
(mempry or accumulatos) Zero Page ROL Oper ol 2
fero Page X | AOL Oper X] 2
Absaiute ROL Dper % 3
| - Absolute X | AOL Oper.X € | 3 | 1
ROR
Aotate ane il right |See Figure 31 | Accumulator | ADA A BA 1 | V-
IMEMry 0F BEEUMUIATor) Tero Page RORA Oper & 2
Tero Page.x | ROA OperX L] 2
Absalute RORA Oper BE 3
Absakute X ROR Dper X TE |
124

TEL [E1 1El TE1 [El [E1 [TEL [EL

Fl

[Fl

'Fl

IE|

Tl (E1 'El (FI I!Fl [IEI IFl IFi]

O OO O O O

Aszembly HEX |
Name Operaiinn | Addressing Language OF | Mo |“F" Statws R
Deseriptien | Mide Farm Code (Byes| WICIR

ATl
RELusn fiom inlerrupt PYPCH implied _FITI @ | From Stace
ATS i
Retutn frem subroutine | PCH. PC-1 —PC| Implhed RTS 1 —
SBC ; '
Sublract memary from | A - M-C =& |immediate SBC #0per] 2| W
ACCUMUtAT with Dorrow Tero Page SBC Dpet s ?

Tero Page X | SBC Oped X F5 2

Alsakute | 5C Dper ED 3

Abzohute X | SAC Oper X FO 3

Absnlute ¥ SHC Oper ¥ Fa 3

Indrect X} SBC [Diper X) E1 2

o | tindirect).¥ SHC [Oper).¥ F1 2] B

SEC |
Ser cany flag | =C Implied SEC __35 i 1 = |
SED
55". ﬂrcm:Lrh_D-ﬂ!_ = | —=0 imphied SED F& 1 L
SEI
Set interrupt disable | ==l Implied SEl m |1 '
ELTTY . |
STA |
SIeTE accumulanor L Fero Page STA Dper ES 2
in memory Zern Page X | STA Oper X %5 2

Abselule STA Dper 80 3

Abgi|ite X STA Oper X 50 3

Absolute ¥ STA Dper¥] 3

finadirect X} STA [Dper X) 81 2

findurect} ¥ STA (Dper)Y E1l 2
8TX
Siore index X o memary | X —=M Jero Page STX Oper B 2

Zerg Page ¥ | STX Dper ¥ 96 2

| Ahsalule | aTX _EI[_)EI BE 3

STY
Store index ¥ m memary | ¥ =M Jero Page STY Dper B4 2 -

Zero PageX | STY Oper X 94 2

| - Ahgalule STY Dper BC 2

TAX
Transber accumutalon A =X Emplsed TAX LY 1 W
1o index X
TAY
Transter accumutator A=Y impligd TaY Lt 1 W=
1o index ¥ | B
18X .
Transter stachk poinber |5 =X | imphiad TS5X B&] Wy
fo index X = » -

125

TXA

Mame
Descriplian

anster indew X

e Sccumulalo

S

Transfer index X 1o

stack pointer

TYA
Tran!
1o Ace

e index ¥
rulaio

Dperation

%5

Addretzing Language oF
W Form Cade
Implied THa | -0
|
|Implied TX8 LY
|
|mglied TYA | 98
— i
126

Rurembly HEX

No | "F Sisiua Rag
'Irlll_ NICIDV

1E e IE el IE e Ie MEl el TEl [E el

el

i

riml

R VR VR

oo —
o1 —

Lo

05 —
06 -
o7 —
08 —
e —
oA
0B —
oc —
oo —

OF =
10—
1" —
17—
13 =
"=
15—
=
17 -
18—
w—
T =

1€ =
10—
1E —
1F —
20—
21—
2

23—
n—

v —

. —
28—
C -
0=
E —

HEX OPERATION CODES

BRAK

ORA — iindirect, X
NOP

NOP

NOP

ORA — Zaro Page
ASL = Zero Page
NOP

PHP

ORA — Immediaie
ASL — Arcumulator
NOP

NOPF

ORA — Absobuie
ASL — Abanlute
MO

BPL

ORA — indirect), ¥
HOP

HOP

NOF

ORA — Zeio Page, X
ASL — Zaro Page, X
NOP

cLo

ORA — Abaciute, ¥
NOP

NOP

HNOF

ORA — Absolute. X
ABL — Absoluie, X
NOP

ISR

AMND — ilndirect, Xi
NOP

NOP

BIT — Zero Page
AMND — Zero Page
AOL — Imo Page
NOF

PLP

AMD — Immagiate
ROL — Accumuiator
NOP

BIT — Absolule
AND — Absoiules
ROL — Anaciute

30 —
3E —
3F —
40

an —
42 —

- =
a5 —
46 —
a7 —
a8 —
45 —
ap —
4B —
oG -
P, -
4E —
AF —
50 —
51 —
B2 —

54 —
55 —
56 —
57 —
58 —
56

5A —
58 —
sC —
50 —

NOP

B

AND — indsrechl, ¥
NOP

KDOF

WOF

AND — Zero Page, X
AOL — Zero Page, X
NOP

SEC

AND — Absolule, ¥
NOP

NOP

NOP

AND — Absolute. X
ROL — Absoiute, X
NOP

AT

EDR — lindirect, Xi
NOP

NOP

NOP

EDR — Zero Page
LSA — Zaro Page
NOP

FHA

EOR — lmmedigis
LSR — Accumulator
wNOP

JME Arsolute
EDA — Ansolute
LER — Absolute
NOP

BvC

EOR findirect], ¥
L

NOP

NOP

EDR — Zero Page, X
LSA — Zero Page, X
wNOP

cLi

EQR — Absolute, ¥
HWOP

NOP

NOP

EDR — Absoluie, X

127

SE — LSA — Ateolute, X
5F — NOP
&0 — ATS
61— ADE —
B2 — NOP
Bl — MNOP
B4 — NODP
BS — ADC — Zero Page
66 — AQRA — Zeio Page
&7 — NOP

Bl — PLA

] ADC — immediaie
6A — ROR — Accumuiaios
&8 — NOP

8C — AP — Indirect

&0 — ADC — Absoiute

6E — ROA — Abpolute

&F — NOF

70 — BYS

71 — ADC — lindirect), ¥
72 — NOP

73— NOP

T4 — NOP

5 ADC — Zero Page, X
76 — ROR — Zero Page. X
T — NOP

T8 — SE

T — ADC — Absolute, ¥
TA — NOP

78 — NOP

TC = NODP

mirect, Xi

70 — ADC — Absolule, X NOP
TE — ROR — Absoiute, X NOP

TF — NDP

B0 — NOP

Bl — STA — iindireci, X
a2 NOP

B — NOP

B4 —5TY — ZTera Page

B5 — STA — Zero Page
B — STX — Zaro Paga
ar NOP

B8 — DEY

88 — NOP

8A — TXA

BB — NOP

BC — STY — Absoluie

BD — 5TA — Absalule
BE — STX — Absolute

BF — NOP
8 — BCC
a1 STA — lindiracti, ¥
B2 — NOFP
81 — NOP

84 — STY = Zero Page X
#5 — 5TA — Zero Page. X
W — STX — Zera Page, ¥
97 — NOF

98 — TYA
95 = 5TA — Apsolute. ¥
94 — THS
#8 — NOF
9C — NOF

80 — STA — Absofube. X
9E — NOP

9F — NOF

AD — LDY — Immedule
Al — LDA — tindirect. XI
AZ — LDX — Immedaie
A3 — NOP

Ad — LDY — Zaro Page
AL — LDA — Zaro Page
AS — LDX — Zero Page
AT — NOP

AB — TAY

MG — LDA — Immadiaie
AA — TAXK

AB — NOF

AC — LDY — Absolule
AD — Absaiute

AE — LO¥ — Absoluie

AF — NOP
B0 — BCS
Bt — LOA — lndirect!, ¥
B2 — NOF
Bl — NOP

Bd — LDY — Zero Page, X
B4 — LOA — Zero Page, X
B& — LOX — Zero Page. ¥
BT — NOP

BA — CLV

BY — LDA — Absafule ¥
BA — TEX

BE — NOP

BC — LDY — Absplule. X
BO — LOA — Absolule, &
BE — LDX — Absolute, ¥
BF — NO®

CO0 = CPY — Immeduaie
C1 — CMP — ilnairect, X
Cz — NOP

€3 — NOF

T4 — CPY — Zero Page
C5 — CMP — Zero Page
CE — DEC — Zero Page
CF — NOP

CB — INY

CB — CMP — Immedule
CA —DEX

CB —NOP

CC —CPY — Abgohste
GO — CMP — Absoluie
CE — DEC — Atrsoluls

CF — NOP

OO — BNE

01 — GMP — tndirect!, ¥
07 = NOP

03 — NOP

04 — NOP

D5 — CMP — Zero Page. X
DE — DEC — Zero Page, X
07 — NOP

08 — CLD

08 — CMP — Aowolute. ¥
DA — NOP

128

08 - NOP

DC —NOP

DD — CMP — Absoiute X
DE — DEC — #bsolute. X
DF — NOP

ED — CPE — immedmie
Et — SBC — |ndirect. X
E2 — NOP

El — NOP

Ed — CPX — Zgrg Page
ES — SBC — Zero Page
Ef — INC — Zero Page
E7T — NOP

E8 — INX

ES — S5BC — Immedate
EA — NOP

EB — NOP

EC — CPX — Absciute
ED — SBC — Absolute
EE — INC — Absolute
EF — NOP

FO — BEQ

F1 — SBC — lIndirect, ¥
F2 — NOP

F3— NOP

Fi — NOP

FS — SBC — Zoro Page X
FB — INC — Zao Fage, X
FT — MOP

FB — SED

FB — SBC — Absolute. ¥
FA — NOP

FB — NOP

FC — NOP

FD — SBC — Absolule, X
FE — INC — Absolute, X
FF — NO®

&

[El TEl IEI [El [ElI [EI

[El

1 (EI 'EFl IFI 'E1 IEL IEI 'El 'El [FL ['Fl IFl TEI

APPENDIX B
SPECIAL LOCATIONS

GO L N O L L O I O L £ I G £

Table 1: Keyboard Special Locations

Location:

Hex Decimal

Description:

SCoed 49152

-16384 Keyboard Data

SCe1d 49168

-16368 Clear Kevboard Strobe

Table 4: Video Display Memory Ranges

Ciraan Page Begins at: _ Ends at: .
Hex Decimal Hex Decimal
Text/Lo-Res Primary S400 1924 87FF 2047
Secondary $800 2048 SBFF 3871
Hi-Res Primary S2000 8192 SIFFF 16383
Secondary 54008 16384 S5FFF 24575
Table 5: Screen Soft Switches
Lf{‘::mn' Daciitial Description:
SCASe 49232 -16384 Display a GRAPHICS mode.
SCA51 49233 -16303 Display TEXT mode.
SCAS2 49234 -163@2 Display all TEXT or GRAPHICS.
SC@A53 49235 -163@1 Mix TEXT and a GRAPHICS mode.
SC@54 49236 -16300 Display the Primary page (Page 1).
$C@55 49237 -16299 Display the Secondary page (Page 2).
$CP56 49238 -16298 Display LO-RES GRAPHICS mode.
SC@57 49239 -16297 Display HI-RES GRAPHICS mode.

Tahle 9: Annunciator Special Locations

55
Ann. State Addl{;er:imal Hex

(] off 49248 -16296 SCPBS8
on 49241 -16295 SC@59

1 ofl 49242 -16294 SC@5A

on 49243 -16293 $C@5B

2 off 49244 -16292 SC@5C
= on 49245 -16291 SC@5D
3 off 49246 -1629@ SCO5E
on 49247 -1628% SCO5F

130

MEL

L

TEl TE1 [El [E]l TE!

TEl. T[El

IF. 'E1 IE. [El IE [FI|

] 3]] 3] i} IFi el 1Ei IEl

Table 10: Input/Output Special Locations

d ; Address: .
Function Dkl Hex Read/Write

Speaker 49200 -16336 SC30 R
Cassette Out | 49184 -16352 5C020 R
Casselte In 49256 -16288 SCO6B R
Annunciators | 49240 -16296 SCH58 R/W
through through through
49247 -16289 SCB5F
Flag inputs 49249 -16287 SCR61
49258 -16286 SC@62
49251 -16285 SC@63
Analog Inputs | 49252 -16284 SCo64
49253 -16283 SCP65
49254 -16282 SCH66
49255 -16281 SCho6T
Analog Clear | 49264 -16272 $Ce7a R/W

FIEE R

Utility Strobe | 49216 -16328 SCR40 R
Table 11: Text Window Special Locations
Function L.ucgttion: Min?mumfNormal.fMaximum Valug
Decimal Hex | Decimal Hex
Left Edge 32 S20 | @/8/39 s0/50/517
Width 33 §21 | @/40/40 SB/528/328
Top Edge 34 $22 | @/@/24 SO/S0/518
Bottom Edge 35 $23 | @/24/24 50/518/518

Table 12: Normal/Inverse Control Values

Value:
Decimal Hex
255 SFF | COUT will display characters in Normal mode.

Effect:

L I I LA LA LA A LA LA LA LA LA LT

63 S3F | COUT will display characters in Inverse mode.

127 STF | COUT will display letters in Flashing mode, all
other characters in Inverse mode.

Table 13: Autostart ROM Special Locations

Location:
Decimal Hex Contents:
1810 $3F2 Soft Entry Vector, These two locations contain
1811 £3F3 the address of the reentry point for whatever
language is in use. Normally contains SE@@3.
1812 S3F4 Power-Up Byte. Normally contains $45.
64367 SFB6F This is the beginning of a machine language
(-1169) subroutine which sets up the power-up location.
131

Table 14: Page Three Monitor Locations
Address: Use:
Decimal Hex Monitor ROM Autostart ROM
1088 S3FQ Holds the address
18689 $3F1 of the subroutine
None whi::h_ handles
) machine language
“BRK™ requests
(normaly $FAS9).
:g}? g;};g None. Soft Entry Vector.
1812 $3F4 | None, Power-up byte.
1813 £3F5 | Holds a “‘JuMP instruction to the
1814 $3F6 | subroutine which handles Applesoft 11
1815 $IF7 | “&" commands. Normaly %4C S$38
SFF. -
1816 $3F8 | Holds a “‘JuMP" instruction to the
1817 $3F9 | subroutine which handles *“‘User”
1818 S3FA | ([CTRLY]) commands.
1819 $3FB | Holds a *“‘JuMP" instruction to the
1929 $3FC | subroutine which handles Non-
1821 S3FD | Maskable Interrupts.
1822 $3FE | Holds the address of the subroutine
1823 S3FF | which handles Interrupt ReQuests.

Table 22: Built-In 1/0 Locations

$@ %1 S2 %3 S4 S5 %6 $7 $8 S9 SA SB SC SD SE SF
$C00@ | Keyboard Data Input
SC@19 | Clear Keyboard Sirobe
$CO20 | Cassette Qutput Toggle
$CA3Q | Speaker Toggle
SC@48 | Utility Strobe
$CO5@ | gr | x| nomix | mix | pri | sec | lores | hires ani anl unl unl
SCH6R | cin | pbl ph2 pb3 | gl | gel ge? el repeat 3CA68-3CR67
SCA7@ | Game Controller Strobe
Key Lo abbreviations:
gr Set GRAPHICS mode tx Set TEXT mode
nomix Set all text or graphics mix Mix text and graphics
pri Display primary page sec Display secondary page
lores Display Low-Res Graphics hires Display Hi-Res Graphics
an Annunciator outputs pb Pushbutton inputs
ge Game Controller inputs cin Cassette Inpul
132

'E. [EL [EL TEl [F1 (€1 TF. TEL

IE. [FI

[El

| U] J

¥l

"1 IFI 'F1 'FI 'F1 IFl IEI

Table 23: -Peripller:ﬂ Card i.:‘ﬂ_Locnﬁons

L
| SCose

SCH9B
SCHAD
SCOBD
$COCH
$CODY
SCOEQ
SCOFY

$1

S2 53 5S4 S5 96 S7 S8 S0 SA SB SC SD SE SF|

Input/Output for slot number

] B L e L b — TS

f—
o
L
S—
=
=8
B Table 24: Peripheral Card PROM Locations B]
% S00 S10 520 SIP S40 S50 S6P 570 580 S99 SAD SBA SCO SD@ SEQ SF#
SC109 I -
SC200 2
SC3pa 3
% SC400 PROM space for slot number 4
SC500 5
SCo0E fi
SCT708 7
L
poaem Table 25: 1/0 Location Base Addresses
| Base - Slot E
Address @ 1 2 3 - 5 6 7
— SCa8R SCosn SCaoa SCAAB SCOBA sCaCe sCena SCHES SCOED
I SC@R1 SC@s1 $C@a91 SCaAl SCOBI1 SCHCI SCRDI $CAE] SCAF1
[SCBR2 SCh82 $Coo2 SCRA2 SChB2 SCRC2 SCAD2 SCHE2 SCPF2
I SCe83 SC@83 SCR93 SCRAAZ SCoB3 SCRC3 SCaD3 SCPE3 SCOr3
SCO84 $Ca84 5C094 SChA4 SChB4 SCACY SCoD4 SCOE4 SCHF4
] SC@85 SCHES SC@P95 SCAAS SCABS SCACS SCoDs SCOES SCAFS
I SCHRG SCPR6 SCH96 SCOAL $CAB6 $CRCH SCOD6 $COEG SCOF6
| sCas7 SCOR7 SC@9T SCOAT SCeR7 scacT SCaD7 SCOET SCAr7
I SCARE SC@8s $Ca98 SCOAR SCPBR SCACE SCADS8 SCRES SCOFR
SC@89 $C@A89 $CA99 SCOA9 SCPBY SC@Co SCaDY SCOES SCAF9
ot SCHBA | SCOEA SC#9A SCPAA SCOBA SCHCA SCBDA SCOEA SCOFA
| $CH8B SC@EB SCa9B SCOAB s5COBB SCRCB SCODB SCOEB SCOFB
e SC@AsC SCHRC $Ca9C SCAAC SCeBC sCacc $CADC SCOEC SCOFC
SCHRD SCOSD SC@9D SCRAD 3COBD sCaCD $SCADD SCAED SCRFD |
L— SCORE SCARE SCH9E SCRAE SCOBE SCBCE SCODE SCHEE SCHFE
Rt SCO8F SCR8F SCRA9F SCOAF SCABF SCACF $CODF SCOEF SCOFF
| 1/0 Locations
|
=

133

Table 26: 1/0 Scratchpad RAM Addresses

" Base [Slot Number

[Address | 1 2 3 4 5 6 7 |
5“-1'7.8‘ SA479 80474 50478 SP4TC SB4TD SP4TE S@4TF
SB4FS SPAF9 S@4FA SM4FB SPAFC SPAFD SP4FE SPAFF
SB578 S8579 SBSTA SSTB SB5TC SB5TD S@STE S@5TF
SB5F8 SBSFY SB5FA SOSFB SBSFC S85FD SPSFE SOSFF
50678 SB679 SB6TA SP6TB SBATC S@6TD SW6TE SPGTF
$06F8 SB6F9 SB6FA SP6FB SP6FC S@6FD SBHGFE SO6FF
$@778 8779 S@7TA S@7TB SM77C S@7T7TD SATTE SWTTF
S@7F8 $A7F9 S@TFA S@TFB S@7FC S@TFD S@TFE SOTFF

134

[El TE1 T[El T[E!

lEl TEl

El. €1 1Bl [E1 [E! [E]l [El [IE

IEl

Tl [F1 'Fl1 IFI IF1 IFl IKI

. TFEl

APPENDIX C
ROM LISTINGS

M HRHRRRREHHAAHEAHHHHHHH A

AUTOSTART ROM LISTING

Fl [Fl [F1 [FL [Fl

1
i

| |

0000 R L R e T R T PR R T
[elalald] 3 A

oDoG £ # APPLE 11

Lelelule] S+ MONITOR II

oooo & %

0000 T «# COPYRIGHT 1978 BY
eialnie) g + APPLE COMPUTER, INC
Q000 5 =

o000 10 = all RIGHTE RESERVED
[a [+ s] 11 =

Gooo 12 = STEVE WOINIAK
oooo 13 =

(s alela] 14 #9050 R RRUREEBRNEBBABERenioss ies
oo00 1% «

Q000 1z = MODIFIED NDV 1578
[alalels] 17 @ BY JOHN A

0000 18 #

Q000: P s o e T
Faoo =0 ORG sFBOO
FEQOD 21 DBJ %2000
FEOO ZE essnassnapEennAEsEatcenARNesEAEEn
Faou 22 LOCo EGQU =00
FBOC 24 LOCc1 EGU ®01
FBOO0: 25 WNOLFT EGU 820
Faoo ZE& HNDWDTH EGU $21
FE00 &7 WNDTDF EGU 22
FEO0 28 WNDBTM EGQU %23
FEOOD 25 CH EGU w24
FBaOO 30 cv EGU s235
FBoo 31 GEASL EGU =2&
FBaoo 2 GFHASH EQU =27
FBo0 33 DASL EQU =28
Faoo 34 BASH EGQU s29
FBOC 35 BAB2ZL EGQU =24
FBOO 3& BAS2H EGU s2B
FBOO 37 k2 EGU s2C
FBOO 38 LHNEM EGU s2C
FBEOU 27 2 EGU 2D
Faoo 40 RMMEM EQuU s2D
Faco 41 MASK EGU $2E
FBOO- 2 CHKBUM EGU $2E
FB0o0: 43 FORMAT EGQU $2E
FBOO: 44 LASTIN EGU ®2F
Faoo. 45 LENCTH EGQU %2F
Faco 44 BIGN EGU s2F
FBo0 47 COLOR EGU %30
FBoo 48 MODE EGU %31
FB00 45 INVFLG EGU %32
Faoo 30 PROMPT EQU 33
FBE0O: 851 ¥S5av EGU s34
Faoo 32 ¥S5avi EGU 35
FBOGO: 53 CEWL EGU %3&
FBOO: 54 CSwWH EGU =37
FBOD 35 WEWL EGU $3B
FBOO 56 KSWH EQU 39
Faoo 7 PCL EQU %34
Faoo 58 PCH EGQU %38
FBOOD 59 AlIL EGU s3C
FEOD ad AlM EGU 3D
FBo0 &1 AZL EGU $3E
FEOD sz AZH EGQGU ®3F
FBOD &3 A3L EGU %40
FBOOD &4 AZH EGU %41
Faoo &% A&L EGU %42
FEQO o5 AdH EGU %43
Faoo &7 ASL EGU ®44
F8o0: &E ASH EGU =45

136

'Fl [F1 [Fi [F1 [FL [F1 [F. [F]

il J|

[E

Tl 'l 'Rl 'Rl IE

L)

B At O

FEOO
Facd
FBOoOQ
FBOD
FEOO
FBO0O0
FBOO
FaIL
FE0D
FBOO
FBEOO
FEBGO
FEOO
Faga
FBoo
FEOO
FEOD
Faoo
Faoo
FEa0d
FE00
FEOO
FBOO
FBOO
FBOO
FBOO
FEoo
FEOO
FBOO
FBCOOD
Faoo
FBOC
FBOO

Faoo:

Faoon
FE00
FBoO
FBOO
FBoo
FBEOO

FBOO:
FBOO:
FBOO:
Faoc:

FB0O0
FBOO
F8ao0
FBoL

Faoa

FBOS:

FBO&

Feoa:

FBOA
FEOC
FEDs
Faio
Fa1z
Fa14
FE1&
FE18
FEIS

FB1EC.

