
Beneoth Apple DOS
I

I

Bencatlr Aprrle DOS

By Don worth ond Pieter Lechner Q$

.{"\

I

I

OUU LITY I

SoFTWZR€
I

I

I

Beneath Apple t)os
Fourth Printing. May 1982

By Don Worth and Pieter Lechner

A product of
OUAL]TY SOFTWAR€

6660 Reseda Blvd., Suite 105
Reseda, CA 91335

DISCLAIMER
Quality Software shall have no liability or responsibility to the

purchaser or any other person or entity with respect to any liability,
loss or damage caused or alleged to be caused directly or indirectly
by this manual or its use, including but not limited to any interrup-
tion in service, loss of business and anticipatory . profits or
consequential damages resulting from the use of this product.

COPYRIGHT 01981 BY OUALITY SOFTWARE
This manual is published and copyrighted by'Quality Software.

All rights are reserved by Quality Software. Copying, duplicating,
selling or otherwise distributing this product is hereby expressly
forbidden except by prior written consent of Quality Softwhre.

The word APPLE and the Apple logo are registered trademarks
ofAPPLE COMPUTER, lNC.

APPLE COMPUTER, lNC. was'not in any way involved in the
writing or other preparation of this manual, nor were the tacis
presented here reviewed tor accuracy by that company. Use of the
term APPLE should not be construed lo represent any endorse-
ment, oflicial or otherwise, by APPLE COMPUTEB, lNC.

Downloaded from www.Apple2Online.com

TABLE OF CONTENTS

chapter l lNTRODUCTlON

chapter 2 THE EVOLUTION OF DOS
DOS 3

DOS 3.1

DOS 3.2

DOS 3.2.1

DOS 3.3

chapter 3 DISKETTE FORMATTING
TRACKS AND SECTORS
TRACK FORMATTING
DATA FIELD ENCODING
SECTOR INTERLEAVING

Ghapter 4 'DISKETTE ORGANIZATION
- DISKETTE SPACE ALLOCATION

THE VTOC
THE CATALOG
THE TRACK/SECTOR LIST

TEXT FILES

BINARY FILES

APPLESOFT AND INTEGER FILES

OTHER FILE TYPES

EMERGENCY REPAIRS

chapter s THE STRUCTURE OF DOS
DOS MEMORY USE

THE DOS VECTORS IN PAGE 3

WHAT HAPPENS DURING BOOTING

chapter 6 USING DOS FROM ASSEMBLY LANGUAGE
DIRECT USE OF THE DISK DRIVE

CALLING READ/WRITE TRACK/SECTOR (BWTS)

RWTS IOB BY CALL TYPE

CALLING THE DOS FILE MANAGER

FILE MANAGER PARAMETER LIST BY CALL TYPE

THE FILE MANAGER WORK AREA

COMMON ALGORITHMS

Downloaded from www.Apple2Online.com

TABLE OF CONTENTS

chaprer z CUSTOMIZING DOS
SLAVE VS. MASTER PATCHING
AVOIDING RELOAD OF LANGUAGE CARD
INSERTING A PROGRAM BETWEEN DOS AND ITS BUFFERS

BRUN OR EXEC A HELLO FILE
REMOVING THE PAUSE DURING A LONG CATALOG

chapter 8. DOS PROGRAM LOGIC
CONTROLLER CARD ROM _ BOOT O

FIRST RAM BOOTSTRAP LOADER - BOOT 1

DOS 3.3 MAIN ROUTINES
DOS FILE MANAGER
READ/WRITE TRACK/SECTOR
DOS ZERO PAGE USE

Appendix A EXAMPLE PROGRAMS
TRACK DUMP PROGRAM
DISK UPDATE PROGRAM
REFORMAT A SINGLE TRACK PROGRAM
FIND TRACK/SECTOR LISTS PROGRAM
BINARY TO TEXT FILE CONVERT PROGRAM

Appendix-B DISK PROTECTION SCHEMES'

Appendix c GLOSSARY

lndex

Downloaded from www.Apple2Online.com

ACKNOWLEDGEMENTS

Than ks go to Vic Tolomei for his assistance in d issecting DOS 3;1 and to Lou R ivas for h is

patient proofreading. Thanks also to my wife Carley for putting up with the clackety clack of
my Diablo long into the night.

Don D. Worth

Thanks to the people at Computerland of South Bay (California) who lent me support
both of their time and equipment, and special thanks to John Gottuso, whose encouragemenl
helped me to camplete the task.

Pieter M. Lechner

BAG OF TRICKS
A Super Disk Utility by the Aulhors ot Benealh Apple DOS
$39.95

lf you f ind BENEATH APPLE DOS useful, you should also find BAG OF TRICKS an important
help in examining and patching up your diskettes.

BAG OF TRICKS is a package of four machine language subroutines which go far beyond the
example programs in Appendix A of this book. User friendly and well documented, this disk
utility package is undoubtedly the best one available for the Apple I l, especially at the low price
of $39.95

The four programs and their functions are:
1. TBAXdumpsandexaminesarawtrack,either'13-sectororl6-sector,displaystheinternal

Apple diskette tormatting information, and flags exceptions to standard formats.
2. lNlT wlll reformat one or more tracks on diskette, while attempting to preserve any data on

them. Both 13-sector and 16-sector formats are.supported.
3. ZAPprovidesthebasiccapabilitytoread,display,andupdatediskettesectors.Morethan

50 commands are available to assist the user in locating, comparing, and changing the data
on the diskette. Printer support, too. You won't believe how many useful options ZAP has.

4. FlXCATautomat€stheprocessofrecoveringadamagedcatalogtrack.Thediskettecanbe
searched for track sector lists, then the user can assign a name to files found by FIXCA
and restore them to the catalog. Entire catalogs may be restored in this way.

lJ you have ever had a disk crash, you know what a good disk utility is worth. Beginners will
appreciate the "hand-holding" tutorials that will assist him in repairing his damaged diskettes,
and the experienced user will appreciate how last and easily he can perform analysis and
repairs.

BAG OF TRICKS requires a 48K Apple ll or Apple ll Plus.

Downloaded from www.Apple2Online.com

CHAPTER 1

INTRODUCTION

Beneath Apple DOS is intended to serve as a companion to
Applers DOS Manual, providing additional information for the
advanced programmer or the novj-ce Apple user who wants to
know more about the structure of diskettes. It is not the
intent of this manual to replace the documentation provided
by Apple Computer Inc. Although, for the sake of
continuity, some of the material covered in the Apple manual
is also covered here. it will be assumed that the reader is
reasonably familiar with the contents of the DOS Manual.
Since a1l chapters presented here may not be of use to each
Apple owner, each has been written to stand on its own.

The information presented here is a result of intensive
disassembly and annotation of various versions of DOS by the
authors and by other experienced systems programmers. It
also draws from application notes, articles, and discussions
wi-th knowledgeable people. This nanual was not prepared
with the assistance of Apple Computer Inc. Although no
guarantee can be made concerning the accuracy of the
informati.on presented here, aI1 of the material included in
Beneath Apple DOS has been thoroughly researched and
tested.

There were several reasons for writing Beneath Apple DOS:

show direct assembly language access to DOS.
help you to fix clobbered diskettes.
correct errors and omissions in the Apple documentation.
a1low you to cuslbmize DOS to fit your needs.
provide complete information on diskette formatting.

To
To
To
To
To

THERE WERE SEI,ERAT BEAsOfiS rcR WRMN6 'BE,NEAIH APPTE DOs:....
1-1

Downloaded from www.Apple2Online.com

When Appl-e Computer Inc. introduced its Disk Operating
System (DOS) version 3 in 1978 to support the new DISK II
drive, very little documentation was provided. Later, when
DOS 3.2 was re.leased, a 178 page instructional and reference
manual became available covering the use of DoS from BASrc
in depth and even touched upon some of the internal workings
of DOS. With the advent of DOS 3.3, the old 3.2 manual was
upclated but the bocly of information j.n it remained
essentially intact. Beyond these Apple manuals, there have
been no significant additions to the documentation on DOS,
apart.from a few articles in APPLE user group magazines and
newsletters. This manual takes up where Lhe Disk Operating
System Manual leaves off.

Throughout this manual, discussion centers primarily on DOS
version 3.3. The reasons for this are that 3.3 was the most
recent release of DOS at the time of this writi-ng and that
it differs less from DOS 3.2 than one would inagine.
Wherever there is a major difference beLv;cen the various DoS
releases in a given topic, each re1eaS€ v:ill be covered.

In addition to the DOS dependent information provided, many
of the discussions also apply to other operating systems on
the Apple II and Apple III. For example, disk formatting at
the track and sector level is, for the most part, the same.

1-2
Downloaded from www.Apple2Online.com

CHAPTER 2
THE EVOLUTION OF DOS

Since its introduction, Apple DOS has gone through three
major versions. A11 of these versions look very nuch the
same on the surface. All conmands supported by DOS 3.3 are
also supported in 3.2 and 3.1. The need for additional
versions has been more to fix errors in DOS and to make
minor enhancements than to provide additional
functionality. OnIy DOS 3.3 has offered any major
improvement in function; an increase in the number of
sectors that will fit on a track fron 13 to 16.

DOS 3 - 29 June 1978
DOS 3;1 - 20 July 1978

The first release of DOS was apparently a victirn of a rush
at Apple to.introduce the DISK II..As such, it had a number
of bugs. With the movement towards the AppLE II PLUS and the
introduction of the AUTOSTART ROM, a new release was
needed.

DOS 3.2 - 16 February 1979

Although DOS 3.2 embodied more changes from its predecessor
than any other release of DOS, 90? of the basic structure of
DOS 3.1 was retained. fhe major differences between DOS 3.1
and 3.2 and later versions of DOS are listed below:

- NOMON C,I,O is the initial default under DOS 3.2. MON
Crf,O was the default under DOS 3.1.

- Input prompts (>rl,*) are echoed when MON O is in effect,
not under MON I as was the case under 3.1.

- When a DOS comrnand was entered from the keyboard, DOS
executed it and then passed a blank followed by a carriage
return to BASIC under 3.1. Under 3.2 only a carriage
return is passed.

- Under 3.2, certain cornmands may not be entered from the
keyboard but may only be used within a BASIC program
(READ, WRITE, POSITION, OPEN, APPEND).

- Under 3.2, when LOADing an APPLESOFT program, DOS
automatically converts from APPLESOFT ROM format to
APPLESOFT RAM format if the RAM version of BASIC is in use
and vice versa.

- DOS 3.1 could not read lower case characters from a text
file; DOS 3.2 can.

2-1Downloaded from www.Apple2Online.com

DO DO€ a.2
,979

Dc6 3,3
r960

THE EVOTUTIN OFAP9E OOS.

- some DOS comnands,are allOwed tO Create a new.file, others
will not. Under DOS 3.I, any reference to a file that
didn't exist, caused it to be created. This forced DOS 3'1
to then delete it if a new file was not desired. (LOAD xYz
urider 3.1 if .XYZ did no't exist, created XYz ' deleted XYZ 'and then printed the'file not found error message') Under
3.2, OPEN is allowed to create a file if one does not
exist, but LOAD may not.

- Under 3.1, exiting to the monitor required Lhat the
monitor status register location ($48) be set to zero
before reentering DoS. Under DoS 3.2 this is no longer
necessary.

- the Read-Twrite-ttuck,/Sector (RWTS) section of DoS disables
interrupis while it is executing. Under 3'1' RWTS could be
interrulted by a peripheral while writing to a disk,
destroying the'disk.

- rhe deiault for the B (byte offset) keyword is 0 under
3 .2.

- DOS was reassemblect for 3.2 -causing most of its
interesting locations and routines to move slightly' This
played havoc with user programs and utilities which had
DOS addresses built into them.

- Additional file types (beyond T, I, A' and B) are defined
within DOS 3.2, allhough no commands yet support them' The
new types are S' R' a new A' and a new B. R has
subseiirently been used by the. DOS TOOLKIT for relocatable
objec€ module assembler files. At'presentr no other use
is made of.these extra file.types.

- .Support was added under 3.2 for the AUTOSTART ROM.

- Al1- files open when a disk full condition occurs are
closed by DoS 3.2.

- As with each .new release of DOS, several new programs were
added to the master dlskette for 3.2. Among these was
UPDAIE 3.2, a replacement for MASTER CREATE, the utility
for creating masler diskettes. UP.DATS,3.2 converts a slave
into a master and alLows the HELTO file to.be renamed.

DOS 3.2.1 - 31 JulY 1979

Dos 3.2.1 l,ras essentially a trmainbenance r'elease'. of DoS

!.2. llinor patches were nade to RWTS. and the COPY prqgram
:to correct a timing problen when a dual drive copy was done'
edditional delays were added following a switch belween
dr ives .
2-2

t

I

'DOS 3.3 - 25 August 1980

IIntroduced in nid 1980 as a hardware/software upgrade fron
DOS 3.2.I, the DOS 3.3 package includes new bootstrap and
state ROI{ chips for the disk controller card which provide

Lthe capability to format, read, and write a diskette with t6
sectors. (These ROMS are the same ones used with the

iLANGUAGE SYSTEM.) This irnprovement represents almost a 252iincrease in available disk spaee over the old 13 sector
format. Also included in the 3.3 package is an.updated

[version of the DoS manual, a BASICS dilkette (fo;13 sector'boots), and a master diskette. .Although the RWIS portion of
lDOS was almost totally rewritten, the rest of DOS was not
lreassembled and only received a few patches:

t-

t_

I-

t_

t

t_

t_

t

The initial DOS bootstrap loader was moved to $800 under
3.3. It was at $300 under 3.2. In addition, as stored on
the diskette (track 0 sector 0) it is nibbilizecl in the
same way as.a11 other sectors under 3.3.
A bug in APPEND which caused it to position improperly if
the file was a multiple of 256 byt-es long was fixed under
3.3.
A VERIFY command is internally executed after every SAVE
or BSAVE under 3.3.
AlI 4 bytes are r,rsed in the Volume Table Of Contents
(VTOC) free sector bit map.when keeping track of free
sectors. This a11ows DOS to handle up to 32 Sectors per
track. Of course. RWTS will only handle 16 sectors due to
hardware linitations.
If a LANGUAGE CARD is present. DOS sLores a zero on i.t at
$E000 during bootstrap.to force the HELLO program on the
master diskette to rel-oad BASIC.
DOS is read into.menory from the top down (backwards)
under 3.3 rather.than the bottom up. Its image is still
stored in the same order on the disket:te (tracks 0r 1, and
2) , however.

,- Additional programs added to the-master.diskette under 3.3
I include FID, a generalized file utility which aIlows

individual files or groups of files to be copied, MUFFIN,
I a conversion copy routine to allow 3.2 files to be moved
' to 16 sector 3.3'diskettes, BOOT 13, a progran which will
. boot a 13 sector diskette, and a new COPY program which
i will also support single clrive copies.
- Under 3.2, speed differences in some drives prevented
, their use together with the DOS COPY prograrn. Because the
I COPY program was rewritten under 3.3, that restriction no

longer applies.
I

I

i

l

I

I

i
I

CHAPTER 3
DISKETTE FORMATTING

Apple Computer I s excellent manual on the Oisk Operating
Systen (DOS) provides only very basic infornation abouL how
diskettes are formatted. This chapter will explain in detail
how i-nformation is structured on a diskette. The first
section will contain a brief introduction to the hardware,
and may be skipped by those already familiar with the DOS
rnanual.

TRACKS AND SECTORS

For system housekeeping, DOS divides di-skettes into tracks
and sectors. This is done during the initialization
process. A track is a physically defined circular path
which is concentric with the hole in the center of the
diskette. Each track is identified by its distance from the
center of the disk. Sirnilar to a phonograph stylus, the
read,/write head of the disk drive nay be positioned over any
given track. The tracks are similar to the grooves i.n a
record, but they are not connected in a spiral. Much like
playing a record, the diskette is spun at a constant speed
while the data is read from or written to its surface with
the read/write head. Apple formats its diskettes into 35
tracks. They are numbered from 0 to 34, track 0 being the
outernost track and track 34 the innermost. Figure 3.1
illustrates the concept of tracks, although they are
invisible to the eye on a real diskette.

/fBACK
o

TRACX 17

rRAC(il

-\
\t

\/
SECTORS

FIGURE 3,1

ONE TRACK

3-'1

Downloaded from www.Apple2Online.com

It should be pointed out, for the sake of accuracy, that the
disk arm can position itself over 70 "phases". To move the
arm past one track to the nextr two phases of the stepPer
motor, which moves the arm, must be cycl-ed. This inplies
that data might be stored on 70 tra'cks, rather than 35.
Unfortunately. the resolution of the read/write head and the
accuracy of the stepper motor are such, that attenpts to use
these phantom "ha1f" tracks create so nuch cross-talk that
data is lost or overv,rritten. Although the standard DOS uses
only even phases, some protected disks use odd Phases or
combinations of the two, provided that no two tracks are
closer than two phases from one another. See APPENDIX B for
more information on protection schemes.

A sector is a subdivision of a track. It is the smal-Iest
unit of "updatable" data on the diskette. DOS generally
reads or writes data a sector at a time. This is to avoid
using a large chunk of memory as a buffer to read or write
an entire track. Apple has used two different track formats
to date. One divides the track into 13 sectors, the other'
16 sectors. The sectoring does not use the index hole,
provided on most diskettes, to locate the first sector of
the track. The implication is that the software must be
able to locate any given track and sector with no help from
the hardware. This scheme, known as "soft sectoring"r takes
a little more space for storage but allows flexibilityr os
evidenced by the recent change fron 13 sectors to 16 sectors
per track. The following table catagorizes the amount of
data stored on a diskette under both 13 and 16 sector
formats.

DISK ORGANIZATION

TRACKS
AII DOS versions35

SECTORS PER TRACK
DOS 3.2.1 and earlier13
Dos 3.3....16

SECTORS PER DI.SKETTE
DOS 3.2.1 and earlier455
DOS 3.3....560

BYTES PER SECTOR
All DOS versions ...256

BYTES PER DISKETTE
DOS 3.2.I and earlier .116480
DOS 3.3....143360

USABLE* SECTORS FOR DATA STORAGE
DOS 3.2.1 and earlier403
DOS 3.3.....496

USABLE* BYTES PER DISKETTE
DOS 3.2.1 and earlier .f03I68
DOS 3.3....L26976

* Excludes DOS, VTOC, and CATALOG
3-2

TRACK FORMATTING

Up to this point we have broken down the structure of datr
to the track and sector 1evel. To better understand how
data is stored and retrieved, we will start at the bottom
and work up.

As this manual is prirnarily concerned with software, no
attempt wiII be made to deal with the specifics of the
hardware. For example, while in fact data is stored as a
continuous stream of analog signals, we will ileal with
discrete digital data, i.e. a 0 or a l. We recognize that
the hardware converts analog data to digital data but how
this is accornplished is beyond the scope of this manual.

Data bits are recorded on the diskette in precise
intervals. For the purposes of this discu!sion. the
demarcation of these intervals will be depicted by a clockbit. Using this representation, data wrilten to lnd read
back frorn the diskette takes the form shown in Figure 3.2.
The data pattern shown represents a binary value of fOf.

BITS ON DISK

CLOCK BITS
FIGURE 3.2

As can be seen in Figure 3.3, the clock bits and data bits(if present) are interleaved. The presence of a data bit
between two clock bits represents a binary J_, the absence of
a data bit between two clock bits represents a binary 0. We
will define a rbit cell" as the period between the leading
edge of one clock bit and the leading edge of the next clockbit.

A BIT CELL
CLOCK BITS

/ orrl Eri---\
l-.-l El rn
I lz .""c-,1
l-_ 8tr cELL_l

A byte would consist of eight (8) consecutive bit cel1s.
The most significant bit cell is usually referred to as bit
ce1l 7 and the least significant bit cell would be bit cell
0. When reference is nade to a specific data bit (i.e. data
bit 5) ? it is with respect to lhe cor.responding bit cell(bit celI 5). Data is written and read serially, one bit at
a tine. Thus, during a wr.ite operation, bit cell Z of each
byte woulil be written fi.rst, with bit cell 0 being written

FIGURE 3.3

3-3

last. Correspondingly, when data is being read back from the
diskette, bit ceIl 7 is read first and bit cel1 0 is read
last. The diagram below illustrates the relationship of the
bits within a byte.

ONE BYTE ON DISK

FIGURE 3.4

To graphically show how bits are stored and retrieved, we
must take certain liberties. The diagrams are a
representation of what functionally occurs within the disk
dr1ve. For the purposes of our presentation, the hardware
interface to the diskette will be represented as an eight
bit "data latch". While the hardware involves considerably
rnore complication, from a software standpoint it is
reasonable to use the data latch, as it accurately embodies
the function of data flow to and from the diskette.

Figure 3.5 shows the three bi-ts' 101, being read from the
diskette data stream into the data latch. Of course another
five bits would be read to fill the latch. As can be seen,
the data is separated from the clock bits. This task is
done. by the hardware and is shown more for accuracy than for
its irnportance to our discussion.

Writing data can be depicted in much the sane way (see
Figure 3.6). The clock bits whieh were separated from the
data nust now be interleavecl with the data as it is
written. It should be noted that, while in write mode,
zeros are being brought into the data latch to replace the
data being written. It is the task of the software to make
sure that the latch is loaded and instructed to write in 32
cycle intervals. If not, zero bits will continue to be
written every four cycles, which is, in fact, exactly how
self-sync bytes are created. Self-sync bytes will be covered
in detail shortly.

3-4 Downloaded from www.Apple2Online.com

READIIIG DATA FFOII DISKETTE

OATA LATGII

rrrr-rT-rn
\

,rrsrnErr . lll lJltr lJ ,;. ITL

. l"l ll"l l"l ". lll lJ"l lll

FIGURE 3.5

3-5
Downloaded from www.Apple2Online.com

WRT?ING'OATA TO DISKETTE

DITA LATCH

.-0

3-6

F'GURE 3.6

A "field" is made up of a group of. consecutive bytes. The
number of bytes va.ries, depending upon the nature of the
field. The two types of fielils present on a diskette are
the Address Fielil and the Data Fietd. They are similar in
that they both contain a prologue, a data area, a checksun,
and an epilogue. Each f.ield on a track is separated from
adjacent fields by a number of bytes. These areas of
separation are called "gaps" and are provided for two
reasons. One, they al1ow the updlating of one field without
affecting adjacent fields (on the Apple, only ilata fielils
are updated). Secondly, they a11ow the computer time to
decode the address field before the corresponding clata field
can pass beneath the read/write head.

A1t gaps are primarily alike in content, consisting of
self-sync hexadecimal FFrs, and vary only in the nurnber of
bytes they contain. Figure 3.7 is a diagram of a portion of
a typical track, broken into its major components.

TRACK FORMAT

J
IEL '::' I I

I

I
*-

l"iiil.l;:i::. ""...-.ttsiluu ll

7
FIGURE 3,7

Self-sync or auto-sync bytes are special bytes that make up
the three different types of gaps on a track. They are. so
named bec,ause of their ability to automatically bring the
hardware into synch.ronization'with data bytes on'the disk.
The difficulty in iloing this lies in the fact that the
hardware reads bits and the data must be stored as eight bit
bytes. It has been mentioned that a track is literally a
continuous stream of data bits. In fact, at the bit leveI,
there is no way to determine.where a byte starts or ends,
because each bit cell is exactly the same; written in
precise intervals with its neighbors. When the drive is
instructed to read data; it vri1l start.wherever. it happens
to be on a particular' track. That could be anywhere among
the 501000 or so bits on a track. Distinguishing clock bits
from data bits, the hardware finds the first bit cell with
data in it and proceeds to read. the following seven data
bits into the eight bit latch. In effect, it assumes'that
it had started at the beginning of a data byt.e. Of course,

3-7

in reality. the odds of its having started at the begihning
of a byte are only one in eight. Pictured in Figure 3.8 is
a small portion of a track. The clock bits have been
stripped ouL and 0's and l's have been used for clarity.

FIGURE 3.8

There is no way from looking at the data to te1l what bytes
are represented, because we don't know where to start- This
is exactly the problem that self-sync bytes overcome.

A self-sync byte is defined to be a hexadecimal FF with a
special diffeience. It is, in fact, a 10 bit byte rather
than an eight bit byte. Its two extra bits are zeros.
Figure 3.9 shows the difference between a normal data hex FF
th;t might be found elsewhere on the disk and a self-sync
hex FF byte.

NORMAL BYTE HEX FF SELF-SYNC BYTE HEX FF

1l1l1l1l111l111

AN EXAMPLE BIT STREAM ON THE DISK

01 101011 10101 1001 1 1 101 1011 10101

FIGURE 3.9

A self-sync is generated by using a 40 cycle (mi-cro-second)
Ioop whi-1e writi-ng an FF. A bit is written every four

"y.ies,
so two of the zero bits brought into the data latch

ri'tife the FF was being written are also written to the disk,
making the 10 bit byte. (DOS 3.2.1 and earlier versions use
a nine bit byte due to the hardware's inability to always
detect two consecutive zero bits.) It can be shown, using
Figure 3.10, that five self-sync bytes are sufficient to
guirantee that the hardware is reading valid data. -.Thei.u"o.t for this is that the hardware requires the first bit
of a byte to be a 1. Pictured at the top of,the figure is a

stream of five auto-sync bytes. Each row below that
demonstrates what the hardware will read should it start
reading at any given bit in the first byte- In each case,
by the time the five sync bytes have passed beneath the
read/write head, the hardware will be "synched" to read the
data bytes that follow. As long as the disk is left in read
mode, it will continue to correctly interpret the data
unless there is an error on the track.

3-8
Downloaded from www.Apple2Online.com

5 AUTOSYNC BYTES

1 1 1 1 1 1 1 1 001 1 1 1 1 1 1 1001 1 1 1 1 1 1 rOOl 1 1 1 1 1 1 1 oO.1 1 1 1 1 1 1 1 oO

1 1 1 1 I I I 1 0 0 1 I 1 1 1 1 1 t.0 0 1 1 1 I 1 1 1 1 o O 1 1 1 1 1 1 1 1.0 0. 1 1 1 .1 1 1 .1 .1 o O

-

'1.1 1 '1 1 1 1 1 0,0.1 I 1 1 1 1 I I_0 0.1 1 1 I 1 1 1 1 O O 1 1 1 1 1 1 .l 1 O O 1 1 1 1 1 1 1 1 0 O

-

1 1,1 I 1 1 1 100-t 1 1 1 1 t1 1_00.t 11 1 1 1 1 1.00.1 1 1 1 1 1 1 1.001 1 1 1 1 1.1 100

1 1 1.1 1 1 1 1 001-l l t 1 1 1 t 0.0.1 t l l l I 1 1 00 1 1 1 1 1 1 1 1 001 1 1 1 1 1 1 1 00

-

1 1 1 1-1 1 1 1 001 1^1 1 1 1 1 1 00.1 1 1 1 1 1 1 1 oO1 1 .t 1 1 1 1 1 00 1 1 1 1 1 1 1 1 00

r 1 1 11-r 1 100_1,11^l_111 1001 1 I 1 1 1 t I0O1 1 1 1 r 1 1 1.00.1 1 1 1 t t 1 1OO

-

1 1 1 I 1 1.1 t 0 01 1 1 t.1 I 1 1 0 0 1 1 1 1 I 1 1 1 0 0_l 1 1 I 1 1 1 1 0 0 1 1 1 1 1 1 1 1 o O

--

1 1 1 1 1 1 1.1 00 1 1 1 1 1 1 1 1 0gl_l_1"1_l_l_1,1_!_9J.1 1 1 1 1 1 1 OO.1 1 1 1 1 1 1 1 OO

1111 I11100.1111 1 | I 1_00.1111 I 1 11_0o.t I 1I 1 I 11oOI1 1111 I100

--
FIGURE 3.10

We can now discuss the particular portions of a track in
detail. The three gaps will be covered first. Unlike some
other disk forrnats, the size of the three gap types will
vary from drive to drive and even from track to track.
During the initialization process, DOS will start with large
gaps and keep making them smaller until an entire track can
be written without overlapping itself. A ninimum of five
self-sync bytes must be maintained for each gap type (as
discussed earlier). The result is fairly uniform gap sizes
within each particular track.

3-9

Gap I is the first data written to a track during
initiafization. Its purpose is twofold. The gap, originally
;;;;i;4" of 128 bytes of self-sync, a large enough area to
insure that all portions of a track will contain data'
;;;;;-tr,.-"p""a bf a particular drive may vary, the totar
f .nqtfl of tire track in bytes is uncertain, and the
p"ii"ttie" occupied uy dita is unknown' The initialization
iio.u"" is set up, troilqver' so that-even on drives of
bit:.ring speeds, tfre iast data field written witl overlap
e;;-i; pio"iai.ng continuity over the entire phvsicar-track'
care is taken to make sure-the remaining portion of Gap I is
at least as long as a typical Gap 3 (in practice its length
i" ""tiirv

rnore than 40-'!ync bytes), enabling it to serve as

i-Cup 3 tipe for Address'iietd-number 0 (See Figure 3.7 for
ctarity).

Gap 2 appears after each Address Field and before each Data
iil:-J. iis rength varies from five to ten bytes.gn a.normal
e;i;;. tit. prinary purpose of Gap 2 is to provide. tirne for
[ft" infot*ation in- ai eaaress Field to be decoded by the
computer before a read or write takes place'II the.gap were

ioo'strort, the beginning of the Data FJ.eld night spin past

"f,ii"
OOS'was stiit det6rmining if this was the sector to be

;;.e: The 240 odd cyctes that six self-sync bytes provide
s.et" u*pfe time to lecode an address field' when a Data
Field is written there is no guarantee that the write will
;;;;t in exactly the same spol eacb tine' This is due to
the fact that the drive whrich is rewriting the Data Fielcl
*.V ""t

be the one which originally INITe'l or wrote it'
Si'n"" the speed of the drives can vary, it is possible that
Lh. *rite c6u1d start in micl-byte. (See Figure.3'1I) This is
;;t ;-pi"ur"t as rong as tlre difference in positioning is
;;;;t;;t: to insur6 the intesritv of Gap 2, when writins a

Jutu'ii.fa, five self-sync bytes a-re written prior to
writing the Data Field itself. This serves two purposes'
Si".. ielatively little- tine is spent decoding,an address
;i;i;,-irr. rin.-uvtes help place Lhe oata Field near its

NEW
DATA
FIELD

NEW
OATA
FIELD

FIGURE 3.11

CURRENT I

DATA
FIELD

3-1 0

original position. Secondly, and more irnportantly, the five
self-sync bytes are the ninimum number required to guarantee
read-synchronization. It is probable that, in writing a
Data Fielcl, at least one sync byte will be destroyed. This
is because, just as i-n reading bits on the track, the write
may not begin on a byte boundary, thus alter.ing an existing
byte. Figure 3.12 illustrates this.

WR]TING OUT OF SYNC

Belorc

Dl lCl lD

*rn" siarts he;e

FIGURE 3.12

Gap 3 appears after each Data Fielcl and before each Address
Field. It is longer than Gap 2 and generally ranges fron 14
to 24 bytes in length. It is quite similar in purpose to
Gap 2. Gap 3 allows the additional time needed to
manipulate the data that has been read before the next
sector is to be read. The length of cap 3 is not as
critical as that of cap 2. If the following Address Field
is missed, DOS can always wait for the next time it spins
around under the read/write head, at most one revolution of
the disk. Sinc.e Address fields are never rewritten, there
is no problem with this gap providing synchronization, since
only the first part of the gap can be overwritten or
damaged. (See Figure 3.11 for clarity)

An'examination of the contents of the tr,ro types of fields is
in order. The Address Fleld contains the "address" or
i.dentifying information about the Data Field which follows
it. The volume, track, and sector number of any given
sector can be thought of as its "addressr', much like a
country, city, and street number might identify a house. As
shown previously in Figure 3.7, there are a number of
components which nake up the Address Field. A nore detailed
illustration is given in Figure 3.I3.

3-1 1Downloaded from www.Apple2Online.com

ADDRESS FIELD

D5 AA 96 IXX YYI XX YYIXX YYIXX YY IDE AA

ODD-EVEN ENCODED

DATA BYTE -DzDoDsD+D:DzDr
Do

XX-lDzlDslDslDr
YY-1DelDnlDzlDo

FIGURE 3.13

The prologue consists of three bytes which form a unique
seguence, found in no other component of the track. This
fact enabtes DOS to locate an Address Field with almost no
possibility of error. The three bytes are $D5, $AA, and
$96. The $D5 and $AA are reserved (never written as data)
thus insuring the uniqueness of the prologue. The $96,
following this unique string, indicates that the data
following constitutes an Address Fi-eld (as opposed to a Data
Field). The address information follows next' consistinq of
the volume, track, and sector number and a checksum. This
infornation is absol-utely essential for DOS to know where it
is positioned on a particular diskette. The checksum is
computed by exclusive-ORing the first three pieces of
information, and is used to verify its integrity. Lastly
follows the epitogue, which contains the three bytes $DE,
$AA and $EB. Oddly, the $EB is always written during
initialization but is never verified when an Address FieId
is read. The epi-Iogue bytes are sometimes referred to as
"bit-slip marks", which provide added assurance that the
drive is still in sync with the bytes on the disk. These
bytes are probably unnecessary, but do provide a means of
double checking,

3-12

The other field type is the Data Field. Much like the
Address Eield, it consists of a prologue, data, checksum,
and an epilogue. (Refer to Figure 3.14) The prologue is
different only in the third byte. The bytes are 9D5. gAA,
and $AD, which again forrn a uni-que sequence, enabling DOS to
locate the beginning of the sector data. The data consists
of 342 bytes of encoded data. The encoding scheme used will
be discussed in the next section. The data is followed by a
checksum byte, used to verify the integrity of the data just
read. The epilogue portion of the Data Field is absolutely
identical to the epilogue in the Address Field and it serves
the same function.

DATA FIELD

USEF OATA CHECXSUM

D5 AA ADI 342 BYTES DATA xx AA

SIX AND TWO
ENCODED

FIGURE 3.14

DATA FIELD ENCODING

Due to Apple's hardware, it is not possible to read al-L 256
possible byte values from a diskette. This is not a great
problem, but it does reguire that the data written to the
disk be encoded. Three different techniques have been
used. The first one, which is currently used in Address
Fields, involves writing a data byte as two disk bytes, one
containing the odd bits, and the other containing the even
bits. It would thus require 512 "disk" bytes for each 256
byte sector of data. Had this technique been used for
sector data, no more than I0 sectors would have fit on a
track. This arnounts to about 8BK of data per diskette, or
roughly 72K of space available to the user; typical for
5 L/4 single density drives.

Oo o

Fortunately, a second technique for writing data- to diskett'e
was devisea'that allows 13 sectors per track. This new
nethod involved a "5 and 3" split of the data bitsr versus
the "4 and 4" menti-oned earlier. Each byte written to the
disk contains five valid bits rather than four. This
requires 410 "disk" bytes to store a 256 byte sector. This
Iatter density allows the now well known 13 sectors per
track format usecl by DOS 3 through DOS 3.2.1. The "5 and 3"
scheme represented a hefty 338 increase over comparable
drives of the daY.

Currently, of course' DoS 3.3 features 16 sectors per track
and provides a 23? increase in disk storage over the 13
sector format. This was made possible by a hardware
nodification (the P6 PRoM on the disk controller card) which
allowed a "6 and 2" split of the. data. The change was to
the logic of the "state. machine" in the P6 PRoM, novt
allowing two consecutive zero bits in data bytes.

These three clifferent encoding techniques will now be
covered in sone detail. The hardware for DOS 3.2.1 (and
earlier versions of DOS) imposed a number of restrictions
upon how data could be stored and retrieved- It required
t-hat a disk byte have the high bit set and,.in addition, no
two consecutiize bits could be zero. The odd-even. "4 and 4"
technique meets these requirements. Each data byte is
repres6nted as two bytes, one containing the even'da:ta bits
and the other the odd data bits. Figure 3.15 illustrates
this transformation. It should be noted that the unused
bits are a1l set to one to guarantee meeting the two
requirements.

--=
1Dr1 Ds1Dr1 D'

DATABYTE DzDoDsDrDrDzDrDo{.-_
-..-*

1Do1Dr1Dz1Do

FIGURE 3.15

No matter what value the original data data byte has, this
technique insures that the high bit is set and that there
can not be two consecutive zero bits. The "4 and 4"
l"-ft"iqu. is used to store the information (volume, track,
sectori checksurn) contained in the Address rield' It is
quite easy to decode the data, since the byte with the ocld

dit" i" simpty shifted left and logically ANDeil with the
UVi. .".ttuiiri-ng the even bits. This is illustrated in Figure
3.16.

Dz1
AND 1 Do

Ds1Ds1Dr1
'I Da 1 Dz.l Do

DzDoDsDrDeDzDr Do

FIGURE 3.16

3-14

(shified left)

Downloaded from www.Apple2Online.com

It is important that the least significant bit contain a I

"ft""-tfr.'odcl-bits
byte is left shifted. The entire

"p"i.ti""
is carried out in the RDADR subroutine at $8944 in

DOS (48K) .

The major difficulty with the above technique is that it
I"x"" up a lot of t6om on the track. To overcome this
aeiicieircy the "5 and 3" encoding technique was developed'
It is so named because, instead of splitting the.bytes in
f,.tt, u= in the odd-even technique, lhey are split five and

three. A byte would have the form O0oXXXxx, where X is a

vatid data bit. The above byte could range in value from
$00 to $1F, a total of 32 clifferent values. It so happens
it"t ttt.r. are 34 valicl "disk" bytes, ranging from $AA up to
$FF, which meet the two reguirements (hiqh bit set' no
coniecutive zer.o bits). Two bytes, $D5 and $AA. were chosen
as reserved bytes, thus leaving an exact mapping between
five bit data-bytes and eight.bit "disk" bytes' :T!e process
oi "o.ttt".ting

eight bit data bytes to eight bit "9i?k"-
u't.", if,"*,-is Lwofold. An overview is diagrammed in Figure
3.17.

t]inl-Cffi-mil-l-
IPAGEI \---J

H

FIGURE 3.17

First, the 256 bytes that will make up a sector.must be
iiu.t"iut"a to fiire bit bytes. This is done by the
;pie"iuUfe" routine at $Bs00. It is a fairly involved.

"i".""",
involving a good deal of bit rearranEement' Figure

5:tB-;h"*; the beiore-and after of prenibbirizing' on the
i"tt i" a buffer of eight bit itata bytes, as passed to-the
nWtS subroutine packag6 Uy oOS. nach byte in this.buffer is
i.pr""""t"d by a lettir (4, B, c? etc.) and each bit by a

"oioU".
(7 thr;ugh 0) . on the right sicle are the results of

ln" tt.tirtforrnation. The primary buffer contains five
aiiti.nct areas of five bit byt-s (the top three bits of the
eight bit bytes zero-fillecl) anil tlre secondary buffer
.oit"i.ts thiee areas, graphically illustrating the name "5
and 3tt .