FB1E
Feao
FEal
FB24
FB2&
FBzB
Fa2%
FaaC
FBz20
FB2F

Fe3l

"

1 R & -0 eh r)
1B T D e e L e

BG

47 FB

oF

=y

2
EDQ
2E
28
20
=E
2é

=8

Q0 FB

L B e Y e B I [R |
=DM A)P -

L ry

L}
B

134

137

ACC
XREG
YREG
STATUS
SPNT
RMDOL
RANDH
PICK
I
BRKW
SOFTEV

» PUREDUP

AMBPERY
USRADR
MH1
IRGLOC
LINE]
MSLOT
10ADR
KBD
WBDSTRE
TAPEOUT
SPKR
TETCLR
TXTSET
HILXCLR
MIXSET
LOWSCR
HISCR
LORES
HIRES
SETAMND
CLRAND
SETAN]
CLRAN1
SETAND
CLRANZ
SETANG
CLRANI
TAPEIN
FADDLO
PTRIG
CLRAOM
BASIC
BASICZ2

FLDT

RTMAGK
PLOTL

HLINE
HLINEL

S VLINKEZ

VLINE

RTE1

EGu
EGQU
EGu
EGU
EGU
Eau
EQu
EGU
EGU
EQu
EQU
EGU
EGU
EGU
EGU
EQu
EGuU
EQU
EgQu
EGU
EGU
EGU
EGU
EGU
EGU
EQU
EQu
EGU
EGU
EGuU
EGU
EGU
EGU
EGQU
EGU
EGU
EGU
EGU
EGU
EQuU
EGU
EGL
EQu
EGU
EGU
PAGE
LSR
FHE
JSR
PLP
LDA
BCC
ADC
8TA
LDa
EOR
AND
EOR
ST4
RTS
JER
CPY
BCS
INY
JER
BCC
ADC
PH&
JER
PLA
CHP
BCC
RTS

$45
4o
w47
w48
45
®4E
+4F
75
0200
%3F0
£3IF2
$3Fa i
S3F S I
s03F8
s03F8
T3FE
400
$07F8
*CO000
*C 000
SCO10
SCO20
sCO30
sCO50
SC031
®C052
sCO053
$C054
SCO8S
®#CO54
®COST
L0058
sCo8%
EC05A
+C0SH
$COSC
SCO5D
SCOS5E
SCO5F
*C0o&0
SC0&dq
SCO70
%CFFF
SEQOC
REDQOZ

A
@BASCALC

WEOF
RTHASK,
HEED

MASK
(GBASL Y, Y
COLDOR
MASE
(EBASL). ¥
{GEABL)Y. ¥

PLDT
Ha
RTS1
PLOTL
HLIME1
#8011
PLOT

vz
VLINEZ

137

NOTE OVERLAF WITH ASH'

NEW WECTOR FOR ERK
VECTOR FODR WARM START
THIS MUST = EOR #$AS5S OF
APPLESOFT & EXIT VECTOR

BOFTEV+1

Fa32
Fa34
FB34
FB3E
FE3A
FB3C
FBAIE
FB&C

FB43:

FB&4
Fo4as
FEa7
Fasy
Fo4B
FEa4g
FHAE

Fa4D:

Fa4r

Faso:

Fasa
Fa54
Fa5&
Fa5&

FEss

FBISA
FasC
FE8SE
FBSF
FB&L
FB&2
FB&Y
FBas
FB&B

FB&T -

FB&A
FB&D
FB&C
FBSE
FB70Q
FB71
FB72
FB73
FE7&
Fe7s
FB7%
FEre
FB7C
Fa70

FB7E:
Fa7F.
Faal:

FBaz

FE8z:
FE84:
FB8::

FBBY

FEBC:

FEBE
FBBeF

FBRO:

FB32
Fa93
FESS
FES7
FE97
FBE
FB%C
FB%D

FEAD.
FEAT:

FBAS
FaaT

FBAT:

FO

BD
=20
oo
AD
AT
Al

aF
o=
27

20

o0
3o

» 28

30

o3
oF

30
U

47

24

o4

3A

-]

48
3a

o9

10

AL

ar

&2
75
04
BO
oo

FB

FB

FD
Fg

F?
FB

132
143
144
145
145
187
188
149
150
151
132
153
154
155
158
157
158
159
140
lal

162
1483
1464
14T
1&é
1587
1&E
149
170
172
175
174
175
176
177
17
179
ieQ
181
182

CLRECR LDY #%2F

BNE CLRSCZ
CLRTOP LDY #%27
CLRECZ2 &TY W2

LDY #%27
CLRSC3 LDA #%00

STA COLOR

JER WL INE

DEY

BPL CLREC3

RTS

PAGE
GOASCALC PHA

LSFE &

AND HED3

OR& #5504

S5TA GBASH

PLA

AND W% 1E

BCC GECALC

ADC #%TF
GBCALC ©5TA GBASL

ASL &

ASL &

ORA GBASL

5TA GBASL

RTS

LDa COLOR

CLC

ADC #8403
SETCOL AND #SOF

STA COLOR

s

ASL A
ASL A
ASL A
ORa COLOR
STA COLOR

BCRMN LSR &

JSR GBASCALC
LDA (GBASL). Y

SCRNZ BCC RTHMSKI

LSR A

L5R A

LSRR A

LER &
RTHMSKI AND WE0F

RTS

FACE
INSDE1 LDX PCL

LDY PCH

JER PRYX2

JER PRELNE
INSDS2 LDA (PCL. X}

TaY

LSRR &

OCC IEVEN

ROR &

BCS ERR

CHP #8aD

BEG ERR

AND WEET
IEVEN LER &

TaAK

LDA FMT1. X

JER SCRANZ

BNE GETFMT
ERR LDY #%80

LDA #300
GETFMT TAX

138

[F1 [E. [El VEL [¥F1 [El [F1 [El [F1 TEL [El

| T]| i IEl

'El

'l Kl

FE|

VI VR R O U

b

-
=

03

oF
BF
03
8
OB

o

20

Fa

34
DA
o1

Ly

eF

F1
o4
Fa

co

20
oo

) 05

=0

FB
BF
ED

EC
48
=F
O&
03

=i
&l

0E
B3
ED
BY
03
ED

EV

E7
O

=

EB

Fo

EF

FE

FD

F5

=

Fé

FD

Fe

Fe
FD
Fe

FD

FD

=

280

282
283
=284
285
2B&
287

MNNDX 1

MNNDX2

MMND KD

INSTDSP

PRNTOF

PRNTHL

7 MNXTCOL

PRFNZ

PRADR 1

3 PRADRZ2

PRADR3

PRADRA

PRADRS

LD
STA
AND
8Th
TYA
AND
TAX
TYa
LDY
CPX
BEG
LSR
BCC
LER
LSR
OR&
DEY
BNE
INY
DEY
ENE
RTS
OFB
P&GE
JER
PHA
LDA
JSR
LDX
JSR
CPY
IMY
BCC
LDX
CPY
BCC
PLA
TAY
LD
5Ta
LDA
8TA
DA
LDY
asL
ROL
ROL
DEY
BME
a&DC
JSR
DEX
BNE
JSR
LDY
LDx
CPE
BEG
ASL
BCC
L&
~JER
LD#&
BEG

DEX
BNE
RTS
DEY
Ml
JER
LDA
CHP

FMT2. X
FORMAT
w03

LENGTH

#EEBF

#e03
wE0A
MNMDX 3
A
MNNDX3
A

A

#e20

HMNNDXZ

FINND X 1
$FF, 9FF, $FF
INSDS1

(PCLY. Y
PRBYTE
(] 1=}
PRELZ2
LENGTH

PRNTOF
#03
#3504
PRNTEL

MMNEML, ¥
LMNEM
MMEMR, ¥
RHMEM
#5500
®#E0S
RMNEM
LMMEM

A

PRMNZ
wROF
couT

NXTCOL
PRELNK
LEMNGTH
"h0&

w503
FRADORS
FORMAT
PRADRI
CHAR1=-1. ¥
cauT
CHAR2-1, X
PRADR3
couT

PRADR 1
PRADRZ
FRBYTE

FORMAT
#$ED

139

F934.
F93s:

Fo3a
Fe38

FF3E.

FR3c
Fean
FoaF

F940:

Fo41
Foaq

FSa5:

Foaa
Feaa
FI4c
FRaF
Fe50
Foso
Fes3
F554
F93a

Fe58:

Fe5%9
FRSE
FeaC
FYsE
F9&0
F&l
F5&2
FR&2
FRas
FR&5
Fe&d
F3a7
FR&E
FRas
FRda
FI6B
Fe&C
Fe4D
FR&E
FoaF

Fe70:
Fa71

Fo7a
FI73
Fo74
F975
F97e
F977
Fo78
Fo75
Fe7a
F578
Fe7C
FS7D
Fe7E
Fo7F
FIE0
F981
Fea2
983
FoE4
F5Es
Foge
F7a7
Feag
FrEs
FEA
F980
£58C
E9ED

FSBE.

3A
F2

S5& F9

o1

D& FD
DA FD
03
A0
ED FD

Fa

=

01

34

-

288
285
2%
291
252
293

34%
asc
351
asz
383
254
a35

e
357
as8
3539
350

RELADR

PRMTYX
PRNTAX
PRNTX

FRELNK
PRELZ
PREL3

PCADJ
FoaDJa
PCADJI

PCADJSS

RTSZ
FMT1

LDA (PCL). ¥
BCC PRADRG
PAGE

JSR
TANX
INY
DNE
InNY
Tvé
JER
TXA
JMP
LDX

JER
DEX
BMNE
RTS
SEC
LD
LD
TAX
BPL
DEY
ADC
BCC
InY
RTS
DFE
DFE
DFE
DFE
DFE
DFB
DFE
DFE
DFE
DOFE
OFBE
DFE
DOFB
DFE
DFD
DFE
DFB
DFB
DFE
OFB
DFE
OFE
DFE
DFB
DFE
DFE
DF B
DFB
DFB
DFD
DF3
DFB
DFo
CFB
DFB
DFE
OFE
DFE
DFB
DFE
OFE
DFE
DFE
DFE
CFE

FCADJ3

PRHNTYX

PRBYTE

PREBYTE

BE03
LD4a #sAD
couTt

PRELZ

LENGTH

PCH

FCADJA

PCL

RTS=

%04

0D

140

fEL. TE1 IE. [E1 [IEi [El [El [E1 [Fl [FlI [Ei [El

[Fl

IFl IFl [Fi [FI

'Fi

m

IE

BRI R R E R EEE R E e rer.

F9aF

F990
E551
F992
F993
F554

Fo95

F99s

F957

Fe98
Fogg
Fo9a
FR9E

FagC:

E?50
F99E
F?9F
FRaD
Faal
FFaz
F7a3
Fad
Fens
FFaé
FFaT
FFaB8
Foas
FIas
Faab
FRaC
F?al
FRAE
FRaF
FT80
Fs81
FYE2
F?E3
F7E4
F9BS
F#bD&
F¥B7T
FeBE
Fep=s
FFRA
F¥BE
FSBC
FFED
FTBE
FBF
F3Co
FICl
FeC2

FeC7
Fece
FRCS
FRCa
FYCE
FeCe
FeCD
FSCE
FCF
FEDO
FeDl
Fa02
FID2
F9D4
F9DS
FRDé&
Foo7

ol

Jai

as:
383
354
385
JBe
387
388
389
390
371
v
393
374
3rs
394
297
378
399
L00
401
402
403
a04
405
K04
407
40E
K05
410
411

4:2
a1z
414
415
416
417
418
415
420
4z
aga
423
424
425
42&
437
42€
425
430
431
432

432

FeT2

CHAR1

CHARZ2

MNEML

DFB
DFB
DFB
DFB
DFE
DFB
DFO
DFB
DFB
DFB
DFB
DFB
DFE
DFD
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFE
DFB
DFe
DFE
DFE
OFB

DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFE
DFE
DFB
DFEB
DFE
DFB
DFE
DFE
DFEB
DFB
DFE
DFD
DFB
DFD
DFEB
DFE
DFE
DFB
DFE
DFB
DFEB
DFE
DFB
DFE
OFB
DFBE
DFB
DFE
DFE
DFD
DFB
DFB
DFE
DFR
DFB

sCE
4L
®AT
s01
%22
44
%33
0D
=80
508
50
01
22
44
%33
=00
80
04
570
28
$31
=37
54
500
$21
%81
L=
00
00
59
47
5791
72
E&
Ly
85
%70
AT
AT
BAC

sAE
A
509
w00
L]
BA4
sa4
00
%1C
54
$1C
523
850
$E58
%10
Al
7D
$BA
1D
%23
50
w80
%1D
a1
00
=25
L3
SAE
49
sAB
519
23

141

FoDE
FID9
FeDA
FSDR
FeDC
FSDD
F9DE
FRDF
FREQ
FSE1
F9EZ
FPES
F9E4
F9ES
FoES
FRE?
FYEE

FRER:
FREA:
F9ED:

FREC
FIED
FREE

F9EF:
FoFO:
FoF1.

FoF2

F9F3:

Fo9F4

F9FS.

FoF&

FoF7:

FIFE
FoFg

FoFa:

F9FD
FoFLC

FoFD:

F9FE
FYEF
FaoD
Fadl
Fad2
Fa03
FaD4

Fa0S5:
Fala:
FaQ7:

Faog
Faos
Fads
FadE
Fagc
FAOD
FACE
FAOF
FALD
Fall
Falz
Fai13

FAl4:

FAL1S
FALSL

Fal7T:
FalB:
Fal1e:

Fala
FAaLD
Fall
FALD
FALE
FalF
Fazl

434
438
434
437
a3g
&35
340
441
sz
&3
444
488
aas
aay
S4B
4a9
450
451
4352
453
454
455
454
457
438
455
460
441
4ez
463

202

S04
308
504

MNEFMR

DFE
DFEB
DFE
DFB
DFB
DFE
DFB
DFB
DFEB
DFB
DFE
DFB
DFE
CFBE
DFE
DFB
DFB
DFB
DFE
DFEB
DFD
DFD
DFB
DFEB
DFB
DFB
DFB
DFB
DFB
DFB
DFLD

DFB
DFBE
DFE

24
£53
$1E
s23
$24
€53
17
BA1
s00
$14
$5E
*50
BALS
L 1.4
624
L2
SAE
SAE
SAB
SAD
$2%
$00
$7C
00
%15
70
&&D
*5C
wAS
LT
27
%33
*04
%13
534
$11
FAS
LT
23
4D
SDE
L J-
54
S4E
24
sS4
74
*8E
54
44
$CE
54
B
%44
SEB
574
*00
sna
508
sEB4
$74
B4
$28
$LE
74
$F4
SCC
s44
872
sF2
A4
04
%00

142

1

\ .7 BN NN EAOTFE TR TEL TEL TEL TRL OTEL TEY TFL TFL TRL TRL TR TR TEL

R e

FAZ1:

Faza
Fagd
FAZ4
FA2S
Fads
FaAZ7

FAZE:
FAZT:
FAZA:

Fa20
Fa2C
Faz2D
FAZE
FazZF
F&a30
Fa3l
Fa3a
Fa33
Fa34
FA3S
FA3&
FA37
FA3E
FA2T
Fada
FA3E
FA3C
FA3D
FAZE
FaaF
Fadd
Fad0
Faaz
FaA&3
Fadd
FA4S
Fédé
Faa7
Fa4m
Fa4rc
FALD
FASD
Fasl
FAS3
FASS
FAS&
Fass
Fast
FasF
Fas2
Fas3

Fhdb

Faes
FALC
FALF
FAT2
FATS
FA7B
FATE
FATE
FABL
FaB2
Fags
FaBB
FABA
FaBD
FaaF
FAS2
Fam4

FATE:
FATS:

FAFD

o3
FE

ac
34

38
FO

-
el

Da
as

B4
2F
93
=0
=8
54
SO
sF
FF
10

a4
F3
A5
Fa
17
Fa
oF
EQ
F3
o8
o3

o3

5]

Fa
FF

FE

FE
FE
co
co
co
co
CF
co

FE
03

c3

03

o3

307
S0B
509
510
311

Sl=

539 IRG

546
547 BREAW
548

254 DLDBRWK
355
554

557 RESET

5462 INITAN

S48 NEWMON

aA7s FIXSBEV

SAA
HAZ
BhA2

PED

BREAK
{IRGLOC)

a1
PCL

FCH

{BRKY) BRAV WRITTEN OVER BY DISkK BOOT
INSDS1

RGDSP 1

MON

i DO THIS FIRST THI& TIME
SETNORM
INIT
SETVID
SETHEBED
SETAND . AND = TTL HI

SETANL 4 AN1 = TTL MI

CLRANZ ; aN2 = TTL LO

CLRAN3 ;, AN3 = TTL LO

CLRROM : TURN OFF EXTNSN ROM
KEDSTRE . CLEAR WEYDOARD

BELL i CAUSES DELAY IF KEY BOUNCES
SOFTEV+1 1 I8 RESET HI

weAY i A FUNNY COMPLEMENT OF THE
PWREDUP | PWR UP BYTE 777

PWRUP | NO SO0 PWRUF

SOFTEV i YEB BEE IF COLD START
NOFIX . HAS BEEN DONE YETT

HEEQ AT

SOFTEW+1 | 27

NOFIX . YES SD REENTER SYSTEM

E3 . NO 80 POIMT AT WARM START

143

FARD

FaaAD:
GGLER

Fads

Fans:

FAAT
FaaT
Faal
Fang
FaR1

FABZ:

FaBa
FABS

FABB:

Faba
FABC
FABE
FACD

Faco

FACS:

FAZ7?

Face:
Falc:

FACE
FacF

FADGC:

FaDZ
FADS
FADs

FAD7.

FADT
FADA

Fa2
oo
F2

Fa
EQ
FF

FF
Do

jule]
ca2
c3
FF
=]
D3
70
00
&4
04

FB

03
ED
03
Fo

Fé&
03

av

FB

[¢]s]

FD

FD
Fi
Fo

Fo

45
oo

ac

A0

c1
FF
ow

co

co

580
581
582
583
284
383
58s
587
588
589
550
591
292
593
5574
375
598
as?
3FE
559
&00
&01
el
&332
&04
&03
alla
&07
&08
=Tl
&10
&1l
&12
&13
&1&
&1%
al&
&17
&l18
a1%
&30
a2l
&z22
&23
&2'4
&5
batd
&27
&28
&2%

&30
&31
&£32
633
&34
635
&34
637
636
&£39
&40
a4l
=¥ 1=
&a3
add
&43
bHlds
&H47
&48
sag
650
651

STY SOFTEVY FOR MEXT RESET
JMP BASIC | AND DO THE COLD STaRT
NOFIX JHMP (SOFTEV) « SOFT ENTRY VECTOR

rran PrT T P
PHWHUP JSR APPLEIL
SETP@3 EGUL = . SET PASE 3 VECTORS
LDX #5

SETPLP LDA PHRCON-1.X i WITH CNTRL B ADRS
STA BRWV-1, X | OF CURRENT BASIC

DEX
BNE SETPLP
LDA #3CH i LOAD HI SLOT +1
S5TX LDCO i BETPG3 MUST RETURN x=0
STA LDC1 i SET PTR H
SLODP LDY W7 i Y IS BYTE PTR
DEC LDC1
LD&A LDC1
CHP #$C0 i AT LAST S5LOT YET?
BEG FIXSEY | YES AND IT CANT BE & DISK
5TA M5LOT

NXTEYT LDA (LDCO). ¥ . FETCH A SLOT BYTE
CMP DISKID-1.% : I8 IT A DISK 27
BNE SLOOF MO S0 NEXT SLOT DOWN
DEY
DEY i YES 50 CHECK MEXT BYTE
BPL WXTAYT . UNTIL 4 CHECKED
JMP (LOCO)
NOP
MNOF
+ REGDSP MUST ORG $FADT
REGDSFP JSR CROUT
RGEDSF1 LDA #3545
ETaA a3l
LD& wsOOD
ETA A3M
LDX &%FE
RDSF 1 LDA ssal
JSR COUT
LDA RTBL-251. ¥
JSR COUT
LDA ®&BD
JER COUT
+ DA ACC+S
ODFE ®HS5, $44
JER PREBYTE
IME
BMI RDBF1
RTS
PWRCON D OLDERK
DFE ®00. $EQ. s45

DISKID DFE %20, $FF, $00, 8FF
DFE $03. $FF, $3C
TITLE DFE #C1.%D0, $DC
DFBE ®CC, #C5, $AD
DFE %OD, $DB
XLTBL EQuU +
DFE ®C4, $C2, $C1
DFB ®FF, sC3
DFD &FF, 8FF, sFF
* MUST ORG SFEBEL?
RTBL DFD %C1, sDB, sD%
DFE €DO, $D3
FREAD LDA PTRIG
LET ON
LDY #E00
wNOP
NOP
PREADZ2 LDA PADDLO. X
BPL RTS2D
INY
BNE PREADZ2
DEY

144

B 1E1 IF! (E1 1E. (E1 IFL IEl IEl [F1 [Fl [E1 I1Fl [E

Fl ¥l '®El ¥l TET 1P ¥l

OO VO VO L e

an
18
o0
13

oF
10
20
FB
83
o3
10
FD

2C

48
97
oc
CE
EE
ce

EA

E&
EB

co
co
co

co
co

FEB

FC
FC

FB
o4

o3

Co

<o
co

co
FB

Fé
FB
FD

ok LR

o

SEME N g Gd R) e 0 D@

ke b i i i b

S RGeS M

o-am

1 & 13 A3 A3 B3PI RS RS B RE RS

ai

RTS2D
INIT

SETTXT

SETGR

SETHND

TaDY
AFPLEII

STITLE

SETPWRC

VIDWAIT

KBDWAIT

NOWATT
ESCOLD

ESCHDW

ESCNEW

RTE
DA
S5T4
LDA
LD
LD&
LDA
BEG
LD&
LD&
JER
LDaA
8TA
LDA
STA
LD
ETA
LD&
ST4
LD#A
SThA
JHP
JER
LDY
LDw
S5TA
DEY
BNE
RTS
LDaA
EOR
STA
RTS
EQU

BME
LbY
BPL
CPY

BIT
Loy
BPL
CPY
BEG
BIT
JHF
PAGE
SEC
JHP
TAY
LD
JSR
JSR
CHP
BCS
CHP
BCC
CHF
BEG
BNE
NOP
NDOF
NaP
NOP
NQF
NOF
NDP
NOP

#500
STATUS
LOREE
LOWSCR
TATSET
#E00
SETHND
TEXTCLR
MIXSET
CLATOR
w14
WNDTDP
#300
WNOLFT
L =i
WHNDWDTH
#s18
WNDETH
w17

cw

VTABR
HOME

L=
TITLE=1.Y
LINE1+14

STITLE

SOFTEV+1
WHAS
PWREDUFP

#

#2880
NOWAIT |
WaD i
NOWATIT
H#EF3]
MOWATT
WBOSTRB
KBD
KEDWAIT
WEEZS
NOWAIT
KBDSETRE
VIDOUT

ESC1

KLTOL-%C9F
ESCOLD
RDKEY

ESCOLD
HECT i
ESCOLD
#3CC
ESCOLD
ESCNOMW

145

CLEAR THE EBCRNM

GET A CHAR

Y

CHECK

FOR A PAUSE

ONLY WHEHN
NOT S0,

1S WEY PRESSED™

WO
18 17
NO S0

WATT
I8 1T

DO AB

INSURE CARRY BET

USE CHaR AS INDEX

XLATE IJKWM TO CBAD
Do THIS CURSOR MOTION
AND GET NEXT

WSCE i I§ THIS AN N 7

N OF GREATER DO IT

LESS THAN I 7

YES S0 OLD WaY

I8 IT A L 7

¥

CTL 5 7

IGNORE

CLEAR STROBE

WAIT TILL NEXT KEY TO RESUME
FOR KEYPRESS

CONTROL C
YES S0 LEAVE IT
CLR STROBE
BEFORE

DO NORMAL

G0 DO

17T

FBBB
FBBC

FBED:

FBBE
FBBF
FBCO
FBC1
FBC1

FBC2:

FBC3
FBCS
FECT
FBC?
FBCA
FBECC
FBCE
FBDO
FBEDZ
FBD3
FBD4
FBD&
FBDS

FED?:
FEDE.

FBODD

FBDF:
FBEZ:
FBRE4:

FBE&

FBES:

FBEC

FBED:
FEEF:

FBFO
FEFO
FEF2
FBF&
FEF&
FBFE
FBEFA
FBFC
FEFD
FBFF
FCO1
FCoz2
FCOo4
FCO&
Fcea
FCOA
FEoC

FCOE:
FC10:
FCl1&:
FCl4:

FClé

FC1B:
FC1lA:

FCiC
FC1E

FC20:
FCa2:

FCaa
FC27

FC2%9:
FC2B:

FCaC
FC2E
FC30

FCaz:
FC3a:
FC3&:
FC38:
FC3a:

03
04
29

1B
o2
7F
28

FS

=d

24
24
21
[-1-1

FC

FC
o

FB

70
71

72
73
74
7%
Te
77

78
79
ao
a1

B2
83
B4
85
86
87
a8
as
{0
71
72

4
95
&
7
98
9%

100

101

102

103

104

105

10&

107

108

105

110

111

112

113

i14

115

116

117

118

117

120

121

122

123

124

123

128

127

12e

129

130

131

132

133

134

133

136

137

138

139

140

141

142

NOF
NOP
NOP
NOP
NOP
MOP
= MUST OR
BASCALC PHA&
LER
AND
ORA
STA
PLA
AND
BCC
ADC
BABCLCZ BTA
ASL
ASL
oRa
5TA
RTE
BELL1 cHP
BME
LDA
JER
Loy
BELLZ LDA
JER
LDA
DEY
BNE
RTSZ2H RTS
F&GE
STORADV LDY
BETA
ADVANCE INC
LD#&
CcHP
BCS
RTSZ RTS
VIDOUT CHMP
BCS
Tay
BPL
CHP
BEGQ
(o]
BEG
CHP
BHNE
BS DEC
BPFL
LDA
5TA
DEC
ur LDA
cHP
BCS
DEC
VTAB LD&
VTABZ JER
ADC
STa
RTS4 RTS
ESC1 EOA
BEG
ADC
BCC
BEG
ADC
BCC
BEG

& SFBCI

Y

w303
#5004
BASH

#8518
BASCLCE
WETF
BASL

A

&

BASL
BASL

#S87
RTS2B
#%40
WATLT
#sCO
#R0C
WaIT
SPKR

BELLZ

CH
{BABL). ¥
CH
CH
WNDWDTH
CR

weAD
STORADV

STORADY
#3080

CR

LE =B

LF

#3588
BELL1
CH

RTE3
WNDWDTH

cv
BASCALC
WNDLFT
BASL

wsCO i
HOME
#SFD i
ADVANCE
BE [
#SFD

LF i
up i

146

ESC

IF 50 DD HOME AND CLEAR

ESC

A ADVANCE

ESC-C OR D

c
D

—#

?

OR B CHECK

BACHSPACE

DO

&0

up

CHECK

IE. El IEL OIEL OIE. [E1 IF [El IE! [El [Fl [El IF

i el 'l el i 1= i 3]

RO LA

FC3C
FC3E
FCA0:
FCaz:
FCa4 .
FCas:
FCa7.
FCaa
FC4D
FCAF:
FC30:
FCB2
FC54:
FC5é
FCae
FC5A
FCSC
FCSE
FC&O
FCa2
FCse2
FC&d
FCbé
FCLE
FC&A
FC&C
FCLE
FC70
FCT2

FC73:.

FC7&
FC78
FCTA
FC7C
FC7E
FCBO
FCB1
FCcB2

FCB4:

FCBé&
FCcas

Fces:
FCBC:
FCBE:

FCO
FCo1
Fce3

FCo5:
FCa7:
FCTa:

FCeC
FCYE

FCAD:
FCAZ:
FCA3:

FCAS
FCa?7
FCAgG

FCA®:

FCAA

FCac:

FCAE

FCAF:
FCB1.
FCB3:

FCEB4
FCB&
FCBE
FCBA
FCEC

FCBE:
FCCO:

Fcca

=24

21
F&

o1
FC

01
Fé

a2
o2
43
3C
3E
ap
3F
3C

FC
FC

FC

FC

FC

143
144
145
14&
147
148
14%
150
151
152
153
154
133
1846
137
158
15%
140
161
142
143
154
165
16&
167
148
169
170
171
172
173
174
175
178
177
178
17%
180
181
182
183
1a4
185
iB8&
187
188
189
190
151
172
193
154
195
194
197
198
189
200
201
204
203
204
205
208
207
208
205
210
211
21
213
214
215

CLREOP

CLEDOP1

HOME

CR

LF

SCROLL

8CRL1

SCRLZ2

SCRL3

CLREOL
CLEOLZ
CLEOLZ

WALT
HAITZ
WAIT3

NETAL

NETA1

ADC
BCC
BNE
LDY
LDA
PHA
JER
JSR
LDY
PLA
ADC
cHP
BCC
BCS
LD#&
BETA
LDY
STY
BEG

#5FD i ESC-E OR F CKECK
CLREDL :+ E. CLEAR TO END OF LIME

RTS4
CH
cv

VTARZ
CLEOLZ
ws00

BH00
WNDBETH
CLEOP1
VTAD
WNDTOF
cv
#3000
CH
CLEOP1

PAGE

LDA
STA
INC
LD&
CHP
BCC
DEC
LDA
PHA
JSR
LDA
ETA
LDaA
5TA
LoY
DEY
FLA
ADC

LDA

INC

ws00
CH

cvV

cv
WNDETH
VYTABZ
cv
WNDTOP

VTABZ
BASL
BASZL
BASH
BAS2H
WNDWOTH

#4801
WNDBETH
SCRL3

VTABI
(BABL1: Y
(BAS2LY, Y

SCRLZ2
SCRL1
#s00
CLEOLZ
VT AR

CH

#$AD
(BASLI. Y

WHOWDTH
CLEOLZ2

w0l
WALIT3

#2201
WAITZ2

aqL
NXTAL

AlL
A2l
AlH
AZH
AlL

147

ELSE NOT F.RETURN
EEC F 15 CLR TOD END OF PAGE

FCC4
FCC&
FCCB
FCC?
FCCH
FCCE
FCCE
FCDO

FCDz2:

FCD4

FCD&:

FCD%

FCDA:

FCOB

FCDC:
FCDE:
FCED:
FCEZ:

FCE3

FCES:

FCEB
FCE#&
FCER
FCEC
FCEE
FCEF

FCF2:

FCF3

FCFa:

FCFé&
FCF7?

FCFS:
FCFA:
FCFD:

FCFE
FDO1

FDO3
FDOS:

FDO7

FDO%:
FDOB:
FDOC:
FDOE:
FD10:

FD11

FD13:
FD15:
FD17:

FD18
FD1E

FDiD:

FD1F

FDai:

FD24
FD2&

FD28:

FD2E
FD2E

FD2F .

FD32

FD35:
FD38:

FD3A

FO3C
Fo3L

FD30:

FO3F
FRa0

FD42:

FD44
FDa7
FDa#
FD4B

=
5

3D

i
DB
Fo
FE
Fs

-

DE

FD

-
=

FD
20

2C

o8

Fy

34

FC

FC

(]

FE

FC

co

o0

co

co
co

FD
FH
FD

-

FD

218

219
220
===
223
=248
229
22&
227
228
229
230
=31
232
233
234
=33
238
237
=238
=39
240
=241
242
=43
D44
245
2ads
=287
248
249
250
231
252
253
=54
235
254
257
=298
239
280
241
=242
243
264
245
266

ATS4B

HEADR

WRBIT

IERDLY

ONEDLY

WRTAPE

RDBYTE
RDBYTZ

RO2ZBIT
RDEIT

ROKEY

KEYIN

KEYINZ

ESC

RDCHAR

NOTCR

BNE
INC
RTE

PAGE

LDY¥Y
JER
BNE
ADC
BCS
LDY
JSR
INY
INY
DEY
BNE
BCC
LDY
DEY
BNE
LDY
LDY
DEY
RTS
LDx
PHA
JER
PLA
ROL
LoY
DEX
BMNE
RTS
JSR
DEY
LDA
EOR
BFL
EQR
STA
cPyY
RTS
LDY

RTSA4E
AlH

ZERDLY
WRTAFE
BE32

ONEDL Y
TAPEOUT
#8620

#30E
RD2BIT

A
#E34

RDBYTZ
RDEIT

TAFEIN
LASTIN
ROBIT
LASTIN
LASTIN
#$B80

CH
(BASL), ¥

#HE3F
wE40
(BABL), ¥

(KSWL)

RNDL

KEY INZ

RNDH

KED ¢ READ WEYBOARD
KEYIN

{BASL) .Y

KBD

WEDETRD

RDKEY
ESCHEW
RDKEY
LL)]
ESC

INVFLG
HEFF
INVFLG
IN: X
couT

INVFLE

148

Fl IFI 'F1 'Fl 'F1 EI [FI FI [F1 IFL IF1 'F. [Fl IF [F1 IFl IFl IFl IFl IFl IFl IF. IFi

BRI E R E R EErrrerrerrrerrers.

FO4D:

FDS0
FD52
FD54

FD5&:

FD58

FRBA:
FD5C:

FDSF
FD&0
FD&2
FD&4
FD&7
FD&A
FD&C
FD&F
FD71

FO7a:

FD74

FD75:

FD78

FD7A:
FO7C:
FD7E:

FDBO

FDBez:

FDB4
FDe?
Foes
FOEE

FDEE:
FD?0:
FDF2:

FD94
FD9&
FD%%
FDFC
FDFE
FDAO
FDAZ
FDAZ
FDAS

FDA7:

FDAY
FDAB
FDAD
FDAF

FDBE1L:
FDE3:

FDB&
FDBE

FDEB:

FDED
FDCO
FDC3
FDCS
FDC&
FDC7
FDCw
FDCA
FDCB
FDCD
FDCF
FDD1
FDD3
FDD4
FDD&
FDD%
FDDA
FDDB
FDDC
FDDD
FODE

EA

3E
o2
FF
ac

BD
ED

oz

FF

FD

E FD

FD

FD

o2

FC

FD

F?

FD

FD
FD

FD
FC

FD

322

324
225
3RE
327
328
329
330
331
332
333
334
33s
335
337
338
339
340
341
342
243
344

NOTCR1
CANCEL
GETLNZ
GETLN

BCKSPC

NXTCHAR

CAPTET

ADDINP

CROUT
PRA1

PRY X2

XAME

HMODBCHK

XAM
DATADUT

RTS4C
XAMP M

ADD

PRBYTE

LDY

PAZE
LD#A
OR#&
5Ta
LDa
ETA
LDA
AND
BNE
JER
LDA
JER
LDa
JER

BCC
RTE
LSR
BCC
LSR
LSR
LD&
BCC

ADC
PHA
LDa

PLA
PH#A
LSR
LSR
LSR
LSR

IN, X
#SBE

BCHEPC

L =]

CANCEL

#SFB

NOTCR1

BELL

NETCHAR

#%0C
couT
CROUT

PROMPT

couT
LL1o3

GETLNZ

RDCHAR

HET5

CAPTST
{BASL). Y

#SEQ

ADDINF

WaDF
IN, X
#3$8D
NOTCR

CLREDL

WeED
couT

#8507

DATAOUT

PRAL
WEAD
couT

(a1l .,

Y.

PRBYTE

MXTAL

MODBCHK

A
XAM

WSED

»>P P

149

SHIFT TO UPPER CASE

FDDF:

FDEZ
FDE3

FDES:
FDE7:

FDE®
FDEB

FDED:

FDFQ

FDF2

FOF4
FOF&
FOFE
FOF%
FDFC
FDFD
FOFF
FEQO
FEQG

FEDZ2:

FEQ4

FEQS:

FEQT

FEO%:
FEQB:
FEOD:
FEOF:

FEL1
FEL3

FEI1D:

FE17

FE18:

FElA

FELD:
FELF:

FEZ20
FER2

FE24:
FE2é4:

FEZ®
FE2%

FE2B:
FE2C:
FEZE!

FEZ0
FE33
FE3S
FEZ&
FEZ8
FE3A
FE3C
FE3F
FE41
FE44
FE&&
FE49
FE4B

FE4E:

FES0
FES3
FESS
FESB
FESD
FE2D
FESE
FE&1
FE&3
FE&4
FE&7

FE&A:
FE&C:
FE&LE:

FE&F

ES

oF
BO
Ba
oz
0&
3&
AD
o2
3=
35

78

a5

34
SF

1a
BA
BB
31
3E
40
40
o2
a1

34
FF
3

o1
3E
32
44

F7

oo
33
3a
38

FD

oo

FEB

01

FC

FD
FD
FD
FD
FD
FD
Fc

FE

Fg
F9

Ja2
343
364
345
Jab
3a7
3468
3465
370
371
ave
373
374
375
a7vs
77
378
379
380
381
J8z2
383
384
383
384
3Is7
3s8
389
azo
a9
w2
e |
J74
a9s
3%a
w7
ava
ase
400
401
402
403
404
403
404
407
408
309
410
411
aiz
413
414
415
414
417
418
419
420
421
422
423
a2
423
428
427
428
429
430
431
432
433
434

PRHEX
PRHEX2Z

couT
CouTi

CouTI

BL1

BLANH

STOR

RTES
SETMODE

SETMDZ

LT
LT2

MOVE

VEY

VFYOK

LIST

LIST2

JER
PLA
AND
OR&
CHP
BCE
ADC
JHP
CHP
BCC
AND
8TY
FHA
JER
PLA
LoY
RTS

PRHEXZ

WE0F
UL 1=]a]
BEEA
cauT
L4 a1
(CBWL)
HEAD
couT
INVFLE
=T

VIDWATT

YS5AaV1

FAGE

DEC
BEQ
DEX
ENE
cHP
BNE
5TA
LDA
5TA
INC
BNE
NG
RTS
LDY

STA
RTE
LDX
LDA
STA
STA
DEX
BPL
RTS
LDA
5TA
J5R
Bgc
RTS
LDa
CHP
BEG
SR
LD#&
JER
LDA
JSR
LDA
JSR
LDA
J5R
LD#&
JER
JSR
BCC
RTS
JSR
LDA
FHA
JSR
JER
S5TA
8TY
PLA
S5EC

YEAY
xaME

SETHDI
#SDA
KAMPM
MODE
A2L
LASLY. Y
AL
RTSS
ATH

YSAV
IN-1,Y
MODE

#8501

Azl X
AdL, X
ASL. X

LTZ

taLLi: Y
(ALY Y
NXTA4
FMOVE

(ALLY, ¥
fAGLY, Y
WFYOK
PRAL
TALLY . ¥
PREYTE
#8A0
couT
#s40
couTt
(AdL), ¥
PREYTE
L b
couTt
NEXTAL
VFY

ALPC
we14

INSTDSP
PCADJ
PCL
PCH

150

GD CHECK FOR

PAUSE

FL IF1 [FL (F1 [El [F1 IFL [Fl IFl IF1 [FI [Fl [Fl [FL

'l El 'El1 'El 'Kl 'Ei Kl

B L VU A A L L

FEVO
FE72
FE74
FETS
FE7S

FE7&:

FE7B
FETA
FE7C
FE7D

FETF:
FEBQ:

FEB2
FEGAS
FEB&

FEBB:

FEES
FEBB
FEBD
FEBF

FES1:
FEF3:

FE?3

FETY:

FES9
FESB

FE?D:

FE9F
FEAL

FEA3:
FEAS:

FEAT
FEA®
FEAT
FEAR
FEAD
FEAE
FEAF
FEBO
FEB3

FEB&:
FEB%;

FEBF:

FEC2
FEC3
FEC3
FEC4
FECS

FEC&:
FEC?:

FECS
FEC®
FECA

FECD:
FECD:
FECF:

FED2
FED4
FED&
FED8
FED®
FEDE
FEDE
FEE1
FEE3
FEE4
FEE&
FEES
FEED
FEED

FEEF:
FEFO:

o1
EF

o7
3C
El

Fa

03

FC

FE

FE

FC

439
438
437
438
439
440
441
aagz
4a3
444
a45
a4
447
448
449
450
451
452
453
a54a
455
i1}
a57
458
459
as0
451
462
&3
454
455
448
457
448
asq
70
471
472
473
474
478
478
477
478
47y

agi
4@z
483
484
485
ags
ag7
488
ABS
450
491
a2
453
a94
495
59s
457
498
ag9
500
501
302
503
S04
505
504
507

Al1PC

H1PCLP

ALPCRTS
SETINV

BSETNORM
SETIFLG

SETKBD

INFORT
INPRT

BETVID
DUTPORT
OUTPRT

IDPRT

IOPRT1
IOPRTZ

XBASIC
BASCONT
&0

REGZ
TRACE
® TRACE

STEPZ

USR

WRITE

WA

WRBYTE
WRBYTZ2

sSBC
BNE
RTS
FAGE
TxA
BEG
LD&
ETa
DEX
BPL
RTS
LDY
BHE
LDY
STY
RTS
LDA
STA
LDX
LDY
BNE
LD#A
STA
LDK
LDy
LD#&
AND
BEG
QR &
LDY
BEG
LD#
EGU
STY
STa
RTE
NOP
NOP
«JHP
JHP
JER
JBR
JHMP
JMP
RTE

#E01

LISTZ

A1PCRT
ALl X
PCL: X
ALPCLP

#£3F

=

BETIFLG

HEFEF
INVFLG

%00
AZL
#HSWL

BKEYIN

IOPRT
#E00
A2l

#T Skl
®COUTI
AZL
#E0F
IOPARTL

#I0ADR/ 256

#8000

IDPRTZ2
#COUT1 /256

"
LOCO. ¥
LOC1: X

BASIC

pasICcZ

alFC
RESTOR
(PCL)

REGDSP

I8 GONE

NDP
RTE
NOP
NOP
NOP
NOoP
NOP
JMP
PAGE
LDA
JER
LDY
LDX
EOR
PH#A
LDA
JER
JER
LDY
PLA
BCC
Loy
JSR
BEG
LDX
ASL
JER

USRADR

wE40
HEADR
BT
"s00
(ALL: X

(a1l X
WROYTE
NETAL
#s1D

WR 1
322
WRBYTE
BELL
#s10

=}
WREIT

)

151

594, %00
95, #01

STEFP 15 GONE

FEF3

FEFS:
FEF&:

FEF%

FEFA:
FEFB:

FEFD
FFOQ
FFO2

FFOS5:

FFO7
FFOA

FFOC:
FFOF

FF11
FF14

FFLé
FFL5

FF18
FF1D

FF1F.

FFaz2

FFo4

FF2&

FF29:

FF2B

FF2D:
FF2F
FF32:

FF34
FF37?

FF3A:
FF3C:

FFaF

FF&1
FFaz

FFa4:

FFas

FFa8:
FFa9:

FFah
FF4C
FF&E

FF50:
FF51:
FF32:

FFS54

FF33:
FFS7:
FFS58:
FFS%:

FESC
FFSF

FF&2:

FF&s
FF&s

FF&b:

FF&T

FF&B:

FF&D
FF70
FF73
FF7&
FFTE
FFTA
FF7EB
FF7D
FFE0

FFE2:

FFES
FFEB7
FFBA

48

4%

B4
aF
ke
8%

FE

FC
FC
FC
FC
FC

FC

FC

FC

FD

FD
FD

FD

FE
FH
FE
FE

EF

FO
FF
FF

FF
FF

FF

so8
509
310
311
312
913
m14
815

217
518
"e
520
521
sa=
523
S24
52T
Sré
a7
=28
527
530
531
S3a
533
534
535
53&
537
538

540
541
S42
543
544
545
46

545

CRMOMN

READ

RD2

RD3

PRERR

BELL

RESTORE

RESTR1

SAVE
S5aV1

OLDRST

MaOK

MONT

NETITH

CHRSACH

DI1G

BNE WREYTZ
RTS

JER BL1
PL&

PL&

BME MOMZ
JER RD2BIT
LDA &%1&
JSR HEADR
B5TA CHKSUM
JSR RD2BIT
LDY #s24
JSR RDBIT
BCS RDZ
JBR RDBIT
LDY #$3B8
JER RDBYTE
S5TA (AlL. X}
EOR CHKSUM
STA CHKSUM
JBR NXTAL
LDY #€35
BCC RD3
JSR RDEBYTE
CMF CHKEUM
BEG BELL
LDA #S$CS
JSR COUT
LDa wsD2
JER COUT
JEBR COUT
LDA &$87
JHMP COUT
PAGE

LDA STATUS
PHA

LDA ASH
LDX XREG
LDY YREG
PLP

RTS

BTA ASH
STX XREG
STY YREG
PHP

PLA

STA BTATUS
TSX

8TX SPNT
LD

RTS

JSR SETMNORM
JSROINIT
JER BETVID
<SR SETKED
PAGE

CcLD

JSR BELL
LDA #8A4
STA PROMPT
JER QETLNZ
JSR IMODE
JER GETHUM
ETY YS5aW
LDY #&17
DEY

EMI MON
CMP CHRTEBL. Y
BNE CHRSRCH
JSR TOSUB
LDY vysay
JMP NXTITHM
LDx #$03

152

3
k

[S| O O Y

1
L

) JO | 4

[Fl

1
3

| FE.F) KL ORDO'MLO'RLOIFLORLO'FLOTFL TR TR TR TP TF

B e e e rerrrrrerrrerrereis

FFBC
FFED
FFEE
FFEF
FFo0
FFTL
FFea
FF95
FFo&

FF7E:

FF94

FFoC:

oA

oA
o4
04
28
Ch
10
A5
Do
BS

&3

3JE
aF

FB
31
0&

3F
3D
41

F3
o6&
oo
JE
aF
00

BO
0A
D3
ea
Fa
ch

FE
E3

31
oo

&01
&02
&03
&04
&05
&046
&7
&s08
&0%
&10
&11
&12
&13
&14
613
&lé
al17
518

NXTEIT

NATBAS

-

+*

NXTESZ

GETNUM

NXTCHR

TOSUE

IMODE

CHRTEL

SUBTEL

ASL

ASL
ASL
ASL
ROL
ROL
DEX
BPL
LDA
BNE

LDA
STA

5Ta
IhE
BEGQ
BNE
LDX
5Tx
85TX
LDA
T
ECR
cHP
BCC
ADC
cMP
BCE
RTS
LDaA
PHA
LD
PHA
LD
LDY
ETY
RTS
PAGE
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFE

DFB
DFB

A
'
A
A
&
ARL
AZH
NXTBIT
MOCDE

NYTBESZ

agH, X
ALH. X
AJH. X

NXTBAS
NXTCHR
#5000
A2l
ARH
IN. Y

Li 3=l
wH0A
DIG
#SBE
LI
DiG

H#G0/23
SUBTBL
MODE

#3200
HMDDE

w07

=02
€05
sF0
€00
SEE
t Lkl
247
sCh
899
sp2
CT
SBE
sC1
%35
s8C
sC4
74
tAF

-

Y

T €MD nNOW LIKE USR

E CMD NOW LIKE USR

FFEC
FFED
FFEE
FFEF
FFFO
FFF1
FFF2
FFF3
FFFa
FFFS
FFF&
FFF7
FFFE
FFFS
FFFA
FFFC
FFFE

ENDASH

o
2
]r
B3
7F
5D
cC
BS
FC
17

pO-TIOT
O M B G ER

DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFE
DFBE
DFB
DFBE
DFB
DFB
DFE
D#

D

D

17
%17
SZ0
E1F
%83
s7F
%50
SCC
05
SFC
.17
17
BF3
03

NHI

RESET
IRG

Ir

Fl ITF]

IFl

IF. (FI IF. [F1 IF. [FI

‘Tl Kl Ml 'F1O'FL IR EL TFED IFL O IF. TF

I

= MONITOR ROM LISTING

&

—
by

-

-

BRI R

Felu:
Faul:
Faud:
Fal5:
Fedb:
Fdud:
Fouh:
FddC:
FBOE:
FE10:
FBl2:
FBl4:
Félb:
FBla:
Fala:
FB1C:
FglE:
FE20:
Fgdl:
Fa24:
FE2G:
Fada:
Fa29:
FBiC:
Fazh:
Fa2F:
Falil:
Fgi2:
Fdld:
Fol6:
Fdig:

FBiA:
F3iC:
FB3E:
FB40:
Fod4l:
FB44:
Fod4b:
FE47:
FEd8:

L

Fd

FB

FB

Fa

Fé

1la

130
131
132
133
134
135
136
137
138
139
L1440
141
142

SENT
RHDL
RNDH
ACL
ACH
XTHEL
KTNDH
AUXL
AUNE
PICK
IN
USRADR
NMI
IRQLOC
I0ADR
KBD
KBDSTRB
TAFEOUT
SPKR
TXTCLR
TATSET
MINCLR
MIASET
LOWSCR
HISCR
LORES
HIRES
TAPEIN
PADDLO
PTRIG
A5 IC

BASIC2

PLOT

RTMASK
PLOTL

HLINE
HLINEL

VLINEZ
VLINE

RTS1
CLRSCR

CLRTOP
CLRSC2
L]

CLR3C]

GBASCALC

EFZ
EPZ
EFZ
EPZ
EPZ
EPL
EPZ
EFZ
EPZ
EPZ
EgQU
EQU
EQU
ECU
ECU
ECU
ECU
EQU
ECU
ECU
ECU
EQU
EQU
EQU
EQU
ECU
EQU
EC

ECU
ECU
EQU
EQU
CRG
LSRR
PHE
JER
FLF
LDA
BCcc
ADC
STA
LDA
EOR
AND
EOR
STA

INY
JSR

BCC
RTS
Loy
BNE
LDY
5TY

LEY
LDA
STA
JSR
DEY
8FL
RIS
PHA
LSR

5449
S4E
S4F
550
$51
552
551
354
§55
395
50200
503Fo
S5UFB
$03FE
$C000
sCLuuo
5Col0
sCu2y
$C0O30
SCUSE
30051
sC052
5C053
5Cu54
$C055
SCu5a
3CU57
sCOBu
sC064
$CATd
SEGUU
SEUUI
SFE4YU ®UM 3TARRT ADDRESE
A Y-COORD/2

SAVE L3B IN CARRY
GEASCALC CAll BASE ACR Id GBAZL,H

RESTORE:LSE FRCM CARRY
FA0F MASKE S0F IF EVEN
RTMASK
$5EU “ASK SFO IF oDD
MASE
(GBASL) , ¥ DATA
COLOR ¥OR CCOLOR
MASK AND MASE
[GBASL) , ¥ XOR DATA
(GBASL) , Y TO DATA
PLOT FLOT SQUARE
H2 DONE?
ATS1 YES, RETURN

O, INCR INDEX (X-COORD)
PLOTI1 BPLOT NEXT SCUARE
HLINE]1 ALWAYS TAKEN
§501 HEXT ¥-COORD

SAVE ON STACK
PLOT ELOT SQUARE
V2 DONE?
VLINEZ WO, LOOP.
#52F MAX ¥, FULL SCRN CLR
CLRSC2 ALWAYS TAEEN
#1527 MAX ¥, TOP SCRN CLR
vz STORE AS 30TTOM COORD
FOR VLIME CALLS

£527 RIGHTMOST X-COORD (COLUMN)
850 TOP COORD FOR VLINE CALLS
COLOR CLEAR COLOR (BLACK)
VLINE DRAW VLIHNE

NEKT LEFTMOET X-CCOORD
CLRSC3 LOOP UNTIL DONE.