3-1 5

"5 and 3" PRENIBBILIZING

SECTOR
DATA

BUFFER

AzAoAsAnAgA:Ar Ao

Bz Be Bs Ba Ba Bz Br Bo

CzCoCsCrCsCrCr Co

Du DoDsDrDsDaDrDo
Er Ee Es Er Es Ez E, Eo I 8866

UJ
F
U)

a
Y
COg BBee
a
E
lrllt
L
l
dl
@ BBCC
F
3lr
z
I
b Bcoo
3
U)a
Lu
Eoo Bc33

A total of 410 bytes are needed to store the.original 256.
This can be calculated by finding the total bits of data
(256 x I = 2048) and dividing that by the number of b.its per
byte (2048 / 5 = 409.6). (two bits are not used) Once this
process is completed, the data is further transformed to
make it va.lid "disk" bytes, meeting the disk's
requirements. this is much easier, involving a one to one
look-up in the table given in Figure 3.19.

3-16

0 0 0 BzBsBsBrB:

0 O 0 DzDsDsDrD:

0 0 0 ErEoEsErEs

0 0 0 AzA,AoDzEz

0 0 0 B:B'BoD'Er

0 0 0 CzC,CoDoEo

"5 and 3"
WRITE TRANSLATE TABLE

00=AB
01 =AD
02=AE
03=AF
04=85
05=86
06=87
07=BA
08=BB
09=BD
0A=BE
0B=BF
0C=D6
0D=D7
0E=DA
0F=DB

AA T

l'-' l Reserved Bvtes
t-J5 '

10=
11 =
12=
13=
14=
15=
16=
17=
18 =

19=
'lA =

18=
1C=
1D=
1E =
1F =

DD
DE
DF
EA
EB
ED
EE
EF
F5
F6
F7
FA
FB
FD
FE
FF

FIGURE 3.19

The Data Field has a checksum much like the one in the
Address Field, used to verify the integrity of the data. Italso involves exclusive-ORing the .information, but, due to
time constraints during reading bytes, it is implemented
differently. The data.is exclusive-ORed i"n pai?s before
being transformed by the look-up table in f.igurg 3.19. This
can best be illustrated by Figure 3.20 on the following
page. *

The reason for this transformation can be better understoodby examining ho$r the information is retrieved from thedisk. The read routine must read a byte, transform it, andstore it -- all in under 32 cycles (the time taken to \,rritea byte) or the information will be lost. By using the
checksum computation to decode data, the trlnsforiation
shown in Figure 3.20 greatly facilitates the timeconstraint. As the data is being read from a sector theaccumurator contains the cumulative result of alr previousbytes, exclusive-ORed together. The val_ue of the
accumurator after any exclusive-oR operation is the actuardata byte for that point in the series. This process is
diagrammed in Figure 3.2L.*

*Figures 3.20 and 3.21 present the nibblizing process used
by the "6 and 2" encoding technique. However, the concept
is the same for the "5 and 3" technique.

3-17Downloaded from www.Apple2Online.com

Ptlmrry t
9ocondary
Butter!
l{lbbllred
Dat

t
IEoR

BC55 ,

"".
)

Eon

ac54 r
I .o*

""ra
I

I

,
I

Bc01)I .o"

""oo
I

BC00 r
t eoi

""oo
I

BB00 r

I .o"

"ao.'
I

"".,
)

Eon

s
I

WRITIiIG TO DISKETTE, OOS 3.3

WRITE
TRANSLATE DISK

TABIE DATA

---+

---+

----+

---+
Eyte 0

----->
Byt. 1

---+ BYl. 2

Byle 85

--------------t Byte 88

Byte 87

Byle 88

-

Byt tlO

1 BYlcStll

Byle 342

BBFI) r

I .o, ___,,
""r, I
BBFE I

I .o"

""r,
I

EBFF "ched.$n"
-------)

3-18

READING FROII DISKETTE, DOS 3.3

Dlsk Byte

Byte

Bylc

Ayte

Byle

By!e

Byre

Byte

Bytc

Byle

Byle

READ
TRATISLA?E

TABT"E
EFFECTTYE
ACT|Oll

-+ EOR0

--+ EOR SBC55

-----+ EOB 38C54

. PHTARYO
SECOTDARV
BI.lFFERS

----+ $8C55

+ iBcsf
-----| iBcsit

0-+
l+
2 ---+

85 -----t

86 -----f
87 -->
88 -----f

340

:t41

g2

---)
-----+

+

-----f EoR $8C01 --) $BCoO

-=---' EOR $8C00 -----+ iBB00
__+ EOR:$BB09 + gBB01

-----f EOR.$8801
-.

iBB02

_r EOR $BBFD .+ IBBFE

----+ EOR $BBFE + $BBFF

---+ EOR IBBFF
-r

0 ll date Ic valld

FIGURE 3.21

The third encoding technique, currently used by DOS 3.3, is
similar to the "5 and 3". It was made possible by a change
in the hardware which eased the requirements for valid'data
somewhat. The high bit must still be set, but now the byte
may contain one (and only one) pair of consecutive zero
bits. This allows a greater number of valid bytes and
permits the use of a "6 and 2t'encoding technique. A six
bit byte would have the forn 00xXxXXX and has values from
$00 to $3F for a total of 64 different values. With the
new, relaxed requirenents for valid "disk" bytes there are
69 different bytes ranging in value from $96 up to $FF.
After removing the two reserved bytes' $AA and $D5' there
are still 57 "disk'r bytes with only 64 needed. An
additional requirement was introduced to force the mapping
to be one to one, namely, that there must be at l-east two
adjacent bits set, excluding bit 7. This produces exactly 64
valid "disk" values. The initial transformaLion is done by
the preni-bble routine (sti11 located at $8800) and its
results are shown in Figure 3.22.

"6 and 2" PRENIBBILIZING

SECTOR
DATA

BUFFER

A, AsAs Ar Ar Az A' Ao

Br Bo Bs Br B: Bz B' Bo

Ui U6U5 U4 UJU2U I UO

DrDeD: Dr DsDaD, Do

Er Ee Er Ea E: Ez E, Ec

F? F6 F5 F4 F3 F' F' FO

LIJ
Fa
U)

Y
COI
<t)(r
lll
tL
II
lo
oF
3(r

=IF

=ao
LIJ
IEo
o BC00

BC56

FIGURE 3.22

0 0 AzAoA:ArArAz
O O B?868584B3B'
0 0 CzCeCsCrCsC:

0 0 DzDeDsDnD:Dz

0 0 EzEeEsErEsEz

0 0 FzFeFsFrFrFr

..1 I ..1.
00 I I EoEr

00 I I DoD,

001 I CoCr

o0 I I soB'

3-20

5.Zs<b'

ITS 0ulTE SIMPLE , -"6*tg2" 15 LESS THAl,l "5em31

\ total of 342 bytes are needed, shown by finding the total
rumber of bits (2se x B = 2048) and dividing by the number
rf bits per byte (2048 / 6 = 341.33). The transforrnation
Erom the six bit bytes to valid data bytes is again
gerformed by a one to one mapping shown in Figure 3-23-
)nce again, the stream of data bytes written to the diskette
are a product of exclusive-ORs, exactly as with the "5 and
3" technique discussed earlier.

"6 and 2"
WRITE TRANSLATE TABLE

20=D6 30=ED
21-D7 31=EE
22-D9 32=EF
23=DA 33=F2
24=DB 34=F3
25=DC 35=F4
26=DD 36=F5
27=DE 37=F6
28=DF 38=F7
29=E5 39=F9
2A=E6 3A=FA
28=E7 38=FB
2C=E9 3C=FC
2D=EA 3D=FD
2E=EB 3E=FE
2F--EC 3F=FF

00=
01 =

02 --

03=
04=
05=
06=
07=
08=
09=
0A=
0B=
0C=
0D --

0E=
0F=

96 10=84
97 11=85
9A 12=86
98 13=87
9D 14=89
9E 15=BA
9F 16=BB
46 17=BC
A7 18=BD
AB 19=BE
AC 14=BF
AD 18=CB
AE 1C=CD
AF 1D=CE
82 1E=CF
83 lF=D3

3-21

f;f) Reserveo evtes

FIGURE 3.23

SECTOR INTERLEAVING

Sector interleaving, or skewing, is the staggering ofsectors on a track to maximize access speed.- fheie isusually a delay between the time DOS reads or writes asector and the time it is ready to read or write another.This delay depends upon the application program using thedisk and can vary greatly. If sectors were stored on thetrack in sequential order, it would usuall-y be necessary towait a fu11 revolution of the disket.te before the nextsector could be accessed. Ordering the sectors non_
sequentially (skewing them) can provide improved access
speeds.

On DOS 3.2.1 and earlier versions, the 13 sectors. arephysically skewed on the diskette. During the bootoperation, sectors are loaded from the aiSrette in ascendingsequential.order. However, files generally are loaded indescending sequential order. As a resuft, no single skewing
scheme works wel1 for both booting and sequentiatiy
accessing a fi1e.

A different approach has been used in DoS 3.3 in an attempt.to maxinize perforrnance. The skewing is now done insoftware. The 16 physical sectors are numbered.in ascendingorder (O, L, 2, ... , 15) and are not physically skew.ed.atall. A look-up table is used to translaie a foglcal or softsector number used by RWTS into the physical sector nunberfound on the diskette. For example, i? the togical sector
number were a 2, this would be tianslated into the physical
sector number 11 (g0B). Ttrus, RWTS treats physical slctor1I ($oB) as sector 2 for aIl intents and puiplses. Thispre.sents no problern if.RWTS is used for disk access, but
would becon€ a consideration if access were made withoutRWTS. DOS 3.3 uses what we refer to as a "2 descending,,
skew.

In an attenpt to eliminate the access differences between,booting and. reading files, another change.was nade to DOS3-3. During the boot process, DOS is loaded backwards indescending sequential order into memory, just as files areaccessed. However, due to differences in the delays forbooting and reading files, no single .skewing schenl isoptinal. For a detailed discussion of this subject ieter to
HOw SECToR SKEWING CAN AFFECT DISK PERFORMANCE in thedocunentation for BAG OF TRICKS*

It.is in,t.eresting to point out that pascal , Fortran, and
CP/M driskettes al1 use software skewing also. H"".".i,

"""i,uses a different sector order. pascal and Fortran use a 2ascending skeh, and Cp/M diskettes use a 3 ascending skew. A.conparison of these differences is presented in Fiiure 3.24.

* see the page opposite. page I-1 for a description of BAc OF
TRICKS.

3-22

corPAFlsolr^oF sEuroB Sf(ETtxG
IOGEff.$CfOfi .

P}IVSICAL
SGCTOR DOf gt- F'gL

o
8.

1

9

2

A

3

B.

4

c
e

D

6

E

7

F

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

o-

7

8..

6.

D

5

c
4

B

3

A

2

9.;
1

I
F'

L

F'GURE 3.24

o'

B

6

1.

c
7.

2

D

I
3

E

I
4

F

A.
5

cxlpren 4
DISKETTE ORGAN'ZAT'ON

As was described in CHAPTER 3, a 16 sector diskette consists
of 560 data areas of 255 bytes each, called sectors. These
sectors are arranged on the cliske.tte in 35 concentric rings
or tracks of 16 sectors each. The way DOS allocates these
tracks of sectors is the subject of this chapter.

A file (be it APPLESOFT, INTEGER, BINARY, or TEXT type)
consists of one or more sectors containing data. Since the
sector is the smallest unit of all-ocatable space on a
diskette, a file will use up at least one sector even if it
is less than 256 bytes long; the remainder of the sector is
wasted. Thus, a file containing 400 characters (or bytes)
of data will occupy. one entire sector and 144 bytes of
another with 112 bytes wasted. Knowing these facts, one
would expect to be able to use up to 16 times 35 tines 256
or 143,360 bytes of space on a diskette for files. Actua11y,
the largest file that can be stored is about 126,000 bytes
long. The reason for this is that some of the sectors on the
diskette must be used for what is called "overhead".

CATAIOG

DrsK volrmE oor
rI OO2 EEI,IP
A OO2 APPLESOFT PROGRilI
T OO2 TE|CI PIIiE.
B OO2 BII'A.RY FII,E

TRACX

0 1 2 3 4 5 6 7 8 910rr12131{1518171819m21222324252627 28430313233S
sEcloR 0

1

2

3

a

5

0

1

8

9

IO

1t

12

ta
14

15

A TYPICAL 16 SECTOR DISXETTE MAP

FIGURE 4.1

ti.G-------'l
APPLESoF PRocRAr I

TExr F'LE I

/ /)",ro^rrn I

///L--------r

c

T

L

o
G

Overhead sectors contain the image of DOS which is loaded
when booting the cliskette, a list of the names and locations
of the files on the cliskette, and an accounting of the
sectors which are free for use with new files or expansions
of existing files. An example of the way DOS uses sectors is
given in Figure 4.1.

DISKETTE SPACE ALLOCATION

The map in Figure 4.1 shows that the first three tracks of
each diskette are always reserved for the bootstrap image of
DOS. In the exact center track (track 17) is the VTOC anil
catalog. The reason for placing the catalog here is simple.
Since the greatest delay when using the disk is waiting for
the arm to move from track to track. it is advantageous to
ninimize this arrn movement whenever possible. By placing
the catalog in the exact center track of the disk, the arrn
need never travel more than 17 tracks to get to the catalog
track. As files are allocated on a diskette, they occupy
the tracks just above the catalog track first. When the
last track, track 34, has been used, track 16. the track
adjacent and below the catalog, is used next, then 15,14,
13, and so on, moving away from the catalog again, toward
the DOS image tracks. If there are very few fil,es on the
diskette, they will all be clustered, hopefully, near the
catalog and arm movement will be minimized. Additional space
for a file. if it is needed, is first allocated in the same
track occupied by the file. When that track is full,
another track is allocated elsewhere on the clisk in the
manner described above.

THE VTOC

The Volume Table Of Contents is the "anchor" of the entire
iliskette. On any diskette accessible by any version of DOS,
the VTOC sector is always in the same place; track 17,
sector 0. (Some protected disks have the VTOC at another
location and provide a special oOS which can find it.) Since
files can end up anywhere on the diskette, it is through the
VTOC anchor that DOS is able to find them. The VTOC of a
diskette has the following fo{mat (a11 byte offsets are
given in base 16, hexadecimal):

voLuME TABLE OF CONTENTS (VTOC) FORMAT

BYTE DESCRIPTION
00 Not used
01 Track number of first catalog sector
02 Sector number of first catalog sector
03 Release number of DOS used to INIT this diskette
04-05 Not used
06 Diskette volume number (L-254)
07-26 Not used
27 Maximum number of track,/sector pairs which will fit

in one file track/sector list sector (L22 for 256
byte sectors)

4-2

28-28 Not used
30 Last track where sectors were allocated
3l Direction of track al-Iocation (+1 or -1)
32-33 Not used
34 Number of tracks per diskette (norna1ly 35)
35 Number of sectors per track (13 or 16)
36-37 Number of bytes per sector (LO/HI format)
38-38 Bit map of free sectors in track 0
3C-3F Bit map of free sectors in track I
40-43 Bit map of free sectors in track 2

BC-BF Bit map of free sectors in track 33
C0-C3 Bit map of free sectors in track 34
C -FF Bit maps for additional tracks if there are more

than 35 tracks per cliskette

BIT MAPS OF FREE SECTORS ON A GIVEN TRACK

A four byte binary string of ones and zeros,
representing free and allocated sectors respectively.
Hexadecimal sector numbers are assigned to bit
positions as follows:

BYTE SECTORS
+O FEDC BA9B
+1 7654 32)-O
+2 (not used)
+3 (not used)

Thus, if only sectors E and 8 are free and all
others are allocated, the bit map wiLl be:

41000000

If all sectors are free:

FFFFO O OO

An example of a VTOC sector is given in Figure 4.2. This
VTOC corresponds to the map of the diskette given in Figure
4 .1.

Flrst CATALOG sector ls on lrack 11 (hex),
sector 0F (her)

DOS 3.3

Volume #1

23 (her) tracks/dlsk
10 (hex) sectors/lrack

0100 (hex) bytes/sectot

122 T/S pairs
in a T/S list

La3t lreck
allocated
was 15 (hex).
Next will be
15+1 =16 (hex).
(22 decimal)

oo

I
24 Track 0 lg

allocated

Track 1 is
allocated

3C
4g
54 FPFFOOOOFFFPOOOOFFTFOOOO

Go FFFFooooppFFoooM Track 12 ls

6C FFFFOOOOFPFFOOOOFPPFOOOO

?8 FPPFooooooooooo% onry secrors
84 3FFPoooo3PFFOooO3FPFoooo ?_..?_..?_.. -il4 ind 15 are
90 FFFFOOOOPPFFOOOOFFFFOOOO _. . allocated
9c pFFFooooFFFFoooorrFFoooo _.._.._.. on track 18
A8 FPPPOOOOFFFFOOOOFFPFOOOO

84 FTFFOOOOFPFFOOOOPPFPOOOO

co Track 34

cc oooooooooooooooooooooooo .. - 13 lree

D8 000000000000000000()00000 ..
E4 000000000000000000000000 ..
FO OOOOOOOOOOOOOOOOOOOOOOOO .,
FC OOOOOOOO

FIGURE 4.2 _ EXAMPLE VTOC

4-4

Sector 0

Sector 1

Seclor 2

Sector 3

Seclors 4-B

Sector C

Seclor D

Seclor E

Seclo? F

THE CATALOG

In order for DOS to find a
given file, it must first read
the VTOC to find out where the
first catalog sector is
located. Typically, the
catalog sectors for a diskette
are the remaining sectors on
track 17, following the VTOC
sector. Of course, as long as
a track/sector pointer .exists
in the VTOC and the VTOC is
located at track 17, sector 0,
DOS does not really care where
the catalog resides. Figure
4.3 diagrams the catalog
track. The figure shows the
track/sector pointer in the
VTOC at bytes 0L and 02 as an
arrol4r pointing to track I7 (11
in hexadecimal) sector F. The
last sector in the track is
the first catalog sector and
describes the first seven
files on the diskette. Each
catalog sector has a
track/sector pointer in the
sarne position (bytes 01 and
02) which points to the next
catalog sector. The last
catalog sector (sector l) has
a zero pointer to indicate
that there are no more catalog
sectors in the chain.

In each catalog sector up to
seven files may be listed and
described. Thus, on a typical
DOS 3.3 diskette, the catalog
can hold up to 15 times 7, or
105 files. A catalog sector is
forinatted as described on the
following page.

Third 7
Filenames

Second 7

Fllenames

Flrsl 7
Fllenames

' CATALOG, SECTOR :FORMAT

.BYTE DESCRIPTION
00 Not .used
Ol Track number of next catalog'sector (usually 11',hex)
,02 Sector "nunber of next catalog seceor
03-0A Not used
0B-2D First file descrigtlve entry
2E-50 Second file descriptive entry
5I-73 Thirtt file descrrptive entry
74-96 Fourth fil-e clescriptive entry
.97-89 Fifth file descriptive entry
BA-DC Sixth file descriptive entry
DD-FF Seventh file descriptive entry

FILE DESCRIPTIVE ENTRY FORI'AT

RELATIVE
BYTE .DESCRIPTION'00 Track of first track/sector list sector.

If this is a deleted file, this byte contains a hex
FF and the original Lrack nurnber is copieil to the
last byte of ehe file name fielcl (BYTE 20) .
If this byte contains a hex 00, th€.entry is assurned
to never have been used and is available for use.
(This neans track 0 can never be used for data even
if the Dos image is "wiped" fron the diskette.)

01 Sector of first track,/sector list sector
02 File type and flags:

Irex 80+file type - file is locked
00+fi1e type - file is not locked
00 - TEXT file
01 - INTEGER BASIC fi.IC'02 - APPIJESOFT BASIC f,ile
04 - BINARY file
08-Stypefile
10 - RELOCATABLE object module file
20-Atypefile
40-BtYPefile

(thus, 84 is a locked BINARY file, and 90 is a
locked R type file)

03-20 File name (30 characters)
2L-22 Length of file in sectors (LO/HI fornat).

The CATALoG command wil-l only fornat the LO byte of
this length giving L-255 but a full 65,535 may be
stored here.

Figure 4.4.is an.exampJ-e of a.typical catalog sector. In
this exanple there. are only four files on the entire
diskette, so only one catalog sector.nas .needed to describe
then. There are four entries in use and three entries which
have never. been used and contain zeros.

4€

oo
oq
l8

lLrl CATALOG..ctor b tnct lt (hcr),
nctor 0E (hor)

Fl.tt tr.cvrctor lbt lor thb tlb
b.t tr.c* 12 (lFr), rcclor 0F (hcr)

81 = lodrcd, lnteger BASIC typc filc

AoAoAoAoAoAoeoeffi Fllc lcnglh
la 2 lccton

.APPI,ESOFI P

D2CFC?D2CICDAOAOAOAOAOAO ROGRATT

Appleroft
type lllc

AoAoAoAoAoAoAoo2oor4o@=----'-- Tcrt typc
D4csDsD4lOC6CgCtCslOtOtO ttr! FIL,E llb

tr'S$tr:kiln'vtrr
clrcEclD2D9AOC6C9CtC5rOAO rllRr FIIE

AOAOAOAOAOO20(,00('(XXXXXX'

ooooooooooooooo(poooo@o

F1C .OO@OOOO

FIGURE 4.1 - EXAMPLE CATALOG SECTOF

4-7

THE TRACK/SECTOR LIST

Each file has .associated with it a "Track/Sector List"
sector. This sector contains a list of track/sector pointer
pairs which sequentially Iist the data sectors which rnake up
the file. The file descriptive entry in the catafog sector
points to this T,/S List sector which, i.n turn, points to
each sector in the file. Thj.s concept is diagrarned in Figure
4.5.

TRACK 17

SECTOR O

FIGIJRE 4.5 - PATH DOS MUST FOLL'OW TO FIND A FILE

The format of a Track,/Sector List sector is given below.
Note that since even a minimal file requires one T,/S List
sector and one data sector, the least number of sectors a
non-empty file can have is 2. Also' note that a very large
fi1e. having more than 122 data sectors, will need more than
one irack,/Sector List to hold all the Track/sector pointer
pairs.

TRACK/SECTOR LIST FORMAT

BYTE DESCRIPTION
00 Not used
01 Track nunber of next r,/s List sector if one was

needed or 'zero if no more T,/s List sectors'
02 Sector number of next T/S List sector (if present)
03-04 Not used

4-8

05-06 Sector offset in fite of the first sector
by this 1ist.

07-08 Not used
0C-0D Track and sector of first data sector or
0E-0F Track and sector of second data sector or
10-FF Up to I20 more track,/Sector pairs

descr ibed

zeros
ze ros

There are no addltlonal T/S list
sectors lor this llle

The llrst sector llsled here
ls sector 0 ot the llle

The llrst data sector 13 on
lrack 12 (hex), sector 0E (her)

There ls no second sector

oo
oc
18
2+
30
3C
4A
54
60
5C
78
84
90
9C
A8
B4
co
Cci
D8.

E4
PO

PC

oooooooooooooooooooooooo
oooooooooooooooooooooooo

oooooooooooooooooooooooo
oooooooooooooooooooooooo
oooooooooooooooooooooooo
oooooooooooooooooooooooo
oooooooooooooooooooooooo

oooooooooooooooooooooooo
oooooooooooooooooooooooo
oooooooooooooooooooooooo
oooooooooooooooooooooooo

ooooooooooocoooooooooooo
oooooooooooooooooooooooo

oooooooo

TRACK/SECTOR LISTFIGURE 4,6 _ EXAMPLE

A sequenLial file will end when the first zero T/S Listentry is encountered. A randorn fiIe, however, can havespaces within it which were never arlocated and thereforehave no data seclors allocated in the l,/S List. Thisdistinction is not always handled correctly by DOS. The
VERIFY command, for instance, stops when it gets to thefirst zero T/s List entry and can not be use6 to veri-fy somerandom organization text files.
An example T/S List sector is given in Figure 4.6. Theexample file (HELLO, from our previous eximples) has onlyone data sector, since it is less than 256 -Uytei in 1engih.Counting this ilata sector and the T/S List s-ector, HELLO is2 sectors long, and this will be the value shown when a
CATALOG command is done.

Following the Track/Sector pointer in the T/S List sector,
we come to the first data sector of the file. As we examinethe data sectors, the differences between the fife types
become apparent. Al1 files (except, perhaps, a randoir TEXTfile) are considered to be continuous streams of data, eventhough they must be broken up into 256 byte chunks to fit insectors on the diskette. Although these sectors are notnecessarily contiguous (or next to each other on thediskette), by using the Track/Sector List, DOS can read eachsector of the file in the correct order so that theprogrammer need never know that the data was broken up intosectors at all.

TEXT FILES

The TEXT data type is the least complicated file datastructure. It consists of one or more records, separatedfrom each other by carriage return characters'1hei Bo,s1.This structure is diagramrned and an exampre file is given inFigure 4.7. Usually, the end of a TEXT tite is signaied bythe presence of a hex 00 or the lack of any more 6atasectors in the T/s List for the fi1e. As m-entioned earlier,if the file has random organization, there may be trex OO'simbedded in the data and even missing data
".6tor" in ur.u"

yhe!9 nothing was ever written. In this case, the only wayto find the end of the file is to scan the Tiack,/Sect6r Listfor the last non-zero Track/Sector pair. Since iarriagereturn charact'ers and hex 00rs have special meaning in a
TEXT type file, they can not be part of tne data i[.se1f. Forthis reason, and to make the datl accessible to BASIC. thedata can only contain printable or ASCII characters(alphabetics, numerics or special characters, see p. g inthe APPLE II REFERENCE MANUAL) This restriction *ui."processing of a TExr file srower and less efficient in the
99e.of disk space than with a BINARY type fi1e, since eachdigit must occupy a full byte in the fiie

4-1 0

RECORD 1 CR RECORD 2 CR RECORD 3

A Sequentlal Terl Type Flle

oooooooooooooooooooooooo
o@ooooooooooooooooooooo
oooooooooooooooooooooooo

3C OOOOOOOOOOOOOOOOOOOOOOOO .,
48 00()0000.ooooooooooooooooo,.

oooooooooooooooooooooooo

@@

oo
oc
1A
24
30

54
60
6C
7A

84
90
9C
A8
B4
co

oooooooooooooooooooooooo
oooooooooooooooooooooooo

oooooooooooooooooooooooo

oooooooooooooooooooooooo

cc oooooooooooooooooooooooo,..
D8 000000000000000000000000 ..
E4 00()000000000000000000000 .,
FO OOOOOOOOOOOOOOOOOOOOOOOO,,

FC OOOOOOOO

Erample Tert File Sectol

FIGURE 4,7 _ TEXT FILE DATA IYPE

4-'t1

BINARY FILES

The structure of a BINARY type file is shown in Figure 4.8.
An exact copy of the memory involved is written to the disk
sector (s) , precedeil by the memory address where it was found
and the length (a total of four bytes) . Th.e address and
length (i-n low order, high order forrnat) are those given in
the A and L keywords from the BSAVE command which created
the file. Notice that DOS writes one extra byte to the
fi1e. This does not matter too much since BLOAD and BRUN
will only read the number of bytes given in the length
field. (Of course, if you BSAVE a multiple of 256 bytes' a
sector will be wasted because of this error) DOS could be
made to BLOAD or BRUN the binary image at a different
address either by providing the A (address) keyword when the
command is entered, or by changing the address in the first
two bytes of the file on the diskette.

APPLESOFT AND INTEGER FILES

A BASIC program, be it APPLESOFT or INTEGER, is saved to the
diskette in a way that is similar to BSAVE. The forrnat of an
APPLESOFT file type is given in Figure 4.9 and that of
INTEGER BASIC in 4.10. When the SAVE command is typed' DoS
deterrnines the location of the BASIC program image in memory
and its tength. Since a BASIC program is always loaded at a
location known to the BASIC interpreter, it is not necessary
to store the address in the file as with a BINARY file. The
length is stored, however, as. the first two bytes, and is
followed by the image from memory. Notice that, again' DoS
incorrectly writes an additional byte' even though it wil.1
be ignored by LOAD. The memory image of the program consists
of program lines in an internal format which is made up of
what are called "tokens". A treatment of the structure of a
BASIC program as it apPears in memory is outside the scope
of this manual, but a breakdown of the example INTEGER BASIC
program is given in Figure 4.J-0.

OTHER FILE TYPES (S,R, new A; new B)

Additional file types have been defined within DOS as can be
seen in the file descriptive entry format, shown earlier. No
DOS commands at present use these aalditional types so their
eventual meaning is anybody's guess. The R file type,
however, has been used with the DOS TOOLKIT assembler for
its output file, a relocatable object module. This file type
is used with a special form of BINARY file which can contain
the nemory image of a machine language program which may be
relocated anywhere in the machine based on additional
information stored with the irnage itself. The fornat for
this type of file is given in the documentation accornpanying
the DoS TooLKIT. It is recommended that if the reader
requires more information about R files he should refer to
that documentation.

4-12

r
Lenglh.

E
Addre$.

IIEIIORY IMAGE .. .

oo
oc
19
24
3()
3C
48
5il
60
6C
?a
84
90
9C
A8
84
co
cc
D8
E4
FO
PC

A Blnary Type flle

Start addrer! = 03D0 (her)

Flle length = 0030 (her)

IA4CB5ATaDOF9DACOE9D60AD ir,57-. ., . . .-
C2AAACCIIA6O{C51ASEAEa{C Br, A* rI4(atallr
59PtAF9D384C58FFllc65pp4c tz?. sLlLI€_tr
65FP65&EOOOOOOOOOOOO(X) e_e_).......
oooooooooooooooooooooooo

oooooooooooooooooooooooo

oooooooooooooooooooooooo

oooooooooooooooooooooooo

oooooooooooooooooooooooo
oooooooooooooooooooooooo

.Ex.mple Blnary Flle Sectol

FIGURE 4.8 _ BINARY FILE DATA TYPE

4-13

t4
Lenglh

PFOGRiAT TENOBV ITAGE

An Appbrotl Typo Flh

10 PRrl{T . 'lCTRt-Dl OPEil TETT,F[.E"
20 PRnfi IGTnL-D| WRTTC TEX? F!LE'
30 PRtffi ."123,a'
lo PRlrT 'ICTnt-Ol CLOSE TEX? F!LE"

EilD

Prcgrar B 5E (her) tylrl long

Apd..ottFogrrD

d...........

PC qXXtqXtO

Erarplc Agpblotl Flle Seclor

FIGUNE 49 _ APPLESOFT BAS'C FILE TYPE

6()
6C
?e
8t
9('
9C
tt
B{
co
c!
D8
E{
FO

4-14

t4
LGogilr

PROGRAN f,ETOFY IXACE

An lnlegcr TyF Flb

@
5. bytcr
ol llnc (5

Llne numbcr (hcx 0A : 10 dcclmol)

long'
t5.by!..)

ogram 13

- Lcngth

l- '"I_r

PrcgrrmrI
."Tokenr" 5l = END

01 = cnd ol llnc

oo
oc
I8
30
3C

6C
78
81
90
ltc
A8
B{
co

ooooooooooooq)oooooooooo ...

48 00()0()00()()000(x)oooooooooo .

54 000()0000000000()(,()()000000 ..
50 oooooo(x)oooooooooooooooo
6C OOOOOOOOOOOOOOOOOOOOOOOO

oooooooooooooooooooooooo ...

oooooooooooooooooooooooo ...

ct qloooooooooooooooooooooo .

DS OOOOOOOOOOOOOOOOOOOOOOOO .
g{,q)oooooooooooooooooooooo .

PO OOOOq)OO

FC OOOOOO(X)

ExemPlc Inlcgar Fllc Scctor

FIGURE 4.10 _ INTEGER BASIC FILE TYPE

EMERGENCY REPAIRS

From tirne to tine the information on a diskette can, becone
danaged or lost. This can create various symptoms, ranging
fron-nild side effects, such as the disk not booting' to
major problems, such as an input/outPut (r/O)-error in the
ca[afoi. a good. understanding of the format of a diskette'
is aes6riue6 previously, and a few program, tools can allow
any reasonably sharp.APPLE II user to patch up nost errors
on his diskettes.

A first question would be, "how do errors occur"' The most
cotnmon ci.ts. of an error is a worn or physically danageil
diskette. Usually, a diskette will warn you that it' is
wearing out by pioducing "soft errors". Soft errors al'e l/o
errors which -occur only randomly. You nay get an -L/O error
message when you catal6g a disk one. tirne and have it catalog
corre6tly if you try again. When this happens, the smart
progr"r*-"r irnireaiatefy copies_the- files on the aged diskette
to i brand new one and diicards the old one or keeps it as a

backup.

EIIERGEIICY REPAR5 ARE EASIER' IF YOU]IAVE A BA6KIP.

Ano?her cause of danaged diskettes is the.practice of
hitting the RESET key to.abort the execution of a progran

"frict
is accessing the diskette. Damage will. usually.occur

"ii""--tfr.
nrinr silnaf comes just as clata is being.written

onlo the disk. Powering the machine off just as data.'is
n.i"g written to the disk is also a sure vtay to clobber a

disk6tte. of course, real hardware problerns in the disk
drive or controller card and ribbon cable can cause damage

as well.

4-16

If the damaged cliskette can be cataloged. recovery is much
easier. A darnaged DOS image in the first three tracks can
usually be corrected by runrring the I,IASTER CREATE program
against the diskette or by copying all the files to another
diskette. If only one file produces an I/O error when it is
vERIFYed, it rnay be possible to copy most of the sectors of
the file to another cliskette by skipping over the bacl sector
with an assembler program which calls RWTS in DOS or with a
BASIC program (if the file is a TEXT file). Indeed, if the
problem is a bad checksum (see CHAPTER 3) it may be possible
to read the bacl sector and ignore the error and get nost of
the data.

An I/O error usually means that one of two conditions has
occurred. Either a bad checksum was detected on the data in a
sector, meaning that one or more bytes is bad; or the
sectoring is clobbered such that the sector no longer even
exists on the diskette. If the latter is the case, the
diskette (or at the very least, the track) nust be
reformatted, resulting in a rnassive loss of data. Although
DOS can be patched to format a single track, it is usually
easier to copy all readable sectors from the danaged
cliskette to another formatted diskette and then reconstruct
the lost data there.
Disk ulilitles, sueh as Quality Software's BAG 0F TRICKS'
all-ow the user to read and display the contents of sectors.
BAc 0F TRICKS will also allow you to modify the sector data
and rewrite it Lo the same or another diskette. If you do
not have BAG 0F TRICKS or another commercial disk utility,
you can use the ZAP program in APPENDIX A of lhis book. The
ZAP program will read any track/sector on an unprotecled
diskette into memory, allowing the user to examine it or
modify the data and then, oplionally, rewrite it to a
diskette. Using such a program is very important when
learning about diskette formats and when fixing clobbered
data.
Using ZAP, a bad sector within a file can be localizecl by
reading each track,/sector listed in the T,/S List sector for
the file. If the bad sector is a catalog sector, the
pointers of up to seven files may be lost. When this occurs,
a search of the diskette can be made to find T,/S List
sectors which do not correspond to any files listed in the
remaining "good" catalog sectors. As these sectors are
found, new fi.1e descriptive entries can be nade in the
d6naged sector which point to these T/S Lists. When the
entire catalog is lost, this process can take hours, even
with a good understanding of the format of DOS diskettes.
Such an endeavor should only be undertaken if there is no
other way to recover: the data. Of course the best policy is
to create backup copies of i.rnportant files periodically to
simplify recovery. I'lore information on.the above procedures
is given in APPENDIX A.

A less significant form of tliskette clobber, but very
annoying, is the loss of free sectors. Since Dos allocates
an entire track of sectors at a time while a file is open,
hitting RESET can cause these sectors to be marked in use in
the WOC even though they have not yet been added to any T,/S
List. These lost sectors can never be recovered by normaL
neans, even vrhen the file is deleted, since Lhey are not in
its l,/S List. The result is a DISK FULL message before the
diskette is actually fu1l. To reclaim the lost sectors it
is necessary to compare every sector listecl in every T,/S
tist against the vToC bit nap to see if there are any
discrepancies. There are utility programs which will do
this autonatically but the best way to solve this problem is
to copy all the files on the diskette to another diskette
(note that FID must be used, not COPY, since COPY copies an
irnage of the diskette, bad VTOC and all) .

If a file is ileleted it can usually be recovered, providing
that additional sector allocations have not occured since it
was deleted. If another file was created after the DELETE
command, DOS might have reused some or aII of the sectors of
the old file. The cacalog can be quickly ZAPpecl to move the
track number of the T,/s List frorn byte 20 of the file
descriptive entry to byte 0. The file should then be copieil
to another disk ancl then the original deleted so that the
VToC freespace bit nap will be updated.

4-1 8

CHAPTER 5
THE STRUCTURE OF DOS

DOS MEMORY USE

Dos is an assembly language program $rhich is loacled into RAM
memory when the user boots his disk.]f the diskette bootedis a master diskette, the DOS inage is loaded into the lastpossible part of RAM nenory, dependent upon the size of theactual machine on which it is run. By doing this, DOS foolsthe active BAsrc into_ believing that there is aciuarly less
RAM memory on the machine than there is. On a 4gK AppLE IIwith DOS active, for instance, BASfC believes that there isonly about 38K of RAM. DOS does thj.s by adjusting ITIMEMafter it is loaded to prevent BASIC fr6m uiing tie memory
DOS-is occupying. ff a slave diskette is boofed, DOS isloaded into whatever RAM it occupied when the srave diskette
was lNlTialized. If the slave wai created on a 16K AppLE,
DOS will be loaded in the 6 to I6K range of RAM, even if themachine now has 48K. In this case, the AppLE will appear,for all intents an purposes, to have only 6K of RAM. If theslave was created on a 48K systen, it will not boot on lessthan 48K since the RAM DOS occupied does not exist on asmaller machine.

'ROM t-'rr r \
.qAB_D-j ili"n''noen
6001 F-- -r- - -
-

g- - -! 0ooT tnwrq-tff*] uuir
iRwIl

A cliagram of DOS'S nemory for-a.48K APPLE II is given in
Figure 5.I. As can be sein, therg ar-e four najor divisions
to the memory oceupied Uy oOS. The first 1'75K is used for
iif. Uuie.t"-. witt-the default of IUAXI'Ir'ES 3, there are
Itriee tire buffers set aside here. Each buffer occupies 595

bytes and corresponds to one potentially open file' File
buffers are also tt""a Uy DOS to LOAD and SAVE files' etc' If
uaxFrr,eS is changed trofr g, the space occupied by the-file
t,rtt.t" also changes. This affects the placement of IIIMEM'

r""ing it up or down with fewer or more buffers
respectivelY.