POR INPUT O0ODEFGH
A

156

'l Il Fi /Fl1 'F1 NI /L /E IRD TN I¥L IT¥ IF1 IF " IF ™ IF IF IF IF TE

I VIR L A T L

Fa49:
FEd4B:
F&4D:
FEAF:
Fa50:
Fi52:
FE54:
Fa56:
FE58:
FE59:
FBS5A:
FE3C:
FB3E:
FasPf:
Fael:
Fd62:
Fob4:
FHGG:
Fubd:
FEe9:
FBGA:
FgaB:
FH6C:
FaaE:
Fuiuz
F&ail:
FE7Z:
Fa73:
FH76:
FB7H:
Fd79:
Fe7B:
F87C:
Fg7D0:
PRIE:
FATF:
Fedl:
Fddd:
Fegd:
Fobb:
FBE9:
FaBC:
FHEE:
FdeF:
F830:
FB92:
FE9l:
FEys:
Fo97:
FE9S:
Faya:
FESC:
FG90:
FBAG:
FGAd:
FBAS:
Fafi:
Fua9:
FBAA:
F3AD:
F8AF:

FeBl:
Fgal:
FaBa:
FdB6:
FEB7:
FoBg:
FEBA:
FABC:
FEBE:
FeBF:
FBCl:

3
a9
85

85
£l

29 8

Al
98
AU
EY
Fu
48
ad
4A

a3
K]

B

18
a2
vF
26

kD
i0

47
26

4

Ja

14
Al
uic

62
9
04

gu
il

FD
F9

™

o

F9

143
144
145
l4s
147
148
149
15u
151
132
153
154
155
136
157
158
154
law
161
la2

182
183
184
185
146
187
led
189
194
191
1392
193
154

9 193

198
187
158
149
Z00
241
202
203
2ud

208
209

215

GECALC

NXTCOL

SETCOL

SCRN

SCRN2Z

RTMSKZ

INSDS1

INSD52

IEVEN

ERR

GETFMT

MNNDX L

AND
ORA
5TA
PLA
AND
[lade
ADC
STA
ASL
ASL
CRA
3TA
RIS
LDA
CLC
apc
AND
STA
ASL
ASL
ASL
ASL

S5TA
RTS

FHP
JSR
LDA
PLP
BCC
LSR
LSk
L5R
L5R
AND
RTS
LDX
LDY
JSR
J5R
LCA
TAY
LSR
acc
ROR
BCS
CMP
BEQ
AND
LaR
TAX
LDA
JSR
BHE
LDy
LDA
TAX
LOA
5TA

STA
TYA
ARD
TAX
TYA
LpY
CEX
BECQ
LSE
BCC
LSR

GBASCALC
(GBASL) ¥

RTMSEZ
A
A
A

A
#50F

BCL
PCH
FRYX2
PRELNK
(PCL, X)

A
IEVEN
A
ERR
#5A2
ERR
4587
A

FMTL, X
SCRNZ
GETFMT
1580
LEYY

FIIT2, X
FORMAT
Fud

{P=1 BYTE, 1l=2
LENGTH

#36F

#5013
#SBA
MKNDXD
A
MNNDX3
5

157

GENERATE GBASH=0C0O0UWOLFG

AND GBASL=HDEDECQ0

INCREMENT CCLOR BY 3

SETS COLOR=17+A MOD lé

BOTH HALF BYTES OF COLOR EQUAL

READ SCREEN Y-COORD/2
SAVE LSB [CARRY)

CALC BASE ADDRESS

GET BYTE

RESTORE LSB FRCM CARRY
IF EVEN, USE LO H

SHIFT HIGH HALF BYTE DOWN
MASK 4-BITS

PRINT PCL,H

FOLLOWED BY A BLANK

GET OF CCDE

EVEN/ODD TEST

AIT 1 TEST
MEXXXX11 INVALID GP

QPCODE 599 INVALID
MASK BITS
LS8 INTO CARRY FOR L/R TEST

GET FORMAT INDEX BYTE
R/L H-BYTE ON CARRY

SUBSTITUTE 500 FCR INVALID OF5
SET PRINT FORMAT INDEX TG 0

INDEX INTO PRINT FORMAT TABLE
SAVE FOR ADR FIELD FORMATTING
HASK FOR 2-BIT LENGTH

BYTE, 2=3 BYTE)

CPCCDE

MASK FOR 1XXX10lu TEST
SAVE IT

QPCODE TO A ARGAIN

FORM INDEX INTC MNEMONIC TABLE

FeC2:
FBCI:
Facss
Faca:
FACH:
FHCY:
FeCh:
FHECC:
FECD:
FaD0:
FdD3:
FHD4:
FdDb:
FED9:
FdaDB:
F8DE:
FaEU:
FeELl:
FdE3:
FuE5S:
FEET:
FEE3:
FEEA:
FHEB:
FHEE:
FoFu:
PEF 31
FeF5:
FEET:
FEHES:
FdFB:
FaFD:
FuFE:
FdPF:
FaUl:
Foauld:
FOL6:
Fau?:
Faud:
F30C:
FSJE:
F310:
Fall:
F314:
F9lé:
Fola:
F9ls:
F9lE:
ESdl:
Fedls
F9la:
F9273
F2ig:
Fodaz
P9zZa:
Fazh:
Fall:
F932:
F934:
F%io:
FSid:
F338:
F93C:
F93D:
F33F:
Fo4u:
Fadl:
Fadd:
Fad45:
F9dd:
F34A:
F94C:
F94F:

44
s
q
(w]i]
Cd
B8
ou
&0
FF
il
44
Bl
u
AZ
20
ca
Ce
g
Az
co
U
-1:]
Al
8y
a3
B9
H5
AL
Al
Jo

A
%]
ou
b
a0
CaA
Cu
240
Ay
a2
Eu
Fu
un
qu
1]
2
BD
Fu
2u
(a1}
ou
L1
3u
24
AL
cs
Bl
Huy
20
A
Eg
Cu
Co
98
24
BA
4
a2
A9
24
CA

24

FA

F2

43
L

aa
DA
ol
a8
iF

Fl

u4
F2

2C
ud
A7)
Ji
us

2C

oA

ul
Ad
ED

FF
Fa

FO

Pa

B3

FA

FO

F4g

F3 2

FD

FD

FD

FD

FD

11le
217
218
219
224
221
222
223
224
125
238
127
228
229

277
278
279
244
281
zaz
281
284
245
2H4
187
248

MNNDXZ

MNNDX 3

INSTDSP

PRRTOP

ERNTRL

PRMN]

PRMNZ

FRADR1

PRADRZ

PRADR]

PRADRY

PRADRE 3

RELADR

PENTYX
PENTAX
PRKETX

PRBLNK
PRBL2
PRBLI]

LER
CEY
BHE
INY
DEY
BNE
RTS
DFB
J5R
PHA
LDA
J5R
LDX
J5R
CPY
INY
8cc

CEY
BCC
BLA
TAY
LEA
STA
Loa
aTh
LOA
LDY
ASL
ROL
RAL
DEY
BNE
ADC
JSR
DEX
BNE
JSR
LoY
LDX
CPX
BEQ
ASL
BCC
LDA
JSR
LDA
8EQ
J5SR
CEX
alE

TS
DEY
dMI
JER
LCA
Cup
LDA
BCC
J5R
TAX
INX
2NE
INY
TYA
JSR
TXA
JNE
Lo
LA
JER
DEX

A
#5524

MNNDKZ

“4HNDXL

SEF,5PF,5FF
INSDS1

{PCL) , ¥
PRBYTE
#1501
PRBL2
LENGIH

PRNTOP
#3503
504
PRNTEL

MNEML, ¥
LMNEH
MNEMR, ¥
RMNEM
#300
¥505
RMNEM
LMNEM

n

PRMN2
§58F
cour

PRMNL
PRELNE
LENGTH
#5U6

LETE]
PRACRS
FORMAT
BRADR3I
CHARL-1,X
couT
CHAR2-1,X
PRADRI
couT

FRADR1

FEADR2
PRBYTE
FORMAT
§5E8
{PCL),¥
ERADR4
FCADJ3

PRNTYX

PRBYTE

PRBYTE
§503
#5A0
cour

158

1) 1XXX101U=p00LlulAXK

3) XXAYYYUleduUllIXXX
1) KAXTYYLC=3udlluRsx

4y XAAYYLUU=DGuUlulxXx
51 AXNAXOUO=»J00KKXKX

GENM FMT, LEN BYTES
SAVE WMNEMONIC TABLE INGEX
PRINT I BLANKS

PRINT INST (1=-1 AYIES)
IN A 12 CHR FIELD

CHAR COUNT FOR MNENGHIC PRINT

RECOVER MNEMONIC INDEX

FETCH 3-CHAR MNEMONIC
(FACKED [N 2-BYTES)

SHIFT 5 BITS CF
CHARACTER INIC A
{CLEARS CARRY)

ADD "7 DFESET
OUTFUT A CHAR OF MNEX®
OUTFUT 3 BLANKS
CHT FOR 6 FORMAY BITS

IF X=3 THER ADDR.

HANDLE REL ADR MODE
SPECIAL (PRINT TARGET,
NOT CFFSET)

PCL, PCH+OFFSET+1 TO A, Y
+1 TO ¥, X
CUTPUT TARGET ADR

OF BFANCH AND RETURN
BLANK COUNT

LOAD A SPACE
OUTPUT A 3LANK

M M M M FomoFFOF PP P IFL P PP P PP I TR I

m n

R

FoCu:
Faci:
FaCh:

F8& 3NE
RTS
CADJ ZEC
2 PCADJ2 LDA
33 PCADJ Loy
TAK
g1 BPL
ZEY
A FCADJY ABC
11 3CC
20 54
ul U5 FMT1 DFA
U3 9
22 ldh DFB
33 ub
u4 3d UFe
U4 Zu
i3 303 nDes
gd L4
ud Jud DFA
54 3B
8y I10 DFB
Su U
44 3111 DFBR
ub C8
i 12 uFB
-4 44
vl 313 oFe
g4 44
22 il4 DFB
i3 uc
(*E] il5 DOFB
vl 22
13 ile nrs
80 w4
il? DFB
31 B7
ilH OFB
3ls FMT2 OFB
320 DFB
321 DFB
122 OFB
123 OFB
324 oFEB
3a5 DFB
i2e oF8
327 CFB
324 CFB
3jas CFa
330 DFa
33l DFB
332 DFB
AYS AC
Ab A4 3324 CHARL ASC
Uu Do
Ad Uu 234 CHARZ CFB
335 *CHAR2: it A e
lie * MNEML
317 (A}
3 . (B
33y . {C)
iqu - (o)
141 = (E}
j42 =
1 Ba 1C
23 5D &B ANENL ore
13 Al

PRBL2Z LOOF ONTIL CQUNT=0

LENGTH
PCH

BCAEJY

FCL

RTS2

504,520,554,3

8U,5U4,590,3%

$54,%33,500,5

590,304,520,
SuC,5d0,5u4d.3
520,%54,518,5%
504,590,500,5

ki
b 3 31

o

S

th
mn

v - -]
511,522,544,5
C8,544,5R9,5
544,%33,300,5
$90,541,522,%

50D,3B80,5u4,5

CARRY

526,5%31,587,528XXXY01

500
$21
$81
$82
500
sud
$59
sS40
591
592
386
S4R
585

59D

PR AL
509,500,508, 5

LRX55e, 0
is OF

KEXAXULY
XXXY¥100
1XXX1
AXAYY¥Y1U
RARYYYOL
(X=IHDEX)

51C,5BA,51C, 5

159

RELATIVE

FORM :

EXXAAXYOQ

INSTR'S

F9Co:
FOCC:
FYCF 3
F9D2:
FYD5:
Feb8:
F9DB:
FSDE:
FOEJ:z
F9E3:
FaEb:
FY9Ed:
F9EB:
PSEE:
FaF0:
POP3:
F9Fw:
FIFa:
FoFa:
FOFE:
FAGU:
FAQ3:
FadG:
FAQS:
Fauc:
FAUF =
FAl2:
FAlS:
FAld:
FRlB:
FALE:
FAZ0:
FAZ3:
Falg:
FAalB:
FAZB:
FA2E:
FA30:
FA33:
FA3a:
FAZH:
FA3B:
FAJE:
FA40:
FAR43:
FAdb:
FA47:
FA49:
FAdA:
FA4C:
FA4E:
FA3l:
FAS3:
FAS4:
FASE:
FASE:
FASA:
PASC:
FASE:
FAed:
PAed:
FhAun4:
FAeb:
FAwd:
Fihoh:
FAeC:
FAgE:
FATd:
FAT2:
FAT4:
FATa:
EATB:
FAZA:

BA
Ele]
Al
149
Ad
24
23

19

ud
5B
24
AE
Al
ic
15
3
23
B4
11

23 A
Dd 4

45
EL]
44
6B
94
ud
By
74
ah
Ad
wo
AZ
74
44
iz
22
1A
26
BE
c4
48

Al

20
1]
B3
oo
85
A2
BD
95
Ch
Du
Al
Fu
Al
c3
Fi
co
Fu
l§
Fd
ca
Fu
ca
Fd
23
449
ca
Fi
Bl
CE]

1p 2

ad 1D
yu 29
AE 49

531 1B
24 53

Ch Zo
44 44

FF FF
DU FA8

10 FB

i

ET T
345
ET T

347
iqE

X T
350

35l
3152

353
i54

355
ise

357

383
3d4
3ds
l5a
387
384
ids
154
igl
392
343
394
395
i%e
197
ETT]
las
40y

MNEMR

STEP

XQINI

xg1
XQz2

DFB
DFE

DFB
DFB

CFB
DFB

DFB
oFB8

OF8
DFA

DFB
DFB

DFB
DFB
DFB
OFB

OFB
OF8

COFB
(313]

OF8
oFB

oFa
DFBE

BHE
LDA
3EC
LOY
CME
8EQ
CMP
BEQ
CHP
BEQ
CHMP
BEQ
CHP
3EQ
AND
ECR
CMP
3EQ
LDaA
STA

51B,5A1,59%0,58
$9D, 588,510, 5
319,5AE.569,5
$24,551.518,5

$19,5Aal

$00,51A,5838,5

524,524

$AE,SAE,5AH,5

57C, 300

$15,%98C, 560,53

529,353

584,513.534,5

$21,3A0

5DB,562,55A,5
$94,5d8,554,5§
568,544,5E6,5
S0d,584,574,5

§574,5F4,5CC,5

A4, 548A

S00,5AA,5A2,5

$74,572

$44,568,5B2,5

522,500

51A,51A,52a6,5

588,508

SC4,5CA, 526,5

SA2,$CH
SFF, $FF, 5FF
INSTDSP

RTNL

RTWH

LET
INITBL-1,%
XQT, X

XQINIT
(PCL, X}
A3RK
LENGTH
#5320
XJSA
#5640
XRTS
F54C
XJIWP
#56C
KIMPAT
P340
KRTI
F51F
§514
#5u4
XQ2
[FCL) ., ¥
XOTNZ , ¥

160

f&) FORMAT ABOVE

[B} FORMAT
(C) FORMAT
(D) FORMAT
[E) FORMAT
(A] FORMAT
iB) FORMAT
(C) FORMAT
{01 FORMAT
(&) FORMAT

DISASSEMBLE CNE INST
AT {PCL,H)

ADJUST TC USER
STACK. SAVE
RTH ADR.

INIT XEQ AREA

USER OPCCLDE BYTE
SPECIAL IF BREAR
LEN FROM CISASSEMBLY

HANDLE JSR, RTS, JHFE,
JHMF { }» RTI SPECIAL

COPY USER INST TO XEQ AREA
WITH TRAILING NOPS
CHANGE REL BRANCH
DISP TO 4 POR

ML ML ML P TP

L M

Tl IF

ki M FFTFTATRL TR TR

1]

M 'R

'Fl

T

| "

L e O U

Fé
iF
ic

03
FE

ac
A
B
B2

DA
a5

al
£l

FF
ud

03

FF

Fa
FA
FF

Fu

Fs

FD

FD
FA
FD
FD

FD

4ul
4u2
403
404
4U5
406
au7
U8
409
410
411
412
413
414
415
416
417
4le
419
q2u
421
422
423
424
425
428
427
428
429
434
EED)
432
433
434
435
416
437
438
L]
440
a4l
442
443
f4a4
445
446
447
448
44y
454
451
432
453
454
455
458
457
454
459
4600
461
462
463
464
465
466
467
4ol
4649
470
471
472
473

IRQ

BREAK

KERE

XRTI

XRTS

PCINCZ
PCINC3

KJSR

Xanp
KJIMPAT

NEWPCL

RTNJMP

REGDSP

RGDSFP1

RDSFL

BRANCH

DEY
BPL
JSR
JYP
STA
PLA
FHA
ASL
ASL
ASL
8M1
JMEF
PLP

CLC
Bcc
CLC
J5R
TAX
TYA
PHA
TXA
PHA
Loy
CLC
LOA
TAK
DEY
LDA
STX
STA
BCS
LOA
PHA
LDA
PHA
JER
LDa
STA
LDA
5TA
LD
LDA
J5R
LDA
JER
LDA
JSR
LDA
JSR
INX
BM1
RTS
CLC
Loy
LDA

Xl
RESTCRE
AQOTHE
ACC

A
A
A

BREAK
{IRQLOC)

SAV]
PCL

PCH
INsps1
RGDGSPL
MON

STATUS
PCL

PCH
LENGTH
2CARJ 3
ECH

HEWPCL

EBCALJZ

#502

(PCL) . Y

(BCL) , ¥
BCH

BCL
XJMP
RTNH

RTHL

CROUT
#RCC

AL

FACC /256
AlH

g5FE
#SAU
cour
RTBL-5FB,X
cour
#5380
cour
ACC+5, X
PRBYTE

RDSF1

F50l
(PCL) .Y

161

JMP TO BRANCH 04
NERANCH FROM XEQ.
RESTORE USER REG CONTENTS.
XEQ USER Op FRCM RAM
{RETURN TO NBRANCH)

**1RC HANDLER

TEST FOR BREAK
USER ROUTINE VECTOR IN RAM

SAVE REG'S DN BREAK
INCLUDING PC

PRINT USER PC.
AND REG'S
TO MCNITCR

SIMULATE RTI BY EXBECTING
STATUS PROM 3TACK, THEHN
ATS SIMULATION
EXTRACT PC FACHM STACK

RTS

AND UFDATE PC BY 1 (LEN=d)

UPFDATE PC BY LEN

UPDATE PC AND PUSH
GNRTC STACK FOR
JS5R 3IMULATE

LOAD PC FOR JMF,
(JHF} SIMULATE.