The 3.5K above the file buffers is occupied by. the main Dos

i"rti.".". It is here that DoS's executable machine language
;;e;-;Ai"i. rtt" nain routines are responsible for
i"iti"fl"ing DoS, interfacing to BASIC, interpreting
comrnanas, "id

*utuling the file uuffers' A11 disk functions
ii. fas"ea on via iubioutine calts to the file manager '

The file manager, occupying about 2'BK, is a collection of

"uUronti.t.s
*iich perf-oim llnost any function needed to

i."""" a clisk f ile-. r.unctions include: opEN, closE, READ,

WRITE, POSITION' DELETE, CATALOG'.LOCK' UNLOCK' RENAME'

INITf and VERIFY. aftft""gtt the file manager is a subroutine
oi oos it nay also be called by a user written assembly
Ianaguage program which is not part of DOS' This 'interface
i"- g6";i.ri""6 thtorgh a group of vectors in page 3 of RAM

and is documented in the next chapter '

The last 2.5K of DOS is the Read,/Write Track,/Sector (RWTS)

ili.fig.. nwts i" the next step lower in protocol. from the
;ii;-i;;.;"i - i" fact it is lalled as a subroutine bv the
fii; ;;;;;er. where the file manaser deals with fires' Rwrs

deals witi tracks and sectors on the diskette. A typical
.iii-t.-nwts woura-oe to read track 17 sector o or to write
iSe Uyt." of data in memory onto-track 5 sector E' An

exieriar interface is also-provided for access to RwTs from
a user written assembly lanluage program and is described in
the next. chaPter.

5-2

DOS FILE BUFFERS (MAXFILES 3)

FTGURE 5.r - DOS MEMORY USE (48K AppLE)

THE DOS VECTORS IN PAGE 3

In addition to the
approximately 10K of ttAM
occupied by DOS in high
nemory, DOS maintains a group
of what. are calle.d "vectors"
in page 3 of low memory ($300
through $3FF). These vecEors
'allow access to certain Places
within the DOS collection of
routines via a fixed location
($3D0 for instance). Because
DOS may be loaded .in various
locati.ons, depending upon the
size of the machine and
whether a slave or master
diskette is booted' the
addresses of the externallY
cal1abIe subroutines within
DOS will change. By Putting
the addresses of Lhese
routines in-a vector at a
fixed location,' dependencies
on DOSrs. location in'menorY
are eliminated. The page 3
veetor table is also useful in
locating subror'rtines within
DOS which may'not ,be in the
same memory location for
different versions of DOS.
Locations $300 through $3CF
were used by earl:i.er versions
of DOS.during the boot Process
to load the'Boot I Program but
are used by DOS 3.3 as a data
buffer and disk code translate
table. PresumablY. this
'change . was made to 'Proviile
more nemory for the first
bootstrap loader (more on'this
later). Ihe vector table
it.self starts at $3D0.

DOS

VECTORS

5-4

oos vEcToR TAaLE ($3OO-$3FF)

ADDR USAGE
3D0 A JMP (junp or GOTO) instruction to the DOS.warmstart

routine. This routine reenters DOS but does not
discard the current BASIC program and does not reset
MAXFILES or other DOS environmental variables.

3D3 A JMP to the DOS coldstart routine. This routine
reinitializes DOS as if it was rebooted, clearing the
current BASIC file and resetting HIMEM.

3D6 A JMP to the DOS file manager subroutine to allow a
user written assenbly language program to call it.

3D9 A J!{P to the DOS Read,/Write Track,/Sector (RWTS)
routine to allow user written assembly language

.programs to call it.
3DC A short subroutine which locates the input parameter

list f,or the file nanager to allow a user wiitten
program to set up input paraneters before calling the
f.ile rnanager'.

3E3 A short subrouLine which locates the input parameter
list for RWTS to allow a user written progratn to set
up input-parameters before calling RWTS.

3EA A JMp to the DOS subroutine which 'rreconnects" the DOS
intercepts to.the keyboard and.screen data streams.

3EF A JMP to the routine which will handle a BRK machine
language instruction. This vector is only supported by
the AUTOSTART ROM. Norroally the vector contains.the
address of the monitor ROl4 subroutine which displays
the regi.sters.

3F2 LO/HI address. of, r.outine which.wiltr handte RESET for
the AUTOSTART RO!4. Norrnally the DOS restart. address isstored here but the.user may,change it if.he wishes to
handle RESET himself.

3F4 Power-up byte. Contains a .,funny complenent" of the
RESET address with a gA5. This scheme is used to
determine if the machine was just powered up or if
RESET was pressed. If a powei-up occured, ihe
AUTOSTART ROM ignores the address at 3F2 (since it has
never been initialized) and attetnpts to boot a.diskette. To prevent this frorn hlppen,ing when you
change g3F2 to handle your own neSEis, EOR (exciusive'OR) the new value at $3F3 with a gA5 ind store theresult in the power-up byte.

3F5 A JMP to a'rnachine taiguige routine which is to be
called when the r&r feature is used in APPLESOFT.

3F8 A JMP to a, machine language routine which is to be
called when a control-I is entered.from.the monitor.

3FB A Jl,tP to a machine language routine*which is to be
-, called rhen a non-maskable interru1t occurs.

3FE lA/Hf address of a routine .which is to be called when
a rnaskable interrupt occurs.

5-5

WHAT HAPPENS DURING BOOTING

When an APPLE is powered on its memory is-essentially.clevoid
oi-uny programs. ln order to get DoS iunning, a diskette is
,,boot-edi. ih. ter* "boot" refers to the process of bootstrap
1;;;i;; Dos into RAM. BootsLrap loading invorves a series
;i-;t;p" which load successively bigger pieces of.a program
o.,tir irr ot the progran is in iremoiy and is running.' rn the
case of DOS, bootstrapping occurs in four stages' The

Iocation of these stages on the iliskette and a memory map

;;;-;i";" in Figure 5.2 and a description of the bootstrap
process follows.

The first boob stage (let's call it Boot 0) is 'the execution
oi tf," RoM on tne 6isf controller card. When the user types
pn+g ot C60OG or 6(ctrl)P, for instance, control is

s
E
c
T
o
R

I

--t*:

DISKETTE

FIGURE 5.2 . BOOTSTRAP PROCESS

5-6 Downloaded from www.Apple2Online.com

Boo! 2 consists of ttdo parts: a loader "main program"i and
Itr" nwrs subroutine package. UP to this point there has been
no need to move the disk arm since a1l- of the necessary
sectors have been on track 0. Now, however, more sggloTs
mustbeloaded,reguiringarmmovementtoaccessailditional
lii.f.". Since ihis-compllcates the disk access' RWTS is
called by the Boot 2 t6ader to move the arm and read the

"."tor"
it needs to load the last part of the bootstrap, DOS

itself. Boot 2 now locates track 2 sector 4 and reads its
contents into RAM just below the image of Boot I (this would
b;-;; $isoo rot a iraster diskette). rn a loop, Boot 2 reads
Ze *"t"-iectors into memory, each one 256 bytes before the
iast. the last sector (tralk 0 sector A) is read into $1800
for a naster iliskette . The 27 sectors which were read are
ih. itn"g" of the DoS main routines and the file nanager'
With th; loading of these routines, all of DOS has been
Ioaded into memory. At this point, the bootstrap process for
i-"iu"" cliskette is cornplete and a jump is taken to the DOS

Joldstart address. ff ihe diskette is a master, the image

"i-ooi-:."
only valid if the rnachine is a 16K APPLE II ' If

*ot" t"*oty ii present, the DoS image must be relocated into
lrru-trigt."'t posiinr" RAM present in.the machine' To do

this, lhe malter version of soot 2 jumps to a special.
relocation program at $1803. This relocator is 512 bytes in
length ancl ias-automaticatly loaded as the trto lo$test pages

"r ii," Dos image. (In the case of a slave diskette. these
p;g;; ctntain 5i.tary zeros.) The relocator determines the
'siie of the machine'by systematically storing and loading on
hiqh RAM memory pages unlil it finds the last valid page' rt
th6n noves the DOS image from 91D00 to its final location
($9D00 for 48K) and, uling tables built into the program, it
,i6aiti"= the machine language code so that it will execute
pi"p.ify at its new hone. The relocator then jumps to the
-nigi memory copy of DOS and the old image is forgotten'

The Dos boot is completed by the Dos coldstart routine. This
code initializes DO3, naking space for the file buffers'

""lli"g-Hiunu,
urrifaing the-page 3 vector tablen and running

the HELLO Program.

previous versions of Dos vtere somewhat more conplicated in
i;;-il;1.*entation of the bootstrap' rn these versions' Boot
i-';.;-i;;eed at $300 and it, in turn, loaded Boot^2 at
$:gOO. as does version 3.3. Unlike 3'3, however' 27 sectors
;i-;Os were not always loaded. rf the diskette was a slave
ai=r."lt., only 25 seitors were loaded, andr.on 13 sector
ai"f..tt"i, this meant the Dos image ended either with.sector
e-oi-"".t6r A of tiac* z depending upon whether the.diskette
was a slave or master. In;ddition, Boot I had a.different
i"itn "f

nibbilization (see chapter 3) than any other' sector
on the diskette, making its raw appearance in memory at
93600 non-executable.

The various stages of the bootstrap process Yi11--b9^:gvered
ig"i" in greatei detail in Chapter 8' Dos PRoGRAM Locrc'

5-8

CHAPTER 6
USING DOS FROM ASSEMBLY LANGUAGE

CAVEAT

This chapter is aimed at the advanced assembly language
prografirner who wishes to access the disk without resorting
to the PRINr statement scheme used with BASIC. Accordingly,
the topics covered here may be beyond the comprehension (at
least for the present) of a programmer who has never used
assembly language.

DIRECT USE OF DISK DRIVE

It is often desirable or necessary to access the Applers
disk drives directJ-y frorn assembly language, without the use
of DOS. This is done using a section of 16 addresses that
are latched toggles, interfacing directly to the hardware.
There are eight two byte toggles that essentially represent
pulling a TTL line high or low. Applications which could
use direct disk access range from a user written operating
system to DOS-independent utility programs. The device
address assignrnents are given in Figure 5.1.

6-1

ADDRESS LABEL DESCRIPTION

sc080 PHASEoFF
$c08r PHASEON
$c082 PHASE1OFF
$c083 PHASElON
$COB4 PHASE2OFF
$c085 PHASE2ON
$c086 PHASE3OFF
$c087 PHASE30N
$c088 MOTOROFF
$c089 MOTORON
$c08A DRVoEN
$COBB DRV1EN
$c0Bc Q6L
$c08D Q6H
$COBE Q7L
$c08F Q7H

Q7L with Q6L
Q7L with Q6H
Q7H with Q6L
Q7H with Q6H

Stepper motor phase 0 off.
Stepper motor phase 0 on.
Stepper motor phase 1 off.
Stepper motor phase I on.
Stepper motor phase 2 off.
Stepper notor phase 2 on.
Stepper motor phase 3 off.
Stepper motor phase 3 on.
Turn motor off.
Turn motor on.
Engage drive 1.
Engage drive 2.
Strobe Data Latch for I/O.
Load Data Latch.
Prepare latch for input.
Prepare latch for output.

= Read
= Sense Write Protect
= Write
= Load Write Latch

_ DOS HARDWA,RE ADDRESSESFIGURE 6.1

The addresses are slot dependent and the offsets are
computed by nultiplying the slot number by 16. In
hexadecimal this works out nicely and we can add the value
$s0 (where s is the slot number) to the base address. If we
wanted to engage disk drive nurnber I in slot nunber 6, for
exarnple, we would add $60 to $C08A (device address
assignment for engaging drive 1) for a result of gCOEA.
However, since it is generalty desirable to write.code that
is not slot dependent, one would normally use gCO8A,X (where
the X register contains the value gsO).

In general, the above addresses need only be accessed with
any valid 6502 instruction. However, in the case of reading
and writing bytes. care must be taken to insure that the
data will be in an appropriate register. All of the
following would engage drive number I. (Assume slot number
6)

LDA $COEA
BIT $C08A,X (where X-reg contains 950)
CMP 9C08A,X (vrhere X-reg contains 960)

Below are typical examples demonstrating the use of the
device address assignments. For more. examples. see APPENDIX
A. SIot 6 is assumed.and the X-register contains 960.

6-2

STEPPER PHASE OFF/ON:

Basically, each of the four phases (0-3) must be turned on
and then off again. Done in ascending order, this rnoves the
arm inward:. In descending order, this moves the arrn
outvrard. l.he tining between accesses to these locations is
critical, making this a non-trivial exercise. It is
recornmended that the SEEK command in RIrllIS be used to move
the arm. See the section on using RWIS irunediately
following.

MOTOR OFF/ON:

NOTE: A sufficient delay should be provided to allow the
notor tine to come up to speed. Shugart recomnends one
second, but DOS is able to reduce this detay by watehing the
read latch until.data starts to change.

ENGAGE DRIVE 1/2:'

LDA $C088;,X

L.DA $C089,X

LDA $C08A,X

LDA $C08R,X

READ A BYTE:

READ LDA $C08C,X
BPL READ

Turn notor off.
Turn motor on.

Engage drive

Engage drive

Sense write protect.
If high bit set, probected.

Write load.
write byte.

I.

2.

NOTE: $C08ErX must already have been accessed to assure Read
rnode. The loop is necessary to assure that the accumulator
will contain valid data. If the data latch does not yet
contain vaLid data the high bit will be .zer-o.

SENSE WRITE PROTECT:

LDA $Co8Drx
LDA $C08ErX
BMI -ERROR

IYRITE LOAD AND WRITE A BYTE:

LDA DATA .

srA $c08Drx
oRA $C08C,X

NOTE: $C08FrX must already have been accessed to insure
Write mode and a l00 nicrosecond. deJ-ay should be invoked
before writing.

Due to hardware,constraints, data bytes must.be written in
32 cyc1e. 1oops. Below is. an example for an inmediate load
of the accunulator, followed by a write. Tirning is so
critical that different routines may be necessary, depending
on how the data is to be accessed, and code can not cioss
menory page. boundlaries without. an atljustrnent.

}IRITEg CLC
WRITET PHA

PLA
WRITE STA

ORA
RTS

$c08D,x
$co8c,x

LDA *$D5
JSR WRITEg
LDA #SAA
i'SR WRITEg

(2 cycles)
(6)
(2)
(6)

(2t
(3)
(4)
(s)
(4)
(6)

cALLrilG READ/"UR|TE' TRACK/SECTOR (RWTS)

Read/Write Track/Sector (RWTS) exists in every version of
DOS as a collection of subroutines, occupying roughly the
top thirtl of the DOS progran. The interface to RWTS is
standardized and thor.oughly documented by Apple and rnay be
ca11ed by a.program running outside of DOS.

There are two sibroutines which must be called or whose
function nust be perforned.

JSR $383 - When this subroutine is cal.L€d, the y and A
registers are loaded with the address of the Input/Output
control Block (IOB) used by DOS when accessing RWTS. The
1ow order part of the address is in Y and the high orcler
part in A. This subrouLine should be ca1led to.Iocate the
IOB and the results may be stored in. two zero page locations
to allow storing values in the IOB and retrieving output
values after a call to RWTS. Of.course, you nay set up your
own IOB as long as the Y and A registers point to your IOB
upon calling RWfS.

JSR $3D9 - This is.the main entry to the. RtgIS routine.
Prior to naking this cal1, the Y and A registers nust be
loaded with the address of an IOB describing the operation
to be performed. This rnay be done by first calling 93g3,as
described above. The IOB must contain appropriate
information, as defined in the list on the facing page
(offsets are. given in hexadecimal) :

6-4

INPUT/OUTPUT CONTROL BLOCK _ GENERAL FORMAT

BYTE DESCRIPTION
00 Table type, must be $Ot0t Slot nurnber tines 16 (s0: s=slot. Example: $60)02 Drive number ($01 or gg21
03 Volume nunber expected ($00 matches any volume)04 Track number ($00 throuq]n $22)05 Sector number ($00 throuSh $0F)06-07 Address (Lo/Hr) of the Device characteristics Table08-09 Address (LJ/HI) of the 256 byte buffer for

READ/WRITE
0A Not used
0B Byte count for partial sector (g00 for 256 bytes)0C Command code $00 = SEEK

$01 = READ
$02 = wRIrE
$04 = FORMAT

0D Return code - The processor CARRY flag is set upon
return from RWTS if there is a
non-zero return code:

$00 = No errors
$08 = Error during initialization
$10 = Write protect error
$20 = Volume mismatch error
$40 = Drj.ve error
$80 = Read error (obsolete)

Volume number of last access (must be initialized)
Slot number of last access*16 (must be initialized)Drive nunber of last access (must be initialized)

OE
OF
t0

DEVICE CHARACTERISTICS TABLE.

BYTE DESCRIPTION
99 Device type (should be $OO for DrSK rI)
91 Phases per track (should be $01 for DIIK II)02-03 Motor on time count (should be gEFDg for DISK II)

NOTE: RWTS uses zero-page location $48, which is also usedby the AppLE monitor to hord the e-register va1ue. iocation
$48 should be set to zero after each call to RWTS.

RWTS IOB BY CALL TYPE

SEEK Move disk arm

Input: Byte 00
01
02
04
06/07 -
0c
OF
10

Output: Byte

. to desired track

rable type ($01)
Slot number * 16 (s0: s=slot)
Drive number ($01 or $02)
Track number ($00 through $22)
Pointer to the DCT
Command code for SEEK ($00)
Slot number of l-ast access * 16
Drive number of last access

Return code (See previous clefinition)
Current Slot nunber * 16
current Drive number

OD
OF
10

READ Read a sector into a specified buffer

Input: Byte 00
01
02
03
04
05
06/07
oB/09
OB
0c
OE
OF
10

Output: Byte 0D
OE
OF
10

Table type ($01)
Slot number * 16 (s0: s=slot)
Drive number ($01 or $02)
Volume number ($00 matches any volume)
Track number ($00 through $22)
Sector number ($00 through $0F)
Pointer to the DCT
Pointer to 256 byte user data buffer
Byte count per sector ($00)
Command code for READ ($01)
Volume nurnber of last access
SIot number of last access * l-6
Drive number of last access

Return code (See previous definition)
Current Volume number
Current SIot nurnber * 16
Current Drive number

WRITE Write

Input: Byte

Output: Byte

6-6

a sector from a specified buffer

Table type ($01)
Slot number * 16 (s0: s=slot)
Drive number ($01 or $02)
Volume number ($00 matches any volume)
Track number ($00 through $22)
Sector number ($00 through $0F)
Pointer to the DCT
Pointer to 256 byte user data buffer
Byte count per sector ($00)
Command code. for WRITE ($02)
Volume number of last access
Slot number of last access * 16
Drive number of last access

Return code (See previous definition)
Current Volume number
Current Slot number * 16
Current Drive number

00
0r
02
03
04
05
06/07
os/09
OB
0c
OE
OF
10

OD
OE
OF
IO

Downloaded from www.Apple2Online.com

FORMAT Initialize the diskette (does not put bOS on disk,
create a VTOC/CATALOG, or store HELLO program)

Input: Byte 00
01
02
03
06/07 -
0c
OE
OF
10

rable type ($01)
SIot number * 16 (s0: s=slot)
Drive number ($01 or 9621
Volume number ($00 will default to 254)
Pointer to the DCT
Command code for FORMAT (904)
Volume number of last access
Slot number of last access * 16
Drive number of last access

Return code (See previous definition)
Current Volume nurnber
Current Slot number * 16
Current Drive number

Output: Byte 0D
OE
OF
IO

CALLING THE DOS FILE MANAGER

The DOS file manager exists in every version of DOS as acollection of subroutines occupying approxinately the
central third of the DOS program. The interface to theseroutines is generalized in such a way that they may becalled by a program running outside of DOS. The deiinition
of this interface has never been published by AppLE (or
anyone e1se, for that manner) but since the calls can be
made through fixed vectors, and, the format of the parameter
Iists passed have not changed in all the versions oi DOS,
these routines may be relied upon as',safe". Indeed, the new
FID utility program uses these routines to process files onthe diskette.

There are two subroutines which must be ca11ed in order to
access the file manager.

JSR $3DC - When this subroutine is called, the y and Aregisters are loaded with the address of the file manager
parameter 1ist. The low order part of the address is in y
and the high order part in A. This subroutine must be called
at least once to locate this parameter list and the results
may be stored in.two zero page locations to allow the
programmer to set input values in the parameter list and tolocate output values there after file rnanager ca1ls.

JSR $3D6 - This is the maj.n entry to the file manager. prior
to making this call the parameter list, located using thecall described above, must be completed appropriately,
depending upon the type of ca1l, and the x-register irust beset to either zeto or non-zero as follows:

- If file is not found, all_ocate it
- If file is not found, do not allocate one

Normally, X should be zero on an OPEN call for a new file
and non-zero for all other call types.

X=0
x# 0

6-7

BYTE DESCRIPTION
00 Call type: 0l=OPEN

02-09

OA

Three buffers must be provided to the file manager by the
progranmer, allocated by him in his memory. These buffers,
together, occupy 557 bytes of RAM, and must be passed to the
file nanager each time their associated file is-used. A
separate set of these buffers must be rnaintained for each
open file. DOS maintains buffers for this purpose, as
described in earlier chapters, in high RAM. These buffers
may be "borrowed" from DOS if care is taken to let DOS know
about it. A nethod for doing this will be outlined later.
A.chart giving the required inputs for each call type to the
file manager is given in Figure 6.2. The general iormat of
the file manager parameter list is as follows:

FILE MANAGER PARAMETER LIST _ GENERAL FORMAT

05=DELETE 09=RENAME
0A=POSITION
0B=INIT
0C=VERIFY

FIGURE 6.2 _ FILE MANAGER PARAMETER LIST
REQUIRED INPUT

l;Qi

s-

o E D a Ef

b E D E] D

'ffi
F rl E E tfcArl

At06

+l
!!! trl -Et cl cl E

E D {f E

EI

I

\

E € a a

CALLING TI{E FIL.E MAT\IACER

6-9Downloaded from www.Apple2Online.com

FILE MANAGER PARAMETER LIST BY CALL TYPE

OPEN Locates or creates a fi1e. A call to POSITION should
follow every OPEN.

Input: Byte 00 - 0l
02/03 - Fixed record length or 0000 if variable
04 - Vo1ume number or 00 for any volume
05 - Drive number to be used (01 or 02)
06 - Slot number to be used (01-02)
07 - File type (useil only for new files)

$00 = rExr
$01 = INTEGER BASIC
$02 = APPLESOFT BASIC
$04 = BINARY
$08 = RETOCATABLE
$10=STYPEFILE
$20=ATYPEFILE
$40=BTYPEFILE

08/09 - Address of file name (30 characters)
(Lowlhigh format)

0C/0D - Address.of file manager workarea buffer
0E/0F - Address of 1/S List sector buffer
I0/II - Address of data sector buffer

Output: Byte 07 - File type of file which was OpENed
0A - Return code (see previous definitions)

CLOSE Write out final sectors, update the Catalog.
A CLOSE call is required eventually for every OpEN.

Input: Byte 00 - 02
0C/0D - Address of file manager workarea buffer
0E/0F - Address of 1/S List sector buffer
LI/LI - Address of data sector buffer

Output: Byte 0A - Return code

READ Read one or a range of bytes from the file to memory.
WRITE Write one or a range of bytes from memory to the file.

lnput: Byte 00 - 03 (READ) 04 (WRITE)
01 - Subcode:

00 = No operation
01 = READ or WRITE one byte only
02 = READ or WRITE a range of bytes
03 = POSITION then READ/WRITE one byte
04 = POSITION Ihen READ/WRITE range

02/03 - (Subcodes 03 or 04) Record number
04/05 - (Subcodes 03 or 04) Byte offset
06/07 - (Subcodes 02 or 04) Number of bytes in

range to be read or written. (Note: for
WRITE, this length must be one less
than Lhe actual length to be written)

6-10
Downloaded from www.Apple2Online.com

08/09 - (Subcodes 02 or 04) Address of range of
by,tes to be written or address of
buffer to which bytes are to be read.

0B - (WRITE, Subcodes 01 or 03) Single byte
to be written.

0C/0D - Address of file manager workarea buffer
0E/0F - Address of T/S List sector buffer
aO/I\ - Address of data sector buffer

Output: Byte 02/O3 - Record number of current file position
04/A5 - Byte offset of current file position*
08 - (READ, Subcodes 01 or 03) Byte read
0A - Return code

*The current file position is updated to point to the byte
following the data read or written.

POSITION Calculate the location of a record and/or byte
offsel in t,he file. PoSition such that next READ or
WRITE will be at that location in the file. A call
to POSITION (either explicitly or implictly using
subcodes of READ or WRITE) is requireil prior to the
first READ or WRITE. Bytes 02 through 05 should be
set to zeros for a nornal position to the beginning
of the fi1e.

Input: Byte 00 - 0A
02/OS - Relative record number for files with a

fixed length record size or zero. First
record of file is record 0000.

04/05 - Relative byte offset into record or of
entire file if record number is zero.

0C/0D - Address of file manager workarea buffer.
Output: Byte 0A - Return code

Input: Byte 00
0t

INIT IniLialize a slave diskette. This function formats a
diskette and writes a copy of DOS onto tracks 0-2.
A VTOC and Catalog are also created. A HELLO program
is not stored, however.

-0B
- First page of DOS irnage to be copied to

the diskette. Normalfy $9D for a 48K
machine.

04 - Volume number of nevr diskette.
05 - Drive number (01 or 02)
06 - SIoL number (01--07)
0C/0D - Address of file manager,workarea buffer.

Output: Byte 0A -. Return code

VERIFY Verify that there are no bad sectors in a file by
reading every sector.

Input: Byte 00 - 0C
(remainder are the same as the OPEN call type)

Output: Byte 0A - Return code

DOS BUFFERS

Usually it is desirable to use one of DOS's buffers when
calling the file manager to save memory. DOS buffers consist
of each of the three buffers used by the file manager (file
manager workarea, T/S List sector, and data sector) as well
as a 30 byte file name buffer and some link pointers. A1I
together a DOS buffer occupies 595 bytes of memory. The
address of the first DOS buffer is stored in the first two
bytes of DoS ($9D00 on a 48K APPLE II) . The address of the
next buffer is stored in the first and so on in a chain of
Iinked elements. The link address to the next buffer in the
Iast buffer is zeros. If the buffer is not being used by
DOS, the first byte of the file name field is a hex 00.
Otherwise, it contains the first character of the name of
the open file. The assembly language programmer should
follow these conventions to avoid having DOS reuse the
buffer while he is using it. This means that the name of the
file should be stored in the buffer to reserve it for
exclusive use (or at least a non-zero byte stored on the
first character) and later, when the user is through with
the buffer, a 00 should be stored on the file name to return
it to DOSrs use. If the later is not done, DOS will
eventually run out of available buffers and will refuse even
to do a CATALOG command. A d.iagram of the DOS buffers for
I4AXTILES 3 is given in Figure 6.3 ancl the format of a DOS
buffer is given below.

.BYTE

0 0 0,/0FF
10 0/rFF
200 / 22C
22D/24A

248/24C
24D/248
24F' / 25O
2sr/252

DOS BUFFER FORMAT

DESCRIPTION
Data sector buffer (256 bytes in length)
T,/S List sector buffer (255 bytes in length)
FiIe manager workarea buffer (45 bytes in length)
File name buffer (30 bytes in length)
First byte indicates whether this DOS buffer is
being used. If hex 00, buffer is free for use.
Address (Lo/High) of file manager workarea buffer
Address of T/S List sector buffer
Address of data sector buffer
Address of the file name field of the next buffer on
Lhe chain of buffers. If this is the last buffer on
the chain then this field contains zeros.

v-\,/ \./ v \'/
DOS

BUFFER
#1

BUFFER
*2

ICHAIN POINTERS

FILE NAME BUFFER

FILE IIANAGER WORKAREA BUFFER

0

+- HlIttEM

T/S LIST SECTOR BUFFER

DATA SECTOF BUFFER

-a-,a,zA.n -a.Ara.

BUFFER
#3

6-14

THE FILE MANAGER WORKAREA

The file manager workarea contains the variables which,
taken together, constitute all of the information the file
manager needs to deal with an open file. Each time the file
manager finishes processing a call, it copies a1l of its
important variables into the file manager workarea buffer
provided by the caller. Each subsequent time the file
manager is ca11ed, the first thing it does is to copy the
contents of the file manager workarea buffer back into its
variables so that it may resume processing for the file
where it left off on the previous caII. ordinarily., the
programmer will have no need to worry about the contents of
this workarea, since most of the useful information is
present in the parameter list anyway. Occasionally, it is
handy to know more about the open file. For these cases, the
format of the file manager workarea is given below:

FILE MANAGER WORKAREA FORMAT

BYTE DESCRIPTION
00/0L Track/sector of first T,/S List for file
02/03 Track/sector of current T,/s List for file
04 Flags:

B0--T/S List buffer changed and needs writing
40=Data buffer has been changed and needs writing
02=Volume freespace map changed and needs writing

05/06 Track/Sector of current data sector
07 Sector offset into catalog to entry for this file
0B Byte offset into catalog sector to entry for fife
09/0A l{aximum data sectors represented by one T/S List
0B/0C Offset of first sector in current T/S List
0D/08 offset of last sector in current T/S List
0E/I0 Relative sector number last read
IL/12 Sector size in bytes (256\
L3/L4 Current position in sectors (relative)
15 Current byte offset in this sector
16 Not used
17/L8 Fixed record length
19/LA Current record number
LB/LC Byte offset into current record
LD/LE Length of fife in sectors
lF Next sector to allocate on this track
20 Current track being allocated
2I/24 Bit map of available sectors on this track (rotated)
25 File type (80=locked) 0,1.2,4--T,I ,A,B
26 Slot number times 16 (example: $60=slot 6)
27 Drive number (01 or 02)
28 Volume number (complenented)
29 Track
2A/2C Not used

6-1 5Downloaded from www.Apple2Online.com

COMIION ALGORITHMS

Given below are several pieces of code which are used when
working with DOS:

LOCATE A FREE DOS BUFFER

The following subroutine may be used to locate an
unallocated DOS buffer for use with the DOS file manager.

FBUFF LDA
STA
tDY
STY

93D2 LOCATE DOs LOAD PoINT
$1
#0
$0

($O),Y LOCATE NEXT DOS BUFFER

($o),Y
$l

$o
GBUF GOT ONE
$1
NBUF NO BUFFERS FP.EE

*O GET FTLENAME
($o),Y
GOTBUF ITS FREE
*36 ITS NOT FREE
GBUFO GO GET NEXT BUFFER

INDICATE-GOT A FREE BUFFER
RETURN TO CALLER
INDICATE-NO FREE BUFFERS
RETURN TO CALLER

#O ADD $16BE TO DOS LOAD POINT
#$BE
s0
$ 3D2
#$ 16
$1
#0($0),Y GET DOS VERSTON NUMBER (2 OR 3)

*
GBUFO LDA

PHA- INY
LDA
STA
PLA
STA
BNE
LDA
BEQ

*
GBUF LDY

LDA
BEQ
LDY
BNE

*
GOTBUF CtC

RTS
NBUF SEC

RTS

ctc
LDA
ADC
STA
LDA
ADC
STA
LDY
LDA

WHICH VERSION OF DOS IS ACTIVE?

In case the program has version dependent code, a check of
the DOS version may be required:

6-16
Downloaded from www.Apple2Online.com

/S DOS IN THE MACHINE?

The following series of instructions should be used prior to
attenpting to call RWTS or the file manager to insure that
DOS is present on this machine.

LDA 93DO GET VECTOR JMP
CMP #$4C IS IT A JUMP?
BNE NODOS NO, DOS NOT LOADED

WHICH BASIC IS SELECTED?

Some programs depend upon either the INTEGER BASIC ROM or
the APPLESOFT ROM. To fincl out which is active and select
the one desired, the following subroutine can be called.
First the A register is loaded with a code to indicate which
BASIC is desired. $20 is used for INTEGER BASIC and $4C is
used for APPLESOFT. To set up for APPLESOFT, for example:

LDA +$4C CODE FOR APPLESOFT
JSR SETBSC CALL SUBROUTINE

:-"

ERROR LANGUAGE NOT AVATLABLE

SETBSC CMP $EOOO CORRECT BASIC ALREADY THERE?
BEQ RTS YES
srA $c080 No, sELEcr RoM CARD
CMP $EOOO NOW DO WE HAVE IT?
BEO RTS YES
srA $c081 No, TRY ROM CARD OUT
CMP $EOOO GOT IT NOW?

RTS RTS IN ANY CASE, EXIT TO CALLER

SEE /F A BASIC PROGRAM IS IN EXECUTION

To determine if there is a BASIC program running or if BASIC
is in inmediate command mode, use the following statements:

CHAPTER 7

CUSTOMIZING DOS

Although DOS usually provides most of the functionality
needed by the BASIC or assernbly language programmer '

When MASTER CREATE finishes loading the oOS image
it will exit. You may use the monitor to make
changes in the image. MASTER CREATE. loads DOS

into memory at $1200 such that Boot 2 (RWTS) is
loaded first, followed by the main part of DOS

starting at $lC00.
When all patches have been made, reenter MASTER CREATE

at location $B2l (B2DG).
Complete the MASTER CREATE update normally. The

resulting diskette will have the patches applied.
This procedure will work for versions 3.2,3.2.1, and 3.3 of
DOS.

CUSTOMIZNC DOS

At $BFD3 (48K) is a STA instruction which stores a zero on
the Language Card. This instruction must be made into three
no-operation instructions :

BFD3:EA EA EA
A slave diskette may then be INITeal using this moilified
version of DOS and that diskette will have the patch in its
DOS. The address of the store instruction for a 32K DOS is
7FD3 and for a 16K DOS is 3FD3.

INSERTING A PROGRAM BETWEEN DOS AND ITS BUFFERS

Once in a while it is useful to find a "safe" place to load
a machine language program (a printer driver, perhaps) where
BASIC and DOS can never walk over it, even if DOS is
coldstarted. If the program is less than 200 bytes 1ong,
$300 is a good choice. For larger programs, it is usually
better to "tuck" the program in between DOS and its buffers
(assuming the program is relocatable and will run at that
location). To do this, load the program into 1ow RAM, copy
it to high RAM right below $9D00 (for a 4BK machine) , over
the top of DOS's buffers, change the first buffer address at
$9D00 to point. below your program, (remember to a11ow 38
extra bytes for the filenarne and link fields) and JMP to
$3D3 (DoS CoLDSTART). This will cause Dos to rebuild its
buffers below your program and "forget" about the memory
your program occupies until the next time DOS is booted. Of,
course, BASIC can not get at that memory either, since its
HIMEM is below the DOS buffers.

BRUN OR EXEC THE HELLO FILE

Ordinarily, when DOS finishes booting into mernory, it
performs a RUN connand on the HELLO file in its file name
buffer (left there by the INIT. command which wrote DOS to
the diskette). To change the RUN command to a BRUN or an
EXEC, apply the following patch to DOS (48K):

9I.42234 (for BRUN)
..or..
9E42:L4 (for EXEC)

REMOVING THE PAUSE DURING A LONG CATALOG

Normally, when a CATALOG command is done on a disk with rnany
files. DOS will pause every time the screen fills with narnes
to allow the user time to see them all. By pressing any key
the CATALOG continues. If this pause is undesirable; apply
the following patch to DOS (48K):

AE34:60

7-3

CHAPTER 8

DOS PROGRAM LOGIC

This chapter will take a detailed look at the operation of
if'r. ooS itogtutn j-tself to aid the APPLE user in
understairdiig it and to help him to make intelligent use of
its facilities. Each subroutine and group of variables or
constantswiflbecoveredseparatelybystorageaddress.The
enterprising programmer may wish to create a disassembly of
OOS oir his lrinter and transfer the annotations given here
directly to such a listing. Addresses used will be for DOS

3.3 and for a 4BK master diskette version of DOS' SIot 6 is
assumed. Unless speci-fically indicated by a $ character'
lengths are given in decimal, addresses in hexadecimal (base
16).

DISK II CONTROLLER CARD ROM _ BOOT O

ADDRESS

c60o-c658 This routine is the first code executed when a disk
is to be booted. It receives control via PR#6 or
C600G or 6 control-P-
Dynamically buifd a translate table for converting
dlsk codes to six bit hex at location $356-$3FF'
Call an RTS instruction in the monitor ROM and
extract the return address from the stack to find out
the address of this controller card ROM'

Use this address to determine the slot nurnber of this
drive bY shifting $Csxx.
Save the slot number times 16 ($s0)
Clear disk I/O latches, set read mode, select drive
1, turn disk drive on.
PuII disk arm back over 80 tracks to recalibrate the
arm to track zero.
Set up parms to read sector zero on track zero to
l-ocation $800.
Execution falls through into a general sector read
subroutine at C65C.

c65C-C6FA This subroutine reads the
$3o on the track indicated
stored aL $26,$27 .

sector number stored at
by $41 to the address

Look for D5/AA/96 sector address
rf D'/AA/AD is found and sector
to C6A6.

header on the disk.
data was wanted, 9o

8-1

A DETAILED LOOK AT DOS

C683 Handle a sector address b1ock.
Read three double bytes from thethem to obtain the volume, track.of the sector being read from theStore the track at g4O.
Compare the sector found to thetrack found to the track hranted.If no match, go back to CG5C.
Otherwise, if sector is correct.the sector data itself

C6A6 Handle sector data block.

disk and combine
and sector number
disk at this time.

sector $/anted and the

go to C65D to find

Read the 85 bytes of secondary data to $3OO_$355.Read^256-bytes of primary datl to the address storedat $26,$27 .
Verify that the data checksum is valid.If not, start over at C65C.uNibbil-ize"_the primary qld secondary data togetherinto the primary data buffer rcZe,i)il.Increment 927 (address page ot reia data) and g3D(sector number to Ue reidi and check against gg00to see if additional sectors need to be read.If so, reload slot*16 and go back to iOSC to readnext. sector. (This feature is not used when l;;;i"gDOS but is used when_loading from a BASICS diskett6.lother$rise, 90 to $801 to ueiin exeJuiir,g tn. secondstage of the bootstrap.

8-2

FIRST RAM BOOTSTRAP LOADER _ BOOT 1

ADDRESS

0801-084C This routine loads the second RAM loader, BooL 2,
including RWTS' into memory and jumps to it.
If this is not the first entry to Boot 1' go to $81F.
Get slot*16 and shift down to slot number.
Create the address of the ROM sector read subroutine
(C65c in our case) and store it at $38,$3F.
Pick up the first memory page in which to read Boot 2

from location $8FE, add the length of Boot 2 in
sectors from $8FF, and set that value as the first
address to which to read (read last page first).

0B1F Get sector to read, if zeto, go to $839-
Translate theoretical sector number into physical
sector number by indexing into skewing tabfe at $84D.
Decrement theoretical sector number (BFF) for next
iteration through.
Set up parameters for ROM
jump to it. It will return
has been read.

0839 Adjust page number at 8FE
Boot 2.
Perforn a PR+o and IN+o by calling the monitor.
Initialize the monitor (TEXT mode, standard window,
etc.)

subroutine (C55C) and
to $801 when the sector

to locate entry point of

go to Boot 2 ($3700 for a
its final relocated location) .

Get slot*I6 again and
master disk, $B700 in

DOS 3.3 MAIN ROUTINES

ADDRESS

9D00-9DoF
9D00
9D0 2
9D04
9D06
9D0 8

9DOA
9D0C
9DOE

9D10-9DrC

Relocatable address constants
Address of first DOS buffer at its file name fielil.
Addr'ess of the DOS keyboard intercept routine.
Address of the DOS video intercept routine.
Address of the primary file name buffer.
Address of the secondary (RENAME) file name buffer.
Address of the range length parameter used for LoAD.
Address of the DoS load address ($9D00).
Address of the file manager parameter list.

DOS video (CSWL) interceptts state handler address
table. States are used to drive the handling of DOS

commands as they appear as output of PRINT statements
and this table contains the address of the routine
which handles each state from state 0 to state 5.

9DlE-9D55

9D56-9D6 I

9D56
9D58
9D5A
9D5C
9D5E
9D60

9D62-9D68

9D6C-9D77

9D78-9D8 3

9D8 4- 9DBE

Command
conta ins
for each

handler entry point table. This table
the address of a command handler subroutine
DOS command in the following standard order:

INIT A54F
LOAD A413
sAvE A397
RUN A4D1
CHAIN A4FO
DELETE A263
LOCK A27I
UNLOCK A275
CLOSE A2EA
READ A51B
EXEC A5C6
WRITE A51O
POSITION A5DD
OPEN A2A3
APPEND A29B
RENAME A281
CATALOG A56E
MON A233
NOMON A23D
pR+ A229
IN* A22E.
MAXFILES A25I
FP A57A
INT A59E
BSAVE A331
BLOAD A35D
BRUN A38E
VERIFY A27D

Active BASIC entry point vector table. The addresses
stored here are maintained by DOS such that they
appfy to the current version of BASIC running.
Address of CHAIN entry point to BASIC.
Address of RUN.
Address of error handler.
Address of BASIC coldstart.
Address of BASIC htarmstart.
Address of BASIC relocate (APPLESOFT only) .

rnage of the entry point vector for TNTEGER BAsrc.
This image is copied to 9D56 if INTEGER BASIC is made
active.

Image of the entry point vector for the ROM version
of APPLESOFT.

Image of the entry point vector for the RAM version
of APPLESOFT.

DOS coldstart entry routine.
Get the sloL and drive numbers and store as default
values for comrnand keywords.
Copy APPLESOFT ROM or INTEGER BASIC entry point
vector into current BASIC entry point vector.
Remember which BASIC is active.
Go to 9DD1.

8-4

9DBF-9DE9

9DD1

9DEA-9E50

9E45

9 E5 1-9 E7F

9E8 1-9EB9

DOS vrarmstart entry routine.
Get the remembered BASIC type and set the ROM card
as necessary (ca11s A582) .
Rernember whether entry is coldstart or warmstart
CaIl A851 to replace DOS keyboard and video
intercepts.
Set NOMON C,I- ,O.
Set video intercept handter state to 0.
Coldstart or warmstart the current BASIC (exit DOS) .
(DOS will next gain control $rhen BASIC prints itsinput prompt character)

First entry processing for DOS. This routine iscalled by the keyboard intercept handter when thefirst keyboard input request is rnade by BASIC after
a DOS coldstart.
If RAM APPLESOFT is active, copy its entry point
vector to the active BASIC entry point vector and
blank out the primary file name buffer so that no
HELLO file wil-I be run.
Set I4AXFILES to 3 by default.
Call A7D4 to build the DOS file buffers.
If an EXEC was active, close the EXEC file
Set the video int.ercept state to 0 and indicate
r{arnstart status by cafling A758.
If the last comrnand executed was not INIT (this DOS
was not just booted), go to 9845.
Otherwise, copy an image of the DOS jump vector to
$ 3D0-$ 3FF .
Point $3F2,$3f'3 to DOS warmstart routine.
Set the AUTOSTART ROIVI power-up byte since the RESET
handler address was changed.
Set the command index for RI,N (to run the HELLO file)
and go to A180 to execute it.
See if there is a pending cornmand.
If so, go to A180 to execute it. Otherwise, return
to caller.

An image of the DOS page 3 jump vector which the
above routine copies to $3D0-$3FF. See Chapter 5 for
a descript.ion of its contents.

DOS keyboard intercept routine.
Ca1] 9ED1 to save the registers at entry to DOS.
If noL coldstarting or reading a disk file,
go to 9E9E.
Get value in A register at entry and
screen (erases flashing cursor) .
If in read state (reading a file) go
next byte from disk file.

9EBA-9EBC

9EBD-9EDO

9ED1-9EEA

9EEB-9F1I

9FL2-9F22

9F23-9F28

9F2F-9F51

9F52-9F60

8-6

8-7

Otherwise, if cornmand was not found in the table,
check to see if the first character \^'as a control-D.
If so, go to A6C4 to print "SYNTAX ERRORT.
Otherwise, call A758 to reset the state and warnstart
flag and 9o to 9F95 to echo the command and exit.
(the command must be for BASIC, not DOS)

A01B Compute an index into the operand table for the
command which was entered.
CaIl A65E to see if a BASIC program is executing.
If not, and the command is not a direct type command,
(according to the operand table) go to A6D2 to print
IINOT DIRECT COMMANDil .
Otherwise, if the command is RUN, make the prompt
character ($33) non-printing.
Check the operand table to see if a first filename
is a legal operand for this command.
If not, go to A0A0.
Otherwise, clear the filename buffer (ca11 A095).
Flush to the next non-b1ank (ca1t AlA4) and copy
the filename operand to the first filename buffer.
Skip forward to a comma if one was not found yet.
If a second filename is legal for thi.s command, use
the code above to copy it into the second filename
buffer.
Check both filenames to see if they are blank.
If one was required by the command but not given,
give a syntax error or pass it through to BASIC.
(As in the case of LOAD with no operands)
If all is we1l, go to A0D1 to continue.

A095 A subroutine to blank both filename buffers.
A0A0 Indicate no filename parsed.

Check operand table to see if a positional operand
is expected.
If not, go to AoDl to continue.
Otherwise, call AIB9 to convert the numeric operand.
If omitted, give syntax error.
If number converted exceeds 16, give "RANGE ERROR"
If number is supposed to be a slot number, give
"RANGE ERROR" if it exceeds 7.
If number is not a slot number, give URANGE ERROR" if
it is zero. (MAXFILES 0 is a no-no)

A0D1 Set defaults for the keyword operands (V=0.L=0,B=0)
AoEB Get the l-ine offset index and flush to the next

non-blank, skipping any commas found.
If we are not yet to the end of the line, go to A10C.
Check to see if any keywords were given which were
not allowed for this command.
If not, go to A17A to process the command.

A10C Lookup the keyword found on the command line in the
table of valid keYworils (A941) .
If not in table, give "SYNTAX ERROR" message.
cet its bit position in the keyworils-given flag.
If the keyword does not have an operand value, go to
A164.
Otherwise, indicate keyword found in flag.
Convert the numeric value associated with keyword.
Give "SYNTAX ERROR' message if invalid.
Check to see if the number is within the acceptable
range as given in the keyword.vatid range table at
A955.

8-8
Downloaded from www.Apple2Online.com

Save the value of the keyword in the keyword values
table starting at AA66.
co parse the next keyword. go to AoEg.

A164 Indicate C, I, or O keywords were parsed.
Update the MON value i.n the keyword value table
appropriately.
co parse the next keyvrord. go to AOES.

A17A-A17F Call A180 to process the command, then exit via echo
at 9F83.

A180-A192 Do command.
Reset the video intercept state Lo zero.
Clear the file manager parameter 1ist.
Using the command index, get the address of the
command handling routine from the command handler
routine table at gDlE and go to it.
Conmand handler will exit to caller of this routine.

A193-AIA3 Get next character on command line and check to see
if it is a carriage return or a comna.

A1A4-A1AD F'Iush command l-ine characters until a non-blank is
found -

AIAE-AlB8 Clear the file manager paraneter list aL B5BB to
zeros.

AIB9-A1D5 Convert numeric operand from cornmand line. Call
either A1D6 (decimal convert) or A203 (hex convert)
depending upon the presence or lack thereof of a
dol-1ar sign (g).

A1D6-A202 Decimal convert subroutine.

A203-A228 Hexadecimal convert subroutine.

A229-A22D PR#n command handter.
Load the parsed numeric value and exit via FE95 in
the monitor ROM.

A22E-A232 IN#n command handler.
Load the parsed numeric value and exit via FE8B in
the monitor ROM.

A233-A23C MON command handl-er.
Add new MON flags to old in AA5E .and exit.

A23D-A250 NOMON command handler.
If C was given, put out a carriage return since thisline was echoed but its CR was not.
Turn off the proper bit.s in AA5E and exit.

A25I-A262 MAXFILES command handler.
Turn off any EXEC file which is active.
Close al1 open files (call A316) .
Set the new MAXFILES number aL AA57.
co to A7D4 to rebuild the DOS file buffers and exit.

8-9

A263-A270 DELETE conmand handler.
Load the delete file rnanager opcode (05).
CalI the file manager open driver (A2AA) to perform
the delete.
Find the file buffer used to do the delete and free
it (ca]1 A764) .
Exit to caller.

A2'7I-A274 LOCK command handler.
Load the lock file manager opcode (07) and go to
A277 .

A275-A27C UNLOCK cornmand handler.
toad the unlock file manager opcode (08).

A277 CaLL the file manager open driver (A2AA) to perform
the desired function.
Exit to the caller via close (A2EA) .

A27D-A280 VERIFY command handler.
toad the verify file manager opcode (0C) and go to
A2'77 Lo perform function.

A28L-A297 RENAME corunand handler
Store address of second file name in file manager
parameter 1ist.
Load the rename file manager opcode (09) .
Cal1 the file manager driver at A2C8.
Exit via close (A2EA) .

A298-A2A2 APPEND comrnand handler.
Cafl- A2A3 to OPEN the file.
Read the file byte by byte until a zero is found.
If append flag is on, add one to record nurnber
and turn flag off.
Exit via a call to POSITION.

A2A3-A2A7 OPEN command handler.
set fife type as TEXT.
Go to A3D5 to open fi1e.

A2A8-A289 Command handler common file management code.
Set opcode to OPEN.

A2AA If no L value was given on the command, use 0001 and
store record length value in file manager parrnlist.

A2C8 Close file if already open.
Is there an available file buffer?
If not, issue rrNO FILE BUFFERS AVAILABLETT nessage.
Point $40,$41 at the free file buffer.
Copy filenarne to file buffer (allocates the buffer)
(A743).
Copy buffer pointers to file manager parmlist (A74E) .
Finish filling in the file manager parmlist (A71A) .
Set operation code in parmlist.
Exit through the file rnanager driver.

8-1 0

A2EA-A2FB CTOSE command handler.
If no filenane was given as part of command,
go to A316 to close all files.
Otherwise, find the open file buffer for filename
(A764) .
If no such file open, exit to caller.
Otherwise. close file and free buffer (A2FC).
Go back through CLOSE command handler to make sure
there are not more open buffers for the same file.

A2FC-A315 Close a file and free its file buffer.
Find out if this buffer is EXECTs (A7AF).
If so, turn EXEC flag off.
Release the buffer by storing a $00 on its filename
f ield .
Copy file buffer pointers to the file manager
parmlist.
Set file manager opcode to CLOSE.
Exit through the file manager driver routine.

A316-A330 Close all open files.
Point to first file buffer (A792) .
Go to A320.

A3lB Point to next file buffer on chain (A79A).
If at end of chain, exit to caller.

A320 Is this file buffer EXECrs?
If so, skip it and go to A318.
Is it not in use (open) ?
If so, ski.p it and go to A31B.
Otherwise, close it and free it (A2FC).
Go to A316 to start all over.

A33I-A35C BSAVE conmand handler.
Insure that the A and L keyvrords were present on the
command.
If not, issue "SYNTAX ERROR" message.
Open and verify a B type file (A3D5) .
Write the A keyword value as the first two bytes of
the file.
Write the L keyword value as the next two bytes of
the file.
Use the A value to exit by writing a range of bytes
from. memory to the file.

A35D-A38D BLOAD conmand handler.
Open the file, ignoring its type.
Insure the type is B.
If not, issue "FILE TYPE MISMATCH" message.
Otherwise. open B type file and test file type (A3D5)
Read the A value from the first two bytes of file.
If A keyword was not given, use the value just read.
Read L value as next two bytes in file.
co to A47I to read range of bytes to memory from file

A38E-A396 BRUN conmand handler.
CaIl BLOAD command handler to load file into memory.
Replace DOS intercepts.
Exit DOS by junping to the A address value to begin
execution of the binary program.

8-'11

A397-A3D4 SAVE comnand handler '
Get the active BASIC tYPe (AA86) '
If INTEGER, 90 to A3BC'
If APPLESOFT] test $D6 flag to see if prograrn is
Protected.
if "o,

issue "PROGRAM TOO LARGE" message'
otherwisel'open and test for A type file (A3D5) '
Compute piogiam length (PGMEND-LOMEM) '
wriie this Lwo byte length to file'
Exit by writing program image from LoMEM as a range

of bYtes (A3FF)
aSeC Open"and test for I type file (A3D5) '

Compute program length (HIMEM-PGMSTART) '
write this Lwo bYte length to file'
Exit by writing program image from PGMSTART as a

range of bYtes (A3FF) '

A3D5-A3DF Open and test file type',.-
Set file iype wantea-in file manager parmlist'
CalI A2A8 to oPen file'
Go to A7C4 to check file tYPe'

A3E0-A3FE Write a 2 byte vafue to the open file'
store vaiu!'i" u"-*iiiren in 'fiIe manager parmlist.
Set write one bYte oPcodes'
CaIl file manager driver'
call it .g;i" i" write seconil byte and exit to cal1er

A3FF-A40F Read/write a range of bytes'
settheaddressoftherangeinfilemanagerparmlist
Set subcode to read or write a range of bytes'
Call the file manager driver'
Close the file.
Exit through the VERIFY comnand handler to insure
data was wrilCen ok'

A410-A412 Tssue "FILE TYPE MISMATCH" message'

A413-A479 LOAD command handler '
close all files (A316) '
OPen the file in question'
ri it an A or I tYPe file?
rf not, issue "FrLE TYPE MrsMATcH" message'
Which BASIC is active?
If INTEGER' go to A450'
sefect epiis6om BAsrc (A4Br) ' This calr could result
in Dos i;;;;; control if the RAM version must be

run.
Read f irst tt"to bytes of f ile as length of progran'
Add length to LOMEM (program start) to compute

Prograrn end.
Is Program end beYond HIMEM?
If so' cfose fite-and issue UPROGRAM ToO LARGETT'

Set program end and start of variables pointers'
nead pr6gram as range of bytes to program start'
RePlace DOS intercePts (A851) '
Go to BAsIc's relocltion routine to convert a RAM

APPLEsoFi program to RoM and vice versa as needed'

8-12

A4 50

A47A-A4AA

A4AB-A4BO

A4BI-A4DO

A4DI-A4E4

A4E5-A4EF

A4FO-A4FB

A4FC-A50 5

A505-A50D

Select INAEGER BASIC (A4Bl).
Read length of program. (first two bytes in file) .
Comput,e program start (HII\,IEM-LENGTH) .
If zero or less than LOMEM, issue iTPROGRAM fOO LARGE',
message and close fi1e.
Set program start pointers.
Read program into memory as a range of bytes.
Exit to caller.

Read two bytes from file (Address or Length) .
Set up parmlist.to read tvro bytes to range length
f ield (AA6 0) .
CaIl file manager driver.
Store value read as range length in file manager
parmlist just in case it was. a length.

Close file and issue "PROGRAM TOO LARGE,' message.

Select desired BASIC.
If desired BASIC is already active, exit to ca1ler.
Save current command index in case we must RUN
APPLESOFT.
If INTEGER, go to A59E to select it.
Otherwiser copy primary fil-e name to secondary
buffer to save it in case RAM APPLESOFT is. needed.
Go to A57A to set APPLESOFT.

RUN command handler.
If APPLESOFT is active, set RUN intercepted. flag so.
that RUN can complete after APPLESOFT ii loaded.
CaIl LOAD command handler to load the program.
Skip a line on the screen.
Put DOS intercepts back.
Go to the RUN entry point in the current BASIC.

INTEGER BASIC RUN entry point intercept.
Del-ete al-I var iables (CLR equivalent) .
Go to the CHAIN entry point in INTEGER BASIC.

CHAIN command handler.
CaIl the LOAD command handler to load the progran.
Skip a 1ine.
Replace DOS intercepts.
Go to current BASIC's CHAIN entry point.

APPLESOFT ROM RUN entry point intercept.
CaIl- APPLESOFT to clear variables.
Resel ONERR.
Go to RUN entry point.

APPLESOFT RAM RUN entry point intercept.
Cal-I APPLESOFT to clear variables.
Reset ONERR.
Go to RUN entry point.

WRITE command handler.
Cal] READ/WRITE cornnon code (A526).
Set CSWL state to 5 (WRITE mode line start).
Exit DoS (9F83) .

A510-A51A

B-1 3

A51B-A525 READ connand handfer.
CalI READ/WRITE common code (A526).
Set READ mode flag in status flags (AA51).
Exit DOS (9F83) .

A526-A548 READ/WRITE comtnon code.
Locate the open file buffer for this file (A764).
If not open, open it.
Copy file buffer addresses to file manager parmlist.
If R or B were given on commandr copy to parmfist
and issue a POSITION call to file manager.
Exit to calIer.

A54F-A56D INIT cornmand handler.
If V was given, use it. Otherwise,.use 254.
Store first page number of DOS in file manager
parmlist.
Ca11 file manager driver to INIT diskette.
Exit through SAVE to store greeting program on disk.

A56E-A579 CATALOG command handler.
Ca11 file manager with CATALOG opcode.
Set new V value as default for future commands.
Exit to ca]ler.

A57A-A59D FP comrnand handler.
Set ROM card, if any, for APPLESOFT (A5B2),
If successful-, cofdstart DOS (9D84).
Otherwise, set status flag to indicate INTEGER BASIC
is active.
Set primary filename buffer to TTAPPLESOFT".

Set flags to indicate RAM APPLESoFT and coldstart.
Go to RUN command handfer.

A59E-A5B1 INT command handler.
Set ROM card, if any, for INTEGER BASIC (A582).
If not successful, issue "LANGUAGE NOT AVAILABLETT.
Otherwise. clear RUN intercepted f1ag.
Coldstart DOS (9D84) .

A5B2-A5C5 Set ROM to desired BASIC.
(This routine is passed r $4C for APPLESOFT or a $20
for INTEGER, since these bytes appear at $8000 in
these BASICs. It will work regardless of which
BASIC is onboard)
If desired BASIC is already available, exit.
Try selecting ROM card.
If desired BASIC is now available, exit.
Try selecting onboard ROM.
If desired BASIC is now available; exit.
Otherwise, exit with error return code.

A5C6-A5DC EXEC comnand handler.
Open the file (A2A3) .
Copy file buffer address to EXECTs buffer pointer at
AAB4,AAB5.
Set EXEC active flag (AAB3) .
Jump into POSITION command handler to skip R 1ines.

8-14

A5DD-A6 OD

A5F2

A6 0E-A6 2 5

A626-A6 58

A6 30

A644

A65E-A678

A672

A679-A681

A68 2-A688'

POSITION command handler.
Locate the open file buffer (A764) ,
If not found, open one as. a TEXT file.
Copy buffer pointers to file manager parrnlist.
If R was not given .on command, exit.
Otherwise, test R value for zero and exit if so.
Decrement R value by one.
Read file byte by byte until a carriage return (end
of line - $Bo1 is reached.
If at end of file, issue trEND OF FfLE'r nessage.
Otherwise, go to A5F2 to skip next record.

write one data byte to file.
Insure that BASIC is running a program (A65E).
If not, close file and warmstart DOS.
Set up file manager parmlist to write the data byte
to the open fi1e.
Call file manager and exit.

Read one data byte from file.
Insure that BASIC is running a program (A558).
If not, close file and warrnstart DOS.
Set CSWL intercept state to 6 (skip prompt character)
Read next file byte (A68C) .
If not at end of file, go to A544.
Otherwise, close fiIe.
If state is not 3 (EXEC) issue "END OF DATATT message.
Exit to caller.
If data byte is l-ower case character, turn its most
significant bit off to fool GETIN routine in monitor.
Store data byte in A register saved at entry to DOS.
Using line index, turn high bit back on in previous
data byte stored at $200 (input line buffer) to make
it lower case if necessary.
Exit DoS (9F83).

Test to see if BASIC is running a program or is in
immediate conmand mode.
If active BASIC is INTEGER, go to A572.,
If line number is greater than 65280 and.prompt is
"1" then APPLESOFT is in immediate mode.
Otherwise, it is executing a program.
Exit to caller with appropriate return code.
Check $D9 to determine whether BASIC is executing a
progratn and,exit with proper return code.

Close current file and warmstart DOS'.

EXEC read one byte frorn file.
Select EXEC file buffer.
Copy file buffer addresses to file manager parmlist.
Set state to 3 (input'echo).
co to A62D to read a file byte.

Read next text file byte.
Set up file nanager parmlist to. read one byte.
Call file manager driver.
Return to caller with the data byte.

A68C-A69C

8-'t5

A69D-A6A7

A6A8-A6C3

A6C4-A6D4
A6C4
A6C8
A6CC
A6DO

A6D5-A70 1

A7 02-A7 19

A7 lA-A7 4 2

A743-A74D

A74E-A75A

A7 5B-A7 6 3

A764-A79 1

A76E

8-16

Set $40,$41 to point to EXEC file buffer.

File manager driver routine.
Calt the file manager itself (A806).
If no errors, exit to caller.
otherwise, point $40,$41 at file buffer.
If found, release it by storing a zero on the file
name fie1C.
If error was not "END OF DATA"T print error' message.
Otherwise, pretend a $00 was read and return to
caller .

Miscellaneous error messages"
"COMMAND SYNTAX ERRORN

''NO FILE BUFFERS AVAILABLE,'
"PROGRADI TOO LARGEII
trFILE TYPE MISMATCHU

Error handler.
Set r"rarmstart flag and clear status (BFE6).
If APPTESOFT ONERR is aclive' go to A6EF.
Otherwise, print RETURN BELI RETURN.
Print text of error message (A702) .
Print another RETURN.
Replace DOS intercepts.
If a BASIC program is in execution, pass error code
to BASICTs error handler.
Otherwise, $/armstart BASIC.

Print text of error message.
Using the error number as an index, print the message
text fron the message table (A971) byte by byte.
Last character has most significant bit on.

complete file manager paraneter 1ist.
Coplz Volume value to parmlist.
Copy Drive value to parrnlist.
Copy Slot value to Parmlist.
Copy address of primary filename buffer to parmlist.
Save file buffer address in $40'$41.
Return to caller.

Copy prinary filename to fite. buffer filenarne field.

copy current buffer pointers to'file manager parnlist
Copy fife manager workarea buffer pointer.
Copy T,/S tist sector buffer pointer.
Copy data sector buffer address.
copy next file buffer link address.
Return to caller.

Reset state to 0 and set warmstart flag.

Locate an open or free file buffer.
Assume there are no free file buffers by zeroing $45.
Point $40,$41 at first buffer on chain.
Go to A773.
Point $40,$41 at next buffer on chain.
If at end of chain, exit with file not open code.

A773 cet first byte of filename field.If zero (file buffer free), save fite buffer addressat $44,945 as an available buffer and go to A768.Otherwise, see if name in primary filenane buffer
matches the name in this file buifer.If not, go to A75E to get next buffer.If so, return to caller with open file found code.

A792-A799 point 940,941 at first fite buffer on chain.
A79A-A7A9 Point 940,941 at next file buffer on chain.
ATAA-A7AE Get first byte of file name in file buffer.
ATAF-A7C3 See if current buffer belongs to EXECIs EXEC active?

If not, exit.
If so, does current buffer address match EXEC,s?Return to caller with appropriate code.

A7C4-A7D3 Check file type.
Does file type of open file rnatch desired file type?
If so, exit.
Otherwise, turn lock bit off and test again.
If ok, exit.
Otherwise, close file and issue "FILE TypE MISMATCH".

A7D4-A850 lnitialize (build) DOS file buffer chain.
Set $40,$41 to point to first buffer.
Set counter to MAXFILES value.

A7E5 Store zero on filename field to mark as free.
Set up link pointers in buffer to point to file
manager workarea (45 bytes prior to filename field).
Set up link pointer to T/S List sector buffer (-25G
bytes from file manager srorkarea buffer).
Set up link pointer to data sector buffer 256 bytes
before that.
Decrement counter.
If zero,. go to A82D to set Hfi{EM.
Otherwise, set link to next file buffer as 38 bytesprior to data sector buffer.
co to A7E5 to set up next buffer.

A82D Set link of last buffer to $0000.
If INTEGER BASIC is active, go to Ag46.
Otherwise, set APPLESOFT's HIMEM and STRING STARTpointers in zeropage to point just below the last
buffer .
Exit Lo caIler.

A846 Set INTEGER BASICTs HIMEM and PROGRAM START pointers
to point just below the last buffer.
Exit to caller.

A851-A883 Replace DOS keyboard/video intercept vectors.
Is DOS keyboard (KSWL) vector still set?
If so, go to A86A.
Otherwise, save current KSWL vector ($39,$39) at
AA55,AA56 and replace with DOS intercept.routiners
address.

A86A Is DOS vicleo (CSWL) vector still set?
If so' exit to caller.
Oit.r*i".' save current csWL vector ($35'$37) at-
il;;;;*;4'"n- reptace with Dos intercept routine's
address.
Exit to caller-

DOS corunand name text table '
;;;"-;;i; consists of the Ascrr name for each Dos

;;t*.;;-i" order of command index varues' with.the
i;;-;;.;;.ter of each indicated bv the MSB being
on. Comnands in order are:-

ir.r:r,LoAD,SAVE 'RUN 'cHArN 'DELETE 'LocK,IJNLoCK 'cl,osE '
NEAO, NXSC, WRITE' POS IT ION' OPEN, APPEND' RENAME'

cATAioG,MON ,Nol',loN
'
PR+ , rN*

'MAXFTLES,FP '
lNT

'BSAVE '
BLOAD,BRUN ,VERIFY.

Example: iNrr is $49 $4E $49 $D4 (r N r r)

Command valid keYwords table.
itti= t.ur. is used to determine which keywords are
i.g"i..a or may be given for any Dos.command'
ii"'i, "o*.t"ct

his a Lwo byte entry with 16 flags'
inai..ti"g which keywordi may be given' The flag
bit settings are as follows:
BIT MEANING
-6- FiT6iEile legal but oPtional
I Command has no positional operand
2 Filename +1 exPected
3 Filenarne *2 exPected
+ Srot number politional operand expected
i laexrrr,es value expected as positional operand
6 Cornmand may only -be issued from within a program
7 Command may crelte a new file if file not found
8 C, I, O keyvtorils legal
9 V keYword legal

10 D keyword legal
1I S keYword legal
12 L keYword legal
13 R keYword legal
14 B keYword legal
15 A keyr.Tord legal
thus, for-a typicit cornnand' OPEN, where the value
i" Sirza, bit;-2, 6,7, 9' r0, 11, and 12 are set so
the command has one filename operand, may only be-
i="u.4 irorn within a prograln' may create a new file'
and the V' Dr S, and L keywords are legal'

A88 4-A9 0 I

A9 09-A9 40

8-18

The command entries are:
INIT 2L7O
LOAD AOTO
SAVE AITO
RUN AOTO
CHAIN 2O7O
DELETE 2O7O
LOCK 2070
UNLOCK 2O7O
cl.osE 6000

. READ 2206
EXEC 2074
WRITE 2206
POSITION 2204
oPEN 2378
APPEND 2270
RENAME 3O7O
CATALOG 4O7O
IVION 4080
NOMON 4080
PR# 0800
rN* 0800
MAXFILES O4OO
FP 4070
INT 4OOO
BSAVE 2L79
BLOAD 2O7I
BRUN 2071
VERIFY 2O7O

A941-A94A Keyvrord name table.
This table contains all the
keywords in standard order.
occupies one byte:

vrDrsrLrRrBrA,C,I,O

ASCII names of the DOS
Each keyword name

A94B-A954 Keyword flag bit positions table.
This table gives the bit positions for each keyword
into the second byte of the command valid keyword
table above and in the flag (AA65) which indicates
which keywords were present on the conmand 1ine.
The bit positions are:

v-40
D-20
s-10
L-08
R-04
B-02
A-01
c - c0 ...
I - A0 ... not used in valid keyword table
o - 90 ...

A955-A970 Key$tord value valid range table.
This table indicates the range any keyword value
nay legaIly have. Each keyword has a four byte entry'
two bytes of minimum value, and two bytes of maximum
value. Values are:

KEYWORD MIN MAX

-v-
-T- 254

D12
s17
L 1 32767
R 0 327 6'1

B 0 32767
A 0 65535

I, and O do not appear in this table since they
not have numeric values.

A97I-AA3E Error message text table.
This table contains the text for each error code in
order of error code number:
NUMBER TEXT---0- nEFUnN BELL RETURN

1 ULANGUAGE NOT AVAILABLE"
2 TTRANGE ERROR" (Batl file maRager opcode)
3 ."RANGE ERRoR" (Bad file manager subcode)
4 ''WRITE PROTECTED'I
5 ''END OF ,DATA'
5 "FILE NOT FOUND"
7 UVOLUME MISMATCH"
B "r/o ERRoR"
9 UDISK FULL"

10 'FILE LOCKED''
1I ''SYNTAX ERRORtr
L2 ''NO BUFFERS AVAILABLE''
13 ,'FILE TYPE MISMATCH"
L4 "PROGRAM TOO LARGE"
15 ''NOT DIRECT COMMANDtr

AA3F-AA4F Error message text offset index table'
This table contains the offset in bytes to the text
of any given error nessage in the table above'
Entri6s-are one byte each for each error code number

AA4F-AA65 DOS main routines variables.
AA4F current file buffer address (2 bytes).
AA51 Status flags: $0I=READ state, $0o=Warmstart,

$80=Coldstart, $4O=APPLESOFT RAM

DOS CSWL intercePt state nunber.
Address of true CSWL.handler (2 bytes).
Address of true KSWL handler (2 bytes).
MAXFILES value.
Save area for S, x, Y. and A registers when DoS is
entered (4 bYtes) .
Command line index value (offset into line).
MON f]-ags: (C=$40, I=$20' O=$10)
Index of last command tines 2.
Range length for LOAD and BLOAD (2 bytes).
Index of pending command, if anY-
Scratch vlriable (counter. message index, etc.)
Index of current keYword.
Keywords present on cornmand line flags.

c,
do

AA52
AA53
AA55
AA57
AA59

AA5D
AA5E
AA5F
AA6O
AA62
AA63
AA64
AA65

8-20

AA66-AA74
AA65
AA68
AA6A
AA6C
AA6E
AATO
AA72
AA74

AA7 5-AA9 2

AA93-AABO

AABl_AACO
AABl
AAB2
AAB3
AAB4
AAB6

AABT
AABS

AACI-AAC8
AACl
AAC3
AAC5
AACT

AAC9-AAE4

Keyword values parsed from command and defaulted.
Volune (2 bytes)
Drive (2 bytes)
SIot (2 bytes)
Length (2 bytes)
Record (2 bytes)
Byte (2 bytes)
Aildress (2 bytes)
MON value (one byte)

Primary file name buffer

Secondary (RENAME) file name buffer

DOS main routines constants and variables.
MAXFILES default ($03) .
Control-D ($84) .
EXEC file active flag ($00=not active) .
EXEC file buffer address (2 bytes) .
Active BASIC flag: $0o=INTEGER, ${g=nppLESOFT ROM,

$80=APPLESOFT RAM
RUN intercepted flag.
"APPLESOFT" characters in ASCII (9 bytes)

File manager constants.
Address of RWTS paramter list (8788).
Address of VTOC sector buffer (B3BB).
Address of directory sector buffer (B4BB) .
Address of last byte of DOS plus one. (C000)

File manager function routine entry point .table.
This table contains a two byte function handler
routine address for each of the 14 file manager
opcodes in opcode order.

File rnanager read subcode handler entry point table.
This table contains a two byte function handler
routine address for each of the 6 read subcodes.

File manager write subcode handl-er entry point table.
This .table contains a two byte function handler
.routine address for each of the 6 write subcodes.

File nanager external entry point (from g3D6).
Is X register zero?
If;so, allow new files by simulating an INIT command
index.
Otherwi'se, require o1d file by simulating a LOAD
command index.
Fa1l through to main file manager entry point.

File manager main entry.
Save S register at 8398.
Restore file manager workarea from file buffer (AE6A)
Make sure opcode does not exceed 13.
If it does, return with code=2 (invalicl opcode).
Use opcode as index into file manager function
routine entry point table and go to proper handler
via RTS.

AAE5-AAFO

AAFl-AAFC

AAFD-ABO5

ABO6-ABlE

8-21

ABIF-A821 Return with return code=2 (bad opcode) .

AB22-A827 OPEN function handler.
CalI common open code (AB2g).
Exit file manager.

AB28-ABDB Common open routine.
Initialize file manager workarea by resetting
variables to their defaults (ABDC) . -

.Set sector length Lo 256.
fnsure record length is non-zero. If zero. use 1.Store record length in file manager workarea.tocate or alloca.te a directory entry for the file(B1c9).
If file already exists, 90 to A8A6.
O.therwise, save directory index for free entry.Using last command index and valid keywords tible,determine whether current command nay create .a newfile.
If so, go to ABG4.
Otherwise, if running 'rAppLEsOFTr', set retur.n codeto IILANGUAGE NoT AVAILABLE'' and exit.
If not running :ApptESOFT', set return .code to ,'FI.IE
NOT . FOUND rr and ex i t .

A864 Set sector count in directory entry to 1 (there willonly. be a T/S List.sector initiallt).
Allocate a sector for a T/S List (8244) .
Store sector number of this sector in dir,ectory
entry and in first and current T/S List sector numberin file manager workarea.

. Store track number in both places also.
Move file type desired to directory entry.
Write directory sector back to catllog (BO32) .Select T/S List buffer (AFoC)
Zero it (BZD5)
And write it back (AF3A) .
Set. return code to .6 (,'FILE NOT FOtNDn) .

A8A6 place track/sector.of T/S List in directory entry infirst T,/s List variable in file manager woikar.a.
Copy file type from directory to parmlist to pass itback to caller and to file minagei workarea. '
Copy number of sectors in file Lo workarea.
Save directory offset to entry in workarea.Set end of data pointer to "infinity".Set number .of data bytes represented by one T/S Listsector to 122*256 (30.5K) in workarea.
Go read first T,/S List sector (AFsE).

ABDC-ACO5 Initialize file.nanager workarea.
Zero entire 45 bytes of workarea.
Save complernented volume number in workarea.
Save drive number'in workarea.' Save slot*l-6 in workarea.
Set track number to $tt (catalog track).
Return .to caller.

8-22

AC05-AC39 CLOSE function handler.
Checkpoint data buffer to disk if needed (AFID).
Checkpoint T,/S List buffer if needed (A434).
Rel-ease any sectors which were preallocated but not
usecl (B2C3).
If VTOC doe.s not need to be re-read, exit.
Otherwise, re-read VTOC sector (AFF7).
Flush through directory sectors in the catalog until
we reach the one which contains the entry,for this
file.
Get the index to the en.try.
Update the sector count in the entry to reflect the
new file's length.
Checkpoint the directory sector back to the disk.
Ex.it f ile manager.

AC3A-AC57 RENAI{E function handler.
CaII common code to locate/open the file.
If file is locked, exit with iFILE LOCKED" return
code.
Set $42,$43 to point to nelr name.
Copy nevr .name to directory entry.
Write back directory sector to di.sk.
Exit file manager.

AC58-AC69 READ function handler.
Insure subcode does ndt exceed 5. If so, exit with
return code=3.
Use subcode as index into R.EAD subcode handler entry
point table.
Go to proper handler of subcode.

AC6A-AC6C Return code = 3, subcode bad

AC6D-AC5F "FILE'LocKED" error return

AC70-AC86 WRITE function handler.
If file is.locked, exit witsh "E'Ir.F: LOCKED" error.
Insure subcode does not exceed 5. If so, exit with' return code=3.
Use'subcode as index into WRITE subcode handler entry
point tab1e.
Go to proper handler of subcode.

AC87-AC89 POSfTION AlitD READ ONE BYTE suboode handler
cau position routine.
FaIl through to next subcode handler.

ACSA-ACg2 READ ONE BYTE subcode handler.
Read next file byte (ACA8).
Store in parnlist for pass back to caller.' Exit the file nanager.

AC93.AC95 POSI,TION AT{D READ A RANGE OF BYTES subcode handler.
CalJ- position routine.
FaLI through to next subcode handler.

g-23

AC96-ACA7 READ A RANGE OF BYTES subcode handler.
Decrement and check length (BIB5) .
Read a byt.e (ACAB) .
Point $42,$43 at range address
Store byte read at address.
Loop back to AC96. (length check
manager when length is zero.)

ACAS-ACBA Read a data bYte.

ACBB-ACBD

ACBE-ACC5

ACCT-ACC9

AACA-ACD9

ACDA-ACEE

ACEF-ACF5

ACF6-ACFA

ACFB-AD11

and add one to address

will exit file

Read next data sector if necessary (8086).
If at end of file, exit with "END oF DATAI error.
Otherwise, load data byte from data sector buffer.
Increment recorct nurnber,/byte offset into file (B158) .

Increment file position offset (8194) .

Return with data byte read.

POSITION AND WRITE ONE BYTE subcode handler.
Call position routine.
FaII through to next subcode handler.

WRITE ONE BYTE subcode handler
Find data byte to be written.
Write it to file (ACDA).
Exit file manager.

POSITION AND WRITE A RANGE OF BYTES SUbCOdC hANdlCT.
CalI position routine.
Fall through to next subcode handler.