DISFLAY USER REG
CONTENTS WITH
LABELS

BERANCH TAEKEHN,
ADD LEN+2 TO BC

FEBOZ2:
FBUS:
FBu7:
FBuUb:
FEU9:
FBUB:
FBUE:
FBUF:
Fall:
FBl2:
FB13:
FBlG:
FBlu:
FBlA:
FB1B:
FBl:
FB810:
FBILE!
FBZ2l:
rB23:
FBZ4:
Fad3:
FBZ8:
FBIA:
FB28:
FBIG:
FBIE:
FBIF:
FR3l:
FB3i3
FB3s
FE1%9:
FPE3C:
FB3E:
FB4uU:
FB43:
FB4a:
FB43:
FH48:
FB4D:
FBAF:
Fa5l:
FBS53:
FB55:
FBS1:
FB539:
FBIB
FBSD
FBou:
FBG]:
FBES:
FB&T:
FBG&H
FHBA
FBEa:
FBED:
FBGF:
FB71:
FB73:
FB74:
FaTle:
FBid:
FB79:
FBIA:
FBiB:
FBID:
FBIE:
FEHU:
FBH1:
FBHd4:
FEg4:
FBHEH:
FEBA:z

i

R

T

in

Al
4a
9E

uB
FD

o
[1]

o4 C

ud

Fa

FE

38
54

F7
Ul

FB
E5

Ad
lu
U
51
52

FF

Fa
FA

Cu

Cd

(]

Cu

Fa

FC
Fe

474

a7
480
CE-1
494
491
492
2493
454
445
4%a
44l

454
154
Sud
56l

Su2
ag3
304
505
508
5017
Sus
50%
51U
511
512
513
514
515
516
5117
518
519
524
521

522
523
524
525

532

537
534
513
544U
541
542
543
S44
545
4o

N3RNCH

INITBL

RTBL

PREAD

PREADZ

RTS52D
INIT

SETTXT

SETGR

SETWND

TABV

MULPM
MUL
MUL2

MUL3

MUL4
MULS

DIVPM
piv
DIva

JSR
5TA
TYA
5EC
acs
JSR
SEC
BCS
HOP
WOP
JME
JMP
DFB
DFB
DFB
DFB
nFE
Loa
LDY
el
NOP
LDA
BFL
INY
SKE
DEY
RT3
LEA
5TA
LDA
LDA
LDa
LDA
S3EQ
LoA
LOA
JSR
LDA
STA
LCA
5TA
LDA
STA
Loa
STA
LDA
STA
JMP
J5R
Loy
LOA
L5SR
acc
CLC
LOX
LDA
ADC
5TA
INX
ANE
LOX
oFB
CFB
CEX
BFL
DEY
BNE
RT3
JER
LCY
ASL
ROL
ROL

PCADJ]
PCL

PCINC2
SAVE

PCINC3

WERMNCH
BRANCH
3C1
5Do
D9
SDu
503
PIRIG
#50d

PADDLO, X
RTEZ

FREADZ

83U
STATUS
LORES
LOWSCR
TXTSET
FIUW
SETWHKD
IXTCLR
MIXSET
CLRTCP
§514
WNDTOPR
§500
WNDLFT
#5268
WHDWDTH
#5ld
WHDETH
#517
cv
VTAB
MD1
#5140
ACL

5

MUL4

#5FE

XTNDL+2,X
AUXL+2, X
ATNDL+2, X

MUOL3
503
¢570
#3350
MULS
MULZ
MB1

E5lu
AaCL

ACH
XThOL

162

HORMAL RETURN AFTER
KEQ USER OF
GO UPDATE EC

DUMMY FILL FOR
KEQ AREA

ITRI1GGER PADDLES
IMIT COounT

COMPENSATE FJR 15T COUNT

COUNT Y¥-REG EVERY

2 USEC

ERIT AT 255 MAX

CLR STATUS FOR DEBUG
SOPTWAKE

INIT VIDEO MODE
SET FOR TEXT MODE
FULL SCREEN wINDOW

SET FOR GRAPHICS MOLE
LOWER 4 LINES AS
TEXT WINDOW

SET FCR 40 COL WINDOW
TOF 1IN A-REG,
BTTHM AT LINE 24

VIAR TO ROw 23
VIABS TO ROW IN A-REG

ARE VAL OF AC AUKX
INDEX FOR 16 BITS
ACX * AUK + XTND
TQ AC, XIND
IF WO CARAY,
HQ PARTIAL PROD.

ALCD MPLCND (AUX)

TG PARTIAL PROC
{KTND]) .

ABS WAL COF AC, AUX.
INDEX FGR 16 31ITS

ATHEAAUK

ke

L MPL P IFL ML P T

o m Ir

O JI | O A |

[Fl

M 'm F 'A T

l I N

O O O

FBal:
FEdE:
FBSF:
FBY9l:
FB&3:
FRu4:
FBYg:
FBYE:
FROA:
FRYC:
FPRYE:
FBAU:
feal:
FBEAI:
FOA4:
FBAG:
FRAB:
FBAA:
FBAD:
FBAF:
FBAI:
FBR3:
FEB4:
FBBS:
FBET:
FBEBS:
FBEBA:
FRBC
FEBE :
FBCu:
FRC1:
FBC2:
FBC3:
FBCS:
FBC7:
FBT3:
FHCA:
FBCC:
FBCE:
FBOU:
FED2:
FBDZ:
FBD4:
FELG:
FECH:
FoDy:
FEDOR:
FEOD:
FBOF:
FBEZ2:
FBE4:
FBEo:
FBES:
FBEC:
FBED:
FBEF:
FBFUz
FEF2:
FEF4:
rBFb:
FEF&:
FBFA:
FRFC:
FBFC:
FBFF:
FCULl:
PCO2:
FCu4:
FCUb:
FCO4d:
FCUA:
FCUC:
FCUE:

53
35
da
52
53
U

ul
2F
54
AF
ad
ul
o

2d
24

67
12
4u

cu
uiz

iy
F5
24

-
o

24
4
21
1]

Al

FB

FC

FC
cd

547
34
S4y
350
551
532
553

ur
u
=

1
1
N - RN

R NIRRT NV,
O @ LA

395
596

aud
LAV
a4
aus
Bub
GUd
eld
GU9
§lu
6ll
6i2
6l
eld
ala
olb
617
&ld
619

Divi

MDl

MD2

MD3

MCRTS
BASCALC

BELL1

BELL2Z

RTS 2B

STOADV

AOVANCE

RT51
vipour

XTHDH

XTKRDL
AUXL

XTHOH
AUXH
DIV3
XTHDL
XTHNDH
ACL

DIva

F5UU
SIGH
#AUXL
MD2
#ACL
Locl,x
MDRTS

LoCO, %X
LoCo. X

Locl, X
Locl, x
SIGN

A
503
#504
EASH

$518
BSCLC2
#57F
BASL

i

A
BASL
SASL

387
RTS28
#5340
WALT
F3C0O
§30C
WALIT
SERR

BELLZ

CH
{BASL) , ¥
CH
CH
WHOWDTH
CR

#3544
STOADV

STCADV
#5340
CR

163

ABS VAL OF AC, AUX
WITH RESULT S5IGH
IN LSB OF SIGN.

X SPECIFIES AC OR AUX

COMPL SPECIFIED REG
IF HEG.

CALC BASE ADR IN BASL,H
FOR GIVEN LINE HNO.
Je=LINE NO.<=317

ARG=00UABCDE, GENERATE
B8ASH=QUTOD1ZD
AND
BASL=EABASOGO

BELL CHAR? (CNTRL-G}
NO, RETURN
GELAY .ul SECONCS

TOGGLE SPEAKER AT
1 KHZ FOR .1 SEC.

CURSER H INCEX TO Y-HEG

STOR CHaR IN LIRE

INCREMENT CURSER H INDEX
{HOVE RIGHT)

JEYOND WINDOW WIDTH?
YES CR TO NEXT LINE
53, RETUREN

CONTROL THAR?

H30.,0UTPUT IT.

INVERSE VIDEQ?
TES, QUTPUT IT.

CR?

YES.

LINE FEED?

IF 50, DO IT.

BACK SPACE? (CHTRL-H)
NQ, CHECK FOR fELL.

FC1Qa:
FC12:
FCl4:
FCle:
FCl&:
FClA:
FClIC:
FC1E:
FC2us
FC22:
FC24:
FC2

FC29:
FC28:
Fl2C:
FC2E:
FC30:
Foi2:
FCi4:
PCla:
FCld:
FCIA:
FC3C:
FCIE
FC40:
FC42:
FC44:
FCdb:
PC47;
FC4A:
FC4D:
FC4F 2
PC5u:
FCYH2:
FC54:
FC56:
FCSe;
FChA:
FC5Cy
PCSE:
FCtl:
FCb2:
FCB4:
FCEo:
FCod:
FCaAL
PCHRC
FCEE:
FCid:
=i E
FC73:
FCin:
FCid:
FCIA:
FCIC:
PCIE:
FCBU:
PCBL:
FCB2:
FCad:
Fla6:
PCEA:
FCBY:
FCBC:
FCWE:
FC9U:
FZSls
FC9l:
FC935:
FC97:
FCOA:
FCSC:
PCHE:

£

A5
&5
Ck
AS

=11
Chb

20
65
B5
-11]
44
Fd
69
9u
Fu
69
30
Fu
69
2q
Do
A4
A5
48
20

AU
(1.1
69
c5
Su
gu
AL
&3
Al
L]
Fu
A9
a3
Ed
A5
C5
Lt
Co
A3
48
20
AS

B 2

A3
b5
Ad
g8
o8

LE]

C5
a0
48
24
Bl
91
Bd
10
30
AU
20
=11
A4
AY

Fa

FC
FC

PC

FC

62U

o492

a5

up

VTAB
VTADZ

RTS4
ESC1

CLREGP

CLEOP]

HOME

CAa

LF

SCROLL

SCARL1

SCARLZ

SCRL3

CLREOL
CLEOLZ

CEC
BPL
LDA
3TA
CEC
LCA
CHP
BCS
DEC
LDA
JSR
ADC
STA
RTS
ECR
BEQ
ALDC
BC

BEQ
ADC
BCC
BEQ
ALDC
BT

BNE
LOY
LDA
PHA
JER
JSR
LDY
PLA
LDC
CHP

PHA
JSR
LDA
5Th
DEY
BFL
BMI
LDY
J5ERE
BCS
LOY
LoA

BASCALC
WNDLET
BASL

#5CU
HOME
#5FD
ADVANCE
B3
$5FD
LF

up
#5FD
CLREGL
RTS4
CH

cv

VITABZ
CLEQLZ
LETY]

#500
ANDBETM
CLEQPL
VTABR
WNDTOP

cv
ANDETM
VTABLZ
[
ANDTOP

VTABZ
BAEL
SASZL
BASH
BASIH
WHNDWDTH

#3501
WHDBTM
SCRL2

VTARZ
(BASL) , ¥
(BAS2L) . ¥

SCRL2
SCRL1
#5300
CLECLZ
VTAB
CH
#5A0

164

DECREMENT CURSER H INDEX
IF POS, CK. ELSE HOVE UP
SET CH TDO WNDWDTH=-1

[RIGHTMOST SCREEN POS)
CURSER ¥V INDEX

IF TOP LINE THEN RETURN
DECR CURSER V-INDEX

GET CURSER V-INDEX
GEMERATE BASE ADDR

ADD WINDOW LEFT INDEX
T BASL

ESC?

IF S0, OO HCHME AND CLEAR

ESC-A CH 2 CHECK
A+ ADVANCE
B, BACKSPACE

ESC-C Of D CHECK
C, COWN
a, GO up

ESC-E QR F CHECK
E, CLEAR TC END OF LINE
HOT F, RETURN

CURSOR H TO Y I[HDEX

CURSCR V TO A-REGISTER

SAVE CURRENT LINE CN STK

CALC BASE ADDRESS

CLEAR TQO EOL, SET CARRY

CLEAR FROGM H INDEX=u FOR REST

INCREMENT CURRENT LINE

(CARRY IS5 SET)

DONE TO BOTTCM COF JINDOW?
NO, KEEP CLEARING LINES
YES, TAB TO CURRENT LINE

INIT CURSOR V
AND H=INDICES

THEN CLEAR TO ENC OF PAGE

CURSCR TC LEFT CF INDEX
(RET CURSOR hw=wu)
INCR CURSCR V({DCWN 1 LINE)

QFF SCREEN?

X0, SET BASE ADCR
DECR CURSOA WV(EACK TO [0TTOM)
START AT TCF OF SCRL WKNDW

GENERATE BASE ADDRESS
COPY BASL,H
T0 BAS2L,H

INIT ¥ TC RIGHTMOST INDEX
OF SCROLLING WINDCW

INCR LINE NUMBER
DONE?
YES, FINISH

FORM BASL,H (BASE ADDR)
MOVE A CHR UP CN LINE

NEXT CHAR CF LINE

NEXT LINE

CLEAR BOTTOM LINE

GET BASE ADDR FOR BCTTOM LINE
CARRY IS SET

CURSCR H INCEX

U ST TR T T I)] T I THET SR Tl IF IFED TFE IFD IF IR) AU | AT | IFl 1F v

O

91 24 0931 CLEOL2 {BASL) ., Y STORE BLANES FROH '"HERE®

Ca b4 IO END OF LINES (wHDWOTHI

c4 21 685 WHDWDTH

Ya FO abo CLEOL2

By oid7

-4 agd WAIT

dd add WA

E% Ul Jud WA F301

by FC 701 WAIT] 1.0204 USEC

ba Tu2 (l342712#8+512824)
ES ul E $501

Cd Fé T4 WAIT2

&d Tu5

Ee 42 106 NXTA4 A4L INCR 2-BYTE A4

0d U2 qu7 WXTAIL AND Al

Ea 41 ion AdH

Aah 3IC U3 NXTAL AlL INCRE 2=-BYTE Al.

25 a2 710 AZL

AS 3D 711 A1H AND COMEBAHRE TO A2
ES 3 712 AZH

Ed 2O 711 AlL [CARRY SET IF »>=)
Du u2 714 RTS4B

EB 1D 715 AlH

By 716 RTS4a

Au 4B ill HEADR F74B WHITE A®*258 'LONG 1°
du 0B FC 7l8 ZERDLY iALF CYCLES

Du E3 ils HEADR {654 USEC EACH)
o4 FE 124 #53FE

BO F5 21 HEALR THEN A

Ad 21 722 $521 (400

<0 DB FC 721 WRBIT ZERBLY WRITE T

ca 724 oF

ca 725 IR

-] 726 ZERDLY

Du FD 127 ZERDLY

94J d5 728 WRTAFPE Y IS COUNT FCR

AU 32 129 8532 FIMING LOOP

g 730 ONEDLY

Cu FD 711 BNE ONEDLY

AC 20 Cu 732 WETAPE LOY TAPEGUT

a0 2C 733 LDY &52C

A 1314 DEX

-3 135 RT3

AZ ug 716 RDBYTE LDX #FSUE B BITS TO READ

48 717 RDBYT2 BHA HEAD TWO TRANSITIONS
20 FA FC 738 J5R RD2BIT {FIND ELDGE)

(1] 719 PLA

2Aa 1440 RO A NEXT 8IT

AU 1A 741 LOY #53A COUNT FOR SAMPLES

Ca 142 CEX

od F5 ‘43 BN ROBYT2Z

-1V 144 RTS

20 FD FC 745 RD2BIT J5R HDBIT

ad 746 ARDBIT CEY DECR Y UNTIL

AC BU CU 747 LoA TAPEIN TAPE TRANSITICH
5 4F T44d ECQR LASTIN

lu Fa 749 BPL REOBIT

45 2F 150 E LASTIN

85 2F 751 LASTIN

Cd du 152 ¥580 SET CARRY ON ¥-REG.
L1 153

A4 24 154 ROEEY LDY CH

Bl 24 1335 {BASL),Y SET SCREEN TO FLASH
48 (=11

29 2IF 757 F§IF

g du 754d Foal

9l Z2a 759 {BASL) , Y

(-1-] IR-1")

ol 38 Uu Vol [ESWL) GO TO USER KEY¥-IN
Ee 4E ibd KEYIN RikDL

Cd u2 ibd KEYIN2 INCE BND NUMBER

Ea 4F 164 f RNDOH

IC ud CW 785 KEYINZ BIT KBD XEY DOWN?

F5
2o
oy

1
4

uC
2C
dc
aB

Fl

u

FO
FC

uz
FD

a2

FF

FD
FO

FO

FD

[V

FG
F3

FC

FD
FD

Fo

c

iob
a7
log
(LT
1y
171
172
773
174
115
178
T
T%a
T4
THu
781
782
783
Td4
785
iga
987
T8a
789
1594
31
V32
131
794
745
738
97
193
799
]
Bul
Bu2
Bul
aud
Hus
gua
Hud
dug
4ug
1o
Hl11l
Bl2
dl3

C 8l4

2815
Ble
8l7
sl8
gly
420

B21

B25

g28
823
giu
531
diz
LEE
434
8435
836
437

ESC

ROCHAR

NOTCR1
CANCEL
GETLNZ
GETLN

BCKSPC

NATCHAR

CAPTST

ADDINP

CROUT
FRAL

PRYXZ

XANG

MODICHK

KAM
OATACUT

FHA

3TA
LEA
JER

5TA
LDA
CHp
8EQ
cMp
BEQ
CEX
8cc
JSR
INX
3HNE
LOA
J5R
JER

LDA
JUEP
LDA

5TA
LDA
3Ta
LEA
AND
BNE
J3R
LCA
JSR
Lo
ISR
JSR

REYLH
(BASL) , ¥
KD
K3DO5TR3

RDKEY
ESC1
RDKEY
2558
ESC

INVFLG

#5FF
INVFLG
Id.: %
couT

INVFLG
IN.X
1T
BCKSPC
595
CANCEL
§5FE
NOTCRL
BELL

NAXTCHAR
#50C
cour
CROUT
PROMPT
couT
15Ul

GETLNT

RCCHAR
¢PICK
CAPTST
[BASL) ¥
$5EU
ADDINP
#30F
IN. X%
i5dD
NOTCER
CLREQL
¥38D
cout
AlH
AlL
CRCUT
PRNTYX
#5300
#SAL
cour
ALL
ps07v
AZL
AlR
AZH
AlL
F547
CATAQUT
ERAL
FoA0
fulaliyy
(AILY, Y
FRBYTE
NETAL

166

]
k

|

LCGP
REPLACE FLASHING SCREEN
GET KEYCCDE
CLR KEY STRUBE

|

GET KEYCODE

HAMBLE ESC PUNC.
READ KEY
ESC?

YES, CON'T RETURN

IFl [Tl

=
ECHO USER LIKE =
NI INVERSE
CHECHK FOR ECIT KEYS
35, CTAL-X. e
MARGIN?
YES, SOUND BELL |

ADVANCE INPUT INDEX

¥

BACKSLASH AFTER CANCELLED LTH

QUTPUT CR

IF

OUTPUT ERCHPT CHAR
INIT INPUT INCEX
WILL BACKSPACE TO J

e

=

USE SCREEN CHAR]
FOR CTRL-U .
CCNVERT TO CAES E
ADD TC INPUT BUF —_
-~

CLR TC ECL IF CR

BRINT CR,ALl IN HEX

IFi

PRINT ‘="

SET TO FINISH AT
»ap as=i

M 'n

'm

OUTPUT BLANK

QUTPUT BYTE IN HEX

m mn 'm

T L L L 4 A A A

9u
al
an
o
qn
a8
AS
S

49 ¥

a5
44
AY
2y
G&
4d
4a
44
4n
43
Zu
3]
29
us
ce
94d
o
el
ca
4
25
a4
48
2u
[+]-]

Gl
Co
Fua
CA
by

Co B

Cuy
a5
A
31
E6
Cu
Ed
By
Al
B9
83
-1%)
A2
BS
95
95
Ca
iu
wu
g1
91
24
Su
al
Bl
ol
Fu
2|.|
Bl

2u

AY

24

ES

uF
3u
1.1
uz
(PR]
38
AL
ua

3
£

FD

FD

ud

FB

",y
o

FD

FD

B34
B39
84U
241
H42
B43
B44
445
ddb
847
H4H
a4y
850
851
452
853
654
835
856
857
854
85%
Heu
Hel
BoZ
B63
o4
885
Hot
ey
468
Ja

a7l
sl
673
074
375
BTE
847
B78
679
s3u
Ba2
Hal
b4
L E)
-1
bd/
bEE
Bag
B30
631
892
B9 3
294
H95
dY9o
897
B9 B
a9y
04
$a1
qua
343
Gu4
Jus
Sdo
9a7
408
Fuy
9lu

RT54C
XAMEM

ADD

PRBYTE

PRHEX
FPRHEXZ

BLl

BLAN

3TOR

RTS3
SETMODE

SETMDZ

LT
LTZ

MOVE

VFY

BNE
INC
RTS
LoY
LDA

RTS
LDX
LDA
STA
STA
DEX
8PL
RTS
LOA
STA
JSR
BCC
RTS
LDA
cyp
BEQ
JSR
LDA
JER
LDA
JSR

MODACHK

A
waM
A
A
AZL
ADD
#SFF
AlL

#3BD
cooT

El

A
PROEXZ

ESUF
2380
5584
cour
8500
{CEWL)
g3A0
couTz
INVFLG
¥SAVL

vipauor
YEAV]

¥3AV
XRME

SETMDZ
F5BA
AAMPM
MEDE
AL
(A3L), Y
AJL
RTES
AJH

YIAV
IN-1,¥
MOCE

sl

AL, X
AdL, X
ASL,X

LT2

(ALL), Y
(A&L) , ¥
NXTA4
MOVE

[ALL) ., Y
{(A4L), ¥
VEYOR
PRAL
[ALL) X
PRBYTE
#5400
cour

167

CHECK IF TIME TQ,
PRINT ADDR

DETERMINE IF MCN
MODE IS XAM
ACD, OR 5UB

SUB: FORM I'F COMPLEMENT

PRINT '=', THEN RESULT

PRINT SY¥TE AS 2 HEX
BIGITS, DESTRCYS A-REG

PRINT HEX DIG IN A-REG
Lsa's

VECTCR TC USIR <UTPUT RCUTINE

CON'T QUTPUT CTRL'S INVERSE

AASK WITH INVERSE FLAG
SAV ¥Y-REG
SAV A-REG
CUTPUT A-REG AS ASCII
RESTCRE A-REG

AND Y-REG

THEM RETURN

SLANE TO MOk
AFTER BLANK
CATA STORE MODE?
w0, XAM, ADD CR 508
KEEP IN STCRE MCLCE

STCRE AS LOW BYTE AS (A3)
INCR A1, RETURN

SAVE CONVERTED ':", '+',
t=t, '.' AZ HQDE.

COPY AZ (2 BYTES) TO
Ad AND AS

MCVE (Al TO A2) TO
[a4y

VERIFY (Al TO AZ) WITH
(A4}

FE49:
FE48:
FEAE:
FESO:
FE53:
FESS5:
FESd:
FESR:
FESD:
FESE:
FEgl:
FEb3:
FEb4:
EEni:
FE&A:
FEBC:
FEBE :
FEGF :
fEVd:
FE72:
FET4:
FEY5:
FE7a:
FE7d:
FETA:
FETC:
PETD:
FETF:
FEBU:
FEHZ:
FEB4:
FEBG:
FEBG:
FEHI:
FEBB:
FEHBD:
FEBF:
FES1l:
FER3:
FEu5:
FE97:
FE99:
FE9B:
FEYD:
FE9F:
FEAL:
FEAJ:
FEAS:
FEAT:
FEAY:
FEAB:
FEAD:
FEAE:
FEAF:
FEBUY:
FEB3:
FE3G:
FEBS:
FEBC:
FEQF:
FEC2:
FEC4:
FEC7:
FECA:
FECD:
FECP:
FEDZ:
FED&:
FEC oz
FEDB:
FEDY:

Ag
{1

AY
ED
34
]

oo
53

g

ul

u7
18
Fa

iF
vz
FF
2

au
3E
is
1s
L]
du

EL
Fu
dE
OF
uo
cu
717
w2
FC
Ui
vl

FD

FL
FC

FE

EQ
EQ

FF
Uy
FA

FE
Fa
Ul

911
gl2
913
9l4
415
916
217
318
914
320
921
¥i
323

325
924
325
728
223
334
931

$34
g4
341
942
443
944
345
H4 6
347
448
349
50
451
952
553
954
455
436
457
938
359
960
9ol
v6d
CLX
964
4835
Yoé
07
Sobl
969
470
571
572
973
G974
375
476
377
37d
979
949
4sl

VEYCHR

LIST2

AlLPRPC

ALPCLF

H51BPCRTS
SETIRV

SETNORM
SETIFLG

SETKBD
IRPORT
INERT

SETVID
CUTPCORT
QUTPRT

IOPRT

IOBRT1
IOPRT2

XBASIC
BASCONT
GO

REGIZ
TRACE
STEPZ

USR
WRITE

whRl

3EC
38C
ahE
RTE
TxA
BEQ
LDA
STA
QEX
aEL
RTS
LDY
BSE
LoY
STY
RTS
LDa

LDA

EERY]
CeLT
(AdL) . Y
FHBYTE
#3549
cour
NXTA4
VFY

AlPC
514

IN3TESP
ECALJ
FCL

ECH

a5Ul
LIST2

ALPCRTS
AlL, X
PCL, X

AlPCLP

§33F
SETIFLG
i3FF
ITHVFLG

F50Ud

AZL

FRSWL
FREYIN
IOBRT

LT

AZL

FCSWL
#COUTL
AZL

FSUF
IQFRT1
#ICADR/256
#5040
I0PRT2
¥COUTL /258
LCCu, X
Locl, %

BASIC
BASICZ
AlPC
RESTCRE
(PCL}
REGDSF
T5AV
ALPC
aTEP
USRADR
#3540
HEADR
527
Foud
(ALL, X)

(ALlL,X)

168

MOVE Al (2 BYTEES) TO
PC IF SPEC'C AELD
DISSEMBLE 2J INSIRS

ACJUST PC EACH ILS

HEXT COF Zv INSTRE

iF USER SFEC'D ADR
COPY FROM Al TO PFC

S5ET FGR INVERSE VID
Via courl
SET FCR HORMAL VID

SIMULATE PCRT #0 INPUT
SFECIFIED {KEYIN ROUTINE)

SIMULATE POAT #0 OUTPUT
SPECIFIED (COUT1 ROUTINE)

SET RAH IN/OUT VECTORS

TC BASIC WITH SCRATCH
CONTINUE 8ASIC

AaDR TO BC IF SPEC'D
RESTORE META REGS

GO TO USER SUBR

TO REG DISFLAY

ADR TO PC IF SPEC'D
TRKE CONE ETEP
T3 L3R SUBR AT USRADR

WRITE 1J-5EC HEADE

IFl

IFl 1F]

IFI

¥

IF1

IF]

!

Fi

| JEEN| JO

|

!

Tl

J J|

FEDB:
FEDE:
FEE1l:
FEE3:
FEE4:
FEEn:
FEEd:
FEEB:
FEED:
FPEEF:
FEFd:
FEF3:
FEF5:
FEFG:
FEFD9:
FEFA:
FEFB:
FEFD:
FFUU:
FFO2s
FRUL5S:
FFuT:
FFRUA:
FFUC:
FFOF:
FEL11:
FP14:
FPlb:
FF1%:
FFlB:
FF1D:
FEL1F:
FF22:
FFid:
FPle:
FF29:
FF28:
FF2D:
FFIF:
FF32:
FF14:
FF37:
FF3A:
FFR3C:
FFRAF:
FF41l:
FF42:
Frdaq:
FF40:
FF4d:
EF43:
FF4A:
FF4C:
FF4E:
FFSus
FF51:
FF52:
FF54;
PE35:
FFS7:
PF53:
FF53:
FF5C:
FESF:
Frod:
FFba5:
FFab:
FFGS:
FFaB:
FP&D:
FPF70:
FFT3:
FEi6:

L AL L L L T T

Fu
AY

2u
24
A%
4l
A5
48
AS
AB
g
-0
Gu
53
4é
ad
Ja
LT
&5
BA
de
od
-1%)
20
20
du
<0
Da
2u
AS
85
2d
2u
24
g4

54
iF
53
%3

EL
LT

B7

i

AT
4

FE

FC
FC
FC
FC
FC

FC

FE
FB
FE
FE

FE
FD

FF
FF

342
583

#44

295

396

397

398

539

lugu
luwl
lap2
196l
loud
1005
luug
lou?
loua
luag
luld
o1l
lulk2
lull
fuld
1ul15
lule
lul?
ldle
lal9
loz2u
l1u2l
162z
lu2l
Lu24
1423
lozs
luds
La24
1ady
luie
luil
lusa2
Luii
lu34
Lals
luia
LU37
1ulhn
lulds
Ludu
1usl
Lug2
S
lu4d4
lu4s
ludb
Lud?
luds
1049
lusa
1dsl
1052
1053
1054

WRBYTE
WRBYTZ

CRMON

READ

RD2

RD3

PHERE

3ELL

RESTORE

RESTR1

SAVE
3AV1

RESET

MON

MONZ

NXTITH

JER

FLA

WRBYTE
NATAL
#31D

Wkl
§522
NABYTE
BELL
#3510

A
WHRBIT
WHBYT2

aLl

MONZ
ROZBIT
£5ln
HEADR
CHESUM
RDZBIT
§524
ADBIT
rRD2
ADBIT
#3538
RCBYTE
(ALL,X)
CHESUM
CHASUM
NATAL
#535
RD3
ACBYTE
CHESUM
BELL
#5C5
cour
502
cuur
caur
FBET
cauT
STATUS

ACC
XREG
YREG

ACC
KHEG
YREG

STATUS

SENT

SETNORH
INIT
SETVID
SETKBD

BELL
F5AA
BROMPT
GETLHZ
IMODE
GETNUM
LT

169

HANDLE CR ASE BLANK
THEN POP STACK
AND RTN TO MON

FiND TAPEIN EDGE

DELAY 1.5 SECONES
INIT CHESUM=SFF
FIND TAPEIN EDCE
LOCKE FOR S¥YNC BIT

(SHORT 4}

LOOP UNTIL FOURC
S#12 SECOND SYNC H-CYCLE
INDEX FOR ds1 TEST
READ & BYTE
STORE AT (Al)
UPDATE HUNNING CHESDM
INCR Al, COMPARE TC A2
COMFENSATE u/1 INDEX
LOCP UNTIL DONE
READ CHXKSUM BYTE

GO00D, SCUND BELL AND RETURN

PRINT "ERR®, THEN BELL

OUTPUT BELL AND RETUERN

RESTURE 6502 REG CCNIENTS
USED BY CEBUG SCFTWARE

SAVE B5U2 REG CONTENTS

SET SCREEN MODE
AND INIT KBD/SCREEN
AS 1/0 DEV'S

MUST SET HEX MCDE!
"®=! PROMPT FOR MCN

READ A LINE
CLEAR MON MODE, SCAN IDX
GET ITEM, XON-HEX

CHAR IN A-REG

FFid:
FETA:
FFiB:
FFIDY
FFau:
FFrE2:
FFPES:
FFad:
FFaA:
FFal:
FFuD:
FFdE:
FFoF:
FF3uU:
FF9l:
FFS3:
FFP95:
FFY6:
FPYd:
PPOMA:
FESC:
FEUE:
FFAU:
FEA2:
FEAS:
FFAS:
FFRT:
FFAS:
FFAR:
FEAD:
FFBU:
FFBl:
PFFB3:
FEBS:
FFB7:
FFBY:
FFaB:
FFBE:
FFBE:
FPCU:
EFFCL:
FEC4:
FECS2
FPC 7z
FECY:
FECB:
FFCCs
FFCD:
FFCE:
FFCF:
FEDU:
FFR1:
FFDZ:
FFO3:
FFO4:
FFO5:
FFDG:
FFD7:
FFD4:
FFCa:
FEDA:
FFDB:
FFDC:
FEDD:
FFDE:
FFDF:
FFEJ:
FFEl:
FFE2:
FFE3:
FFE4:
FFES:

AU
1]
14
3]
Gy
2d
A4

4 7

AL
ud
U
(*F:
(VEY
LR

28 '3

in
CA
(1]
AS
=18}
B3
45
95
Ed
Fu
ouw
Al
db
uh
ah
CE
a8
(o]}
ETY]
6y
]
Bu
(1Y)
Ay
£1-]
A
45
85
LAY
o4
ol
EC
B2
BE
ED
EF

EC
Ag
BE
AD
Ad
U
95
U7
uz
us
Fa
uu
EB
43
AY
Co
44
82
ce
BE

FE

FP

2

1u35
1uU56
1057
1058
Lasg
lubu
1del
loe2
lusl
lue4
1ub5
lubes
ida’d
1UusH
lusy
Wiy
1471
lu72
1u73
1u74
1073
LuTs
Loy
1078
tavs
1uga
1udl
lub2
1083
lusz4
1ub5
lubs
luad
lugs
lue9
1d3u
lu9l
lud2
133
lug
luz3
lude
1uddy
JRVET
lus9
11luw
1101
luz2
1103
1lu4
1145
llus
11407
llos
1109
1114
1111
1112
1113
1114
1115
1116
1117
1118
1119
1124
1121
1122
1123
1124
1125
1126

CHRSRCH

D1G

NXTBIT

NXTBAS

NXTBRS2

GETHUM

NATCHR

ZMUDE

CHRTBL

SUBTBL

LDY
DEY
dMI
CMP
BNE
J5R
LCY

RTS
LGA
PHA
LEA
FHA
LOA
LoY
STY¥
RATS
CFB
DFB
DFB
DFB
CFa
CFB
DFB
orFa
oF8
OFB
DFB
DFE
DFa
OFR
bFB
bDFR
oFB
CFB
CFB
DFE
CFB
DFB
OFB
CFB
oFa
ora

#5L7

MCGH
CHRTBL, Y
CHRERCH
TCSUG
YSAY
NETITH
#5343

A

A

A

A

A

A2L

A2H

NXTBIT
ACLE
NXTBS2
AZH, %
AlH, %
A3H, X

NXIBAS
NKTCER
LEDT
AJL,
AZH

IN, Y

500
$50A
DIG
7588
#5FA
DlG

FG0/256
SUBTBL, Y

MODE
LT
MODE

58C
B
SBE
SED
SEF
5C4
SEC
SAD
BB
A6
A4
$UG
5495
07
502
505
$FQ
sau
SEB
593
SAY
s5Ch
599
gBASCONT -1
#USR-1
#HEGIZ-1

170

X-REG=U IF X0 HEX I[HPUT

MCT FOUND, GO TO MON
FIND CMND CHAR 1IN TEL

FOUNE, CALL CCRRESPONDING
SUBRUUTINE

GOT HEX DIG,
SHIFT IHTO N2

LEAVE X=3FF IF CIC

IF MODE I3 ZERQ
THEW COPY A2 TO
Al AND Al

cLEAR AZ

SET CHMR

1P HEX DIG, THEN

PUSH HICH-ORCER
SUBR ALCR G STIK

2USH LOW CRLER
SUBR ALCR ON 5TE

CLB #Qpe, CLLC RCCDE
TCQ A-REG

GJ TO SUBR VIa kTS

E ["CTRL-C")

F{*CTRL-Y"}

F("CTRL-E™)

EleTh)

PV

F("CTRL=K")

FL"8")

F("CTRL-P")

E{"CTRL-B")

E{"-")

F("+")

F(¥M"] (F=EX-OR 3B0+583)

F{"c")

2 L ugn)

FI"I")

FL"L*)

P (W

Frug"

F{=R")

E't“‘—”.l

Fi".")

F("CR")

F{BLANE)

cl DOFB
i5 GFB
ol orFg
C3 CFB
1 oFa
AF oF3
17 oFB
17 1134 DFB
28 11315 ocFa
IF llie CFB
B2 L1337 oFa
y3 1138 oF8
aD 113y bFB
cC 1144 DFB
BS 114l DFB
C 142 oFB
13 1143 OFB
13 L1434 OFB
F5 1145 DF8
V5] Ll4b CFa
FB 1147 CFB
ul lLL48 CF8
g9 1148 OFB
FF 1154 ora
b5 1151 DFB
Fh 1152 CFB

1153 KQTHE ECO

LU U L\ T L L A AL L LA L U A |

sTRACE-1
VFY-1
fINPRT-1
#STERZ-1
rOUTPRT=-1
#X3A51IC-1
#SETMODE-1
FSETMCDE-1
FMOVE~-1
¥LT=1
FSETHNORM=1
FSETINV-L
fLIST-1
EWRITE-1

#5ETMCDE-1
#SETMOCE=1
#CRMON-1
FBLANK-1
gaMI

sNMI /256

171

wMI

VECTOR

RESET VECTCR

1RG

VECTCR

SYMBOL TABLE
(NUMERICAL ORDER)

0000
gozz2
002é
o024
coz2D
Q02E
0030
0034
Qo038
Q03C
Q040
0044
o047
00arF
Q3rF2
O3FB
COo00
C0o30
C053
Co57
coso
COSF
CFFF
F80C
F826
FB3s6
FB5&
FB7F
FBAS
Face
FBFS
F2&
F?40
Fe4a
F?5&
FIas
FADO
Fas&2
Faad
FABA
FAE4
FB11
FBE2E
FEBE4B
FB&F
FB97
FBDO
FBFO
FC10
FC2B
FCS8

LOCO
WNDTOP
GBASL
BAS2L
va
FORMAT
COLOR
YSAY
KSHL
AlL
A3L
ASL
YREG
RNDH
SOFTEV
NMI
I0ADR
SPKR
MIXSET
HIRES
CLRAN1
CLRAN3
CLRROM
RTMASK
VLINEZ
CLRTOP
GBCALC
RTMSKZ
ERR
MNNDX3
NXTCOL
PRADR3
PRNTYX
PRELZ2
PCADJ3
FMTZ2
MNEMR
RESET
NOFIX
SLO0OP
RDSP1
XLTBEL
RTS2D
SETWND
SETPWRC
ESCOLD
BASCLC2
STORADV
BS
RTS4
HOME

FC7&
FCRE
FCAA
FCCT
FCES
FCFD
FD2F
FD&2
0001
o023
o027
002B
002D
Q02F
0031
0033
c03%
003D
0041
0045
o048
00935
O3F 4
03FE
Co00
€050
coS54
cosg
COS5C
Co&0
ECOO
FBOE
FB28
FE38
F8&4
Faea
FBAT
F8DO
FBFY
FI24
F?41
Fe4C
F9sC
F?B4
FA40
FAbLF
FAAS
FAC7Y
FAFD
FB1%
FB2F

SCRL1
CLEOLZ
WAIT3
HEADR
WRTAPE
RDBIT
ESC
CANCEL
LOC1
WHMDBTM
GBASH
DAS2H
RMNEM
LASTIN
MODE
YSAVL
KSWH
AlH
A3H
ASH
STATUS
PICK
PWREDUF
IRGLOC
KBD
TXTCLR
LOWSCR
SETANO
SETANZ
TAPEIN
BASIC
PLOT1
VLIMNE
CLRSC2
SETCOL
INSDS1
GETFMT
INSTDSP
PRMNZ
PRADR4
PRNTAX
PRBL3
FCADJS
CHAR1
IRG
INITAN
FWRUP
NXTBYT
PWRCON
RTBL
INIT

172

FBSB
FB78
FBYD
FBDY
FBF4
FC1A
Fcae
FC&2
FCBC
FCAD
FCB4
FCD6
FCEC
FDOC
FD35
FD&7
0020
o024
0028
002¢
002E
002F
0032
0036
0034
003E
0042
0045
0049
0200
03F5
0400
€010
CO51
COS539
cos%
cosD
Co&4
E003
FB1%
Fa31
Fa3c
Fa71
FaaC
FBBE
F8D4
F910
F930
F944
F353
Foé1

TABWV
VIDWAIT
ESCNOW
BELL1
ADVANCE
UpP
ESC1
CR
SCRL2
CLEOLZ2
NXTA4
WRBIT
RDBYTE
RDKEY
RDCHAR
GETLNZ
WNDLFT
CH
BASL
H2
MASK
LENGTH
INVFLG
CSWL
PCL
AZL
AdL
acc
SPNT
IN
AMPERV
LINE1
KBDSTREB
TXTSET
HISCR
CLRAND
CLRANZ
PADDLO
BASICZ2
HL INE
RTS1
CLRSC3
SCRN
INSDE2
MNNDX 1
PRNTOP
PRADR1
PRADRS
PRNTX
FCADJ
RTSZ2

IFL IFL IFL TEL TR IEL

[Fl

IFL IFL TFL [FI

Fi

e e w1 E1 EC TEL TR

rE

B VTV UL

F7BA

FA4C

FAB1

FAAT
FAD7
FROZ2
FELE
FB39
FB&O
FBEBEB
FBAS
FBE4

FBFC

FCz22

Fcaz
FC&&
FC?5
FCAB
FCEA
FCDB
FCEE
FD1B
FD3D
FD&A
0021

0025
o029
go2C
002E
Q02F
0033
0037
0038
003F
co43
0044
O04E
03Fo
03FB
Q7FB
€020
cos2
CO56
CO3A
COSE
Co7o
F800
Faic
Fa3z2
F847
FB7%9
FETB
Feca2
FBDB

CHARZ2
BREAK
NEWMON
SETPG3
REGDSP
DISKID
PREAD
SETTXT
APPLEII
KEDWAIT
ESCNEW
BELLZ2
RTS3
YTAR
CLREOP
LF
SCRL3
WALT
NXTA1
ZERDLY
RDBYTZ2
KEY IN
NOTCR
GETLN
WNDWDTH
cv
BASH
LMNEM
CHKEUM
SIGN
PROMPT
CSWH
PCH
AZH
A4H
XREG
RNDL
BRKV
USRADR
MSLOT
TAPEOQUT
MIXCLR
LORES
SETAN1
SETAND
PTRIG
PLOT
HLINE1
CLRSCR
GBASCALC
SCRNZ
[IEVEN
MMNND X 2
PRNTBL

F914
F738
Fo48
F?54
F962
F9CO
FAST
FA9B
FAAB
FADA
FBOY
FB25
FB40
FB&S
FEZ4
FBEC1
FBEF
FBFD
Fca24
FC4&
FC7O
FC9C
FCAR
FCC8
FCE2
FCFA
FD21
FDSF
FD71
FD75
FD92
FDB3
FDD1
FDED
FEO4
FE1D
FE36
FE73
FEB4
FEBD
FE9B
FEB3
FEC4
FEED
FFOA
FFaF
FF59
FF7A
FFA2
FFC7
FD7E
FD96
FDB&
FDDA

PRADRZ
RELADR
PRBLNK
PCADJZ2
FMT1
MNEML
OLDBRK
FIXSEV
SETPLP
RGDSF1
TITLE
PREADZ
SETGR
STITLE
NOWAIT
BASCALC
RTSzB
VIDOUT
VTABZ
CLEOP1
SCROLL
CLREOL
WAITZ
RTS48
ONEDLY
RD2ZBIT
KEY IN2
NOTCR1
BCKEPRPC
NXTCHAR
PRA1
XAM

ADD
couT
BLANK
SETMDZ
VFEY
AlPC
SETMORM
INPRT
IOFPRT
BASCONT
STEPZ
WRBYTE
RD2
RESTORE
OLDRST
CHRSRCH
NXTBS2
ZMODE
CAPTST
PRYX2
DATADUT
PROYTE

173

FDFO
FEOQB
FE20
FESB
FE78
FEB&
FE?3
FEA7
FER&
FECA
FEEF
FF1é
FF44
FF&5
FFEA
FFA7
FFCC
FDB4
FDAZ
FDCS
FDE3
FDF&
FE17
FE22
FESE
FE7F
FEB?
FE?5
FEA®
FEBF
FECD
FEF&
FFz2D
FF4a
FF&ag
FFS0
FFAaD
FFE3
FDBE
FDAD
FDC&
FDES
FEDOO
FE1B
FE2C
FE&3
FEBO
FEBB
FEZ7
FEBQ
FECZ2
FED4
FEFD
FF3A

CouT1
STOR
LT
VEYOK
Al1PCLP
SETIFLG
SETVID
IOPRT1
edn]

USR
WREYTZ2
RD3
RESTR1
MON
DiG
GETNUM
CHRTBL
ADDINP
XxamMe
RTS4C
PRHEX
couTz
RTSS
LTZ2
LIST
A1PCRTS
SETKED
OUTPORT
IOPRTZ2
REGZ
WRITE
CRMON
PRERR
SAVE
MONZ
NXTBIT
NXTCHR
SUBTEL
CROUT
MODBCHK
XAMPM
PRHEXZ
BL1
SETMODE
MOVE
LISTZ
SETINV
INPORT
OUTPRT
XBASIC
TRACE
WR1
READ
BELL

FF4C
FF73
FF98
FFBE

5AV1
NXTITHM
NXTBAES
TOSUB

SYMBOL TABLE
(ALPHABETICAL ORDER)

003D
FE7F
0040
0044
FBF 4
0024
0oz9
FD71
FEOO
Fc1o0
FeBa
0024
cosYy
FCoC
FB3c
FDED
FC&2
0025
FBAS
FB97
Foa6
0026
FD&A
FCC®%
Fa19
0200
Fe8az
Coo0
O3FE
coao
0038
0400
0000
FEZ22
€053
FBc2
FF&9
FAB1
FDSF
FF78
FD75
FAST
FEZ7

AlH
ALPCRTS
A3L
ASL
ADVANCE
BASZL
BASH
BCKEPC
BL1
BS
CHARZ
CH
CIL.RANO
CLREOL
CLRSC3
couT
CR
cv
ERR
ESCOLD
FMT2
GBASL
GETLN
HEADR
HLINE
IN
INSDS1
IDADR
IRGLOC
KBD
KSWL
LINE1
LLOCO
LT2
MIXSET
MNMDX2
MONZ
NEWMON
NOTCR1
NXTBAS
NXTCHAR
DLDBRK
OUTPRT

F956
0095
F910
F930
FDDA
FDE3
FBDB
0033
03F4
FF16
FD35
FAD7
FF3F
004F
FB7F
F961
003C
003F
0043
0045
03F5
FBC1
E000
FBD?
FEOQ4
FD&2
002E
FCAO
CO5B
FC42
FB32
FDFO
FEF&
FDB&
FC2c
FD2F
002E
FB56
FFA7
C057
FCS8
FB2F
FBBC

FCADJ3
PICK
PRADR1
PRADRS
PRBYTE
PRHEX
PRNTBL
FROMFPT
PWREDUP
RD3
RDCHAR
REGDSF
RESTORE
RNDH
RTMSKI
RTS2
ALL
A2H
A4H
ACC
AMPERY
BASCALC
BASIC
BELL1
BLANK
CANCEL
CHKSUM
CLEOLZ
CLRAN1
CLREOP
CLRSCR
COuUT1
CRMON
DATAQUT
ESC1
ESC
FORMAT
GBCALC
GETNUM
HIRES
HOME
INIT
INSDS2

174

FEAT7
FA40
FD1B
002F
FESE
0001
FEZ0
FOCO
FBCY
FF&65
D3FB
FBY4
FFS0
FFAD
FF59
co&4
F95C

FEOE
F914
FF4A
FB1E
FDES
FBD4
FD96
FAAL
FCFD
FDOC
FEBF
FF44
DO4E
FEa1

FEFC

FE78
003E
0042
FD84
FB&O
FBDO
E003
FBE4
FAAC
FD7E
FF7A

IOFRT1
IRG
KEYIN
LASTIN
LIST
LOC1
LT

MMNE ML
MNMND X3
MON
NMI
NOWAIT
NXTBIT
NXTCHR
OLDRST
PADDLO
PCADJ4
FLOT1
PRADRZ2
PRELZ2
PREAD
PRHEXZ
PRNTCP
PRYX2
PWRUP
RDBIT
RDKEY
REGZ
RESTR1
RNDL
RTE1
RTS3
ALPCLP
AZL
AdL
ADDINP
APPLEII
BASCLCZ
BASICZ
BELLZ
BREAK
CAPTST
CHRSRCH

= = [m e m] 2 L3 ¥l 1 3 1l 4

ey

FC9E
COSD
CFFF
FB36
FDF&
0037
FFBA
FBAS
FAFB
FB47
FBAT
FEB6
€055
FBYB
FEBE
FEDO
FEA9
C010
FD21
002F
FE&3
C056
002E
FAOOD
FDAD
FE2C
FAAG
FCBA
FFAZ
FBFS
FCEZ
F?54
003B
F800
Fo2a
F94C
FB25
FEF%
F944
€070
FCFA
FCEE
FAE4
F938
FADA
FB19
FBEF
Fcce
FE75
0041

0045
FDD1

0028
FEB3
0028

AR

I\\

CLEOLZ
CLRANZ
CLRROM
CLRTOP
CouTz
CSuWH
DIG
ESCNEW
FIXSEV
GEABCALC
GETFMT
eln}
HISCR
IEVEN
INFORT
INSTDSP
I0OPRTZ
KEDSTRD
KEYINZ2
LENGTH
LIsTZ2
LORES
MASK
MNEMR
MODBCHK
MOVE
NOFIX
NXTAL
MNXTBESZ2
NXTCOL
ONEDL Y
PCADJ2
PCH
PLOT
PRADR3
PRBL3
PREAD2
PRMNZ
PRNTX
PTRIG
RD2ZBIT
ROBYT2
RDSF1
RELADR
RGDSF1
RTBL
RTE20
RTS4B
ALPC
A3H
ASH
ADD
BASZ2H
BASCONT
BASL

FF3A
03F0
FGB4
FFCC
FC4&4
COSF
FBa3s
0030
FDBE
0036
FBO2
FB9B
Fo&2
0027
FD&7
002¢
FB1C
FALF
FEBD
o032
FESB
FBES
0039
FCo6
0o2c
cos4
coa=2
F8BE
0031
07F8
FD3D
FCB4
FACY
FF73
FEDS
F953
003A
FD92
Fo2a
F948
FF2D
Fo41
F940
FAFD
FFOA
FCEC
FEFD
FAG2
002D
FBOC
FB2E
FDCS
FE17
FC2B
FC76
FB79

BELL
BRIV
CHAR 1
CHRTBL
CLEOP1
CLRANS3
CLRSC2
COLOR
CROUT
CSHL
DISKID
ESCNOW
FMT1
GEASH
GETLNZ
Ha
HLINE1
INITAN
INPRT
INVFLG
IOPRT
KBDWALT
KEWH
LF
LMNEM
LOWSCR
MIXCLR
MMND X 1
MODE
MSLOT
NOTCR
MXTA4
NXTEYT
NXTITM
OUTPORT
PCADJ
PCL
FRA1
PRADR 4
FREL NK
FRERR
PRMTAX
PRNTY X
PWRCON
RD2
RDBYTE
READ
RESET
RMNEM
RTMASK
RTSZD
RTS4C
RTSS
RTS4
SCRL1
SCRNZ

175

CO5C
FEB&
FE18
FB&F
Q02F
0049
FEOB
C0&0
FEC2
FECA
FES8
Faz8
FCaB
oozz
FEEF
FDA3
FB11
0034
FC8C
FC70
COSE
FEBO
FEB4
FB39
FADA
0048
FBFO
C020
CO50
03F8
FBFD
FC24
FCAA
0021

FEED
FDC&
0046
FCDB

FF4C

FC95
cose
FB&4
FEB9
FAAT
FET3
03F2
FEC4
FFE3
FBO%
CO51

002D
FB78
FCa22
0023
FED4

SETANZ
SETIFLG
SETMODE
SETPWRC
SIGN
SPNT
STOR
TAPEIN
TRACE
USR
VFYOK
VL INE
WAIT
WNDTOP
WREYTZ
XAMB
XLTBL
Y5aY
SCRLZ2
SCROLL
SETAN3
SETINV
SETNORM
SETTXT
sLooP
STATUS
STORADY
TAPEOUT
TXTCLR
USRADR
VIDOUT
VTABZ
WAIT3
WHNDWDTH
WRBYTE
XAMPM
XREG
ZERDLY
SAVL
SCRL3
SETANO
SETCOL
SETKBED
SETPG3
SETVID
SOFTEV
STEPZ
SUBTEL
TITLE
TXTSET
va
VIDWAIT
VTAB
WNDBTM
WR1

FECD
FDB3
0047
FFC7
FFAA
FB71
COSA
FB40
FELD
FAAB
FE4B
€030
FE&S
FESB
FFBE
FC1A
FE36
FB26
FCAZ
0020
FCD&
FCES
FEBO
0035

SYMBOL TABLE SIZE
BYTES USED
REMAINING

2589
2531 BYTES
SLIST 44

WRITE
XAM
YREG
IMODE
SAVE
SCRN
SETANI
SETGR
SETMDZ
SETPLP
SETWND
SPKR
STITLE
TABV
TOsuB
UP

VFY
YLINEZ
WAITZ
WNDLFT
WRBIT
WRTAPE
XBASIC
¥Y5AaV1

176

| | U | O | O | O | IO | |

F. [F1 [F. [¥I

m 'L Fi TEl

e e lEr Ve

lr;

GLOSSARY

| T O T

65#2: The manufacturer's name for the microprocessor at the heart of your Apple.