WRITE A RANGE OF BYTES subcode handler.
Copy and advance range address pointer.
Get .next .byte to write.
Write it to file (ACDA) .
Test and decrement length (8185) .

toop back to AACA.

Write a data bYte.
Read the proper data sector (if necessary) (8086).
Store data byte to be wr.itten in sector buffer.
Flag data sector buffer as requiring rewrite.
Increment record number,/byte offset into file (8158).
Ex.it via file position offset incrernent routine
(8194).

LOCK function handler.
Set mask byte to $80 (lock).
Go to corunon code (ACFB).

UNLOCK function handler.
Set mask byte to $00 (unlock) .

FaIl through to common code.

LOCK/UNLOCK connon code.
Locate/open file (A828).
Get index into directory to entry.
update file type byte to lock ($8x) or unlock ($oxl '
Write directory sector back to disk.
Exit file manager.

8-24

AD12-AD17

AD18_AD2A

ADIB

AD28-AD88

AD54

AD5E

AE2F-A841

AE42-AE69

AE6A-AE7D

AETE-AE8D

AESE-AFO7

Print a blank.
Convert and print the number of sectors in the file.
Print a blank.
Index to filenane.
Print file name.
skip to next line.
Advance index to next directory entry.
If there are more, go to ADDI.
If not, go to ADCA to read next directory sector.
Exit when finished.

Skip a line on CATALOG printout.
Output a carriage return.
Decrement line counter.
If still nonzero, exit.
Otherwise, wait for keyboard keypush.
Then reset counter to 2l lines.
And return to caller.

Convert the number stored at $44 to a three character
printable number and print it.

Restore file manager workarea from file buffer.
Select file manager workarea buffer.
Set return code in parmlist to zero initially.
Copy 45 byte saved image of file manager workarea in
file buffer to real file nanager workarea.
Exit to caller.
Save file manager workarea in file buffer.
Select file manager workarea buffer.
Copy 45 byte workarea to file buffer.
Exit to caller.

INIT function handler.
Initialize the file nanager workarea (ABDC) .
CaIt RWTS to format the diskette (8058) .
Copy V value to VTOC buffer.
Start track to allocate next value at $11.
And direction of allocation as $01 (forward) .
zero VTOC bit map (a11 sectors i-n use) .
Skipping the first three tracks and track $11, copy
tfre- a Uyte bit mask (B3A0) to each track entry in
the VTOC bit map to free the sectors. This leaves the
first three tracks and the catalog track marked in
use.
zero the directory sector buffer.
Point to directory sector buffer.
Set track $11 in RW:IS Parmlist.
Set up link fron this directory sector to next (track
$11, sector-l).
Call RWTS to write directory sector.
write each sector on track in this way excePt for
sector zero.
on last sector (sector l) zero link pointer.
Point RWTS parms at DOS load point (B7C2) .
Write DoS image onto tracks 0-2 (874A) .
Exit file manager.

8-26

AFDC-AFE3

AFE4-AFF6

AFFT-BOlO
AFFT
AFFB
AFFD

B01l-B0 36

B037-B044

8045-B0 5r

B0 52-B085

B0 58

Read a data sector.
Set up for RWTS (AFE4)
Set nWfS READ opcode and go to RWTS driver to do it'

Prepare for RWTS with data sector.
Copy address of data sector buffer
Get its track,/sector '
And exit to caller.

Read,/write the VTOC buffer.
Read VTOC entry' go to AFFD.
write vToC entry' fall through.
Common code.
Copy VTOC sector buffer address to
cet its track number and use sector
Exit through RWTS driver.

to RWTS parmlist.

RWTS parmlist.
s00.

Read a directorY sector -

iii cannv flag is zero on entry' read first directory
sector. If CARRY is one' read next)
Memorize entrY code.
Set buffer Pointers (B045) .
First or next?
ii-iit;l' get track/secLot of directory sector from
VTOC at offset +I,+2.
Otherwise, get track/sector from directory sector at

"ii="t
+i-',+i. rf track is zero, exit with error code

(end of directorY).
CaIl RWTS to read sector.
Exit with normal return code.

Write directory sector.
Set buffer Pointers.
Find its track,/sector in workarea.
Exit through RWTS to write it.

Prepare for RWTS for directory buffer'
iopy ait""tory buffer address to RWTS parmlist'
Exit to caller.

nead/Write Track,/Sector (RWTS) driver'
Set track/sector in RWTS parmlist.
set command code (read.write'etc.)
1f writing, set flag (85D5)
Set votume number expected in parmlist'
Set slot*16 in Parmlist.
Set drive in Parmlist.
Set sector size in Parmlist.
Set IOB tYPe in Parmlist ($0I).
Ca11 RWTS, passing parmlist pointer.
iopy ttue'vilnme ioirna to file manager parmlist'
Rei-et volume expected fielcl in RWTS Parmlist'
If an error did not occur, exit to caller '
Othervtise' get return code.
Translate'vol mismatch to RC=7, write protected to
nC=4 ana all other errors to RC=B (1/O error) .

Exit file manager now.

8-28

8086-8133 Read next data sector (if necessary).
Is the current file position in the current data
sector now in menory?
If so, 90 to 812C.
Otherwise, checkpoint data sector buffer.
Is the current file position prior to or after this
T/S List's domain?
If not. go to B0F3.
Otherwise, read each T/S List for the fi.1e, starting
with the first. until the proper one is found.
If it is never found, exit wj-th error (ran off end of
file reading).

B0F3 Diita is in this T,/S List sector.
Compute the displacement to the proper entry in this
T/S List sector.
Select the T/S tist buffer.
Get the track of the data sector wanted.
If non-zero, go to BII4.
Otherbrise, if not writing, exit with error (no data
to read there) .
If writing, allocate a new sector and store its
track/sector location in the l-ist, a! this point
(Br34).
Go to 8120.

B1l4 Read old data sector, using the track/sector found
in the T/S List entry.

8120 Save number of sector last read. in workarea.
812C Sefect data buffer.

Get byte offset and exit normally to caller.
B134-B15A Add a new data sector to fiIe.

Allocate a sector (8244l'.
Put track/sector numbers in T/S List entry.
Select data buffer and 2ero it.
Set flags to indicate that the T,/S List sector and
the data sector buffer require checkpoints.
Exit to caller.

B15B-B193 Increment record number and byte offset into file.
Copy current record number and byte offset to file
manager parameter list to pass back to ca11er.
Increment byte offset in workarea.
If byte offset equals record length, set byte offset
back to zero and increment record number..
Return to caller.

B194-B1A1 Increment file position offset.
Increment byte offset into current sector by one.
If at end of sector, increment sector number by one.
Return to caller.

B1A2-BIB4 Copy and advance range address.
Copy range address from file. manager parmlist to g42.
Increment range address in parmlist for next t.ime
through.
Return to caller.

B185-BIC8

BlC9*B218

BlEB

B2OB

B2L2

B2t7

B2IC-822F.

B 2 30-B2 39

B23A-B243

8244-B2C2

8249

8265
B26A

8.1D8
BIEl

Decrement range length.
Decrement range length in file manager parmlist by
one.
If zero, exit file manager.
Otherwise, exit to ca1Ier.

Locate or allocate a directory entry in the catalog.
Read the VTOC sector (AFF?).
Set $42,$43 to point to file narne we are looking for.
set pass number to one (locate file).
Initialize directo.ry sector offset (first sector).
Increment sector offset.
Read directory sector.
If at end of directory, go to B23A..
Set entry index to first fil-e entry.
Get track.
If deleted, skip entry, go Lo B2I1
If empty, end of directory, go Lo 8212.
Advance index to filename in clirectory.
Compare against filename. wanted.
If they match,.return entry index and exit.
If not, advance index to next entry in sector and
loop back to BIEB.
If at end of sectorr go to BIEI to get next sector.
If pass number is one, go to B1DB to start second
pass.
If pass number is one,90 to B20B to skip entry.
If second pass, fall through to allocate entry.

Copy file name to directory entry.
Advance index to file nane fielcl in directory entry.
Copy 30 byte filename to directory entry.
Reload directory index and return to caller.

Advance index to next directory entry in sector.
Add 35 (1engt.h of. entry) to index.
Test for end of sector and return to caller.

Switch to second pass in directory scan.
If on pass one, switch to pass 2 and go to B1D8.
If on pass two, exit file manager with trDISK FULL"
error.
Allocate a disk. sector.
Is there a track currently allocated to this file?
If not, go to 826A to find a track with-free sectors.
Otherwise, decrenent sector. number to get next
possible free sector nunber.
If there are no nore sectors on this track, go. to
8265 to find a new track.
Otherwise, rotate the track bit nask by one position
and get the bit for thi3 sector.
If the sector is in use., loop back to 8249.
otherwise., add one to filers sector count.
Pass back sector nunber (track number is at B5F1).
And return to caller.
Indicate no track is being.used at present.-
Reset allocation flag to allow at least one complete.
search of all tracks for sone space.
Read VTOC sector i

8-30

8272 Get last track allocated from and add direction value
to get next track to examine (+1 or -1) .
Are we back to track 0?
If so, go to 8284.
Otherwise, are we past track 34?
If so, reverse direction and go to B28E.

8284 Is this the second time we have come to track 0 ?
(check allocation flag).
If so, exit with iDISK FULLI error.
Otherwise, set allocation flag to remember this.
Set direction to forwaral (+1).

B28E Begin at directory track (17 + or - 1) .
Compute bit map index (tracknurnbe.r*4) .
Copy track bit map fron VToC to wo.rkarea,. watching
to see if all' four bytes are zero (track is fu1l).
In any case, set all four bytes in VTOC to zero
(a1locate all sectors) .
If no free sectors in the track, go Lo 8272 to try
next track.
Otherwise, write VTOC to disk to insure filers
integr i ty.
Set sector number to last sector in track.
Go to 8249 to allocate one of its free sectors to
the file.

B2C3-B2DC Release pre-allocated sectors in current track and
checkpoint. the VTOC.
Has a track been allocated to the.file?
If not, exit to caller.
Otherwise, read VTOC.
Get next sector which could have been used (number
of times track nap was shiftecl during allocation) .
CaIl B2DD to shift track bit map back and merge it
back into the VTOC bit nap.
Indicate no track has been allocated.
Exit to cal1er.

B2DD-B2FF Free one or more sectors by shifting mask in file
managerrs allocation area back into VTOC bit.nap.
(If CARRY is set, curren.t sector.is freed also)
Rotate entire 4 byte track bit mask once.
Repeat for as many sectors as were allocated.
Compute index into VTOC for this trackrs map.
If zero, exit.
Ivlerge ("OR") file managerrs bits with those already
in VTOC, freeing sectors which were never used by
the file.
Return to caller.

8300-8358 Calculate file position.
Set record number passed in fite nanager parmlist
in workarea and in sector offsets.
Clear sector offset high part.
Perforn a 16 bit multiply as follows:
3 byte file position = record number tines record.
length.
Add the byte offset frorn the parmlist into the three
byte file position value (B5E4,85E5,85E6).
Return to caller:

8-31

B3 5F-B37D
B35F
836 3
8367
B368
B36F
B373
8377
B37B

B37F-839 6
B37F

8385
B 386

8397-B3A3
8397
B39B
B39C
B39D
B39E
B3AO

B3A4-B3A6

B3A7-B3AE

B3AF-B3BA

B3BB-B4BA
B3BC
B3BE
B3CI
B3E2
B3EB
B3EC
B3EF
B3FO
B3F'1
B3F3
B3F7

B478

Error exits.
RC=1 "LANGUAGE NOT AVAILABLETI
RC=2 TTRANGE ERROR" (bad opcode)
RC=3 "RANGE ERROR" (bad subcode)
RC=4 "WRITE PROTECTED"
RC=5 "END OF DATA"
RC=6 "FILE NOT FOUND"
RC=9 "DISK FULI," (a11 files closed)
RC=A "FILE LOCKED"

Exit file manager.
Exit with no errors"
Get return code of zero.
Clear carry flag and go to 8386.
Set carry flag to indicate error.
Save return code in parmlist.
Clear monitor status register ($48) after RWTS has
probably tromped on it.
Save file manager workarea to file buffer (AE7E).
Restore processor status and stack register.
Exit to original caller of file manager.

File manager scratch space.
Track/sector of curr'ent directory sector (2 bytes) .
S register save area"
Directory index.
Catalog line counter/Directory lookup fLag/EEc.
LOCK/UNLOCK mask/AIlocation f laglEtc.
Four byte mask used by INIT to free an entire track
in the vToc bit map.

Decimal conversion table (1,10,100) .

File type name table used by CATALOG.
Fite types are3 T,IrA,BrSrRrArB, corresponding to
hex values: $00, $01, $02, $04, $08, $10, $20' and
$40 respectively.

ASCII text "DISK VOLUME " backwards. Used by CATALOG.

VTOC sector buffer.
Track/sector of. first directory s.ector.
DoS release number (L, 2, or 3).
volune number of diskette.
Number of entries in each T,/s List sector:
Track to alldcate next.
Direction of track allocation (+l- or -1)
Number of tracks on a disk..
Number of secLors on a disk.
Sector.size in bytes (2 bytes)
Track 0 bit map
Track I bit map
etc.
Track 34 bit map

8-32

B4BB-B5BA DIRECrORY sector buffer.
B4BC Track/sector of next directory sector.
B4C5 First directorY entrY and

Track of T,/S List
B4C7 Sector of T/S List
B4C8 File tYPe and lock bit
B4C9 Filename field (30 bytes)
B4E7 Size of file in sectors (including T/S List(s)).

B5BB-B5DO File manager parameter list.
B5BB OPcode
B5Bc subcode
B5BD Eight bytes of variable parameters depending on

oPcode.
B5C5 Return code.
B5C7 Address of file manager workarea buffer.
B5C9 Address of T,/S List sector buffer.
B5CB Address of data sector buffer.
BSCD Address of next DOS buffer on chain (not used).

B5D1-B5FD File manager workarea.
B5D1 1st T/S List secLor's track/sector.
B5D3 Current T/S List sectorrs track/sector.
B5D5 Flags: 80=T,/S List needs checkpoint

 o=Data sector needs checkPoint
20=VToC sector needs checkPoint
02=Last oPeration was write

B5D6 Current data sector's track/sector.
B5D8 Directory sector index for file entry.
B5D9 Index into directory sector to directory entry for

file.
B5DA
B 5DC
B 5DE
B5EO
B5E2
B5E4

B5EB
B5EA
B5EC
B5EE
B5FO

Number of sectors described by one T'ls List'
Relative sector number of first sector in list.
Relative sector number +l of last sector in list.
Retative sector number of last sector read.
Sector length in bytes.
File position (3 bytes) sector offset' byte offset
into that sector.
Record length from OPEN.
Record number.
Byte offset into record.
Number of sectors in fiIe..
Sector allocation area (5 bytes).
Next sector to allocate (shift count)
Track being allocated
Four byte bit map of track being allocated' rotated
to next sector to allocate.

B5F6 File tYPe.
B5F7 Slot number times 16.
B5F8 Drive number.
B5F9 Volume number (complemented)
B5FA Track number.

B5FE-B5FF Not used.

8-33

8600-B6FF Start of Boot 2,/RWTS image.---- ieOO Boot 1 inage which can be written to rNITed disks
on track 0, sector 0.

B65D Dos 3.3 Patch area.
B65D APPEND Patch flag.
B65E APPEND patch. Cone here when file manager driver

gets an error other than end of data'
Locate and free the file buffer.
C1ear the APPEND flag.
Get the error number and go print error (A6D2) '

8671 APPEND patch. Come here fron APPEND command handler
to incr-ement record nurnber if APPEND flag is set and
to clear the flag. Exit through POSITION'

8686 VERIFY patch. Come here fron I/O a range of bytes
routine to exit through VERIFY after SAVE or BSAVE'

8692 AppEND patch. come heie frorn file manager driver if
return code was END OF DATA.
Test the fite Position for zero.
If non-zero, set eeenND flag on and return to caller'
If zero (aL start of file) r coPY record number and
byte offset to file manager parrnlist and return a

zero data byte to caller.
B6FE Page acldress of first page-in Boot 2'
B6FF Nunber of sectors (pages) in Boot 2'

BTOO-8749 DOS 2ntl stage boot loader.
set RWTS parmlist to read DoS frorn disk'
CaIl Reacl/Write group of pages ($8793) '
Create new stack.
CAIl SETVID ($F893) ANd SETKBD ($FE89).
Exit to DOS coldstart ($9D84) .

B74A-878c Put DoS on tracks 0-2.
Set RWTS parmlist to vtrite DOS to ilisk'
CaIl Read/Write group of pages ($B793) '
Exit to caller.

B78D-8192 Unused.

8793-8784 Read/Write a group of pages.
call RWIS through external entry point ($8785) '
Exit to caller.

B?B5-B7C1 Disable interrupts and call RWTS'

B7C2-B7DS Set RWTS parameters for writing DOS'

B7D6-B7DE zero current buffer.
zero 255 bytes pointed to by $42'$43'
Exit to caller.

BTDF-B?E7 DOS 2nd stage boot loader parmlist'
BTDF Unused -
B7E0 Number of pages in 2nd DoS load'
B?E1 Number of iectors to read/write'
B7E2 Number of pages in lst DoS load'
B7E3 INIT DOS Page counter '
B7E4 Pointer to RWTS parmlist (2 bytes) '
B7E6 Pointer to lst slage boot location (2 bytes) '

8-34

B7E8-87F8
B?E8
B7E9
BTEA
BTEB
BTEC
BTED
BTEE
BTFO
B7F2
B7F3
B7F 4
B715

B7F6
B7F7
B7F8

RWTS parmlist.
Table type. Must be $01.
Slot nunber times 16.
Drive number ($0I or $02).
Volume nunber expected (0 matches any volume).
Track number ($00 to 922).
Sector number ($00 to $Of).
Pointer to Device Characteristics Table (2 bytes) .Pointer to user data buffer for READ/WRITE (, bytes) .
Unused.
Byte count for partial sector (use 900 for 2561.
Command code: o=SEEK, I=READ, 2=WRITET 4=FORMAT.
Error code: (valitl if carry set) 910=I{rite protect,
$20=Vo1ume nisnatch, $40=Drive error, $O8=INIT error.
Volume number found.
SIot number found.
Drive number found.

32 cycle

8-35

B8C2-B8DB POSTNIBBLE routine.
Converts 342 (6 bit) "nibb1es" of the form 00xxxxxx
to 256 (B bit) bYtes.
Nibbles stored at primary and secondary buffers'
Pointer to data page stored at $38'$3F.
On entry: X-reg:Slot number times 16

$3n,93n:Pointer to user data
$26:byte count in secondary buffer ($00)

On exit: A-reg:unknown
x-reg : unknolvn
Y-reg:byte count in secondary buffer
Carry set

'Exit to call-er.

BSDC-B943 READ routine.
Read a sector of data from disk and store it at
primary and secondary buffers. (First uses secondary
buffer-high to Iow, then prirnary 1ow to high)
On entry:. X-reg:Slot tines 16

'Read mode (Q6L,Q7L)
On exit: Carry set if error.

If no errors
A-reg: $AA
X-reg : unchanged
Y-reg:$00
Carry clear
Uses $26

Exit to caller.

B944-BggF RDADR routine.
Read an Address Fielcl.
Reads sLarting address rnarks ($D5/$AA'l$95) ' address
information (votumer/track/secLor /checksurn), and
closing address marks ($DE/$AA) .

On entrY: x-reg:SIot number times 16
Read mode (06L,Q7L)

On exit: Carry set if error.
If no error:
A-reg: $AA
X-reg: unchanged
Y-reg : $ 00
Carry clear
$2F: Volume nunber found
$28: Track number found
$2D: Sector number found
$2C: Checksum found
Uses $26,$27

Exit to caller.

B9A0-B9FF SEEKABS routine.
Move disk arm to desired track.
Calls arrn move delay subroutine ($BA00) .

On entry: X-reg:Slot number times 16
a-reg:oesired'track (halftrack for single

phase clisk) .

$478:Current track.

8-36

On exit: A-reg:unknown
X-reg : unchanged
Y-reg: unknown
$2A and $478:Fina1 track
$27:Prior track (if seek needed)

Exir ro ""Yi:::
$26'927 '$2A'g28

BA00-BA10 Arm move delay subroutine.
Delays a specified number of 100 Usec intervals.
On entry: A-reg:number of 100 Usec intervals.

$46,$a7:Should contain motor on time count($EF..$Dg) from Device Characteristics Tabl-e
$478:Current track.

On exit: A-reg:900
X-reg : g 00
Y-reg : unchanged

Exir ro ..ii:;: ""
BA11-8A28 Arm move delay tab1e.

Contaj.ns values of 100 Usec intervals used duringphase-on and phase-off of stepper motor
8A29-8A68 Write Translate Table.

Contains 6 bit ,'nibbles" usecl to convert B bit bytes.Values range from $96 to $f.fr.
Codes with,more than one pair of adjacent zeros orwith no adjacent ones are excluded.

8A69-8A95 Unused.

BA96-BAFF Read Translate Table.
Contains 8 bit bytes used to convert G bit tnibbles,,.
Values range from $96 to gff.
Codes with.more than one .pair of adjacent zeros orwith no adjac.ent ones are excluded.

BB0o-BBFF primary Buffer.
BCo0-BC55 Secondary Buffer.
BC56=BCC3 Write Address Field during initialization.

Ca1ls .Write double byte subroutine.
Writes number of autosync bytes contained in y_reg,
starting address marks (gD57$te/Sg'l, addressinformat ion. (votune/track/sector/checksum), -cfos ingaddress narks (gDE/AAIEB) .
On entry: X-reg:Slot number tines lG

Y-reg:number of autosync to write
$3n: $aA
$3F: sector number
$4I: volume number
$44: track number

.:On exit: A-reg:unknown
X-reg : unchanged
Y-reg: 900
Carry set

Exit to caller.

BCC4-BCDE Write double byte subroutine
tirning criticai code that encodes address information
into even and odd bits and writes it at 32 cycle
intervals.
Exit to caller.

BCDF-BCFF Unused.

BD00-8D18 Main entrY to'RWTS.
Upon entry, store Y-reg and A-reg at
pointers to the IOB.
lnitialize maxinum nunber of recals

$48.,$49 as

at I and seeks
at 4.
Check if the slot number has changed. If not,
branch to SAMESLOT at $BD34.

BD19-BD33 Update slot number in. IOB and t"ait for old dr'ive
to turn off.

BD34-BD53 SAMESLOT
Enter read mode and read with delays,to see if clisk
is sPinning.
Save- resull of test and turn on motor just in case'

BD54-8D73 llove pointers in IOB to zero page for fu!91e-11e'
oevice Character'istics Tab1e pointer at $3c'$3D
and data buffer pointer at $3E'$3F.
Set up $4? (motor on time) with $D8 from DCT'
Check if the drive number has changed. If not'
branch to $BD74.
If so' change test results to show drive off'

BD?4-BD8F Se1eci appr6priate drive and save drive being used
as high lit or $rs. I=drive 1' o=drive 2'
Get test results. If drive ldas on' branch to $BD90'

.Wait for capacitor to discharge using !'ISWAIT
subroutine at $8A00 -

BD9o-BDAA Get destination track and go to it using l4YsEEK

subroutine at $BE5A.
Check .test result again and if drive was on'
branch to TRYTRK at $BDAB.
Delay for motor to come up to speed.

BDAB-BDBB TRYTRK
Get conmand code.
If null, exit.through ALLDONE at $BE46, turning drive

. off and returning to caller.
Tf =4. branch to FORMDSK at $BEoD.
Otherwise' tnove low bit into carry (set=read'
clear=write) and save value on status reg'
If write operation' data is prenibbilized via a call
to PRENIB16 at $8800.

BDBC-BDEC Initialize.maxirnum retries at 48 and read an
Address Field via RDADR16 at $B944.
If read ltas good, branch to RDRIGHT at $BDED'
If badt read,-decrement retries, and, if still some
Ieft try again. Else' PrePare to recalibrate'

, Decrement iecal count. If no more, then indicate
drive error via DRIr'ERR at $8804.
Otherwise, reinitialize reseeks aC 4 and recatr'ibrate
arm. Move to desired track and try again.

8-38

BDED-BEO3 RDRIGHT
Verify on correct track. If so branch to trutTRK
at $8810.
If not, set correct track via SETTRK subroutine at
$8895 and .decrenent .reseek count.
If not zero then reseek track. If zero, then recal.

BEO4-BEOA DRVERR
Clean up stack and status reg.
Load A-reg with $40 (drive error)
Goto HNDLERR at $8E48.

BEoB-BEoC Used to branch to ALLDONE at $8E46.
BEOD-BFOF FORMDSK

Jump to DSKFOR!{ at $BEAF.
BE10-BE25 RTTRK

Check volune nunber found against volune nunber
wanted.
If no volume was specified, then no.error.
If specified volurne doesnrt match, Ioad A-reg lrith
$20 (volune mismatch error) and exit via HNDLERR
ar .$8848.

.8E26-8E45 CRCTVOL
Check to see if sector is correct.
Use ILEAV table at $BFBS for software sector
interleaving.
If wrong sector, try again by branching back to
TRYADR at SBDCI.
If sector correct, find out what operation to do.
If write, branch to WRIT at $8851.'Otherwise, read data via READ16 ($B8DC).
If read is good, then postnibble data via POSTNBI6
($88C2) and return to caller with no error.

BE46-8E47 ALLDONE
Skip over set carry.instruction in HNDLERR.

BE48-BE5O IINDLERR
Set carry.
Store A-reg in IOB as.return code.
Turn off motor.
Return to caller.

BE51-8E59 WRITE
Write a sector using WRITEI5 (gB82A) .
If the write was good, exit via ALLDONE (9BE4G) .
ff bad write, load"A-reg with 910-{write protect
error) and exit via'HNDLERR ($BE4B).

BESA-BS8D MYSEEK
Provides necessary housekeeping before going to

' SEEKABS .r.outine.
Determ.ines number of phases per track and stores
track information in.appropriate slot dependent
location.

BESE-8E94 XTOY routine.
Put slot .in Y-reg by transf.erring X-reg divicled
by 15 into Y-reg.

BE95-BEAE Set track number.

8-39

BEAF-BFoC INIT command handler
Provides setup for initializing a disk.
Get the desired volume number frorn the IOB.
zero both the primary and secondary buffers.
Recalibrate the disk arm to track 0.
Set the number of sync bytes to be written between
sectors to $28 (40.).
Call TRACK WRITE routine for lhe actual formatting.
A1low 4B retries during initialization.
Double check that the first sector found is zero
after calling TRACK WRITE.
lncrement the track number after successfully
formatting a track.
Loop back until 35 tracks are done.

BFoD-BF6l TRACK WRITE routine.
Start with sector zero.
Preceed it with 128 self-sync bytes.
Follow them with .sectors 0 through 15 in sequence.
Set retry count for verifying the track at 48.
Fill the sector initilization map with positive
numbers.
Loop through a delay period to bypass most of the
initial self-sync bytes.
Read the first Address Field found.
If the read is good and sector zero was found,
enter the VERIFY TRACK routine.
Decrement the sync count by 2 (until it reaches 16
at which time it is decremented by 1).
If sync count is greater than or equal to 5, exit
via $BF71.
If not, set carry and return to caller.

BF62-BF87 VERIFY TRACK routine.
This routine reads all 16 sectors from the track that
was just formatted.
If an error occurs during the read of either the
Address Field or the Data Field, the number of
retries is decremented.
The routine continues reading until retries is zero.
Ca1ls Sector Map routine ($BF88) .

BFBS-BFA? Sector Map routine.
This routine marks the sector initialization map as
each sector is verified.
Tf an error occurs, the routine exits through $BF6C'
which decrements the number of retries and continues
if that value is greater than zero.
Upon completion of track zero, the sync count is
decremented by two if it is at least 16.

BFAS-BFB7 Sector Initialization Map used to mark sectors as
they are initialized.
Contains a $30 prior to initialization of a track.
Value changed to $FF as each sector i.s completed.

BFBS-BFC? Sector Translate Table
Sector interleaving done with software.

BFCS-BFD8 Patch area starts here.
Patch from 98741 to zero language card during boot.call SETVID (gFE93).
Unprotect tanguage Card (if present).
Store 900 at $8000.
Exit through SETKBD (gFE89) and DOS cotdstart.

Bl'D9-BFDB 'Unused.

BFDC-BFEs Patch .called ff,om gA0E2.
Set three aclclitional defaults (Byte offsetio).
Return to caller.

BFE6-BFEC Patch called from gA6D5.
Call $A758 to reset state and set lrarmstart f1ag.
Irtark RUN not interrupted.
Return to caller

BFED-BFI'F Patch called from gB37Z.
Call gAETE to save file manager r4rorkarea.
Restore stack.
Close alL open files (gA3I5).
Save stack again.
Exit through $8385 ('TDISK FULL ERRORtr).

DOS ZERO PAGE USAGE

USE
cursor horizontal (Dos)
Sector read buffer address (ROM)
Scratch space (RWTS)
BASL,/BASH (DoS)
Segment merge counter (ROM.BOOT)
Scratch space (RWTS)
Boor slot*16 (RoI'{)
Scratch space (RWTS)
Checksum from sector header (RWTS)

Sector number from sector header (RWTS)

Track number from sector header (RwTs)
Volume nunber from sector header (RWTS)

Pronpt character (DoS)
Drive number in high bit (RWTS)
cswl,,cswH (Dos)
KSWL,KSWH (DoS)
Workbyte (ROM)
Irlerge workbyte (BooT)
Device characteristics table address (RWTS)

Sector number (ROM)
Device characteristics table address (RwTs)
Address of ROM sector-read subroutine (BOOT)

Buffer address (RWTS)
DOS image address (BOOT)
File buffer address (DoS)
Fornat track counter (RWIS)
Buffer address (DOS)
Nuneric operand (DoS)
Scratch space (RWTS)
IOB address (RWTS)
INTEGER BASIC TOMEM address (DOS)
Format diskette workspace (RWTS)
INTEGER BASIC HIMEM address (DOS)
APPLESOFT BASIC PROGRAM START (DOS)

APPLESOFT BASIC VARIABLES START (DOS)

APPTESOFT BASIC STRING START (DOS)

APPLESOFT BASIC HIMEM acldress (DOS)
APPLESOFT BASIC line number high (DOS)

APPLESOFT BASIC PROGRAM END (DOS)
INTEGER BASIC PROGRAM START (DOS)
INTEGER BASIC VARIABLES END (DOS)

APPLESoFT BASIC PRoGRAM protection flag (DoS)
INTEGER BAsIc line number (Dos)
APPLESOFT BASIC ONERR (DOS)

BYTE
24
26.27

28 ,29
2A

29

2C
2D
2E
2F
33
35
36 ,37
38 ,39
3C

3D

38,3F

40 ,41

41
42 ,43
44 ,45
46,47
48,49
4A,48

4C,4D
67,58
69,6A
6E t70
73,74
76
AF,BO
cA,cB
cc,cD
D6
D8,D9

8-42

APPENDIX A
EXAMPLE PROGRAMS

this section is intended to supply the reader with utility
programs which can be used to examine and repair diskettes.
These programs are provided in their source form to serve as
examples of the programming necessary to interface practical
programs to DOS. The reader who does not know assembly
language may also benefit from these prograns by entering
them from the monitor in their binary form and saving them
to disk for later use. It should be pointed out that the
use of 15 sector diskettes is assumed, although most of the
programs can be easily moclified to work under any version of
DOS. It is recommended that, until the reader is completely
farniliar with the operation of these progralns, he would be
well advised to use them only on an "expendable" diskette.
None of the programs can physically damage a diskette, but
they can, if used improperly, destroy the data on a
diskette, requiring it to be re-INITialized.

Five programs are provided:

DUIqP TRACK DUMP UTILITY

This is an example of how to directly access the
disk drive through its IIO select addresses. DUI{P
may be used to dump any given track in its raw,
prenibbilized form, to memory for examination. This
can be useful both to understand how disks are
formatted and in diagnosing clobbered diskettes.

ZAP DISK UPDATE UTILITY

This program is the backbone of any attempt to patch
a diskette directory back together. It is also
useful in examining the structure of files stored on
disk and in applying patches to files or DOs
directly. zAP allows its user to read, and
optionally write, any sector on a diskette. As
such. it serves as a good exanple of a program which
calls Read,/Write Track/Sector (RWTS).

A-1

INIT

FTS

REFORMAT A SINGLE TRACK

Thi-s program will initialize a single track on a

cliskette. Any volune number ($00-$FF) may be
specified. INIT is useful in resLoring a track.whose
sectoring has been damaged without reinitializing
the entire diskette. DOS 3.3 anil 48K is assumed.

FIND T,/S LISTS UTILITY

FTS may be used when the directory for a diskette
has been destroyed. It searches every sector on a
diskette for what appear to be Track/Sector Lists,
printing the track and sector location of each it
tinds. Knowing the locations of the T,/s Lists can
help the user patch together a new catalog using
ZAP.

CONVERT FILES

COPY is provided as an example of direct use of the
DOS FiIe Manager package from assembly language.
The program will read an input B-type file and copy
its conlents to an output T-type fi1e. Although it
could be used, for example, to convert files used by
the PrograNna PIE editor for use by the Apple
Toolkit assernbler, it is not included as a utility
program but rather as an exarnple of the programming
necessary to access the File Manager.

STORING THE PROGRAMS ON DISKETTE

The enterprising progranmer may wish to tyPe the source code
for each program into an assembler and assernble the programs
onto clisk. The Apple Toolkit assembler was used to produce
the listings presented here, and interested programmers
should consult the documentation for that assembler for more
inforrnation on the pseudo-opcodes used. For the
non-assernbly language progranmer, the binary object code of
each program nay be entered from the monitor using the
following procedure.

The assembly language listings consist of columns of
information as follows:

The address of some object code
The object code which should be stored there
The statement number
The statement itself

A-2

For examp1e...

0800:20 DC 03 112 COpy JSR LOCFPL FIND PARMLTST

indicates that the binary code ,r20Dc03i should be stored at0800 and that this is stitement iI2. To enter a program inthe monitor, the reader must type in each address'".,d it,corresponding object code. rhe-fo1l0wing is un
"*impre orhow to enter the DUMP progran:

CALL *151 (Enter the nonitor from BASIC)0800:20 E3 03
0803:84 00
0805:85 01
0807:A5 02

...etc...

0879:85 3F
0878:4C 83 FD
BSAVE DUMP,Ag800,Lg7E (Save progran to disk)
Note that if a line (such as line 4 in DUMe) has no objectbytes associated with it, it may Oe ignor-d.

-Wt,."-ti"
program is to be run...
BLOAD DUIvtp (Load program)
CALL -151 (Get into-monitor;
02:11 N 800G (Store track to durnp, run program)

The BSAVE commands which must be used with the otherprograms are:

BSAVE ZAP.A$900,L96C
BSAVE INIT IA$BOO 'L$89BSAVE FTS,A$9OO,L$DC
BSAVE COPY,A$800,L918C

A diske'tte containing these five programs is available at areasonable cost directly from Ouality Softhrare , 6660 ResedaBlvd., Reseda, CA or telephone (213) 344_6599.

Also available from Qualily Software is an expanded versionOf IhCSE UtilitiES CAllCd BENEATH APPLE DOSI bAG OF TRICKS.See the page facing 1-1 for more details.

DUMP - TRACK DUMP UTILITY

The DUMP progran. will dump any track on a diskette in itsraw' pre-nibbilized format, arlowing the user to examine the.sector. address and data fields and Lhe formatting of thetrack. This allows the curious reader to examin6 his owndiskettes to better understand the concepts presented in thepreceeding chapters. DUMP may arso be uiecr lo examine mostprotected disks to see how they cliffer frorn normal ones andto diagnose diskettes with ctobbered sec.tor address or datafields with the intention of recovering frorn ais[-iZO-errors. The DUMP program serves as an example of direct useof the DISK II hardware.from assembly tanguige, with tittleor no use of DOS..

To use DUMP, first store the number of the track you wish
dumped at location $02, then begin executj-on at $-SOO. DUMPwill return to the monitor aftei displaying the iirsi partof the track in hexadecimar on the. s6reen.. The entire trackimage is stored, starting at 91000. For example:

CALL -151 (Get into the monitor fron BASIC)
BLOAD DUMP. (Load the DUMP program)

...Now insert the diskette.to be aumpel,;.1
02:11 N 800G (Store a 11 (lrack 12, the catalog

track) in $OZ, N terminates the store
cornmand, 90 to location gg00)

The output might.look like this...
1000- D5 AA 96 AA AB AA BB AB (Start of sector address)
IOOS- AA AB BA DE AA E8. CO FF
1010- 9E FF FF FF I'F FF D5 AA (Start of sector data)l01B- AD AE 82 9D AC AE 96 96 (Sector data)
...etc-..

Quite often. a sector with an I/O error will have only onebit which is in error,.either in the addre.ss.or. data ireaderor in the actual data itself. A particuJ_ar1y patient --
prograruner can, using DUMP and perhaps a hali hour of hand"nibbilizing" deternine the locition-of the error and rlecordthe data 9l paper for later_entry via zAp. A.thoroughunderstanding of chapter 3 is necessary to acconplisi thisfeat.

0800:

0800 3

0800:
0800:
0800 i
0800:
0800:
0800:
0800:
0800;
0800:
0800 3

0800:
0800:
0800:

0800:

0000 3

0002:
003c:
00 3E:
0048:

0800:

1000:
03E33
03D9:
FDED 3

FDB3 !