Address: As a noun: the particular number associated with each memory location. On the
Apple, an address is a number between @ and 65535 (or SO@@} and SFFFF hexadecimal). As a
verb: to refer to a particular memory location.

Address Bus: The set ol wires, or the signal on those wires, which carry the binary-encoded
address from the microprocessor to the rest of the computer.

Addressing mode: The Apple’s 65082 microprocessor has thirteen distinct ways of referring to
maost locations in memory. These thirteen methods of forming addresses are called addressing
modes.

Analog: Analog measurements, as opposed o digital measurements, use an continuously vari-
able physical quantity (such as length, voltage, or resistance) to represent values. Digital meas-
uremenis use precise, limited quantities (such as presence or absence of vollages or magnetic
fields) to represent values.

AND: A binary function which is **on™" if and only if all of its inputs are *‘on"".

Apple: 1. The round fleshy fruit of a Rosaceous tree (Pyrus Malus). 2. A brand of personal
computer. 3) Apple Computer, Inc., manufacturer of home and personal computers,

ASCII: An acronym for the American Standard Code for Information Interchange (often called
“USASCII” or misinterpreted as ““ASC-II1""). This standard code assigns a unigue value from @
to 127 to each of 128 numbers, letiers, special characters. and control characters.

Assembler: 1) One who assembes electronic or mechanical equipment. 2) A program which
converls the mmemonics and symbols of assembly language into the opcodes and operands of
machine language.

Assembly language: A language similar in structure to machine language, but made up of
mnemonics and symbols. Programs writlen in assembly language are slightly less difficult to write
and understand than programs in machine language.

BASIC: Acronym for “*Beginner’s All-Purpose Symbolic Instruction Code'". BASIC is a higher-
level fanguage, similar in structure to FORTRAN but somewhat easier to learn. 1t was invented
by Kemney and Kurtz at Dartmouth College in 1963 and has proved to be the most popular
language for personal computers.

Binary: A number system with two digits, *®"" and **1"", with each digit in a binary number
representing a power of two. Most digital computers are binary, deep down inside. A binary sig-
nal is easily expressed by the presence or absence of something, such as an electrical potential or
a magnetic field.

Binary Function: An operation performed by an electronic circuit which has one or more inputs
and only one output, All inputs and outputs are binary signals, See AN OR, and Exclusive-OR.

Bit: A Binary dig/T. The smallest amount of information which a computer can hold. A single
bit specifies a single value: “@"" or *'1"". Bits can be grouped to form larger values (see Byte and
Nybble) .

Board: See Printed Circuit Board.

178

fFL IEL

L TFL TFL TR

] JQ| 4

'er e ee e ‘e im0 TEQOTELOIEL OIFLOTRLOTRL OTEL TR OTEL

kri

IR R e

Bootstrap (**boet’'): To get a sysiem running from a cold-start. The name comes from the
machine’s attempts to “pull itsef off the ground by tugging on its own bootstraps.”

Buffer: A device or area of memory which is used to hold something temporarily. The **picture
buffer'” contains graphic information to be displayed on the video screen: the “‘input buffer”
holds a partially formed input line.

Bug: An error. A hardware bug is a physical or electrical malfunction or design error. A software
bug is an error in programming, either in the logic of the program or typographical in nature, See
“feature’.

Bus: A set of wires or fraces in a computer which carry a related set of data from one place to
another, or the data which is on such a bus.

Byte: A basic unit of measure of a compuler’s memory. A byle usualy comprises eight bits
Thus, it can have a value from @ to 255. Each character in the ASCI/ can be represented in one
byte. The Apple’s memory locations are all one byte, and the Apple’s addresses of these loca-
tions consist of two bytes,

Call: As a verb: to leave the program or subroutine which is currently executing and to begin
another, usualy with the intent to return to the original program or subroutine, As a noun: an
instruction which calls a subroutine,

Character: Any grapliic symbol which has a specific meaning to people. Letters {(both upper- and
lower-case), numbers, and various symbols (such as punctuation marks) are all characters.

Chip: See Integrated Circuit,

Code: A method of representing something in terms of something else. The ASCII code
represents characters as binary numbers, the BASIC language represents algorithms in terms of
program statements. Code is also used to refer o programs, usually in fow-leve! languages.

Cold-start: To begin to operate a computer which has just been turned on.

Color burst: A signal which color television sets recognize and convert Lo the colored dols you
see on a color TV screen, Without the color burst signal, all pictures would be black-and-white.

Computer: Any device which can recieve and store a set of instruciions, and then act upon those
instructions in a predetermined and predictable fashion. The definition implies that both the
instruction and the dara upon which the instructions act can be changed. A device whose instruc-
tions cannot be changed is not a computer.

Control (CTRL) character: Characters in the ASCI character set which usually have no graphic
representation, but are used to control various functions. For example, the RETURN control
character is a signal to the Apple that you have finished typing an imput line and you wish the
computer to act upon it

CRT: Acronym for *‘Cathode-Ray Tube’, meaning any television screen, or a device containing
such a screen.

Cursor: A special symbol which reminds you of a certain position on something. The cursor on

a slide rule lets you line up numbers: the cursor on the Apple’s screen reminds you of where vou
are when you are typing.

179

Data (datum): Information of any type.
Debug: To find bugs and eliminate them,
DIP: Acronym for **Dual In-line Package™, the most common container for an Integrated Cir-
cuit. DIPs have two parallel rows of pins, spaced on one-tenth of an inch centers. DIPs usually

come in 14-, 16-, 18-, 20-, 24-, and 40-pin configurations.

Disassembler: A program which converis the opcodes of machine language to the mmemonics of
assembly language. The opposite of an assembler.

Display: As a noun: any sorl of output device for a computer, usually a wideo screen. As a
noun; to place information on such a screen.

Edge connector: A sockel which mates with the edge of a printed circuir board in order Lo
exchange electrical signals.

Entry point: The location used by a machine-language subroutine which contains the first exe-
cutable instruction in that subroutine; consequently, often the beginning of the subroutine.

Excusive-OR: A binary function whose value is **off” only if all of its inputs are “'ofT™’, or all of
its inputs are “‘on’".

Execute: To perform the intention of a command or instruction. Also, to run a program or a
portion of a program.

Feature: A bugas described by the marketing department.

Format: As a noun: the physical form in which something appears. As a verb: 1o specify such a
form.

Graphic: Visible as a distinct, recognizable shape or color,

Graphics: A system to display graphic items or a collection of such items.

Hardware: The physical paris of a computer.

Hexadecimal: A number system which uses the ten digits @ through 9 and the six letters A
through F to represent values in base 16. Each hexadecimal digit in a hexadecimal number
represenis a power of 16. In this manual, all hexadecimal numbers are preceded by a dollar sign
(8).

High-level Language: A language which is more intelligible to humans than it is to machines.

High-order: The most important, or item with the highest vaue, of a set of similar items. The
high-order bit of a byte is that which has the highest place value.

High part: The high-order byte of a two-byte address. In decimal, the high part of an address is
the guotient of the address divided by 256. In the 6502, as in many other microprocessors, the
high part of an address comes last when that address is stored in memory.

Hz (Hertz): Cycles per second. A bicycle wheel which makes two revolutions in one second is
running at 2Hz. The Apple’s microprocessor runs at 1,023,000Hz.

180

| IEC el OIEC OTEL OMEC OTEL TEL VEL TEL TRV

|

= =N ST les lei 1Ei I |‘l|

LI I U A L e e L L L

1/0: See InputtOuput,
IC: See Iniegrated Circuit,

Input: As a noun; data which flows from the ouiside world into the computer. As a verb: 1o
obtain data from the outside world,

Input/Output (1/0): The software or hardware which exchanges data with the outside word.

Instruction: The smallest portion of a program that a computer can execute. In 6582 machine
language. an instruction comprises one, two, or three bytes; in a higher-level language, instruc-
tions may be many characters long,

Integrated circuit: A small (less than the size of a fingernail and about as thin) wafer of a glassy
material (usually silicon) into which has been etched an electronic circuit. A single 1C can con-
tain from ten to ten thousand discrete electronic components. 1Cs are usually housed in DIPs
(see above), and the term IC is sometimes used to refer to both the circuit and its package.

Interface: An exchange of information between one thing and another, or the mechanisms
which make such an exchange possible.

Interpreter: A program, usualy written in machine language, which understands and executes a
higher-level language.

Interrupt: A physical eftect which causes the computer to jump to a special interrupt-handling
subroutine. When the interrupt has been taken care of, the computer resumes execution of the
interrupted program with no noticeable change. Interrupts are used to signal the computer that a
particular device wants attention.

K: Stands for the greek prefix *‘Kilo"”, meaning one thousand. In common computer-reated
usage, “‘K’" usually represents the quantity 2'*, or 1824 (hexadecimal $408).

Kilobyte: 1,024 bytes.

Language: A computer language is a code which (hopefully!) both a programmer and his com-
puter understand. The programmer expresses what he wants to do in this code. and the com-
puter understands the code and performs the desired actions.

Line: On a video screen, a “line™ is a horizontal sequence of graphic symbols extending from
one edge of the screen to the other, To the Apple, an inpur line is a sequence of up to 254 char-
acters, terminated by the control character RETURN. In most places which do not have personal
computers, a line is something you wait in to use the computer.

Low-level Language: A language which is more intelligible to machines than it is to humans.

Low-order: The least important, or item with the least vaue, of a set of items. The low-order bit
in a byte is the bit with the least place vaue.

Low part: The fow-order byte of a two-byte address. In decimal, the low part of an address is the
remainder of the address divided by 256, also called the *“‘address modulo 256."" In the 6582, as
in many other microprocessors, the low part of an address comes first when that address is stored
in memory.

Machine language: The lowest level language which a computer understands. Machine

181

languages are usually binary in nature. Instructions in machine language are single-byle opcodes
sometimes followed by various operands.

Memory address: A memory address is a two-byte value which selects a single memory location
out of the memory map. Memory addresses in the Apple are stored with their low-order bytes
first, followed by their high-order bytes.

Memory location: The smallest subdivision of the memory map to which the computer can
refer. Each memory location has associated with it a unigue address and a certain value. Memory
locations on the Apple comprise one byte each.

Memory Map: This term is used 1o refer to the setl of all memory locations which the micropro-
cesor can address directly. It is also used to describe a graphic representation of a system's
memory.

Microcomputer: A term used 1o described a computer which is based upon a microprocessor.

Microprocessor: An integrated circuit which understands and executes machine language pro-
grams.

Mnemonic: An acronym (or any other symbol} used in the place of something more difficut to
remember. In Assembly Language, each machine language opcode is given a three letter
mnemonic (for example, the opcode $68 is given the mnemonic RTS, meaning **ReTurn from
Subroutine™).

Mode: A condition or set of conditions under which a certain set of rules apply.

Modulo: An arithmetic function with two operands. Modulo takes the first operand, divides it by
the second, and returns the remainder of the division.

Monitor: 1) A closed-circuit television receiver. 2) A program which allows vou to use your
computer at a very low level, often with the values and addresses of individual memory locations.

Multiplexer: An electronic circuit which has many data inputs, a few selector inputs, and one
output. A multiplexer connects one of its many data inputs to its output. The data input it
chooses to connect to the output is determined by the selector inputs,

Mux: See Multiplexer.

Nyhbble: Colloquial term for half of a byte, or four bits.

Opeode: A machine language instruction, numerical (often binary) in nature,

OR: A binary function whose value is “on™ if at least one of its inpuis are “‘on™",

QOutput: As a noun, data generated by the computer whose destination is the real world. As a
verb, the process of generating or transmitting such data.

Page: 1) A screenfull of information on a video display. 2) A quantity of memory locations,
addressible with one byte. On the Apple, a *‘page” of memory contains 256 locations.

Pascal: A noted French scientist.

PC board: See Printed Circuit Board,

182

'Fr Ik 'er tEl el IR0 IR [IEl TEC TEL OTEL OTED OTEC TEL DR OIEL TE. IEL OTEC OVEL OTEC OIEL

ke

R R RN R R R R R R R R N

Peripheral: Something attached to the computer which is not part of the computer itself. Most
peripherals are input and/or output devices.

Personal Computer: A computer with memory, languages, and peripherals which are well-suited
for use in a home, office, or school.

Pinout: A description of the function of each pin on an IC, often presented in the form of a
diagram.

Potentiometer: An electronic component whose resistance 1o the flow of electrons is propor-
tional to the setting of a dial or knob. Also known as a “*pot’” or “*variable resistor™.

Printed Circuit Board: A sheet of fiberglass or epoxy onto which a thin layer of metal has been
applied, then etched away to form rraces. Electronic components can then be attatched to the
board with molten solder, and they can exchange electronic signals via the etched traces on the
board. Small printed circuit boards are often called **cards’, especially if they are meant to con-
nect with edge connectors.

Program: A sequence of instructions which describes a process.

PROM: Acronym for ** Programmable Read-Only Memory'™. A PROM is a ROM whose contents
can be altered by electrical means. Information in PROMs does not disappear when the power is
turned off. Some PROMS can be erased by ultraviolet light and be reprogrammed.

RAM: See Random-Access Memory.

Random-Access Memory (RAM): This is the main memory of a computer. The acronym RAM
can be used to refer either to the integrated circuits which make up this type of memory or the
memory itself. The computer can store values in distinct locations in RAM and recall them
again, or alter and re-store them if it wishes. On the Apple, as with most small computers, the
values which are in RAM memory are lost when the power to the computer is turned off.
Read-Only Memory (ROM): This type of memory is usually used to hold important programs
or data which must be available 1o the computer when the power is first turned on. Information
in ROMSs is placed there in the process of manufacturing the ROMs and is unalterable. Informa-
tion stored in ROMs does not disappear when the power is turned off.

Reference: 1) A source of information, such as this manual. 2) As a verb, the action of examin-
ing or altering the contents of a memory location. As a noun, such an action.

Return: To exit a subroutine and go back to the program which called it,
ROM: See Read-Only Memory.

Run: To follow the sequence of instructions which comprise a program, and to complete the
process outlined by the instructions.

Scan line: A single sweep of a cathode beam across the face of a cathode-ray fube.

Schematic: A diagram which represents the electrical interconnections and circuitry of an elec-
tronic device.

Scroll: To move all the text on a display (usually upwards) to make room for more (usually at
the bottom).

183

Soft switch: A two-position switch which can be *‘thrown™ either way by the software of a com-
puter.

Software: The programs which give the hardware something to do.

Stack: A reserved area in memory which can be used to store information temporarily. The
information in a stack is referenced not by address, but in the order in which it was placed on the
stack. The last datum which was *‘pushed’ onto the stack will be the first one o be “‘popped’™”
off it

Strobe: A momentary signal which indicates the occurrence of a specific event.

Subroutine: A segment of a program which can be executed by a single call. Subroutines are
used to perform the same sequence of instructions at many different places in one program.

Syntax: The structure of instructions in a given fanguage. 1f you make a mistake in entering an
instruction and garble the syntax, the computer sometimes calls this a “SYNTAX ERROR."”

Text: Characters, usually letters and numbers, ““Text” usually refers to large chunks of English,
rather than computer, language.

Toggle switch: A two-position switch which can only flip from one position to the other and
back again, and cannot be directly set either way.

Trace: An etched conductive path on a Printed-Circuit Board which serves to electronically con-
nect components,

Video: 1) Anything visual. 2) Information presented on the face of a cathode-ray tube,

Warm-start: To restart the operation of a computer after you have lost control of its language or
operating system.

Windew: Something out of which vou jump when the power fails and you lose a large program.
Really: a reserved area on a display which is dedicated to some special purpose.

184

e el ey OIE O(E1 OIEL OIED (EL IEL IEL [E!

fr’e el 'R M1 Pl TR D T TED 1 TEl

.rl

BIBLIOGRAPHY

T L O O 1 S O S

Here are some other publications which you might enjoy:

Synertek/MOS Technology 6500 Programming Manual

This manual is an introduction to machine language programming for the MC6582 microproces-
sor. It describes the machine lanuage operation of the Apple’s microprocessor in meticulous
detail. However, it contains no specific information about the Apple.

This book is available from Apple. Order part number A2L0003.

Synertek/MOS Technology 6500 Hardware Manual
This manual contains a detailed description of the internal operations of the Apple’s 6582
microprocessor. It also has much information regarding interfacing the microprocessor to exter-
nal devices, some of which is pertinent to the Apple.

This book is also available lrom Apple. Order part number A2L0002.

The Apple 11 Monitor Peeled
This book contains a thorough, well-done description of the operating subroutines within the
Apple’s original Monitor ROM.

This is available from the author:

William E. Dougherty
14349 San Jose Street
Los Angeles, CA 91345

Programming the 6582
This book, written by Rodnay Zaks, is an excellent tutorial manual on machine and assembly-
language programming for the Apple’s 6582 microprocessor.

This manual is available from Sybex Incorporated, 2020 Milvia, Berkeley, CA 94704, It should

also be available at your local computer retailer or bookstore. Order book number C202.

6582 Applications
This book, also written by Rodnay Zaks, describes many applications of the Apple’s 6582
Microprocessor.

This is also available from Sybex. Order book number D302,
System Description: The Apple 11
Written by Steve Wozniak, the designer of the Apple computers, this article describes the basic

construction and operation of the Apple I1.

This article was originally published in the May, 1977 issue of BYTE magazine, and is available
from BYTE Publications, Inc. Peterborough, NH 30458,

186

IEL

IEl TE

IEl

i

(El el IEL IEL IEL IEL IFI IEl IE

El FL IE1 [E

4

'Fi Pl 'E1 TEI

19}

AR EREEEEEEE D EEEEEEE R

SWEETI16: The 6582 Dream Machine
Also written by Steve Wozniak, this article describes the SWEETI16® interpretive machine
language enclosed in the Apple's Integer BASIC ROMs.

This article appeared in the October, 1977 issue of BYTE magazine, and is available from BYTE
Publications, Inc. Peterborough, NH 304358,

More Colors for your Apple

This article, written by Allen Watson 111, describes in detail the Apple High-Resolution Graphics
mode. Also included is a reply by Steve Wozniak, the designer of the Apple, describing a
modification you can make to update your Revision @ Apple to add the two extra colors available
on the Revision | board.

This article appeared in the June, 1979 issue of BYTE magazine, and is available from BYTE
Publications, Inc. Peterborough, NH 30458.

Call APPLE (Apple Puget Sound Program Library Exchange)
This is one of the largest Apple user group newsletters. For information, write:

Apple Puget Sound Program Library Exchange
6708 39th Ave. Southwest
Seatte, Wash., 98136

The Cider Press
This is another large club newsletter. For information, write:

The Cider Press

¢fo The Apple Core of San Francisco
Box 4816

San Francisco, CA 94101

187

|

Wi YWV Y Y YA Ve Y Ve VY N Y T Y Td Td) d 1 i 14 1, Ty

188

INDEX

0

GENERAL INDEX

@ boards, ReviSion.......coccveeviiieiinnonn 3,
1 board, Revision
2716 type PROMS... -
50Hz modification, Eurapple 10
6592 instruction sel.. —

6502 internal rcgislers,
6502 microprocessor.....

B

Access Memory (RAM), Random 3
address and data buses ..._.................... 88, 90
address multiplexer, RAM .
addresses and data.........._....................
addressing modes. ..o
analog inputs ..

Hﬂn!,lnl.l.ll(!r !{!Lﬂpulﬁ.
annunciator special Iocal.mns
Apple Firmware card ..