0800:

c080:
c081:
c082:
c083:
c084:
c085:
c086:
c087:
c088:
c089:
c08A:
c08B:
c08c:
c08D:
COSE:
COSF:

0800:

0000:
0000:
0001:
0002:
0003:
0004 !
0005:
0005:
0008:
000A:
000c:
0000:
0001:
0002:
0004:
000D:
0010:
0020:
0040:
0080 3

2 . ORG sS00

4 **********i***t*****t*****t****************l***************
5* *
6 * DU!4P:THIS PROGRAM WILL ALLOW ITS USER TO DUMP AN ENTIRE *
.7 * TRACK IN ITS RAW FORM INTO MEMORY FOR EXAMINATION. *
8*
9 t INPUT: 902 = TRACK TO BE READ

r0*
lI * OUTPUT:$1000 = ADDRESS OF TRACK IMAGE
L2*
13 * ENTRY POINT: 5800
14 i *
15 * PROGRAMMER: DON D WORTH 2/19/8I *
16 * *
17 **************t*i**lt************************************+*

19 * ZPAGE DEFINITIONS

2I PTR EQU SO WORK POINTER
22 TRACK EQU S2 TRACK TO BE READ/WRITTEN
23 AlL EOU $3C MONITOR POINTER
24 AZL EQU $38 MONITOR POINTER
25 PREG EQU $48 MONITOR STATUS REGISTER

2'I * OTHER ADDRESSES

29 BUFFER EQU $IOOO T8.ACK IMAGE AREA
30 LOCRPL EQU S3E3 I,OCATE RWTS PARMLIST SUBRTN
31 RWTS EOU $3D9 RWTS SUBROUTINE
32 COUT EQU $FDED PRINT ONE CHAR SUBROUTINE
33 XAM EQU $FDB3 MONITOR HEX DUMP SUBRTN

35 T DISK I,/O SELECTS

37 DRVSMO EOU SCOSO STEP MOTOR POSI?IONS
38 DRVSM1 EQU $C081
39 DRVSrrl2 EQU $C082
40 DRVSU3 EOU $C083
41 DRVSr.,r4 EQU sC084
42 DRVSMs EQU sC085
43 DRVSM6 EQU $C085
44 DRVST.{7 EQU $C087
45 DRVOFF EQU SCO88 TURN DRIVE OFF AFTER 5 REVS
46 DRVON EOU $C089 TURN DRIVE ON
47 DRVSLI EQU $CO8A SELECT DRIVE 1
48 DRVSL2 EQU $CO8B SELECT DRIVE 2
49 DRVRD EOU SCOSC READ DATA LATCH
50 DR\MR' EQU $CO8D ' WRITE DATA LATCII
5L DRVRDM EQU $C088 SE? FSAD MODE
52 DRVWRM EQU $CO8T SET WRITE MODE

54 * RWTS PARMLIS? DEPINITION

56 DSECT
57 RPLIOB DS I IOB TYPE ($01)
58 RPLSLT DS I SLOT*I6
59 RPLDNX' DS I DRIVE
60 RPLVOT DS I VOLUME
6]- RPLTRK DS 1 TRACK
52 RPLSEC DS I SECTOR
63 RPLDCT DS 2 ADDRESS OF DCT
64 RPLBUF DS 2 ADDRESS OF BUFFER
55 RPLSIZ DS 2 SECTOR SIZE
55 RPLCMD DS - I CO!,IMAND CODE
67 RPLCNL EQU $OO NULL COMMAND
68 RPLCRD EQU 90f P.EAD Co!.4I'{AND
69 RPLCIIR EQU SO2 WRITE COMMAND
70 RPI,CF!,{ EQU SO4 FORITIAT COM!,IAND
71 RPLRCD DS I RETURN CODE
72 RPLRWP EQU $10 WRITE PROTECTED
73 RPLRVM' EQU S2O VOLUI{E MISMATCTT
74 RPLRDE EQU 940 DRIW ERROR
75 RPLRRE EQU S8.O READ ERROR

A-5

000E:
000F:
0010:
0800:

76 RPLTVL DS 1 TRUE VOLUME
7? RPLPSL DS 1 PREVIOUS SLOT
78 RPLPDR DS 1 PREVIOUS DRIVE
79 .DEND

0800: 81 * USE RWTS TO POSITION THE ARM TO THE DESIRED TRACK

0800:20 E3 03 83 DUMP JSR LOCRPL LOCATE RWTS PARMTIST
0803:84 00 84 STY PTR AND SAVE POINTER
0805:85 01 85 STA PTR+1

0807:A5 02 8'1 LDA TRACK GET TRACK TO READ/WRITE
0809:A0 04 88 LDY +RPLTRK STORE IN .RWTS LIST
0808:91 00 89 STA (PTR),Y

080D:A9 00 91 LDA +RPLCNL NULL OPERATION
0B0F:A0 0C 92 LDY +RPLCMD AND STORE IN LIST
08ll:91 00 93 STA (PTR) rY

0813:A9 00 95 LDA +0 ANY VOLUME WILL DO

0815:A0 03 96 LDY #RPLVOL
0817:91 00 97 STA (PTR) ,Y
0819;20 E3 03 98 JSR LOCRPL RELOAD POINTER TO PARMS

081C:20 D9 03 99 JSR RWTS CALL RWTS

08LF:A9 00 100 LDA #0
0821:85 48 101 STA PREG FIx P REG SO DOS IS HAPPY

0823: 103 * PREPARE TO DUMP TRACK TO MEMORY

0823:A0 0l 105 LDY +RPLSLT GET SLOT*16
0825:81 00 106 LDA (PTR) .Y
0827 iAA 107 TAx
0828:BD 89 C0 108 LDA DRVON.X KEEP DRrVE ON

082B:BD 8E C0 109 LDA DRVRDM'X INSURE READ MODE

082E:A9 00 111 LDA +>BUFFER POINT AT DATA

0830:85 00 LI2 STA PTR
0832:A9 10 lt3 LDA #<BUFFER
0834:85 0l 114 STA PTR+I
0836:A0 00 115 LDY +0

0838: LL7 * START DUMPING AT THE BEGINNING OF A SECTOR ADDRESS
0838: 118 * FIELD OR A SECTOR DATA FIELD

0838:BD BC CO I2O LOOP1 LDA DRVRD,X WAIT FOR NEXT BYTE
0838:10 FB L2l BPL LOOPI
083D:C9 FF L22 CMP #$FF AUToSYNC?
083F:D0 F7 I23 BNE LOOPI NO' DoNrT START IN MIDDLE
084I3BD 8C C0 I24 LOOP2 LDA DRVRD,X WAIT FOR NEXT BYTE
0844:10 FB 125 BPL LOOP2
0846:C9 FF 126 Cl,lP #$FF TWO AUTOSYNCS?
0848:D0 EE 127 BNE LOOPI NOT YET
084A:BD 8C C0 128 LOOP3 LDA DRVRD.X
084D:10 FB I29 BPL LOOP3
084F;C9 FF 130 CMP +$rF STILL AUTOSYNCS?
0851:F0 F7 131 BEO LOOP3 YES, WAIT FOR DATA BYTE
0853:D0 05 I32 BNE LOOP4 ELSE' START STORING DATA

0855: I34 * ONCE ALIGNED' BEGIN COPYING THE TRACK TO MEMoRY.
0855: I35 * COPY AT LEAST TIiICE ITS LENGTH TO INSURE I{E GFT IT
0855: 136 * ALL.

0855:BD 8C C0 138 LOOPD LDA DRVRD'X WAIT FOR NEXT DATA BYTE
0858:10 FB 139 BPL LOOPD
085A:91 00 140 LOOP4 S?A (PTR),Y STORE IN ME['{ORY
085C:E6 00 141 1NC PTR BUMP POINTER
085E:D0 F5 L42 BNE LOOPD
0850:E6 01 143 INC PTR+1
0862rA5 0l 144 LDA PTR+1
0864:C9 40 145 CMP +$40 DONE AT LEAST A TRACK?
0866:90 ED 146 BCC LOOPD NO' CONTINUE
08683BD 88 C0 I47 LDA DRVOFF.X TURN DRIVE OFF

A-6

0858! 1tl9 : r

0868:A9 00 151.EXIT
085D:85 3C]-52
085f:A9 l-0. r53
0871:85 3D 154
0873:A9 AF" 155
0875!85:38. 155
0877:A9 10: 157'
0879:85 3F 158
0878:4C 83 FD .L59

r SUCCESS8UL ASSEITBIY! dO.ERROnTB

$EE!{.FI!{ISA8D, Dlnp so$E oF ?R,acx It| _rrEr otr ScrGEn

llEoFaER DUrlP 800.8AF
All
I<BI'FFER
il.r,+l '

fr,ArFESR+SIF
t2r,
N<EUFEBi+$aF '

nzr,+1

'Ei.
g[TT VIA'SEX DISPLAY

rta
sfA
I,DJLgr}
I.DA
stA
llDh.
gtA
Jup

z,AP _ DISK UPDATE UT]LITY

The next step up the ladder from DUMP is to access data on
the diskette at the sector level. The zAP progran allows
its user to specify a track and sector to be read into
memory. The programmer can then make changes in lhe image of
the sector in memory and subsequently use zAP to write the
modified image back over the sector on disk. zAP is
particularly useful when it is necessary to patch up a
damaged directory. Its use in this regard will be covered
in more cletail when FTS is explained.

To use ZAP, store the number of the track"and sector you
wish to access in $02 anil $03 respectively. Tracks may
range from-$00 to $22 anil sectors frorn 900 to $0F. For
example, the Volume Table of Contents (VTOC) for the
disketle may be examined by entering $11 for the track and
$00 for the sector. $04 should be initialized with either a
$01 to indicate that the sector is to be read into memory'
or $02 to ask that memory be written out to the sector.
Other values for location $04 can produce damaging results
($04 in location $04 will INIT your diskette!). when these
three menory locations have been set uP, begin execution at
$900. zAP will read or write the sector into or from the
256 bytes starting at $800. For example:

CALL -15I (Get into the monitor fron BASIC)
BLOAD ZAP (Load the zAP Progran)

...-Now insert the diskette to be zapped...
02:11 00 0f N 900G (Store a tI (track 17' the catalog

track) in $02, a 00 (sector 0) at $03,
and a 01 (read) at $04. N ends the
store command and 900G runs zAP.)

The oubput might look

0800- 04 11 0F 03 00
0B08- 00 00 00 00 00
0810- 00 00 00 00 00
0818- 00 00 00.00 00

803.:02
04:02 N 900G

Note that zAP will
and $04.

like this. . .

00 01 00
00 00 00
00 00 00
o0 00 0.0

(Start of VTOC)

In the above example, if the byte at offset 3 (the version
of DOS which INITed this diskette) is to be changed' the
following would be entered...

(Change 03 to 02)
(Change ZAP to write mode and do it)

remember the previous values in $02' $03'

A-B

If something is wrong with the sector to be read (an I/O
error', perhaps) r.zAP r{'i11 print an. error message of the'
form:

RC=10

A return code of.10, in this case, means that the diskette
was write protected and a write opexation vras attempted.
Other error codes.are 20 - volume mismatch, 40 - drive
error, and 80 - read error. Refer to the documentation on
RWTS given in Chapter 6 for more information on these
errors.
0900: 2 ORG $900

0go0: 4 f****************t**********************************t*t**tt
0900: 5 * t
0900: 6 * zAP: THIS. PROGRAM WILL.ALLOW ITS'USER TO READ/WRITE *
0900: 7 * INDIVIDUAL SECTORS FROM/TO TIIE DISKETTE . t
0900': I * t
0900: 9 * INPUT: $02 = TRACK TO BE READ *
0900: I0 * 903 = SEcToR To BE READ/WRITTEN *
0900: lI * $04 = 901 - READ SECToR i
0900: L2 r $02 - WRITE SEcToR '0900: t3 * 9800 = ADDRESS OF SECTOR DATA.BUFFER t
0900: 14 r '0900: 15 *'ENTRY POINT:.S9oo l
0900:. L6 r ''09001 17 * PROGRAMMER3 DON D WORTH.2/15/8! r
090O: 18 r a

0900: lg *******t*t*tt**t****.*****t****t****t**t**t*tt***t*******itl

0087:

0900:

0000:
0002:
0003:
0004:
000tr:
0002:
003c:
003E'
0048:

0900 !

0800:
0 3E3:
03D9:
FDED:
FDDA:
FDB3:

0900:

0000:
0000:
0001:
0002:
0003:
0004 i
0005:
0006:
0008:
000Ar
000c:
0000:.

2I BELL EQU $87 BELL CHARACTER

23 * ZPAGE DEFINITIONS

25 P?R EQU SO. !{ORX POINTER
26 TRACK EQU' $2 TRACK TO BE READ/WRITTEN
27 SECTOR EQU $3 SECTOR TO BE READ/WRI?TEN
28 OPER EQU $4 OPERATTON .TO,BE PERFORI,IED
29 READ. EQU 1
30 I{RITE EQU. 2
31 AII, EQU $3C MONITOR POIN.TER
32 A2L EQU $38 MONITOR.POINTER
33,PREG EQIJ 948 MONITOR STATUS REGISTER

35 OTHER ADDRESSES

3? BTJFFER EQU' SSOO: SECTOR DATA: BUFFER
38- LOCRPL EQU, $383 LOCATE'R9ITS'PAR!4LIST SUBRTN
39 RWTS EQU $3D9 RWTS SUBROUTINE-
40 COUT: EQU $FDED PRINT ONE CI{AR,.SUBROUTINE
41 PRBYTE EQU SFDDA. PRINT ONE HEX BYTE SUBRTN:'
42 XAII{ EQU 9FDB3 IIONITOR HEX DUMP' SUBRTN

44 * RWTS PARMLIST DEF.INITION

46 DSECT
IOB- TYPE (901)
sLor*16
DRIVE
VOLUME
TR,ACK
SECTOR
ADDRESS OF DCT
ADDFASS OF BUFFER
SECTOR SIZE
COII|II{AND. CODE

NULL COMI4AND

READ OPERATION
WRITE OPERATION.

47 RPLIOB DS
{8 RPLSLT DS
49 RPLDRV DS
50 R?LVOIT DS
5I RPLTRK DS
52 RPI,SEC DS
53 RPLDCT .DS

54 RPLBUF DS
55 RPLSIZ DS
56 RPLCMD-" DS
57 RPLCNI, EOU SOO

A-9

0001:
0002:
0004;
000D:
0010:
0020:
0040:
0080:
0008:
000F:
00I0 r
0900:

5'8 RPLCRD EOU $OT READ COMMAND
59 RPLCWR EQU $02 WRITE COMIIIAND
60 RPI,CFM EQU $04 FORMAT COMMAND
61 RPLRCD DS 1 RETURN CODE
62 RPLRWP EQU $10 WRITE PROTECTED
63 RPLRVM EQU S2O VOLUME MISMATCH
64 RPLRDE. EQU . $40 DRIVE ERROR
55 RPLRRE EOU $80 .READ ERROR
66 RPLTVL DS]. TRUE VOLUI4E
67 RPLPSI DS 1 .PREVIOUS SLOT
68 RPLPDR DS 1 PREVIOUS DRIVE
69 DEND

' 09.003 71. i FILL IN. RtiTS LIST

0900120 E3 03 73 zAP JSR LOCRPL LoCATE RWTS PARMLIST
0903:84 00 74 STY PTR AND SAVE POINTER
0905:85. 01 75 " STA PTR+I

:0907:A5 02 77 .LDA TRACK GET TRACK TO READ/WRITE
O9O9:AO 04 78] LDY #RPLTRK STORE IN RWTS LIST
0908:91 00 79 STA (PTR),Y

-'090D:A5 03 81 LDA SECTOR 'cET SECTOR TO READ/WRITE
090F:C9 l0 82 CMP #16 BIGGER THAN t6 SECTORS?
0911:90.04 83 BCC SoK NO
0913:A9 00 84 LDA *0
0915,85 03 85 STA SECTOR yES, pUT ITT.BACK TO ZERO
0917:A0 05 86 sOK T-DY *RPLSEC
09L9:91 00 B7 sTA (PTR),Y STORE IN.RWTS LIST

0918:A0 08 89 LDY +RPLBUF. 09ID:A9 00 90 LDA - #>BUr'I'ER STORE BUFFER pTR IN I,IST
09IF:91 .00 91 sTA (PTR),Y
0921:C8 92 INY
0922:A9 08 93 LDA #<BUFFER
0924.:91 0O 94 - STA (PTR),Y

.0926:A5 04 .96 -LDA -OPER .cET COMMAND CODE
.09.29:AO OC 97 T,DY +RPI,CMD AND STORE IN LIST
092A:91 ,00 98 STA (PTR),Y

092C:A9 '00 I00 . LDA #0 ANY VOLUME iwILL Do
092E:A0 03 .101 LDY *RPLVOL
0930:91 00 L02 STA (PTR),Y

0932t 104 * NOW CArrL RWTS TO READ/WRITE THE SECTOR

0932:20 E3 03 106 JSR LOCRPL REIIOAD POINTER.TO PARMS
^0935:20 D9 03 107 JSR RlilTS CALL RWTS
0938:A9 00 I08 LDA *0
09,3A:85 48 109 STA PREG 'FIX P.REG SO DOS IS ITAPPY
093C:90 1B 110 BCC EXIT ALL rS WELL

0938: L!.2 * ERROR OCCURED PRINT "RC=XX'

O93E:A9 87 I14 LDA *BELL BEEP THE SPEAKER
'0940:20 ED FD 115 JSR COUT
0943:A9 D2 116 tDA *'R .PRINT THE I'RC="
0945;'20.ED FD 117 JSR COUT

'0948:A9 C3 118 tDA *'C
094A:20 ED I'D 119]JSR COUT
094D:A9 BD I20 LDA +t=
O94Fz20 ED FD '121 JSR COUT
0952:A0 0D 122 . LDY #RPLRCD
0954:Bl 00 I23 LDA (PTR),Y GET RWTS RETURN CODE
0955:20 DA FD L24 JSR PRBYTE PRINT RETURN CODE IN-HEX

0959: 126 * I{HEN F.INI.SHED, DU!{P'SOME OF-SECTOR IN iIEX

LDA - *>BUFFER DUMP 8OO.8B7.STA AI-L
T,DA *<EUFFER
STA AlL+]-

, LDA *>BUFFER+$AF
STA AzL

.LDA *<BtTFFER+$ar
STA A2I.+1. J!{P XS!{ EJXI! VIA HEX DISP5AY

0959:A9 00 128 EXIT'll95B:85 3C I29
09.5D:A9 08 I30
O95A:85 3D L31
ll95L:A9.AP].'32
0963:85 3E I33
.0965:.A9 08 134
0967:85 3F ; l3s
0969:4C 83 FD L36

*** SUCCESSrUL ASSEttBf,y:: NO ERRORS

INIT _ REFOHMAT A SINGLE TRACK

Occasionally the sectoring information on a diskette can
become darnaged so that one or. more sectors:can no longer be
found by DOS. To correct this problem requires that the
sector address.and data fi.elds be re-formatted for the.
entire track thus affected. INIT can be used to selectively
refornat.a single track', thus avoiding a total re-INIT of
the diskette. Before using INIT, the user should first
atternpt to write on the suspect sector (using zAP) . If RWTS

refuses to wrj-te to the secto'r (RC=40) ' then INIT'must be
run on the entire track. To avoid losing data. all other.
sectors on the track should be read and copi-ed:to anothe'r
dis:kette prior to reformaLting'. After INTT is run they can
be copied'baek to the repaired diskette and data can be
written to the previously damaged sector.

To run INIT, first store: the number of the track you wish
reformatted at location $02, the volume-number of the disk
at location $03"(thb volume number-should rnatch the vo1'ume
number of the 'other tracks) , and" then begin execution at
$800. INIT.will. return to the monitor- upon'completion. If'
the track- can not: be formatted. for some r€ason (eg.
physica4 damage or problems with the di"sk. drive. itself) a
return-code is printed. For example:'

CALL -151 (Get into the monitor fron BASC)
BLOAD INIT- (toad.the"INIT program)

...Now- insert the disk to be INIT-ed...
02:l-1 FE:N'800G (Store"a. 11 (track 17' the catalog

track) in $02i a volune number of
$FE (254) in $03' N termina,tes the
store command., go to location $8O0)

WARNING: DOS' 3.3 rnust.be loaded'ih the nachine before
running-INIT'and a 48K Apple is assumed. INIT w.ill not work
with other versions. of DOS or other melnory.sizes.

A-12

0800 l

0800:
0800:
0800:
0800:
0800:
0800:
0800:
0800:
0800:
0800:
0800:
0800 3

0800:
0800 3

0800:

0000:
0002:
0003:
002D:
00 3E:
0041 3

0044:
0045:
0048 3

0087:

0800:

0 3E3:
03D9:
0578:
BB00 3

BC00 l
B8DC:
8944:
BFOD:
FDED:
FDDA 3

0800:

c080:
c0 8l:
C082r
c083:
.c08 4 :
c085:
c086:
c087:
c088:
c089:
c08A:
C08B3

c08c:
COSD:
COSE:
c08F:

0800:

0000:
0000:
0001:
0002:
0003:
0004:
0005 r
0006:
0008 3

000A:

10i
1r*
12*

rgi

.59 DRVRD
60 DRvwR
51 DRVRDM
62 DRVWRM

64*

66
67 RPLIOB
68 ,RPLSLT
69 RPLDRV
70 RPLVOL
7I RPLTRK
72 RPLSEC
73 RPLDCT
74 RPLBUF
75.RPLSIZ

EQU sC08c
EQU SCOSD
EQU $CO8E
EOU $C08F

oRG 9800

4 ***i*tt***t*i**l*******l***t***i**l*l***t****************lt
5*
5 * INIT: THIS PROGRAM WILL ALLOW ITS USER TO IN'ITIALIZE A

7 * SINGI,E TRACK WITH ANY VOLUME NUMBER DESIRED.
8*
9 r INPUT'3 $02 = TRACK TO BE INITIAEIZED

13 r 'ENTRY POINT: 5800
L4*
15 * PROGRAMMER:'PIETER LECHNER 2/L9/87
16*
l7 ****t*t********t***********i**t*i****t*********************

$03 = VOLUME NUMBER

ZPAGE DEFINITIONS

32* OTHER ADDRESSES

34 LOCRPL EQU $3E3
35 RWTS EQU $3D9
36 RTRYCNT EQU $578
37 NBUF1 EolJ $8800
38 NBUF2 EQU 9BCOO
39 READI6 EQU $B8DC
40 RDADRI6 EQU $8944
41 DSKF2 EQU SBFOD
42 COUT EQU SFDED
43 PRBYTE EOU SFDDA

45* DISK I/O'SELECTS

21 PTR EQU SO

22 TRACK EQU $2
23 VOLUME EQU S3
24 S€CFND EQU $2D
25 AA EQU 938
26 VOL EQU $41
27 TRK .EQU $44
28 SYNCNT EQU $45
29 PREG EOU $48
30 BELL EQU $87

47 DRVSMo .EQU $C080
48 DRVSM1 EOU $CO8I
49 DRVSM2 EQU $C082
50 DRVSl"l3 EQU $c083
51 DRVSM4 EoU 9C084
52 DRVSMs EQU $C08s
53 DRVSM6 EQU $C086
54 DRVSMT EQU $CO8?
55 DRVOFF EQU $C088
56 DRVON EQU $C089
57 DRVgL1 EQU $CO8A
58 DRVSL2 EQU SCOSB

WORK POINTER
TRACK]TO BE READ/WRITTEN
VOLUME NUMBER
SECTOR FOUND BY RDADRI5
ZPAGE CONSTANT FOR TIMING
VOLUME USED BY WRADRI6
TRACK USED BY WRADR16
SYNC COUNT USED BY DSKF2
MONITOR P REGISTER SAVEAREA
ASCII BELL

LOCATE RWTS PARMLIST SUBRTN
RWTS SUBROUTINE
RXTRY COUNT FOR DSKF2
PRIMARY SECTOR BUFFER
SECONDARY SECTOR BUFFER
READ DATA FIELD ROUTINE
READ ADDRESS FIELD ROUTINE
FORMAT ONE TRACK ROUTINE
MONITOR CHARACTER OUTPUT
MONITOR HEX OUTPUT

STEP MOTOR POSITIONS

TURN DRIVE OFF AFTER 6 REVS

TURN DRIVE ON
SELECT DRIVE 1
SELECT DRIVE 2

READ DATA LATCH
WRITE DATA LATCH
SET READ MODE
SET WRITE MODE

RWTS PARA{LIST DEFINITION

DSECT
DS
DS
DS
DS
DS
DS
DS
DS
DS

000c:
0000:
0001:
0002:
0004:
000D:
00I0 3

0020:
0040 3

0080:
000E:
000F:
0010:
0800:

0800:

0800.:20 E3 03
0803:84 00
0805:85 01

0807:A5 02
0809:A0 04
080B:91 00

080D:A9 00
080F:A0 0c
08II r 91 00

0813 rA9 00
0815:A0 03
0817:9I 00
0819:20 E3 03
081C:20 D9 03
08IF:BD 89 C0

0822t

0822tA5 02
0824:85 44

08 25 :A5 03
0828:85 41
082A3A9 AA
082C:85 3E
0828:A9 28
0830:85 45
0832:A0 56
0834:A9 00
0836r99 l.F BB
0839:88
083A3D0 FA
083C:99 00 BB
083F:88
0840 3D0 FA

0842:

0842:20 0D.BF
0845:A9 08
0847:80' I9:

0849:

0849:A9 30
0848:8D 78 05
0848:38
084F:CE ?8 05
08523F0 0E
0854:20 44 89
0857:80 F5
0859:A5 2D
0858:D0 FL

A-14

75 RPLCMD
77 RPLCNL
78 RPLCRD
79 RPLCWR
80 RPLCFI.{
81 RPLRCD
82 RPLRWP
83 RPI,RVM
84 RPLRDE
85 RPLRRE
86 RPLWX
87 RPLPSL
88 RPLPDR
89

9l- r

DS1
EQs $00
EQU 901
EQU $02
Eou $04
DSI
EQU $IO
EQU 920
EQU S4O
EOU s80
DS. 1
DSI
DSI
DEND

IJDA
LDY
STA

LDA
LDY
STA
JSR
JSR
I,DA

USE. RIiTS TO POSITION THE ARITI TO THE DESIRED TNACK

COI'IMAND CODE
NULL COMMAND
READ COM!.{AND
WRITE COMUAND
FORMAT COI{MAND

RETURN CODE
WRITE PROTECTED
VOLUME MISMATCH
DRIVE ERROR
READ ERROR

TRUN VOLUME
PREVIOUS SLOT
PFEVIOUS DRIVE

LOCRPL I,OCATE RWTS PARMLIST.
PTR AND SAVE POINTER"
PTR+I

TRACK GET TRACK TO READ/WRITE
+RPLTRK STORE IN RWTS LIST
(PTR) ,Y

*RPI,CNL NULLOPERATION
*RPLCMD AND STORE.IN'LIST
(PrR) ,Y

*0. ANY VOLUMA !{ILL DO

{RPLVOL
(PTR) ,Y
LOCRPL RELOAD POINTER TO PARMS
RWTS CALL RI{TS
DRVON,X LEAVE DRIVE ON

93 DUMP JSR
94 STY
95 STA

97 LDA
98 LDY
99 STA

101
r02
r03

l0s
106
107'
r08
109
110

rl2 *

r14.
l-15

131 *

133
134
135

r37 *

116 LDA
II7 STA
118 LDA
I19 STA
]^2O I,DA
12t STA
T22, LDY
L23 LDA
124 ZNBUF2 STA
I25 DEY
]-26 BNE
12? ZNBUF1 STA
L28 DEY
I29 BNE

tDA
STA

JSR
tDA
BCS

ESTABLISIT ENVIRONMENT FOR DSKF2, ROUTINE

TRACK PASS TRACK TO-DSKF2
TRK

VOLUME AND VOLUME
voL
*$AA STOP.E CONSTANT FOR ZPAGE..
AA TIMING
#S28 START WITH,40 SYNCS..
SYNCNT BETWEEN SECTORS
*$s5
+900
NBUF2-1,Y ZERO SECONDARY BUAFER

ZNBUF2
NBUF1,Y AND PRIMARY BUTFER

ZNBUFl

INITIAI,IZE TRACK

DSKFz FORMAT TRACK AND VERIFY
+$08 IN CASE OF ERROR...
HNDERR ERROR?

READ SECTOR ZERO TO VERIFY FORMATTING

+$30 NO, DOUBLE CHECK,TRACK
RTRYCNT AITLOW 48 RETRIES

RTRYCNT COUNT RETRIES
HNDERR
RDADR16 READ AN'ADDRESS TIELD,
NOGOOD ERROR, TRY AGAIN
SECFND IS THIS SECTOR ZERO?
NOGOOD NO, TRY AGAIN

139 LDA
140 STA
141 NOGOOD SEC
t42 DEC
143 BEQ
144 JSR
145 BCS
146 LDA
I47 BNE

o85D:20 DC 88 r48 JSR
0850:90 lF 149 BcC
0862:A0 0D I50.IINDERR LDY
0€64:91 00 t5L sTA

READI6 YES,;READ DATA FIBLD
DONETRK ALL IS WELL' DONE.

*RPLRCD EI.SE, PHONEY I'P A RC

(PTR) ,Y

'ERROR OCCURED' PRINT lRC=Xxn

*BELL BEEP TIIE SPEAKER
couT
t'R PRINT TEE 'RC="
COUT
t,c
COUT
*r=
cour
+RPLRCD(PTR),Y GET RWTS RETURN CODE

PRBYTE PRINT RETURN CODE IN EEX

0866: I53 r

0866!A9 87 155
0868:20 ED FD 156
0868:A9 D2 157
086D:20 ED FD 158
0870:A9 C3 159
0872:20 ED FD 160
O8?5:A9 BD 161
0877:20 ED FD L62
087A:A0 0D 163
08?C:Bl 00 164
087E!20 DA FD 165

0881: 1.67 *

LDA
JSR
I,DA
JSR
LDA
JSR
LDA
JSR
I,DY
I,DA
JSR

0881:BD 88 C0 169 DONETRK LDA
0884:A9 00 170 I.DA
0886:85 48 17I sTA
0888:60 L72 RTS

IiEEN DONE, EXIT TO CALTER

DRVOFF,X TURN DRIVE OFF

+$oo
PREG CLEAR P REGISTER FOR DOS

; RETURN TO CALLER

FTS _ FIND T/S LISTS UTILITY

From time. to time one of your diskettes will develop an t/O
error smack in the niddle of the catalog track. When this
occurs, any attempt to use the disket.te will result in an
I/O ERROR message fron DOS. Generally, when this'happens,
the data stored in the files on. the diskette is stilt
intact; only the pointers to the files are gone. If the
data absolutely must be recovered, a knowledgeable Apple
user can reconstruct the catalog frorn scratch. Doing this
involves first finding the T,/S Lists for each file, ind then
using ZAP to patch a catalog entry into track 17 for each
file which was found. FTS is a utility which wiII scan a
diskette for T/S Lists. Although it may flag some sectors
which are not. T/S Lists as being such. it will never miss a
valid T/S List. Therefore, after running FTS the programmer
must use ZAP to exanine each track,/sector printed by FTS to
see if it is really a T/S List. Additionally, FTS wiLl find
every T,/S List image on the diskette, even some which were
for files which have since been deleted. Since it is
difficult.to determine which files are valid and which are
o1d deleteil fi1es, it is usually necessary to restore all
the.files and copy them to another diskette, and later
delete the duplicate or unwanted ones.

To run FTS, sinply load the program and start execution at
$900. FTS will'print the track and sector number of each
sector it finds which bears a resemblance to a T/S List.
For example:

CALL -151 (Get into the monitor from BASIC)
BLOAD FTS (Load the FTS progran)

...Now insert the disk to be scanned...
900G (Run the FTS program on this iliskette
The output might look like this...
T=I2 S=0F
r=13 s=0F
T=14 S=0D
r=14 S=0F
Ilere, only four possibl-e.files were found. ZAp should now
be used to read track $I2, sector gOF. At +g0C is the track
and sector of the first sector in the file. This sector can
be read and examined to try to identify the file and its
type. Usually a BASIC program can be identified, even though
it is stored in tokenized form, from the text strings
contained in the PRINT statements. An ASCII conversion
chart (see page 8 in the APPLE II REFERENCE MANUAL) can be
used to decode these character strings. Straight T-type
files will also contain ASCII text, with each line separated
from the others with g8D (carriage returns). B-type fites
are the hardest to identify, unless the address and length
stored in the first 4 bytes are recognizable. If you cannot
identify the file,.assume it is APPLESOFT BAsIc. tf tfris

A-16

assumption turns out to be incorrect, you can always go back
and ZAP the file type in the CATATOG to try something e1se.
Given below is an example ZAp to the CATALOG to create an
entry for the file h'hose T/S List is at T=12 S=0F.

CALL -151
BLOAD ZAP
...insert disk to be

800:00 N 801-<800.8FEM
808:12 0F 02
:Cl AO AO AO AO AO AO
:A0 A0 A0 A0 A0 A0 A0
:A0 A0 A0 A0 A0 A0 A0
:A0 A0 A0 A0 A0 A0 A0
:A0 A0
02:11 0F 02 N 900c

ZAPpeal. . .
(Zero sector area of memory)
(Track 12, Sector 0F, Type-A)
(Name is "A")(fill name out with 29 blanks)

4 ****t**i**********************l*********t*i*t***********t*t
5* *
6 * FTS: THIS PROGRAM SCANS THE ENTIRE DISKETTE FOR WHAT *

(Write new sector image out as
first (and only) catalog sector)

The file should immediatety be copied to another diskette
and then the process repeated for each T,/S List found by FTS
until all of the files have been recovered. As each file is
recovered, it rnay be RENAMEd to its previous narne. Once all
the files have been copied to another disk, and successfully
tested, the damaged dj.sk may be re-INlTialized.
0900: 2 oRG 9900

0900:
0900:
0900:
0900:
0900:
0900:
0900:
0900:
0900;
0900 r
0900:
0900:
0900:

0087:
0 08D:

0900:

0000:
003c:
0038:
0048:

0900:

0800:
03E3:
03D9:
FDED:
FDDA:

0900:

0000:
0000:
0001:
0002:
0003:
0004:
0005:

7*
8*

18 BEIL
19 RETURN

2L*

23 PTR
24 AlL
25 A2L
26 PREG

2g*

30 BUFFER
31 LOCRPL
32 RWTS

33 COUT
34 PRBYTE

36*

38
39 RPLIOB
40 RPLSLT
4I RPLDRV
42 RPLVOL
43 RPLTRK
44 RPTSEC

DSECT
DS
DS
DS
DS
DS
DS

APPEAR TO BE TRACK/SECTOR LISTS AND PRINTS THE *
TRACK AND SECTOR OF EACH ONE. IT FINDS. *

9*
10 * INPUT: NONE
II*
12 * ENTRY POINT; $900
13*
14 * PROGRAMMER: DON D WORTH 2/I5/8I
15 * *
16 ******r****t***t*t********t********ttl****r*******t*t*****t

EQU 987
EOU S8D

ZPAGE DEFINITIONS

BELL CHARACTER
CARRIAGE RETURN

EQU SO
EQU $3C
EQU 938
EQU $48

CITITER ADDRESSES

EOU $800
EQU 93E3
EQU 93D9
EQU $FDED
EQU $FDDA

WORK POINTER
MONITOR POINTER
MONITOR POINTER
MONITOR STATUS REGISTER

:

SECTOR DATA BUTFER
LOCATE RWTS PARMLIST SUBRTN
RWTS SUBROUTINE
PRINT ONE CHAR SUBROUTINE
PRINT ONE HEX BYTE SUBRTN

RVITS PARMLIST DEFINITION

roB rYPE ($01)
SLOTT I6
DRIVE
voLUt{E
TRACK
SECTOR

A-17

0006:
0008:
000A:
000c:
0000:
0001:
0002:
0004 r
000D:
0010:
0020:
0040:
0080:
000E r
000F r
0010:
0900:

0900:

0900!20 E3 03
0903 r 84 00
0905:85 01

0907:A9 03
0909:A0 04
0908:91 00

090DrA0 08
090F:A9 00
09I1:91 00
0913:CB
0914:A9 08
0916:91 00

0918:A9 01
09lA:A0 0C
09IC:91 00

09]E:A9 00
0920:A0 03
0922t9L 00

0924;A0 05
0926:A9 00
0928:91 00

092A:

092A:20 E3 03
092D!20 D9 03
0930:A9 00
0932:85 4B
0934t90 26

0936:

0936:20 83 09
0939:A9 87
O93B:20 ED FD
0938:A9 D2
0940:20 ED FD
0943:49 C3
0945:20 ED 'FD
0948 rA9 BD
094A:20 ED-FD
094D:A0 0D
094F:81 00

A-18

45 RPIJDCT
46 RPI,BUF
47 RPLSIZ
48 RPLCMD
49 RPLCNL
50 RPLCRD
5I RPLCWR
52 RPLCFM
53 RPLRCD
54 RPLRWP
55 RPLRVM
56 RPLRDE
57 RPI.RRE
58 RPI,TVI
59 RPLPSI
60 RPLPDR
61

63*

65 FTS
66
67

69
'10

7I

73
74

76
77
78

80
81

84
85
86

88*

90 NEWTRK

DS2
DS2
DS1
EQU $OO
EQU $01
EQU $02
EQU $04
DS1
EQU $10
EQU $20
EQU $40
EQU $80DSI
DSI
DSl
DEND

ADDRESS OF DCT
ADDMSS OF BUFFER
SECTOR SIZE
COMMAND CODE

NULL COMMAND
READ COMMAND
WRITE COMMAND
FORMAT COMMAND

RETURN CODE
WRITE PROTECTED
VOLUME MISMATCH
DRIVE ERROR
READ ERROR

TRUE VOLUME
PREVIOUS SLOT
PREVIOUS DRIVE

START TRACK/SECTOR JUST PAST DOS (TRACK 3)

LOCRPL LOCATE RWTS PARMLISTPTR AND SAVE POINTER
PTR+I

#3 FrRsr NoN-Dos TRACR
#RPLTRK STORE IN RWTS LIST
(PTR) ,Y

LDY #RPLBUF
LDA +>BUFFER STORE BUFFER PTR IN LISTSTA (PTR),Y
INY
LDA +<BUFFER
STA (PTR),Y

#RPLCRD GET COMI{AND CODE FOR READ
#RPLCMD AND STORE IN LIST(PrR),Y

#O ANY VOLUME WILL DO
#RPLVOL
(PrR) ,Y

NEW TRACK, START SECTOR AT ZERO

LDY +RPLSEC
LDA #O
STA (PTR).Y

NOW CALL RWTS TO READ THE SECTOR

qsR LoCRPL RELOAD POINTER TO PARMSJSR RWTS CALI RWTS
LDA #O
STA PREG FIX P REG SO DOS IS HAPPYBCC SCAN ALL IS WEI,L

ERROR OCCURED, PRTNT

JSR PRTTS PRINT TRACK/SECTOR
LDA #BELL BEEP THE SPEAKERJSR COUT
LDA *'R pRINT THE "RC=nJSR COUT
LDA #'C
JSR COUT
DDA +r=
JSR COUT
LDY #RPLRCD
I,DA (PTR),Y GET RWTS RETURN CODE

,lsR

STA

I,DA
LDY
STA

LDA
LDY
STA

I,DA
LDY
STA

-91
92

94*
96 NEWSEC
97
98
99

L00

102 *

r04
r05
106
10?
108
r09
I10
111
LL2
1I3
114

0951:20 DA FD
0954:A9 8D
0956:20 ED FD
0959:4C 8E 09

09 5C:

095C:A2 00
0958:BD 00 08
0961;D0 05
0963 !88
0964 3D0 FB
0955 !r0 26

0968:A2 05
095A3BD 00 08
096D:D0 lF
096F 3 EB
0970:E0 0C
O972.90 F6

0974:BD 00 08
O977:C9 23
0979:B0 t3
097B: E8
097C:BD 00 08
097F:C9 10
0981380 0B
0983:E8"
0984:D0 EE

0986:20 B3 09
0989:A9 8D
0988:20 ED FD

098E:

098E:A0 05
0990:BI 00
O992tLB
0993:69 01
0995:91 00
099?:C9 l0
0999:B0 03
0998:4C 2A 09

0998:A0 04
09A0:Bl 00
09A2: I8
09A3:69 0l
09A5:91 00
09A7:C9 11
09A9:F0 F3
09AB:C9 23
09AD:B0 03
09AI'i4C 24 09
09B2: 60

09B3:

0983:A9 D4
0985:20 ED FD
09B8:A0 04
09BA:Btr 00
09Bc:20 Cc 09

09BF:A9 D3-
09c1:20 ED FD
09C4:A0 05
09C6 3Bl 00
09C8:20 CC 09
09CB: 50

115
116
1t7
118

120 *

I22 SCAN
I23 SCLPO
L24
L25
L26
r27

I29 SCANI
130 sctPl
r31
L32
133
134

135 SCLP2. LDA BUFFER,X
137 c!.lP +35
I38' BcS NXTSEC
139 rNx
I4O LDA BUFFER'X
141 CMP *15
T42 BCS NXISEC
143 rNX
]44 BNE SCLP2

NO ERROR, SEE IF SECTOR LOOKS LIKE A T/S LIST

JSR PRBYTE
LDA IF.ETURN
JSR COUT
JITIP NXTSEC

t0
BUFTER,X
SCANl

SCLPO
NXTSEC

LDx *5
LDA BUFFER,X
BNE NXTSEC
INX
cPx *L2
Bcc scLPl

PRINT RETURN CODE IN IIEX

GO ON

MAKE SURE I?S NO1T AI,L.ZERO

IF IT IS, S(IP IT

START AT OFFSET 5

HEADER OF T/S !4UST BE ZERO

AT THE T/S PAIRS YET?
NO, KEEP, CHECKING

GET. ?RK
MUST BE O-34

GET SECTOR
MUST BE O-I5

ALL CONDITIONS'MAT

GET LAST SECTOR

BU!,TP BY ONE.
AND PUT IT BACK IN LIST
TOO BIG?

NO, GO READ IT

GET LAST TRACK

BUMP BY ONE
AND PUT IT BACK IN LIST
CATALOG TR.ACK?
YES, SKIP OVER TIIAT ONE
DONE ALL 35 TRACKS?
YES, LEAVE
NO, GO P€AD FIRST SECTOR

LDX
LDA
BNE
INX
BNE
BEQ

146
t47
148

150 *

r81
L82
183
184
185
186

. *RPLTRK
(PrR) ,Y

*1
(PTR) ,Y
* 91r
NXTTRK
*3s
EXIT
NEWTRK .

JSR PRTTS
I,DA *RETURN
JSR COUT

BUIT,IP SECTOR NUMBER OR TR,AC(AND CONTINUE

152 NXTSEC LDY *RPLSEL
153 LDA (PTR),Y
154 Cr,C
155 ADc *I
156. STA (PTR),Y
157 CMP tl6.
158 BCS NXTTRK
159 JIr{P NEWSEC:

16I NXTTRK
t62
163
164
165
156
L67
168
169.
r70
1?1 EXIT

l?3 *

LDY
LDA
cLc
ADC
STA
CMP
BEQ
CMP
BCS
JMP
RTS

PR?TS: PRINT f,T=XX S=XXII

I75 PRTTS tDA +,7
176 JSR COUT
1.77 LDY +RPLTRK
l-78 LDA (PTR),Y
L'79 JSR PRTEQ

PRINT "T(

PRINT "=xX rl

PRINT.S''

PRINT '=xX n

LDA +.S
JSR COUT
LDY +RPLSEC
LDA (PTR),Y
JSR PRTEO
RTS

O9CC:48 188 PRTEQ
09CD:A9 BD 189
09CF320 ED FD l-90
09D2:68 19I
09D3:20 DA FD L92
09D6:A9 A0 193
09D8:20 ED FD 194
.09D8:60 195

*** STJCCESSFUL ASSEMBLY:

PHA
LDA
JSR
PLA
,tsR
LDA
JSR
RTS

#r=
COUT

PRBYTE

COUT

NO ERRORS

COPY - CONVERT FILES

The COPY program demonstrates the use of the DoS File
Manager subroutine Package from assembly language.

- -coPYwill read as inPut I ni.nary type file, stripping off the
address anil length information' and write the data out as a

newly created Text type file. The name of the input file is
assuired to be "INPUT", although this could.just as easily
have been inputted from the keyboard, and the name of the
output file is UOUTPUT". COPY is a single drive operation,
using the last drive which was refer'enced.

To run COPY, Ioad it and begin execution at $800:

CAIL -15I (Get into the nonitor from BASIC)
BLOAD COPY (Load the CoPY Program)

...Nov, insert the disk containing INPUT...
800c (Run the COPY Program)

When COPY finishes, it will return to BASIC. If any errors
occur, the return code passed back from the'File Manager
will be printed. consult the documentation on the File
Manager .lararneter list in chapter 6 for a list of these
return codes.

A-20

000A:
0002:
0002:
0004:
0006 l
0008:
0008:

000A:
0002:
0002:

0004 3

0002:
0001:

0002:
000A:

"00 0A:
0000:
000 2:
0003:
0004:
0005:
0006:
0007:
0008:
"0009:
000A:
000B:
000c:
000E 3

0010:
0800:

.0800:

75*
76
?7 FMRCNM
78 FMOFFS

-79,FMRALN
80 FMR,AAD
81 FMDATA

83*
84
85 FMNNAM

87*
88
89 FMPAGE

91 *
92
93 FMRC
94 r!,tRCOK
95 FMRCBO
96 FMRGBS
9'7 FMRCWP
98. F!.4RCED

, 99 FMRENF
IOO F'MRCBV
101, FMRCIO
102 fl4RcDF
103 FMRCLK
104
105 FMTMWA

.106 EMTSL
107 FMBUFF
r08

1t0 *

0800:20 Dc 03 r12 COPY
'0803:84 00 113
0805:85 0l 114

080?: 116 *

080?:A0 08 Il8
0809:A9 AC r19
08OB:91 00 120
o8o.D3c8 L2L
OSOE:Ag- 09 122
0810:91 00 I23
08I2-:A0 07 124
OBI4:A9 04 L25
0815:91 00 L26
-0818:A2 01 L27
.OBIA:20 .D3 08 L28
08ID:90 03 129
OBlFr4C BC 08 130

Q822tA5 O2 132 INoP
0824:8D EA 09 I33
0827:A5 03 134
0829:8D EB 09 135
082C:20 5A 09 136

FSAD/.WRITE PARMS
ORG FII,IPRMS

DS 2 RECORD NUMBER

DS 2 BYTE'OFFSET
,DS .2 RANGE LENGTH
DS 2 .RANGE ADDRESS

EQU FMRMD DATA BYTE READ/WRITTEN

FENAME PARMS
ORG FMPRMS
DS 2 ADDRESS OF NEW NA.I'{E

INIT PARMS
ORG FMPRMS
EQU FMSBCD FIRST PAGE OF DOS IMAGE

COMMON PARMS
ORG FMPRMS+8
DSI
EQU O

EQU 2
EQU 3
EOU 4
EQU 5
EQU 6
EQU 7
EQU 8
EQU 9
EQU 10
DSL
DS2
DS' 2
DS2
DEND

RETURN CODE
NO ERRORS
BAD OPCODE

' BAD SUBCODE
WRITE PRMECTED
END OF DATA
FILE NOT FOUND
BAD, VOLUME

, llo ERRoR
DIS(FULL
FILE LOEKED

NOT USED
FILE MANAGER :WORKAREA PTR
T/S LIST PTR
DATA BUFFER PTR

.LOCATE FI.'I PARMLIST

JSR LOCFPL -FIND PARMLIST
STY PTR SET UP POINTER TO IT

"sTA PTR+I

OPEN INPUT FII,E

LEY *FMNAI.{E STORE INPUT FILE NAI{E

LDA *'INAME PTR IN LIST
STA: (PTR)

'YINY
. LDA *<INAME
STA (PTR).Y

-.LDY *FMTYPE, BINARY FILE AS INPUT
LDA +FMTYPB
STA J (PTR),Y
LDX +T OLD FILE EXPECTED

JSR OPEN AND OPEN THE FILE
BCC INOP
JMP ERROR ANY ERROR IS FATAL

LDA BUFP
STA IBUFF SAIE OPEN FILE BUFFER

tDA BUFP+I
STA lBUFF+1
JSR REWIND POSITION TO START OF FILE

082F:

082F:A0 08
0831:A9 CA
0833:91 00
0835:C8
0836:A9 09
0838:91 00
083A3A0 07
083C:A9 00
0838:91 00
0840:A2 .00
0842;20 D3 08
0845:90 0B
0847:A0 0A
0849:Bl 00
0848:C9 06
084D:F0 03
084F:4C BC 08

0852;A5 02
0854:BD EB 09
0857rA5.03
0859.:8D E9 09
085C:20 5A 09

085F:

085F:A9 04
0861-:A0 06
0863:91'00
0865:A9 00
0867:C8
0868.:91 00
086A:20 74 09

085D:

086D:AD 02 10
0870;A0 06
0872:91 00
0874:AD 03 l0
08??.:c8
0878:91 00
087A: l8
0878:AD 02 10
0 87E:48
087F:69 00
0881:85 04
0883:AD 0:? 10
0886:48
0-887 3 69 1.0
0889:85. 05
088.B:20 74 09

088E:

138 *

140
r41
L42
143
t44
145
L46
L41
r48
L49
ts0
r5l
L52
Is3
r54
155
156

158 ouroP
159
160
151
L62

164 *

166
L6't
158
169
170
171
t't 2

L74 *

L'|6
L77
LlS
t79
180
181
L82
183
184
185
186
187
188
189
190
191

193 *

195
195
L97
198
199
200
20L
202
.203
204

088E rA0
0890:98
0891:91
0893:68
08943A0
0896:91
0898:88
0899:68
08.9A : 91
089C:20

00

04

07
00

00
82 09

OPEN OUTPUT FILE

LDY +FMNAME STORE OUTPUT FILE NAME
LDA #>ONAME PTR IN LIST
STA (PTR),Y
INY
LDA +<ONAME
STA (PTR),Y
tDY *FMTYPE TEXT FTLE AS OUTPUT
LDA '#FMTYPT
STA (PTR),Y
LDX +O NEW FILE IS OK
JSR OPEN
BCC OUTOP
LDY #FMRC
LDA (PTR),Y
CMP #FMRCNF FILE NOT FOTJND?.BEQ OUTOP YES, WAS ALLOCATED THEN
JMP ERROR

LDA BUFP SAVE:OPEN OUTPUT FILE BUFFER
STA OBUFF
LDA BUFP+I
STA OBUFF+I
JSR .REWIND -POSITION TO. START OF FILE

READ ADDRESS/LENGTH FROM BINARY FIIE

LDA +4 READ 4 BYTES FIRST
LDY +FMRALN
STA (PTR),Y
LDA #O
INY
STA (PTR),Y
JSR READ

-READ'ENTIRE BINARY FILE INTO MEMORY AT $IOOO

.LDA BUFFER+2 COPY DATA LENGTH TO LIST
LDY '+EMRALN
STA (PTR) IY
LDA'BUFFER+3
lNY
STA (PTR),Y
cLc
LDA BU!'FER+2 'COMPUTE ENDING tsYTE
PHA
ADC *>BUFFER
STA EBYTE

,LDA BUFFER+3
PHA
ADC *<BUFFER
STA EBYTE+1
JSR READ READ BLOB INTO MEMORY

WRITE ENTIRE BLOB OUT INTO TEXT FILE

LDY *O
TYA
STA IEBYTE).Y MARK END OF FILE
PLA
LDY #FMRALN+I SET RANGE LENGTH
STA (PTR),Y
DEY
PLA
STA (PTR),Y
JSR WRITE WRITE BLOB FROM MEMORY

A-23

089F3

089F:AD E8 09
08A2:85 02
08A43AD E9 09
08A7:85 03
08A9:20 46 09
oBAC:AD EA 09
08AF:85 02
08Bl:AD EB, 09
0884:85 03
0886:20 46 09
0889:4C D0 03

0 8BC:

08BC:A0 0A
08BE:BI 00
08C0:48
08CI:A9 C5
08C3320 ED FD
08C6;49 D2
08C8:20. ED FD
08CB:20 ED FD
08CE.:68
08CF:20 DA FD
08D2:00

08D3:

08D3:AD D2 03
08D6:85 03
08D8:A0 00
08DA:84 02

OSDC:

08DC:Bl 02
0 8DE: 48
08DF:C8
08E0:81 02
08E2:85.03
08E4:68
0885:85 02
08E7:D0. 0A
0889:A5 03
08'EB: D0 06. .

08EDiA9 0C
08EF:48.
08F0:4C Ct 08

08F3:A0 00.
08F5:'B1 02
08F7:F0 04
08F9:A0 24
08FB:D0 DF

08FD:49 0I
08FF:91 02

0901:

090I:A0 00
0903:49 01
0905i91 00
0907:A9 00
0909:A0 02
090B:91 00
090D:CB
0908 3 91 00
09I0:A0 04
0912:91 00

A-24'

206 *

208 EXIT
209
2L0
2TL
212
2L3
214
215
216
2r7
2L8

220 *

222 ERROR
)) a

224
225 ERR.
226
22'1'228
tto j

230
23L
232

234 *

235 oPEN.
237.
238
239

24t. *

243 GBUFO
244
245
246
247
248
249
2s0

252

254.
255
256

258 GBUF
259
260
26L
262

264 GOTBUF
265

267 *

269
270
27r
27 2'
a1a

274
275
276
271
278

WHEN, FINISHED, CLOSE FII,ES

LDA OBUFE
STA. BUFP
LDA OBUFF+1
STA BUFP+I
JSR CLOSE CLOSE'OUTPUT FILE
LDA IBUFF
STA BUFP
IIDA, IBUFF+I
STA BUNP+I
JSR CLOSE CLOSE INPUT F.ILE
JMP DOSWRM BACK. TO DOS:

ERROR, PRINT 'ERRXX"

I.DY +FMRC FIND RETURN CODELDA (PTR) iY
PHA
LDA #'E
JSR' COUT
LDA +'R
JSR COUT
JSR COUT
PLA
JSR PRBYTE PRINT HEX CODE:
BRK DIE HORRIBLY

OPEN: COMPLETE PARMTIST AND OPEN FIDE

LDA DOSWRM+2 FIND DOS ENTRY
STA BUFP+1
LDY #0,
STY. BUFP POINT AT BUFFER"CHAIN

SCAN DOS BUFFERS FOR A FREE ONE

f,DA. (BUFP) ,Y LOCATE NEXI DOS BUFFER
PHA
INY
LDA (BUT'P).Y
STA BUFP+1
PLA
STA BUFP"
BNE. GBUF GOT ONE
LDA BUFP+I
BNE GBUF GOT ONE

LDA *L2
PHA
JMP ERR

0914:20 E3 03 28A JSR LOCRPL FIND RWTS PARMS
0917:84 3C 28L StY AIL
0919:85 3D 282 STA AIL+I
0914:A0 01 283 LDY *1
09lD:B1 3C 284 LDA (A]-L),Y GET SLO!*16
091F:.4A 285 LSR A
0920:4A 286 LSR A
0921:4A 287 LSR A
O922z4A 288 LSR A SLdI=SLO[/16
0923:A0 06 289 LEY *FII{SLT
0925:91 00 290 STA (PTR),Y STORE IN LIST
09272A0 02 29L LDY *2
.0929:Bl 3C 292 LDA (AlL)

'Y GET DRIVE
092B:A0 05 293 LDY *FMDRS/
092D:91 O0 294 STA (PTR),Y AND SLOT

O92F: 296 * COMMoN INTERFACE TO FILE MANAGER

092F:A0 lE 298 CALLFM LDY +30
0931:ts1 02 299 CFMLPI LDA (BUFP) 'Y GET THREE BUFFER PTRS
0933:48 300 PHA
0934:C8 30r lNY
09352C0 24 302 CPY *36
093?:90 F8 303 BCC CFMLP1

0939:A0 tI 305 LDY +FMBUFF+I
0938:68 306 CFMLP2 PLA
093C:91 00 307 STA (P1R),Y COPY TIIEM TO FM LIST
093E:88 308 DEY
093F:c0 0C 309 CPY +FMFMWA
.094I:B0 F8 3I0 BCS CFMLP2

0943:4C D6 03 3]-2 Jl'tP FM EXIT THRU FILE MANAGER

09462 314 * CLOSE: .CLOSE DOS FILE

09'46:A0 00 3L6 CLoSE LDY #FMOCOD
0948:A9 02 317 LDA #FMOCCL
094A:91 00 318 STA (PTR)

'YO94Cz20 2F O9 3f9 JSR CALLFM CLOSE FILE
094F:90 03 320 Bcc CLOK
0951:4C BC 08 32L JMP ERRoR
0954:A0 00 122 CLOK LDY +0 FREE BUFFER
0956:98 323 TYA
0957 z9]- 02 324 STA (BUFP)

'Y0959:60 325 Rrs

O95A' 327 * REWIND: POSITION TO START OF FILE

095A:A0 02 329 REWIND LDY +FMRCNM
095C:A9 00 330 LDA +0
0958:91 00 331 REWLP STA (PTR) 'Y ZERO RECORD NUMBER AND..
0960:C8 332 INY
0951:C0 06 333 CPY *FMOFFS+2 BYTE OFFSET.
0963:90 F9 334 BCC REWLP

0965:A0 00 335 LDY +FMoCOD
0967:A9 0A 336 LDA '+FMoCPO PoSITIoN OPCODE

'0969 :91 00 337 srA (PrR)
'Y0958:20 2F 09 338 JSR CALLFM EXIT VIA FILE MANAGER

096E:90 03 339 BCC REWRTS CHECK FoR ERRORS

' 0970:4C BC 08 340 JMP ERRoR
0973:50 34I REWRTS RTS

O9822 352 '

09742 343 * READ:

0974:AD EA 09 345 READ LDA
0977-.85 02- 346 STA
0979:AD EB 09 347 LDA
097c:85 03 348 sTA
097E!A9 03 349 LDA
0980:D0 0c 350 BNE

READ A R.ANGE OF BYTES TO 91OOO

IBUFF FIND PROPER BUFFER,
BUFP
IBUFF+1
BUN'P+1
ilFMOCRD READ OPCODE
DOIO GO DO COMMON CODE

WRITE! WRITE A RANGE oF BvTEs FROM $1000

OBUTT FIND PROPER BUFFER
BUFP
OBUFF+I
BUFP+I
*FMOCWR WNITE OPCODE

DOIO

DOIO: READ/WRITE A RANGE OF BYTES

{FMOCOD
(PTR),Y SET OPCODE
IFMSBCD
+r!{sBRA
(PTR),Y DO RANGE OF-BYTES
+FMRMD
+>BUFFER
(PTR)

'Y,
RANGE ADDRESS=$I000

* BUFFER
(PrR) ,Y
CALLFIIi CALL FM TO DO I/O OPERATION
DOIORT
ERROR

I INPUT

I OUTPU{

0982:AD E8 09 354 WRITE LDA
0985!85 02 355 sTA
0987:AD E9 09 356 tDA
098A385 03 337 STA
098C:A9 04 358 LDA
098E: 359 * BNE

384 OBUFF DS
385 IBUFF DS

098E: 361 *

098E!A0 00 363 DOIO LDY.
0990391 00 364 sTA
09923A0 01 355 LDY
09943A9 02 356 LDA
0996:91 00 367 sTA
0998:A0 08 358 LDY
099A.:A9 00 369 LDA
099c:91 00 370 sTA
099E:C8 371 INY
099F:A9 10 3'12 LDA
09Al:9I 00 373 STA
09A3:20 2F 09 374 JSR
09A6:90 03 375 BCC

09A8:4C Bc 08 376 JMP
09A8:60. 377 DoIoRr RTs

09AC: 379.* DATA

09AC:C9 CE D0 381 INAI{E ASC
09AFiD5 D4 A0
0982,A0 A0 A0.
0985:A0, A0 A0
0988:A0 A0 A0
O9BB:AO AO AO
09BE:A0 A0 A0
09Ct:A0 A0 A0
09C4rA0 A0 A0
09C?3A0 .A0 A0
09CA:CI. D5-D4 382 ONAME ASC

09CD:D0 D5 D4
09D0:A0 A0 A0
09D3:A0 A0 A0
09D6:A0 A0 A0
09D9 3A0 A0 .A0'
09DCsA0 A0 A0
09DF:A0 A0'A0
09E2:A0 A0 A0
0985:A0 A0 A0

0988:
O9EA:

2
2

*** SUCCESSFUL ASSEMBLY3 NO ERRORS

A-26

APPENDIX B

DISK PROTECTION SCHEMES

As the quantity and quality of Apple II software has
increased, so has the incidence of illegal duplication of
copyrighted software. To combat this, software vendors have
introduced methods for protecting their software. Since
most protection schemes involve a modified or custom DiSk
Operating System, it seems appropriate to di,scuss disk
protection in general.

Typically, a protection scheme's purpose is to stop
unauthorized duplication of the contents of the diskette,
although it may also include, or be limited to, preventing
the listing of the software (if it is in BASIC). This has
been attempted in a variety of ways, all of which
necessitate reading and writing non-standard formats on the
disk. If the reader is unclear about how a normal iliskette
is formatted, he should refer to Chapter 3 for more
infornation.

EarIy protection methods were primitive in comparison to
what is being done now. Just.as the metn-ods of protection
have inproved, so have the techniques people have used to
break them. The cycle seems endless. As new and more
sophisticated schemes are developed, they are soon broken,
prompting the software vendor to try to create even more
sophisticated systens.

It seems reasonable at this tine to say that it is
inpossible to protect a disk in such a way that it can't be
broken. This is, in large part, due to the fact that the
diskette must be "bootable"; i.e. that it musl contain at
least one sector (Track 0,.Sector 0) which can be read by
the program in the PROM on the disk controller card. This
neans that it is possible to trace the boot process by
disassembling the normal sector or sectors that must be on
the disk. It turns out that it is even possible to protect
these sectors. Because of,a lack of space on the PROM (256
bytes), the software doesn't fully,check either the Address
Field or the Data fie1d. But potential protection schemes
which take advantage of this are linited and must involve
only certain changes which will be discussed below.

Most protected disks use a modified version of Applers DOS.
This is a much easier task than writing one's own Disk
Operating System and will be the prinary area coverecl by
this discussion.

Although there are a vast array of dj-fferent protection
schemes, they all consist of having some portion of the disk
unreadable by a normal Disk Operating System. The two
logical areas to alter are the Address Fie1cl and the Data
Field. Each include a number of bytes which, if changed,
will cause a sector to be unreadable. We will examine how
that is done in some detail.

The Address Fielcl normally starts with the bytes
9D5/$AA/$96. If any one of these bytes were changedf Dos
would not be able to locate that particular Address Fie1d,
causing an error. while all three bytes can and have been
changed by various schemes, it is important to remember that
they must be chosen in such a way as to guarantee their
uniqueness. Applers Dos does this by reserving the bytes
$D5 and $AA; i.e. these bytes are not used in the storage of
data. The sequence chosen by the would-be disk protector
can not occur anywhere else on the track, other than in
another Address Field. Next comes the address information
itself (volume, track, sector, and checksun). Sone comnon
techniques include changing the order of the information,
doubling the sector numbers, or altering the checksurn with
some constant. Any of the above would cause an I/O error in
a normal DOS. Fina11y, we have the two closing bytes
(DEIAA), which are similar to the starting bytes, but with
a difference. Their uniqueness is not critical, si.nce DoS
will read.whatever two bytes follow the inforrnation fie1d,
using thern for verification, buL not to locate the field
i tself .

The Data Field is quite similar to the Address Fie1d in that
its three parts correspond almost identicallyr ds far as
protection schemes are concerned. The Data Field starts
with $D5I$AA,/$AD, only the third byte being different' and
all that applies to the Address Fie1d applies here a1so.
Switching the third bytes between the two fields is an
example of a protective measure. The data portion consists
of 342 bytes of data, followed by a checksun byte. Quite
often the dat.a is written so that the checksum computation
will be non-zero, causing an error. The closing bytes are
identical to those of the Address Field (DEIAA).

As nentioned earlier, the PROI"I on the disk controller skips
certain parts of both types of fields. In particular,
neither trailing byte ($nE/$AA) is read or verified nor is
the checksum tested, allowing these bytes to.be moclifieil
even in track 0 sector 0. However, this protection is.
easily defeated by making slight:modifications to-DOSrs. RWTS
routines, rendering it unreliable as a protective measure.

B-2

In tbe early days of disk protection, a single-alteration
was all that was needed to stop all but a few fron copying
tne aist. Now. with more educated users' and 'powerfutr
utilities available, multiple schemes are quite conmonly
u=.a. The first means of protection was probably that of'
hidden control char.acters inbedded in a file name' Now it
i" .orro.r to find a disk using nultiple non-standard- formats
wri"tten" even between tracks.

A state of the art protection"scherne consists of t\"to

elements. First, the data.is stored on the diskette in some

"""l"t""a"rd
way in order to nake copying very- clifficult.

Secondly, some portion of memory is utilizecl that will be
altered upon a nnSet. (For examPre, the primary'text page
or certai-n zero paqe locations) This is to prevent the
software'fron being rernoved from memory' intact'

]HE MCE IS O{ BEft/EEN
THE PROTECTORS

AI.ID THE UNPMTECTORS.

Recently, several "nibbIe" or byte copy programs-have become
avai.fabie. Unlike traditional copy programs which require
the data to be in a predefined format, these utilities make
as few assumptions as possible about the data structure'
Ever since piotecteil disks were first introduced, it has
been asked, "why can't a track be read into memory and then
written back out to another diskette in exactly the same

way?". The problern lies with the self-sync or auto-sync
nyies. (r'or a fu1l discussion: see chapter 3) These bytes
contain extra zero bits that are lost when read into
memory. In memory it is inpossi-ble to determine the

B-3

difference between a hexadecimal. gFF that was data and a hex
$FF that was.a self-sync byte. Two solutions are currently
being implemented in. nibble copy programs. One is to
analyze the data on a track with the hope that the sync aapscan be located by deduction. This has a high probability of
success if 13 or 16 sectors are present, even if they have
been nodified, but may not be.effective in dealing with
non-standard sectoring where sectors are larger than 256
bytes. In short, this nethod is effective but by no means
foolproof. The .second.method is .sinple but likewise has a
diff iculty. Il simply vrri.tes eveFy hex'grr found on the
"track as if it were a sync'byte. Thisr.however, will expand
the physical space- needed to write, the,,track .back out, since
sync bytes require .25.t more room. If enough hex gfF' rs occur
in the data, the track will overwrite itself. This can
happen in general if the drive used to write the data is
signifi.cantly slower than normal. Thus, we are back to
,having to analyze the data and, in effectr.make sone
assumptions. It appears that, "apart from using some
hardware-,device to help find the sync bytes, a software
program must rnake some assumpt'ions abou! how the data is
structured on the diskette.

The result of the introduction of nibble .copy programs has
been .to "force the hand" of the software vendors. Ihe
initial response .was to develop new.protection schen^es that
de.feated the nibble copy pr.ograms. More ,recent protection
schemes,'however, involve.hardware and tirning dependencies
which require current nibble copy programs to ,re1y heavily
upon the user for .direction. If the .present trend
cont,inues, it is very J-ikely.rthat protection schemes will
evolve to a point where automated techniques.cannot be used
to defeat them.

ACCESS TIME

ADDRESS

ALGORITHM

ALPHANUMERIC

ANALOG

AND

ASCII

APPENDIX C
GLOSSARY

The time. required to locate and read or
write data on a direct access storage
device, such as a diskette drive.

The numeric location of a piece of data
in memory. Usually given as a
hexadecimal number from $0000 to $FFFF
(65535 decimal). A disk address is the
location of a data sector, expressed in
terms of its track and sector numbers.

A sequence of steps which may be
performed'by a program or other process.
which will produce a given result.

An alphabetic character (A-z) or a
numeric digit (0-9). The term used to
refer to the class of al1 characters and
digits.

As opposed to digital. Having a value
which is continuous, such as a voltage
or electrical resistance.

The logical process of determining
whether two bits are both ones. 0 AND 1
results in 0 (fa1se) | 1 AND 1 results in
1 (true) .

The portion of a disk drive which
suspends the read/write head over the
disk's surface. The arm can be moved
radially to allow access to clifferent
tracks.

American Standard Code for Information
Interchange. A hexadecimal to character
conversion code assignment, such that
the 256 possible values of a single byte
may each represent a alphabetic,
numeric, special, or control character.
ASCII is used when interfacing to
peripherals, such as keyboards,
printers, or vi.deo text clisplays.

c-1

ASSEMBLY LANGUAGE

BACKUP

BASE

BINARY

BIT

BIT CELL

BIT SLIP MARKS

BOOT/BOOTSTRAP

BRK

BUI'FER

A1SO KNOWN AS MACHINE LANGUAGE. ThE

"ili".
programming language. of the

inaiviauar-cornputer. Assembly language
i"-"ti."t"d to the machine, and is not
humanized, as is BASIC, PASCAT" or
FORTRAN. An assembler is used to
convert assembly language statenents to
an executable Program.

The process of making a coPY of ? . -prograrn or data against the possibifity
irf its accidental loss or destruction.

The number system in use. .Decimal is
base I0, since each digit represents a
power of 10 (1,10'100r...). Hexadecimal
is base 16 (1,16

'
256 | . . .l . Binary is

base 2 .(L,2,418'...).

A number system based upon powers of 2.
OnIy the digits 0 and 1 are used. 101
in Linary, for examPle, is I units
digit, 0 twos, and I fours, or 5 in
dec imal .

e single binarY tligit (a I or a 0) . A
bit is the snallest unit of storage or
information in a comPuter.

The space on a diskette, between two
clock pulses, which can hold the value
of a single binarY 0 or 1 (bit).

The epilogue of a clisk field. Used to
doub16 check that the disk heatl is still
in read sync and the sector has not been
damaged.

The process of loading a very large
program into memorY bY loading
iuciessively larger pieces, each of
which loads its successor. The progran
Ioads itself by "puJ-ling itself up by
its bootstraps".

BREAK. An assembl-y langauge instruction
which can be used to force an interrupt
and immediate suspension of executi'on of
a program.

An area of memory used to temporarily
hold data as it is being transf'erred to
or fron a periPheral, such as a disk
dr ive.

A prograNning error. Faulty operation
of a prograrn.

c-2

BYTE

CARRTAGE RETURN

CARRY FLAG

CATALOG

CHAIN

cHECKSUM/CRC

CLOBBERED

CODE

COLDSTART

CONTIGUOUS

CONTROb BLOCK

The smallest unit of addressable nernory
in a computer. A byte usually'consists
of. 8 bits and can contain a decirnal
number ranging fron 0 to 255 or a single
alphanumeric character .

A control character which instructs the
printer. to end one line and begin
another.. When printing a carriage"
return is usually followed'by a line
feed.

A 6502 processor flag which indicates
that a previous addition resulted in a
carry. Also used as an error indicator
by many system programs.

A directory of the files on a diskette.
See DIRECTORY.

A linked list of data elements. Data is
chained if its elements need not be
contiguous in storage and'each element
can be found from its predecessor via an
ad-dress pointer.

A method for. verif,ying that data has not
been danaged. When data is written, the
sum of all its constituent bytes is
stored with iL. If , when the da.t.a is
later read, its sum no longer matches
the checksum, it has been damaged.

Damaged or destroyed. A clobbered
sector is one which has been overwritten
such that it is unrecoverable.

Executable instructions to the computer,
usually in machine language.

A restart.of a progran which
reinitial.izes all of its parameters,
usually erasing any work which was i-n
progress at the tine of the restart. A
DOS coldstar-t erases the BASIC program
in memory.

Physically next to. Two bytes are
contiguous if they are adjoining each
other in rnemory or on the disk-

A collection of data which is used. by
the operating system'to manage
resources. Examples of a control bl-ock
used by DOS are the file buf,.fers.'

CONTROL CHARACTER

CONTROLLER CARD

cswl,

CYCLE

DATA

DATA SECTOR. BUFFER

DATA TYPE

DECIMAL

DEFERRED COMMANDS

A. special ASCII code which is used to
perform a unique function on a
peripheral. but does not.generate a
printable character. Carriage return,
line feed, form feed, and.bell are all
control characters.

A hardware circuit board which is
plugged into an APPLE connector which
a11ows cornmunication with a peripheral
device, such as a disk or printer. A
controller card usually contains a small
driver program in ROM.

A vector in zero-page through which
output data is passed for display on the
CRT or for printing.

The srnallest unit of time within the
central processor of the computer. .Each
machine language instruction requires
two or more cycles to complete. One
cycle (on the APPLE) is one micro-second
or one millionth of a second.

Units of information.

On the APPLE, a 256 byte buffer used by
DOS to hold the image of any given
sector on the diskette. As information
is iead from the file, data is extracted
fron the data sector buffer until it is
exhausted, at which bime it is refilled
with the next sector image.

the type of information stored in a
byte. A byte might contain a printable
ASCII character, binary.numeric data, or
a machine language instruction.

Device Characteristics Tab1e. Used as an
input parameter table to Read/Write
Track,/Sector (RWTS) to describe the
hardware characteristics of the iliskette
dr ive -

A number system based upon powers of
10. Digits range from 0 to 9.

DOS commands which may (or must) be
invoked frorn within an executing BASIC
program. OPEN, READ, WRITE, and CLOSE
are,a11 examples of deferred commands.

c-4

DIGITAL As opposed to analog. Discrete values as
opposed to continuous ones. Only
digital values rnay be stored in a
computer. Analog measurements from the
real world, such as a voltage or the
1eve1 of light outside, must be
converted into a numerical value which,
of necessity, must be "rounded off" to a
discrete value.

DIRECT ACCESS Peripheral storage .a1J-owing rapid access
of any.piece of data, regardless of its

.placement on the medium. Magnetic.tape
is generally not considered direct

. access., since..the entire tape must be
read"to locate the last byte. A
diskette is direct access, since the arm
may be rapidly moved to any track and
sector.

DIRECTORY A,catalog of a1l files stored on a
diskette. The directory must contain
each file's name and its location on the
disk as well as other information
regarding the type of data stored
there.

DISK-INfTIALIZATION The process which .places track
formatting' inforrnation, including

; sectors and gaps, on a blank diskette.
' During disk initialization, DOS also
'pl'aces ,a VTOC and directory on the newly
.formatted disk, as well as saving the
EELLO program.

DISPLACEMENT The distance from the beginning of a
block of data to a particular byte or
fie1d. Displacements are usually given
.beginning with 0, for the first byte, 1
for the second, etc. Also known as an
offset.

DRIVER A program which provides an input stream
to another'program or an output device.
A printer driver accepts input from a
user program in the forrn of lines to be
printed, .and sends them to the printer.

An unformatted or partially formatted
listing. of the contents of memory or a
diskette in hexadecimal. Used for
diagnostic purposes.

To translate data from one form to
another for any of a number of reasons.
In DOS 3.3,. Data i.s encoded fron 8 bit
bytes to 6 bi.t bytes for storage on a
DISK II.

DU[4P

ENCODE

ENTRY POINT (EPA)

EOF

EPII,OGUE

EXCLUSIVE OR

FTELD

FILE

FILE BUFFERS

FILE DESCRIPTOR

FILE MANAGERT

FILE TYPE

FIRMWARE

c-6

The entry point address is the location
within a program where execution. is to
start. This is not necessarily the same
as the load point (or lowest memory
address in the progran) .

End of FiIe. This rnark signals the end
of a data file. $00 for APPLE Dos text
files.

The last three bytes of a field on a
track. These unique bytes are used to
insure the integrity of the data which
preceeds then.

A logical operation which compares two
bits to deternine if they are
different. 1 EOR 0 results in 1. 1 EOR
1 results in 0.

A group of contiguous bytes forrning a
single piece of data, such as a person's
narne, his age, or his social security.
number. In ilisk fornatting, a group of
data bytes surrounded by gaps.

A named colleqtion of data on a diskette
or other mass storage medium. Files can
contain data or programs.

In APPLE. DOS, a collection of buffers
used. to manage one open fiLe. Included
are a data sector buf f.er , a Ttack/Sector
List sector buffer, a file manager
workarea buffer, the name- of the file'
and pointers. The DOS command' MAXFILES
3, causes 3 of these file buffers to be
allocated.

A single entry in a diskette directory-
which describes one file. Included are
the name of the file, its data type, its
length, and its location:.on'the
diskette.

That portion of. DOS which manages
files.. The file nanager handles such
general operations as, OPEN; CLOSE' READ.'
WRITE, POSTTION,, RENAIVIE, DELETE, CLC.

The. type of data hetd by a. file. Valid
DOS file types are Binary, Applesoft'
Integer-BASIC, Text, Relocatable, S' A'
and B.

A rniditte ground between hardwa.re and
software. Usually used' to describe
micro-code or programs which have been
stored in. read-only. nemory."

GAPS The spaces between fields of data on a
diskette. Gaps on an APPLE diskette
contain self-sync bytes.

HARD ERROR An unrecoverable rnput'/output error'
The data stored in the disk sector can
never be successfully read again.

HARDWARE Physical computer equiprnent, as opposed
to programs which run on the equipment.
A disk drive is an example of a hardware
component.

HEAD The read,/write head on a diskette
drive. A magneti.c pickup, similar in
nature to the head on a . stereo tapedeck
which rests on the spinning surface of '
the iliskette.

HEXADECIMAL/HEr A numeric system based on Powers of 16.
Valid hex digits range from 0 to 9 and A
!o F, where A is 10, B is 11, ... , and
F is 15. B30 is II 256rs, 3 16rs, and 0

1's, or 2864 in decimal. Two
hexadecimal digits can be used to
represent the contents of one byte.
Hexadecirnal is used with computers
because it easily converts with binary.

HIGH MEIVIORY Those rnemory locations which have high
address values. $FFFF is the highest
nemory location. Also called the "top"
of memory.

HII\,lEIvl APPLE's zero-page address which
identifies the first byte past the
available memory which can be used to
store BASIC programs and their
var iables .

IMMEDIATE COMI4AND A DOS command which may be entered at
any time, especially when DOS is waiting
for a command from the keyboard.
Deferred commands are the opposite of
immediate commands.

INDEX A displacement into a table or block of
storage.

INSTRUCTION A single step to be performed in an
assembly language olmachine language
progr,an. Instructions perform such
operations as addition, subtraction,
store, or 1oad.