Apple Language L':lrd....,.. i)
Apple main board, the w3, 89
Apple Mini-assembler.. ..o, 49

Apple, photo of the.........
Apple power supply, the...............ooevveenn 2,
Apple, setting up the
Apples, varieties of
ASCII character code

ASCII codes, keys and ___________________ 7
Autostart ROM listing.................. Appendix C
Autostart ROM Reset.....................ooccovirns 16
Autostart ROM special locations 17
AUtostart ROM.. ..o iiericimmmentseninissssrasnss 25
auxiliary video connectorccccvveeerinnines 9
B -~

backspace character...ccccovviviiriinns 30

backspace key
BASIC, entering
BASIC, reenterin

bell character........co.oiiiniin: i
block pinout, configuration.........c.cccoeeinennns 71
blocks, RAM configuration 70

board 1/0, periphcral..,...,_..._..
board, Revision @...
board, Revision 1............
board, the Apple main
board schematic, main.....

bufter, pluurclz
buffer; mpabaoanininiinmaaniiadn g3
built-in WO cinsiannnumnnnaminm 78, 98

buses, address and data.........................88, 90
BYLE, POWE-UP....coceeciiaecriniinsnrinnnerinnnen 3 1o 63
B R

card, Apple LANBUAREoooooociecrineirinrsissannnns

card, Apple Firmware....
cassette interface jacks...
cassette interface
cassetle 1ape, SAVINE 10 ..vveiecciiinsiinennn 40
cassetle tape, reading from........ccceceviiinnnnn 47
changing memoryc.....

character code, ASCIL.
character, backspace ...
character, line-feed.....
character, RETURN
character, Bell oo
characters, prompling
characters, keyboard....
characters, control................
clearing the keyboard strobe.........
code, ASCII character..........
codes, escape R
codes, keys and ASCII '.’
€Ol SAMT oo
colors, Low-Res....
colors, High-Res........co.o.......
colors, European High-Res...
command loops, Monitor
commands, creating your own
commands, summary of Monitor 59
COMPATINE TEMMOTY .evvvisieresresriieeiesiisenesnns
configuration block pinout...,
configuration blocks, RAM
configuration, RAM memoryoe....... 70
connector pinout, peripheral........cooocovveens 106
connector, keyhoard
COMMECLOT, POWET ..oooveeeieeereneerssmnrsseriaeeeras
CONNECLOT, SPEAKETieevieeereeiriemrreereeeeras
connector, Game [/O ...
connector, auxiliary video .
connector, video...
connectors, perlpheral
connnector pinoults, ke}rboard
control characters ..

control values, Normal."[merse
Controllers, Game,..
COUT, KEYIN qw:lﬂ_hes &
COUT standard output uuhruuhne
creating your own commands.............c..c.... 57
CEW/KSW sWItChES ... o criiiiversiarsmraereisans 83

fEL TEL 'EL TFL TEL TEL TEL IEL TRL TR

Fl TEL TFl

| J

Tl 'F1 FE TRI TELOTFI

Tl Fi

l,,i

CUTSOf...rvseses
Cursor, output.

=D

data, addresses and..
debugging programs.. I
display special |DLd|lOI‘Ib. udeo

S T

fliﬂﬂﬂﬂr

editing an input liNeoccvvvevrmminerreeecinnnnns

editing leatures...
entering BASIC
entering the Mummr

cyele, the RESET ..o

data buses, address and ...

display, \-ldcn

entry vector, a(rﬂ

escape (ESC) codesccoovevvvvvvencnirnnssenes

Eurapple 50Hz modification .

European High-Res colors..........coooceevenennns
EXAMINING MEMOTY 1oeveieiiiiiinieiiireerieesireserreees
expansion ROM ... veeeirees

0 e

features, input/output ...

features, microprocessor.
features, power supply....
Firmware card, Apple..

format, Low-Res screen .

e s

generator, the video

graphics, High-Res .

.

O U

{

feature, the Stop-Listocoviienninicns

foatures, SO, (.. i sresosisasasinsanas
featares, ewBOard. i i mierviitsermns cnbs

(**Mlag™) inputs, one-bit............corerverene
format, TeXt SCIEEM ..coccvviviiiirresirenresinirianes

format, High-Res screenoooooooiiiiiiinns
from cassette tape, reading ...

Game Controllers ...
Game 1/0 Connector ..ovevvvnrrieriiens

GETLN and input han
EraPhics MOUES ...iocvvivininiviiioniriienssiesmiies

graphics, LOW-ReS....ccccivvvviainivivisinins

hexadecimal notation................cceeciiiinnnnnns
High-Res colors, European........................

40
20

191

High-Res Braphics........cccooveeirisemrssensressossiins
High-Res screen, the...........
High-Res video mode, the ..
High-Res colorsooocovieeieeciieiiie e

INPUL BUFTET . e
input line, editing anc.ccovveerveeviceene
input lines, GETLN and
inpul prompting..

input subroutine, RDKEY ~_-.t.1nchrd
input/output features. .. .
input/output special |{J|‘..:lll0l1‘-u
input/output ...
inputs, data... R
inputs, one- bLt [E'idg“l
imputs, analog
inputs, single- b:l pushbutlon _______________________
instruction set, 6302coend
instructions, Mini-Assembler66
interface jucks, cassetle. ...,

interface, CASSELLEooecvveeereeeiiieeeseanas 22
internal registers, 6502 .33, Bl
interrupts........... . 65 lG?. 108
inverse text mode.... ..32, 54
1/O connector, Game . 23 100
1/O programming sugglemns RlJ

I/0 special locations
1/0, built-in.
/0, perlpheral bnard RO TRR
I/O, peripheral slm?‘)

T

jacks, cassette interface........cocceeeeee. 22, 103
jacks, video outpulcocciviiniinniiinieereisnnennn 97

jumper, “USER. 1™ .. it 99
S

ke, Dackmpatm e e
key, retype... T R S P PR © |
keyboard Chdl’dCICTS e TR
keyboard connector

keyboard connnector pinouts.......c...coeeeeen. 103
keyboard featlures i e

keyboard schematic............
keyboard special locations ...
keyboard strobe...................6,

78, 79, 98, 102
keyboard strobe, clearing thecccocccvieennn
kevboard, review of the..........ccooiis

kevboard, reading the
KEYIN switches, COUT,ccooniinnnniinnn. B

keys and ASCIT codes........ovivimmimesiiinmiinarens

e .

Language card, Apple........ccciniiinncens 3, 69
leaving the Mini-Assembler ... 50
line, editing an inputcoceeveiieniennnninas 33
line-feed character..........cccvvcriieennnns 30
lines, GETLN and input.... & .33
listing, Autostart ROM....... App-endm C
listing, Monitor ROM. Appendix C
listing machine language prngrums ______________ 49
list of special locations..................Appendix B
locations, list of special......... Appendix B

locations, annunciator special...........oocevees
locations, video display special ...
locations, input/output special
locations, text window special
locations, Autostart ROM special37
locations, Monitor special..........c.cooeiniiiniinnd
locations, keyboard special
locations, 17O special
loops., Monitor command ..
Low-Res colors..................
Low-Res screen, the..........
Low-Res video mode, theocvocoiinenians
TUREWAET STAIL. i i o st s s i

M --

machine language programs, listing.............49
main board, the Apple ...oocoooeeviiinnn
main board schematic.....
map, system memaory
maps, Zero page memory........ 55
Memory (RAM), Rdl‘ldﬂl‘l‘l Acresa — i

Memory (ROM), Read-Only..........oocrvverinnn 3
memory configuration, RAM ... s 1D
memory map, system i
MEMOrY MAaps, ZEI0 PARE.ccoviriiermiinn oy
MEINOTY. PRRBES. .. coxs kreeeiherrsnnssianspyss crpassssasss

memory, examining
memory, changing.............

TREMOER, TOVITIE (vvevovessssriosisnnves e nsnsnsisansd
MEMOTY, COMPATING.....cciverrrmnsvorsesronssnessrmanss
memory, RAM
memory, ROM

MICTOprocessor featlres. ..o veiene s 88
microprocessor, 65823, 88
Mini- Assembler iNSUrUCtionSoovvevveviiens 66
Mini-Assembler prompt (1) e, 50
Mini- Assembler, Applecoooovieiviiniiiiiiinnns

Mini-Assembler, leaving the.
mode, the text videooocvivinceiiiiiieciieens

192

mode, the Low-Res videocoviviiiiiiis
mode, the High-Res video ..
mode, inverse text..........oeiiis
mode, normal text....
modes, addressing ..
maodes, graphics...
modification, Eurapple SUHz
Monitor command loops ..
Monitor commands, bummar}' or
Maonitor prompt () ..

Monitor ROM RESET...
Monitor ROM listing............ e Appendix C
Monitor ROM..........ccocoiiiiinnn. s A 25
Monitor special locations.........cceeee.

Monitor subroutines, some useful....
Monitor, entering the..
moving memory ..

multiplexer, RAM 1ddresa

N --
normal text mode . P s P
Normal/lnverse control values PR 1

notation, hcxddemmdl.......,....,..............,......40
number, TANAOML... ..o 3 3

e () -

one (system stack), pPage.........occnmiiiiiinnnss
one-bit (*'flag™) inpuls......ccocvrvreren
DULPUL CUFEDT ...ciovsassvessimmsomnsssnsin riginsisgsss
outpul jacks, videoccceeeiiasinsasnnnr
output subroutine, COUT standard ..
outpult, utility strobe...
outputs, annunciator...
DULPULS, SIFODE.....covrranrrianrsse
own coymmands, creating Your.......ceeerrenn

=iPiis

page memory maps, zero
page one (system stack)

PABES, TEITIOTY ©.oeiieivrreiiierssiamresssseseiinesssanns
peripheral board 1/O............

peripheral connector pinout.
peripheral connectors
peripheral slot 17O
peripheral slot RBAM ..
peripheral slot ROMoviieiinennecernann
photo of the APPIE ..oviveveeiiniis e eines
picture buffer.......ccoveiieaeene
pinout, peripheral connector

ML OFLOTELOTEL IRL TR TR

TPl TRl TR

™l FI TH TF TR TR

I PR

i F R

|

T_\Tl\'1\'&\'&\'&\'&\7[1‘.1".[".[!'&!‘&Fdrirlriﬁiﬁ[ﬁ[ﬁ[ﬁ!ﬁ[’_sl’_

pinout, configuration block.........cccovvrerrrienns
pimont; ROM ... iiiamnireriiiivesasasanss
pinout, RAM ... 8t
pinouts, keyboard connnector....... A
POWET COMMBCTOT .. . eeeiiiisiiinnbesssrsesnitessesnnns
power supply features........ccocovivvviisiiisiniiann
power supply schematic...
power supply, the Apple ..
power-up byte... :
programming suggealmns. I!‘O
programs, running machine 1angudgc
programs, listing machine language.............
programs, debUggingcccoevirimmnniiasnennns
PROM, peripheral card
PROM, expansion ROM or.........cconis
PROME, 2710 type i iniiiiisisinmmmias
prompt («), Monitor........ccceeenn
prompt (1), Mini-Assembler.........
prompting characters ..

prompiing, input...

pushbutton inpuls, Smgie hu

.

RAM address multiplexer ... 96
RAM configuration blocks.........cccveiiiiiniaans 0
RAM memory configuration ..o 70
RAM MEMOTY .oovevivemnniriasinisnnions .68, 95
BAM DINOUL .o i viianass vivviasisis 96
RAM, peripheral slot...... e 82
random access memaory {RAM} 3
random number... S R 33
BRDKEY standard mpul subrouune 32
reading from cassette W@Pe ...ooccvveeviervvsseriinns 47
reading the keyboard.............. b
read-only memory (ROM) .. g
reentering BASIC .nnnannminiiii 54
registers, 6502 internal.................. i dy 81
relationships, timing signals and... .91

RESET cvcle, the ...eiiisommmsisssassinngB
RESET, Autostart ROM.........c.ccoveverieicninn 36
RESET, Monitor ROM....

return character ..
retype key...
review of the keyhnard
Revision @ boards.........
Revigion: 1 board ..o omnmmin crnnaresinimavssnnrmgss
ROM listing, Autostart
ROM listing, Monitor...
ROM memory
ROM: PATVGUIE L, coscisnn i s siasimive s o ninsnosiions
ROM RESET, AUloSIAM.....ccociinerinreeineinnn 30
ROM RESET, Monitor
ROM special locations, Autostart................ 37

193

ROM, Autostart
ROM. Monitor ..

ROM, per:pheral :.Iol
ROM or PROM, Enpanalun . £
running machine language programs 48

.

saving to casselte tape ...
schematic, keyboard
schematic, power supply....
schematic, main board.........cecveiieininnens

serean. Format: i it e i
screen format, Text...........
screen format, High-Res ...
screen format, Low-Res ...
SCTERN PARES.....oievrieaiisinisin
screen soft switches. x
Bereen; the TeXt ..o msiimsinie

screen, the Low-Res. ...
screen, the High-Res...
set, 6502 instruction ..,

setting up the Apple...........cccoiiiinnn

signals and relationships, UMing..........coo.... 91
single-bit pushbutton inputs........ L
slot 170, peripheral.........c.cco...., i 19
slot RAM, peripheral................... B
slot ROM, peripheral... .80
SO BOITY VECLOL . suirmivis ivns cisanivssrravanressivens 37

SOt SWIHCRES ...occviieiinincccminnssiansons
s0ft SWItCheS, SCIBEN.....ormvvsverivessrrrssrsmssasssres L2
speaker connector
special locations, list of.........ccoveee
special locations, video display ...
special locations, input/output
special locations, text window
special locations, Autostart ROM...............37
special locations, Monilor.......cccccceevvveeennn. 65
special locations, keyboard
special locations, 1/O ..
stack), page one Esystem
standard input subroutine, RDKEY...
standard output subroutine, COUT

ST COM.. e inin s snnvuiivan vunsanene iinmnsn ssamunnnaingsn 36
Start, JUKEWEIM...ovveceee e ciiee s rieen. 30
start, Warm............

STEP and TRACE.......

Stop-List feature, the
strobe output, utility....
SLEObE: GUIPILS...covrivnrnmsnnissnermnnns

strobe, clearing the keyboardccccovvvvenes
subroutine, COUT standard output
subroutineg, RDKEY standard input...
subroutines, some useful Monitor...............

suggestions, 1/O programming ..o
summary of Monitor commands
supply features, POWET ...oeereerireeereeererecrasnnrs
supply schematic, POWEToeverveeeveerieereeannns
supply, the Apple power ...
switches, soft.........ccccevvene
switches, screen sofl..
switches, toggle...........
switches, COUT, KFYI'\I

switches, CSW/KSW e
SYSIEm MEMOrY MEAP......ccoememiniiiermimmas i
(system stack), page one... 0
SYELEMUIMINE i vnmdieimssnnssnssinaasssaresivsr i
P

tape, Saving (0 CASSEIE ..orivniiescriensiierise 40
tape, reading from cassetle ..o 47

text mode, INVerse...............
text mode, normal ...
BEAL BCIBBIY, I, i cvriseveis invns bod pavan sabdamaii s

text video mode, Thecooieiiinvinminien
text window special locations...
text window, the......ccciiesiivmesreenininni
timing signals and relationships
HITINE, SYSLEM ..t sa i
toggle switches.........
TRACE, STEP and

s
“USER 1" jumper.. TR EPrarhony. .
useful Monitor subroul]nea. L-urnr:,, .61
utility SIrobe DULPUL....ccvvrerieririesieesiceininns 23
S, 1 .

values, Normal/Inverse control.............o... 32
varieties of Apples

vector, soft entry

video connector

video connector, auxiliary.............................9
video display... s
video display specml Iomuom =
video generator, the .. .96
video mode, the lexl 14
video mode, the I(m-Rcs 2T
video mode, the High-Res ... wil®
video outpul Jacks........c.coiinmnnimeaa 97

W

warm start
window special locations, 18Xtc.oeevmnin

194

window, the texXt.........coimmimiienn KA Rttt 31
W
your own commands, creating..........o.coue 57
e

ZEro page memory Maps......covemmin. 14
ZBIG, PR i i s s 069, T4

INDEX OF FIGURES

Figure 1. Map of the Text screen.............. 16
Figure 2. Map of the Low-Res mode..........18
Figure 3. Map of the High-Res screen.......21
Figure 4. Cursor-moving escape codes.......35
Figure 5. System Memory Map.................08
Figure 6. Memory Cunﬁguratlonb..... e |
Figure 7. Configuration Block Pinouts71
Figure 8. Expansion ROM Enable circuit... 83
Figure 9. SCFXX decoding ... =
Figure 10, The Apple Main Bcard

Figure 11, Timing Signals...

Figure 12, Power Supply Schemalic

Figure 13. ROM Pinout...

Figure 14, RAM Pmoutb .
Figure 15, Auxiliary Vldeo Cunncclor 98
Figure 16, Game 1/O Connector Pinout...100
Figure 17. Keyboard Schematic Drawing .101
Figure 18, Keyboard connector Pinout.....103
Figure 19, Power Connector..... 104
Figure 20, Speaker Connector 105
Figure 21. Peripheral Connector Pinout...106
Figure 22. Main Board Schematic......110-115

1

i

IF

'L TFL TFL TP

U I I

Fl TR

FL TF1 TFL TR

Fl TF]

l'ﬂ'ﬂ'ﬂ'ﬂ'ﬂfﬂfﬂ’!l

BRARARRE RN E RN R

INDEX OF PHOTOS

Photo 1.
Photo 2.
Photo 3,
Photo 4,
Photo 5,
Photo 6.
Photo 7,
Photo 8.

The Apple 11 .. .

The Apple P::wzr bupph
The Apple Keyboard.........
The Video Connectors ...
Eurapple jumper pads..........cccoiinnn
The Apple Character Set
The Game 1/0 Connector.
The USER 1 Jumper......ccooiimiinenien

INDEX OF TABLES

Table 1. Keyboard Special Locations................. L
Table 2. Keys and their ASCII codes 7
Table 3. The ASCII Character Set.............occeeee 8
Table 4. Video Display Memory Ranges.........12
Table 5. Screen Soft Switches............cocceen 13
Table 6. Screen Mode Combinations...............13
Table 7. ASCII Screen Character Set...............15
Table 8. Low-Resolution Colofs........cccccveenne 17
Table 9. Annunciator Special Locations24
Table 10, Input/Qutput Special Locations.......25
Table 11. Text Window Special Locations.......31
Table 12. Normal/Inverse Control Values....... 32
Table 13. Autostart ROM Special Locations....37
Table 14. Page Three Monitor Locations 65
Table 15. Mini-Assembler Address Formats...66
Table 16. RAM Organization and Usage 69
Table 17. ROM Organization and Usage 12
Table 18. Monitor Zero Page Usage 74
Table 19. Applesoft 1l Zero Page Usage.......... 74
Table 20. DOS 3.2 Zero Page Usage... !
Table 21. Integer BASIC Zero Page bsagc 15
Table 22, Built-In /0 Locations .. s?9
Table 23. Peripheral Card 1/O Loc;mﬂns .80
Table 24. Peripheral Card PROM Locatlons .81
Table 25. 1/O Location Base Addresses...........82
Table 26. 1/0 Scratchpad RAM Addresses......83
Signal Deseriptions:

Table 27. Timing ... i T
Table 28. Auxiliary V:deo Ou:pul S
Table 29. Game /O Connector........cccoreeeinas 100
Table 30. Keyboard Connector..... ..102
Table 31. Power Connector 104
Table 32. Speaker Connector........ .. 108
Table 33. Peripheral Connector............o...... 107

195

CAST OF
CHARACTERS

CTRL (J--(b;'_‘]““
CTRL H). coonms oivenmanis-cs
CTRL J (line feed)o.cooimrinmmineeas

CTRL U (=) o33, 34
CTRL X ...

i

i

i

14

i

14

i

14

'd)

ldi

iF |

F

F)

FJ

1di

id (4

F)

4 4

'4i

196

PP UPYmoNoNYsYsummmneagan

L

-clpple computer Inc.
10260 Bandley Drive
Cupertino, California 25014

	Apple][Reference Manual
	Table of Contents
	Introduction
	1 Approaching Your Apple
	The Power Supply
	The Main Board
	Talking to Your Apple
	The Keyboard
	Reading the Keyboard
	The Apple Video Display
	The Video Connector
	EurApple (50 Hz) Modification
	Screen Format
	Screen Memory
	Screen Pages
	Screen Switches
	The Text Mode
	The LO-RES Graphics Mode
	The HI-RES Graphics Mode
	Other Input/Output Features
	The Speaker
	The Cassette Interface
	The Game I/O Connector
	Annunciator Outputs
	One-Bit Inputs
	Analog Inputs
	Strobe Output

	Varieties of Apples
	Autostart/Monitor ROM
	Revision 0/1 Boards
	Power Supply Changes
	The Apple II Plus

	2 Conversation with Apples
	Standard Output
	The Stop-List Feature
	The Text Window
	Seeing it all in Black and White

	Standard Input
	RdKey
	GetLn
	The Backspace Key
	The ReType Key

	Escape Codes

	The Reset Cycle
	Autostart ROM Reset
	Autostart ROM Special Locations
	Old Monitor ROM Reset

	3 The System Monitor
	Entering the Monitor
	Addresses and Data
	Examining the Contents of Memory
	Examining some more Memory
	Examining still more Memory
	Changing the Contents of a Location
	Changing the Contents of Consecutive Locations
	Moving a Range of Memory
	Comparing two Ranges of Memory
	Saving a Range of Memory on Tape
	Reading a Range from Tape
	Creating and Running Machine Language Programs
	The Mini-Assembler
	Debugging Programs
	Examining and Changing Registers
	Misc Monitor Commands
	Special Tricks with the Monitor
	Creating your own Commands
	Summary of Monitor Commands
	Some Useful Monitor Subroutines
	COUT: FDED: Output a Character
	COUT1: FDF0: Output to Screen
	SETINV: FE80: Set Inverse Mode
	SETNORM: FE84: Set Normal Mode
	CROUT: FD8E: Generate a RETURN
	CROUT1: FD8B: RETURN with Clear
	PRBYTE: FDDA: Print a Hexadecimal Byte
	PRHEX: FDE3: Print a Hexadecimal Digit
	PRNTAX: F941: Print A and X in Hexacecimal
	PRBLNK: F948: Print three Spaces
	PRBL2: F94A: Print many Spaces
	BELL: FF3A: Output a BELL Character
	BELL1: FBDD: Beep the Apple's Speaker
	RDKEY: FD0C: Get an Input Character
	RDCHAR: FD35: Get an Input Character or ESC Code
	KEYIN: FD1B: Read the Apple's Keyboard
	GETLN: FD6A: Get an Input Line with Prompt
	GETLNZ: FD67: Get an Input Line
	GETLN1: FD6F: Get an Input Line, no Prompt
	WAIT: FCA8: Delay
	SETCOL: F864: Set Row-Res Graphics Color
	NEXTCOL: F85F: Increment Color by 3
	PLOT: F800: Plot a Block on Low-Res Screen
	HLINE: F819: Draw a horizontal Line of Blocks
	VLINE: F828: Draw a vertical line of Blocks
	CLRSCR: F832: Clear entire Low-Res Screen
	CLRTOP: F836: Clear the Top of Low-Res Screen
	SCRN: F871: Read the Low-Res Screen
	PREAD: FB1E: Read a Game Controller
	PRERR: FF2D: Print "ERR"
	IOSAVE: FF4A: Save all registers
	IOREST: FF3F: Restore all Registers

	Monitor Special Locations
	Mini-Assembler Instruction Formats

	4 Memory Organization
	RAM Storage
	RAM Configuration Blocks
	ROM Storage
	I/O Locations
	Zero Page Memory Maps

	5 Input/Output Structure
	Built-In I/O
	Peripheral Board I/O
	Peripheral Card I/O Space
	Peripheral Card ROM Space
	I/O Programming Suggestions
	Peripheral Slot Scratchpad RAM
	The CSW/KSW Switches
	Expansion ROM

	6-Hardware Configuration
	The Microprocessor
	The Apple Mainboard
	System Timing
	Power Supply
	Schematic

	ROM Memory
	RAM Memory
	The Video Generator
	Video Output Jacks
	Built-In I/O
	User 1 Jumper
	The Game I/O Connector
	The Keyboard
	Schematic

	Keyboard Connector
	Cassette Interface Jacks
	Power Connector
	Speaker
	Peripheral Connectors
	Schematics

	A-The 6502 Instruction Set
	6502 Instructions
	Programming Model
	Instruction Codes
	HEX Operation Codes

	B-Special Locations
	Keyboard
	Video Display Memory Ranges
	Screen Softswitches
	Annunciator
	Input/Output
	Text Window
	Normal/Inverse Control Values
	Autostart ROM
	Page Three Monitor Locations
	Built-In I/O Locations
	Periphera Card I/O Locations
	Peripheral Card PROM Locations
	I/O Location Base Addresses
	I/O Scratchpad RAM Addresses

	C-ROM Listings
	Autostart ROM
	Monitor ROM
	Symbol Table Numerical
	Symbol Table Alphabetical

	Glossary
	Bibliography
	Index
	General
	Figures
	Photos
	Tables
	Cast of Characters

	Exploded View