INTEGER As opposed to floating point. A ".whole"
number with no fraction associated with
ir. c-7

INTERCEPT

INTERLEAVE

INTERRUPT

IOB

I/O ERROR

JMP

JSR

KSWL

LABEL

LATCH

A program lrhich logical1y places itself
in the execution path of another
program, or pair of prograns. A video
intercept is used to re-direct program
output fron the screen to a printer, for
example.

The practice of selecting the order of
sectors on a diskette track to minimize
access time due to rotational delay.
Also called "skewingrr or interlacing.

A hardware signal which causes the
computer to halt execution of a program
and enter a special handler routine.
Interrupts are used to service real-time
clock time-outs, BRK instructions, and
RESET.

Input/Oirtput B1ock. A collection of
parameter data, passed to Read/Write
Track/Sector, describing the oper.ation
to be performed.

Input/Output Error. An error which
occurs during transrnission of data to or
from a peripheral device, such as a disk
or cassette tape.

A 6502 assembly langauge instruction
which causes the conputer to begin
executing instructions at a different
location in memory. Sirnilar to a GOTO
statement in BASIC.

A 6502 assembly langauge instruction
which causes the computer to ,,cal1', a
subroutine. Similar to a GOSUB statement
in BASIC.

A unit of measurement, usually appli-ed
to bytes. I K bytes is equivalent to
1024 bytes.

A vector in zero-page through which
input data is passed from the
keyboard or a remote terminal.
A name associated with a location in a
program or in memory. Labels a.re used in
assembly langauge much like statement
numbers are used in BASIC.

A component into which the Input/Output
hardvare can store a byte value, which
will hold that value until the central
processor has tirne to read it (or vice
versa) .

c-8

TINK

LIST

LOAD POINT (LP)

LOGICAL

LOOP

LOW MEI{ORY

LOMEM

LSB/LO ORDER

MASTER DISK

I{lCROSECOND

MONITOR

An address pointer in an elenent of a
linked chain of,data or buffers.

A one dirnensional sequential array of
data itens.

The lowest address of a loaded assembly
language progran -- the jfirst byte
loaded. Not necessarily the'same as the
entry point address (EPA).

A form of arithmetic.which operates with
binary "truth" or "false"|-l or 0. AND,
OR, NAND, NOR, and EXCLUSIVE OR are all
logical operations.

A progranming construction in which a
group of instructions or statenents are
repeatedly executed.

The memory locations with. the lowest
addresses. $0000 is the lowest memory
Iocation. Also called 'the "bottorn" of
menory.

'APPLETS z.ero-page address which
identifies the first.byte of the

''availa.ble memory which can be used to
store BASIC programs and .their
var.iables.

Iieast Significant Bit or Least
Significant Byte: ^The Lrs bit in a byte

'or the second pair of hexadecimal digits
forming an address. In the'address
.$8030, $30 is Lhe.Lo order par.t of the
address.

A DOS diskette which will boot in an
:APPLE II of any size memory and take
ful1 aclvant'age .of it.

A millionth of a second. Equivalent to
one cycle of the APPLE II.central
processor. Also written as n:Usec".

.A ,machine language program- which always
r'esides in the conputer"and which is.the
first to.receive control when the

'machine is powered up. The APPLE
monitor resides in ROM and allows
examinat.ion and mod-ificati.on of memory
at a byte Ievel.

MSB/ITI ORDNR

NIBBLE/NYBBLE

OBJECT CODE

OBJECT MODULE

OFFSET

OPCODE

OPERATING SYSTEM

OVERHEAD

PAGE

l4ost Significant Bit or Most Significant
Byte. The 128rs bit of a byte (the
left-most) or the first pair of
hexadecimal digits in an add'ress. In
the byte value $83, the.l'{SB is on (is a
r.) .

Empty, hhving no length'or value. A
null string is one which contains no
characters. The null control character
($00) produces no effect on a prinler
(also ca11ed an idle).

A portion of a byte, usually 4 bits and
represented by a single hexadecimal
digit. $FE contains trdo nibbles, $F and
$e.

A machine language progran in binary
form, ready to execute. Object code is
the output of an assembler.

A complete machine language program in
object..code form, stored.as a f ile on a
d iskette .

The distance from the beginning of a
block of data to a particul.ar byte or
fie1d. Offsets are usualli given
beginning with 0, for the first byte,.l
for the second, etc. Also'known as a
d i splacement .

Operation Code. The three letter
mnemonic representing a single assembly
Ianguage instruction. JMP is the opcode
for the jump instruction.

A machine language program which manages
the menory and peripherals
automatically, simplifying the job of
the applications programner.

The logical operation comparing two bits
to determine if either of them are 1.. 1
OR 1 results in 1 (true),. I OR.0 resolts
in 1, 0 OR 0 results in 0 (false).

The space required by the system, either
in memory or. on the disk, to manage
either. The disk directory and VTOC are
part of a diskette's overhead.

256. bytes of memory which share a common
high order address by.te. zero page is
the first 256 bytes of memory ($0000
through $00FF).

c-10

PARALLEL

PARAMETER LIST

PARITY

PARSE

PATCH

PERIPHERAL

PHYSICAL RECORD

POINTER

PROLOGUE

PROM

opposite of serial. A comrnunication
node which sends all of the bits in a
byte at once, each over a separate line
or wire.

An area of storage set aside for
communication between a calling program-
and a subroutine. The paraneter list
contains input and output variables
which will be usecl by the subroutine.

A scheme, sinilar to checksums but on a
bit level rather than a byte 1eve1,
which allows detection of errors in a
singJ-e data byte. An.extra parity bit
is attached to each byte which is a sun
of the bits in the byte. Parity is used
in expensive nemory to- detect or correct
single bit failures, and when sending
data over comrnunications lines to detect
noise errors.

The process of interpreting character
string data, such as. a command with
keywords;

A small change to the object code of an
assembly languag.e program. .Also called
a tt zap" .

A device which is external to the
computer itself; such as a disk drive or
a printer. Also called an Input/Output
device..

A collection of data corresponding to
the smallest unit of storage on a
peripheral device. For disks, a
physical record is a sector.

The address or memory location of a
block of data or a sinqle data item.
The address "points" to the data.

The three bytes at the beginning of a
disk field which uniquely identify it
from'any other data on the track.

Programmable Read. Only Memory. PROMS are
usually used on controller cards
associated with peripherals to hold the
driver program which interfaces the
device to applications programs.

An output string which lets the user
know that input is expected. A "*" is
the pronpt character for the APPLE'
monitor.

PROMPT

?ROTECTED DISK

PSEUDO-OPCODE

RANDOIq ACCESS

RAII

RECAL

RECORD

REGISTER

RELEASE

RELOCATABLE

A.iliskette whose format or content has
been modified to prevent its being
copieil . Most r.etail .software today is
di.stributed on protected disks to
prevent theft.

A special assembly language opcode which
does not translate into a machine
instruction. A.pseudo-opcode instructs
the assembler to perform some function,
such as skipping a pag'e in an assembly
listing or rese'rving d.ata space in the
output object code.

Direct access. The capability to
rapidly access any .single p,iece.of data
on a storage nedium without having to
sequentially read all of its
predecessors.

Random Access l{emory. Computer 'memory
which will allow storage and retrieval
of values by. address.

Recalibr.ate the disk arn so .that the
read,/write head is positioned over track
zero. This is done by pulling the arm
as far as it will go to the outside of
Lhe diskette until it hits a stop,
producing a "clacking" sound.

A collection of associated data iterns or
fields. One. or more. records are usually
associated:with a fiIe. Each record
.rnight correspond to an employee, for
exanple.

A'named temporary storage location in
the central .processor itself. The 6502
has 5 registers; the A, X, Y, S, and P
registers. Registers .are used by an
assembly language program to access
memory and perform arithmetic.

A version of a distributed piece of
software. There have been several
releases of DOS.

The attribute of an object modu.le file
which contains a rnachine 'language
program and the inforrnation necessary to
rnake it"run at any memory location.

c-12

RETURN CODE A numeric value returned from a .

subroutine, indicating the success or
failure of the operation attempted. A
return code of zero usually means there
were no errors. Any other value
indicates ,the nature of the error, as
clefined by the design of the
subroutine.

ROM Read Ohly Memory. Menory which has a
permanent vaIue. The APPLE monitor and
BASIC interpreters are stored in RoM.

RWTS Read/Write Track/Sector. A collection
of subroutines which al1ow access to the
diskette at a track and sector leveI.
RWTS is part of DOS and may be cal1ed by
external assembly language programs.

SEARCH The process of scanning a track for a
g iven sector .

SECTOR The snallest updatable unit of data on a
disk track. One sector on an APPLE DISK
II contains 256 data bytes.

SECTOR ADDRESS A disk field which identifies the sector
data field which follows in terms of its
volume, track, and sector number.

SECTOR DATA A disk field which contains the actual
sector data in nibbilized form.

SEEK The process of moving the disk arm to a
given track.

SELF-SYNC Also called "auto-sync" bytes. Special
disk bytes which contain more than 8

bits, allowing synchronization of the
hardware to byte boundaries when
reading.

SEQUENTIAL ACCESS A mode of data retreival where each byte
of data is read in the order in which it
was written to the disk.

SERIAL As opposed to parallel. A communication
mode which sends ilata bits one at a time
over a single line or wire.

SHIFT A logical operation which moves the bits
of a byte either left or right one
position, moving a 0 into the bit at the
other end.

SLAVE DISK

SOFT .ERROR

SOFTWARE

SOURCE CODE

SKEWING

STATE MACHINE

STROBE

SUBROUTINE

TABLE

TOGGLE

A diskette with a copy of DOS which is
not relocatable. The DOS image will
always be loaded into the same memory
location, reg.adless of the size of the
machine.

A recoverabl-e I/O e.rror. A worn diskette
night 'produce soft errors occasionally.

Computer programs and data which can be
loaded into RAIVI memory and executed.

A program in a form which is
understandable to humans; in character
form as opposed to internal binary
machine format. Source assembly code
must be processed by .an assenbler to
translate it into machine or "object"
code.

The.process of interleaving sectors.
SeC INTERLEAVE.

A process (in software or hardware)
which defines a unique target state,
given an inpul state and certain
conditions. A state machine approach is
used in DOS to keep track of its video
intercepts anil by the hardware on the
disk controller card to process disk
data.

The act of triggering an I,/O function by
momentarily referencing a special I,zO
address. Strobing 9C030 produces a
click on the speaker. Also called
"togg1ing".

A program whose function is required
repeatedly during execution, and
therefore is called by a rnain program in
several places.

A collection of data entries, having
similar format, residing in memory.
Each entry might contain the name of a
program and its address, for example. A
"lookup" can be performed on such a
table to locate any given program by
name.

The act of trigger-ing an I/O function by
momentarily refer.encing a special 7/O
address. Toggling 9C030 produces a
click on the speaker. Also called
tt strobe " .

c-14

TOKENS

TRACK

TRANSLATE TABLE

T,/S LIST

UTILITY

VECTOR

VOLUME

VTOC

WARMSTART "

A nethod where human recognizable words
nay be codecl to singl-e binary: byte
values for memory cornpression and faster'
processing. BASIC sLatements are.
tokenized, where hex codes are assigned
to words like rF, PRTNT, and END.

One complete circular path of magnetic
storage on a diskette. There are 35
concentric tracks on an APPLE diskette.

A table of single byte codes which are'
to replace input codes on a one-for-one
basis.. A translate table is used to
convert from 6 bit codes to disk codes.

Track.,/Sector List. A sector which
describes the location of a file bY
tisting the track and sector number for
each of its data sectors in the order
that they are to be read or wr.itten.

Transistor to Transistor Logic. A
standard for Lhe interconnection of
integrateil circuits which also defines
the voltages which repre.sent 0's and
1r s.

A program which is'used to naintainf or'
assist in the development of' other
programs or disk files.

A coltection of pointers or JMP
instructions a! a fixed location in
memory which allow access to a
relocatab.le. progr.am or data.

An identification'for a diskeLte, disk,
platter, or cassette, containing one or
more files.

Volume Table Of Contents. Based upon the
rBM OS,/VS WOC. On the APPLE, a sector
mapping the free sectors on the iliskette
ancl giving the location'of the
d irectory.

A restart of a program which retains, as
much as. is possible, the work which was
in progress at the time. A DOS
warmstart retains the BASIC program in
memory.

A iliskette whose write protect notch is
covered, prev'ent.inE the.disk clrive: fron
writing on it.

WRITE PROTECTED

c-15

ZAP

ZERO PAGE

From the IB!{ .utility pr'oEramr: "SUPEBE*P.
A. program: nhich allows .upclates to a 'disk
at a byte 3.eveJ-, u$ing 'hexadecimaL.

.The first 256 blztes of .memory iri a 6502
hased.naohine. zero page locati.ons have
special significance to the central
processor, making' their. management :and
assignmenL 'er itd.caL .

c-16

INDEX

S in Applesoft 5-5

A type file 2-2; *6, 4-L?, 6-L2
Aalalress Fi.el-al 3-?, 3-1O to 3-L4, 3-L7,'a-36' 8-37, 8-4o, B-1, B-z
a1locate. sector/track 4-t to 4-4, 4-LO, 4-LA, 8-25, 8-29 to 8-33
eFPEND comnand 2-L, a-4, 8-IO, 8-19, 8-34
AppLesoft entry Point vector 8-5

file 4-6, 4-7, 4-L2,-4-L4, 6-10
autosync bytes - see self-sync bytes
autostart ROIII 2'L, 2-2, 5-5

a.tYpe.file 2-2, 4-6, 4-LZ, 6-10, A-2
BASrC coLdstart 8-4, 8-5

. comnands 8-18, 8-19
entry point vecto! table a-4
error trandler 8-4
relocate a-4
warmstart 8-5

BTNARY file 4-6, 4-7, *-LO, 4-L2, 4-13, 6-10
bi-t cell 3-3, 3-'l , c-z
BIOAD comrand 4-]2, 8-4, 8-11, 8-I9, 8-2O
boot, bootstrap toading 2-3, 3-22, 4-2, 5-L, 5-4 to 5-7, 7-2,

8-l to 8-3, 8-34, B-1, C-2
bootEtrap loacler 2-3, 5-4
BRI,N couaiand 4-L2, A-4, 8-r9
BSAVE coilmanct 2-3, 4-2, 4-L2, 8r4, 8-II. 8-I9, 8-34

catalog 3-2, 4-2, 4-4 to 4-7, +-Lo' 4-L7, 4-L8, 6-7, 5-I5.
8-22, A-26, 8-3O, C-3

CATAIOG coumanal 5-2, 6-A, 6-I.1, 6-13, 7-3, 8-4, A-L4, A-25, 8-32
CHAIN co@ranct 8-4, 8-13, B-19
checkEum 3-7, 3-LZ to 3-14, 3-L1, 4-17, 8-2, 8-35' A-36, 8-42,

B-2, C-3
clobbered diskettes 1-1, 4--L6 to 4-18
clock bits 3-3, 3-4, 3-?, 3-8
CITOSE cornnand 5-2, 5-8, 5-1O' 8-/*, 8-11, 8-I9, 8-23
cLose files 6-8, 6-].0, 8-1O to 8-12
coLdstart 5-5, 5-7, 7-3, 8-4, 8-5, 8-14, 8-2or C-3
commantl hancller table 8-9
controller card 8-1, C-3
coPY 2-2, 2-3, 4-LA
cP/t4 3-22
cswrr 8-6, a-7, -8-13, S-r5, 8-l-8, 8-2O, S-42, C-4

culEor a-5, 8-42 t-1

damaged diEkettes /Fl6 to rFlE
data' bit 3-3, 3-?
data btrtes-. 3-7, 3-L4, 3-I5, 3-21, 5-4
Data Field. 3-7, 3-1O to 3-13, 3-L1, a-4I; B-1, B-2
Data Field encoding 3-13
data latch 3-4', 3-7, 3-8, 6-21 6-3,. C-8:
DCr. - see-Device characteriEtics Eable
alecinal convert routine 8-9
decoale 3-7, 3-1O, 3-17
DEITETE cornrnand" 4-La, 5-2,6-8, 5-11, 8'4, 8-19, 8-25
deleted fi].e 4-6
deEcriptive entry - 4-6, 4-a, 4-L7, 4-]-a
Device Characteristics Table 8-35; 8-3?; 8-38, a-42, c-4
disk arm 3-2, 4-2, 5-7, A-L, 8-35 to 8-38, c-I, c-12
disk arn phases 3-2, 6-2, 6-3, 6-5, 8-35
diEk bytes 3-13 to 3-16, 3-2O
diEk plotectiop - see protected disks
DOS 3,2.1 and.earlier. L-2, 2-L to 2-3, 3-2, 3-A, 3-I4, 3-22, 7-2
DOS 3.3. L-2, 2-L to 2-3, 3-2' "3-L4, 3-2O, 3-22t 1-2, A'2
Dos.toolkit.- see toofkit
Dos cowrand parse loutine a-7

exit routine' 8-7
restore register routine 8'7

DttUP - Eee utility programs.

encode 8-38, C-5
encode data 3-13
encoding technique 3-13 to 3-15, 3-2O
epilogue 3-'1, 3-LZ, 3-13, C:2, C-6
erro! meEgage text table 8-2O
ERROR, DISK PttLIr /F18, 6-8, 8-3O to A-32, A-4I

ErlD oP DATA ' 8-15, 8-.15, 8-2!1, 8-32
PII,E IOCTCED 8-32
PIIA NOT FOT'ND A-22, A_32
FILE TTPE UISITATCII 8_L2,^A-L7
IAIIGIIAG1E NOT A\TAILABLE A-L4, A-22, A-32
PROGRAT{ TOO. T,ARGE 8-12, 8-13
R.ANGE 8-8, 8-32
SYIIIA)C 8-8, 8-11, 8-15
WRISE PROTECIED 8-€2,

EI{EC comand 8-4-to 8-6i 8-11, 8-l-7, 8:L9

FID 2-3, 4-rBi 6-?
file buffer 5-2, 5-7, 6-8, 6-13, 6-L4, 7-3, 8-5, 8-9, 8-1O.,

8-I5 to 8-I7, 8-2O, A-26, 8-?2, C-2
file manager 5-2, 5-5, 5-7, 6-7,6-8 to 6-11., 6-13, 6-LS, 6-L7,

8-1O, 8-12, 8-14 to. A-L6, A-26, 8-3O to A-32, A-2, C-G
file manager norkarea 6-8, 6-tO to G-13, 6-LS, A-L7, A-22.,

8-25 to 8-29, 8-31, 8-33, 8-41
FORIIAT co&nand 6-5, 6-V, 8-19, 8-35
FP conualld 8-4, 8-19
free sectors Z-3, 4-9, 4-4, 4-La, B-3o
gaps 3-7, 3-1O, 3-Ll, C-?

t-2

hardware addresses 6-1
hexadeciual convert routine 8-9
ErME!{ 5-t, 5-2, 5-5, 5-7, 7-3, 8-r2, S-L3t 8-L7, e-42

I/o Block - Eee IoB
r,/o ERROR 4-L5, *L1 , 6-8, A-16
IN* comand 8-3, 8-4, 8-9, 8-19
INfT coumand 5-2, 6-8, 6-L2, A-4, 8-I4, 8-19, A-zL, 8-26, A-32,

8-34, 8-4O
INIT, INlTialization 3-1, 3-Io, 3-L2, 4=2,5-1, 5-5, 5-7' 1-L,

7-3, A-4O
INPTII statement handler 8-5
INf coMrand A-4, A-L4
integer file *6, 4-L2, /Frs, 6-10
IoB 6-4 to 6-5, a-3a, s-42, c-3, c-8

keyboaral intercept hanaller 8-3, 8-5
kelnvorcl flag bit 8-19
keyword values table 8-8
KSWL A-6, 8-7, A-2O, a-42, C-8

language.card 2-3, 7-2, ?-3, 8-4I
IOAD cor@anfl 2-2, 4-L2, 8-3, S-4, 8-L2, 8-L9, 8-2O

r,ot{Et{ 8-12, 8-13, A-42, C-9

UAsTER CREATE 2-2, +-L't, 7-L, 7-2
master d1skette 2-3, 5-6, 5-7, 7-I, 8-I, C-9
I,qXrILES comand 5-2,5-5,6-1,3, 8-4, 8-5, 8-8, 8-9,

8-1? to A-2L, C-6
MON conmand 2-L, A-4, 8-? to 8-9, 8-19, A-2O, S-zL
.motor on/off 6-2, 5-3, 5-5, 8-38, 8-39
UU?FIN 2-3

ni-bbiLize 2-3, 5-7, a-2, a-36. A-4, c-L3
ni-bble colry prograrnE B-4
NOI{ON cotrmand 2-L, 8-4 to 8-6, 8-9, 8-L9

ONERR 8-13
oPEII{ comand 2-L, 2-2, 5-2, 6-A, 6-tO to 5-12, 8-4, 8-1O,

8-19,8-22,8-33
open file 5-2, 6-7, 6-8, 6-10 6-13, 6-15, 8-1O, 8-11, 8-14,

a-2, a-4L
output handler a-6, 8-1
overhead 4-I, 4-2

paranretet list, fi].e manager 6-2 to 6-10, 6-12. g-3,
8-9 to 8-15, 8-25 to 8-35, A-5, A-2O, C-rt

parmlist - see par.uleter liEt, file nanager
parse 8-7, C-ll
Pascal 7-2
phases - -gee disk arm phases

"POSITION comand 2-L, 5-2, 6-8, 6-10, 6-L2, a-4, 8-I4, 8-15,
8-19, 8-25

PR* comand 8-3, 8-4, 8-9, 8-L9
prenibbilize 3-ls, 3-2o, 8-35, 8-38, A-1, A-4
prologue 3-'1, 3-L2, 3-13, C-11
protected diEk .A-4, B-2 to B-4, C-12
protection scheme - see protected disks t-3

R type file - see REr-CATABLE file
random file /F10
RDADR, lead addreEE fieldl 8-35
READ codnanal 2-L, 5-2, 5-5, 6-6, 6-8, 6-10, 6-AL, 6-12, A-4,

8-14, 8-19, 8-23
lead flag 8-6, 8-14
REIOCATAAT,E files 2-2, 4-6, *1,2, 6-LO
RENAI{E co@and 5-2,6-a,6-11, 8-4, 8-1o, 8-19, 8-23
repairing diskettes 4-16 to rFlS
reEerved blrtes 3-12, 3-15, 3-21
RESET 4-L6, 4-r8, 5-5, 8-5, B-3
return code 6-5 to 6-8., 6-10 to 6-12
RUN courand 8-4, 8-6, A-7, A-L3, 8-19, 8-2I
RIdTs 2-2, 2-3, 3-L5, 3-22, 4-L'7 , 5-2, 5-3, 5-5, 5-7, 6-3, 6-4,

6-6, 6-L7, 't-2, A-26 to 8-28, 8-34, 8-35, 8-38, 8-42,
A-1, A-5, B-2, C-13

s tyEe files ?-2, *6, 4-12, 6-10
SAVE comnand 2-3r +-12, 8-4, 8-12, 8-19, 8-34
sector interl-eaving 3-22, 3-23, 8-3, 8-39, C-8
SEEK couland 5-3, 5-5, 6-6
Eelf-sync bytes 3-4, 3-7, 3-8, 3-lO, 3-11, 8-37, 8-4O, C-13
sequential file rl-1o, 4-1I
skewing - see Eector j-ntelleaving
Elave diskette 5-6, 5-7, 7-L, 't-3
slot nunber 6-2, 6-5 to 6-?, 6-10 to 6-t2, 6-15, 8-1, 8-3, 8-4,

8-28, 8-33, 8-35 to 8-38
soft errors 4-16
soft sectoring 3-2'
stepper motor 3-2, 6-2, 8-37

T,/L list - see track/sector]-j.st
rElcr file 2-I, 4-6, 4-7, 4-IO, +-Lt, +-L7, 6-10, A-2
tool.ki-t, DOS 2-2, 4-lZ, !t-2
track/sector List rF8 to +-IO, 4-I7, 4-I8, 6-8, 6-LO to 6-13,

5-15, 8-1?, e-22, A-23, A-25, A-2? to 8-29, 8-32, 8-33,
A-2, A-15, C-5, C-15

translate table 8-37, c-15

tNIpCK connand' 5-2, 6-A, 6-11, 8-4, 8-1O, 8-19, 8-24, A-32
utility prog!.uns, A-]. to A-26

coPY, convelt files
^-?,

A-2O to A-26
DUllP, track dump facj.Ij.ty A-1, A-4 to A-?
flts, find T,/S list A-2, A-16 to A-20
INIf, reformat single track A-2, A-I2 to A-I5
ZAP, alisk up,alate utility A-1, A-O to A-11

vectorE, DOS 5-2, 5-4, 5-5, 6-l?
VERIFY comtnand 2-3, 4-L7, 5-2, 6-A, 6-1. g-4, A-lZ, S-I9, A-ZS,

8-3ll
vicleo intercept handler 8-3, 8-5
video intelcept state 8-6, 8-8
t€OC, volume table of contents 2-3, 3-2, 4-Z to 4-5, 4-LA, S-5,

6-'1, A-23, g-25, A-26, 8-29, B-3O to B-33, C-Is
warmstart 5-5, 8-5, 8-8, 8-15, 8-2O, C-I5

8-13, 8-14, 8-19. 8-23

?,AP 4-r7, 4-LA, A-42, L-L, A-16, C-16
zero palle, EIOS usage S-42

t-4

;r,'

!rb,

':

t.:

*'
':

Be-neoth Apple DOS

	Beneath Apple DOS - Doen Worth and Pieter Lechner
	Table of Contents
	1-Introduction
	2-Evolution of DOS
	3-Diskette Formatting
	Tracks and Sectors
	Disk Organization
	Track Formatting
	Sector Interleaving

	4-Diskette Organization
	Diskette Space Allocation
	The VTOC
	Bitmaps of Free Sectors on a Track

	The Catalog
	Catalog Sector Format
	File Descriptive Entry Format

	The Track/Sector List
	Track/Sector List Format

	Text Files
	Binary Files
	Applesoft and Integer Files
	Other File Types (S,R,newA,newB)
	Emergency Repairs

	5-The Structure of DOS
	DOS Memory Use
	The DOS Vectors in Page 3
	DOS Vector Table ($3D0-$3FF)

	What Happend During Booting

	6-Using DOS from Assembly Language
	Caveat
	Direct Use of Disk Drive
	Stepper Phase Off/On
	Motor Off/On
	Engage Drive 1/2
	Read a Byte
	Sense Write Protect
	Write Load and Write a Byte
	Calling Read/Write Track/Sector (RWTS)
	Inout/Output Control Block
	Device Characteristics
	RWTS IOB by Call Type
	SEEK
	READ
	WRITE
	FORMAT

	Calling the DOS File Manager
	Parameter List Format
	Parameter List by Call Type
	OPEN
	CLOSE
	READ/WRITE
	DELETE
	CATALOG
	LOCK
	UNLOCK
	RENAME
	POSITION
	INIT
	VERIFY

	DOS Buffers
	The Filemanager Work Area
	Common Algorithms
	Locate a Free DOS Buffer
	Get DOS Version
	Is DOS Loaded?
	Which Basic is Selected?
	See if a Basic Program is in Execution

	7-Customizing DOS
	Slave vs Master Patching
	Avoiding Reload of Language Card
	Inserting a Program Between DOS and Its Buffers
	BRUN or EXEC the HELLO File
	Remove the Catalog Pause

	8-DOS Program Logic
	Boot0: DISK II Controller Card ROM
	Boot1: First RAM Boostrap Loader
	DOS 3.3 Main Routines
	9D00: Relocatable Address Constants
	9D10: DOS Video State Handler
	9D1E: Command Handler Table
	9D56: Active Basic Entry Point Table
	9D62: Image of INTEGER Entry Point
	9D6C: Image of Entry Point ROM-Applesoft
	9D78: Image of Entry Point RAM-Applesoft
	9D84: DOS Coldstart Entry
	9DBF: DOS Warmstart Entry
	9DEA: DOS First Entry Processing
	9E51: Image of DOS Page 3 Jump Vectors
	9E81: DOS Keyborad Intercept Routine
	9EBA: Jump to KSWL Handler
	9EBD: DOS Video Intercept Routine
	9ED1: Common Intercept Save Registers
	9EEB: State 0 Output Handler
	9F12: State 1 Output Handler
	9F23 State 2 Output Handler
	9F2F: State 3 Output Handler
	9F52: State 4 Output Handler
	9F61: State 5 Output Handler
	9F71: State 6 Output Handler
	9F78: Finish RON Command
	9F83: DOS Command Scanner
	9F95: Echo Character on Screen
	9FB3: DOS Exit Routine
	9FC5: Jump to CSWL Routine
	9FC8: Skip a Line on the Screen
	9FCD: DOS Command Parser
	A17A: Process Command
	A180: Do Command
	A193: Check if CmdLine Char is CR or Comma
	A1A4: Flush CmdLine until Non-Blank
	A1AE: Clear FM Parameter List
	A1B9: Convert Operand from Command Line
	A1D6: Decimal Convert
	A203: Hex Convert
	A229: PR#n Command Handler
	A22E: IN#n Command Handler
	A233: MON Command Hanler
	A23D: NOMON Command Handler
	A251: MAXFILES Command Handler
	A263: DELETE Command Handler
	A271: LOCK Command Handler
	A275: UNLOCK Command Handler
	A27D: VERIFY Command Handler
	A281 RENAME Command Handler
	A298: APPEND Command Handler
	A2A3: OPEN Command Handler
	A2A8 Common FM Handler
	A2EA: CLOSE Command Handler
	A2FC: Close File anf Free Buffer
	A316: Close all open Files
	A331: BSAVE Command Handler
	A35D: BLOAD Command Handler
	A38E: BRUN Command Handler
	A397: SAVE Command Handler
	A3D5: Open and Test File Type
	A3E0: Write two Bytes to a Open File
	A3FF: Read/Write a Range of Bytes
	A410: Issue "FILE TYPE MISMATCH" Message
	A413: LOAD Command Handler
	A450: Select INTEGER BASIC
	A47A: Read Two Bytes from File
	A4AB: Close File and issue "PROGRAM TOO LARGE"
	A4B1: Select Desired BASIC
	A4D1: RUN Command Handler
	A4E5: INTEGER BASIC RUN Entry Point Intercept
	A4F0: CHAIN Command Handler
	A4FC: APPLESOFT ROM RUN Entry Point Intercapt
	A506: APPLESOFT RAM RUN Entry Point Intercapt
	A510: WRITE Command Handler
	A51B: READ Command Handler
	A526: READ/WRITE Common Code
	A54F: INIT Command Handler
	A56E: CATALOG Command Handler
	A57A: FP Command Handler
	A59E: INT Command Handler
	A5B2: Set ROM to Desired BASIC
	A5C6: EXEC Command Handler
	A5DD: POSITION Command Handler
	A60E: Write One Data Byte to File
	A626: Read One Data Byte from File
	A65E: Test run or command mode
	A679: Close Current File, Warmstart DOS
	A682: EXEC Read One Byte from File
	A68C: Read Next Textfile Byte
	A69D: Ser $40,$41 to Point to EXEC File Buffer
	A6A8: File Manager Driver Routine
	A6C4: Misc Error Messages
	A6D5: Error Handler
	A702: Print Text of Error Message
	A71A: Complete File Manager Parameter List
	A743: Copy Primary Filename to File Buffer Field
	A74E: Copy Current Buffer Pointers to FM ParmList
	A75B: Reset State to 0, Set Warmstart Flag
	A764: Locate an Open or Free File Buffer
	A773: Get First Byte of Filename Field
	A792: Point $40,$41 at First File Buffer on Chain
	A79A: Point $40,$41 at Next File Buffer on ChainV
	A7AA: Get First Byte of Filename in File Buffer
	A7AF: See if Current Buffer Belongs to EXEC
	A7C4: Check File Type
	A7D4: Initialize DOS File Buffer Chain
	A851: Replace DOS Keyboard/Video Intercept Vectors
	A884: DOS Command Name Text Table
	A909: Command Valid Keywords Table
	A941: Keyword Name Table
	A94B: Keyword Flag Bit Positions Table
	A955: Keyword Value Valid Range Table
	A971: Error Message Text Table
	AA3F: Error Message Text Offset Index Table
	AA4F: DOS Main Routines Variables
	AA66: Keyword Values Parsed From Command and Defaulted
	AA75: Primary FileName Buffer
	AA93: Seondary (RENAME) FileName Buffer
	AAB1: DOS Main Routines Constants and Variables
	AAC1: Filemanager Constants
	AAC9: Filemanager Function Routine Entry Point Table
	AAE5: Filemenager Read Subcode Handler Entry Point Table
	AAF1: Filemanager Write Subcode Handler Entry Point Table
	AAFD: Filemanager External Entry Point
	AB06: Filemanager Main Entry
	ABDC: Initialize Filemanager Workarea
	AC06 CLOSE Function Handler
	AC3A: RENAME Function Handler
	AC58: READ function Handler
	AC6A: Return Code = 3, Bad Subcode
	AC6D: FILE LOCKED Error Return
	AC70: WRITE Function Handler
	AC87: POSITION AND READ ONE BYTE Subcode Handler
	AC8A: READ ONE BYTE Subcode Handler
	AC93: POSITION AND READ RANGE OF BYTES Subcode Handler
	AC96: READ A RANGE OF BYTES Subcode Handler
	ACA8: Read a Data Byte
	ACBB: POSITION AND WRITE ONE BYTE Subcode Handler
	ACBE: WRITE ONE BYTE Subcode Handler
	ACC7: POSITION AND WRITE RANGE OF BYTES Subcode Handler
	AACA: WRITE A RANGE OF BYTES Subcode Handler
	ACDA: Write a Data Byte
	ACEF: LOCK Function Handler
	ACF6: UNLOCK Function Handler
	ACFB: LOCK/UNLOCK Common Code
	AD12: POSITION Function Handler
	AD18: VERIFY Finction Handler
	AD2B: DELETE Function Handler
	AD89: Free a Sector
	ASD98: CATALOG Function Handler
	AE2F Skip a Line on Catalog Printout
	AE42: Convert ($44) to Three-Chars and Print it
	AE6A: Restore Filemanager Workarea from Filebuffer
	AE7E: Save Filemanager Workarea in Filebuffer
	AE8E: INIT Function Handler
	AF08: Select a Buffer by Setting $42,$43 to Point to It
	AF1D: Checkpoint Write Data Sector Buffer to Disk
	AF34: Checkpoint Write T/S List Sector Buffer to Disk
	AF4B: Prepare for RWTS Call with a T/S List Sector
	AF5E: Read a T/S List Sector to File Buffer
	AFDC: Read a Data Sector
	AFE4: Prepare for RWTS with Data Sector
	AFF7: Read/Write the VTOC Buffer
	B011: Read a Directory Sector
	B037: Write Directory Sector
	B045: Prepare for RWTS for Directory Buffer
	B052: Read/Write Track/Sector (RWTS) Driver
	B0B6: Read Next Data Sector
	B134: Add a New Data Sector to File
	B15B: Increment Record Number and Byte Offset into File
	B194: Increment File Position Offset
	B1A2: Copy and Advance Range Address
	B1B5: Decrement Range Length
	B1C9: Locate or Allocate a Directory Entry in the Catalog
	B21C: Copy Filename to Directory Entry
	B230: Advance Index to Next Directory Entry in Sector
	B23A: Switch to Second Pass in Directory Scan
	B244: Allocate a Disk Sector
	B2C3: Release Pre-Allocated Sectors in current Track and Check the VTOC
	B2DD: Free One or More Sectors
	B300: Calculate File Position
	B35F: Error Exits
	B37F: Exit Filemanager
	B397: Filemanager Scratch Space
	B3A4: Decimal Conversion Table
	B3A7: File Type Name Table Used by CATALOG
	B3AF: ASCII Test "DISK VOLUME", backwards
	B3BB: VTOC Sector Buffer
	B4BB: Directory Sector Buffer
	B5BB: Filemanager Parameter List
	B5D1: Filemanager Workarea
	B600: Start of Boot2/RWTS Image
	B700; DOS 2nd Stage Boot Loader
	B74A: Put DOS on Tracks 0-2
	B793: Read/Write a Group of Pages
	B7B5: Disable Interrupts and Call RWTS
	B7C2: Set RWTS Parameters for Writing DOS
	B7D6: Zero Current Buffer
	B7DF: DOS 2nd Stage Boot Loader ParmList
	B7E8 RWTS ParmList
	B7FB: Device Characteristics Table (DCT)
	B800: PRENIBBLE Routine
	B82A: WRITE Routine
	B8B8: Write a Byte Subroutine
	B8C2: POSTNIBBLE Routine
	B8DC: READ Routine
	B944: RDADR Routine
	B9a0: SEEKABS Routine
	BA00: Arm Move Delay Subroutine
	BA11: Arm Move Delay Table
	BA29: Write Translate Table
	BA96 Read Translate Table
	BB00: Primary Buffer
	BC00: Secondary Buffer
	BC56: Write Address Field During Initialization
	BCC4: Write Double Byte Subroutine
	BD00: Maine Entry to RWTS
	BD19 Update Slot Number in IOB
	BD34: SAMESLOT
	BD54: Move Pointers in IOB to Zeropage
	BD74: Select Appropriate Drive
	BD90: Get Destination Track and Go to It
	BDAB: TRYTRK
	BDBC: Initialize Maximum Retries and Read Address Field
	BDED: RDRIGHT Verify on Correct Track
	BE04: DVRERR
	BE0B: Used to Branch to ALLDONE
	BE0D: FORMDSK
	BE10: RTTRK Check Volume Number
	BE26: CRCVOL See if Sector is Correct
	BE46: ALLDONE
	BE48: HNDLERR
	BE51: WRITE Write a Sector
	BE5A: MYSEEK
	BE8E: XTOY Routine
	BE95: Set Track Number
	BEAF: INIT Command Handler
	BF0D: TRACK WRITE Routine
	BF62: VERIFY TRACK Routine
	BF88: Sector Map Routine
	BFA8: Sector Initialization Map
	BFB8: Sector Translate Table
	BFC8: Patch Area
	BFDC: Patch Called from $A0E2
	BFE6: Patch Called from $A6D5
	BFED: Patch Called from $B377
	DOS Zeropage Usage

	A-Example Programs
	DUMP - Track Dump Utility
	Description
	Listing

	ZAP - Disk Update Utility
	Description
	Listing

	INIT - Reformat a Single Track
	Description
	Listing

	FTS - Find T/S Lists Utility
	Description
	Listing

	COPY - Convert Files
	Description
	Listing

	B-Disk Protection Schemes
	C- Glossary
	Index
	Back Cover

