
The Apple
CP/M Book

Marray Arnow

The Apple
CPIM Book

The Apple
CP/M Book

Murray Arnow, Ph.D.

Scott, ForeSDlan and CODlpany
Glenview, Illinois London

ISBN 0-673-18068-9

Copyright © 1985 Scott. Foresman and Company.
All Rights Reserved.
Printed in the United States of America.

Library of Congress Cataloging in Publication Data

Arnow, Murray.
The Apple CP/M book.

Includes index.
1. CP/M (Computer operating system) 2. Apple II

(Computer)-Programming. 3. Apple II Plus (Computer)
Programming. 4. Apple lIe (Computer)-Programming.
I. Title.
QA76.76.063A76 1985 001.64'2 85-2393
ISBN 0-673-18068-9

1 2 3 4 5 6 7-RRC-90 89 88 87 86 85

Apple II and Apple lIe are trademarks of Apple Computer, Inc.
CP/M, ZSID, ED, DDT, STAT, PIP, and CP/M 2.0 Interface Guide are copyrighted

by Digital Research, Incorporated.
SoftCard and Premium SoftCard lIe are trademarks of Microsoft Corporation.
WordS tar is a trademark and is copyrighted by MicroPro International

Corporation.
8080 and 8085 are trademarks of Intel Corporation.
Z-80 is a trademark of Zilog, Incorporated.
Pascal is a trademark of the UCSD Board of Regents.
Diablo is a trademark of Xerox Corporation.

Notice of Liability

The information in this book is distributed on an "As Is" basis, without
warranty. Neither the author nor Scott, Foresman and Company shall have any
liability to customer or any other person or entity with respect to any liability,
loss. or damage caused or alleged to be caused directly or indirectly by the
programs contained herein. This includes, but is not limited to, interrupion of
service, loss of data, loss of business or anticipatory profits, or consequential
damages from the use of the programs.

Preface

The intent of this book is to introduce the Apple II, Apple II Plus, or Apple
lIe computer user to the world of CP/M. The book is meant primarily to
be a tutorial on CP/M and in this sense does not deviate greatly from the
large library of books on that subject. This book differs in detail from the
others in that the examples used and explanations given are aimed
toward Apple users. It is assumed that the Apple user has a working
knowledge of Apple DOS; when possible, comparisons are made to Apple
DOS. There are many examples and detailed descriptions to aid those
with less experience. Some of the explanations require a rudimentary
knowledge of binary numbers. Appendix A gives an elementary review of
binary numbers.

There is a distinction between disk and diskette used throughout
this book. An 8-inch floppy disk is called a disk. A 5IA-inch floppy disk is
called a diskette. This com plies with standard usage. This distinction
may seem artificial to an Apple user, but it is necessary. CP/M was first
developed for 8-inch disk drives. The understanding of how CP/M works
is directly related to this fact.

The needs of advanced users are not ignored. A description of the
Microsoft BIOS is included, with suggestions on modifications. It is
assumed, however, that the advanced user has some programming skills
at the assembly-language level and that he or she is familiar with the
physical layout of the Apple.

I have tried to make each chapter self-contained so that the reader
need not search through the book whenever a new term or concept is
introduced. The problem with such an approach is that it makes some
repetition inevitable. My teaching experience has shown me, however,
that, although repetition can be boring to some, it is often welcomed by
others when unfamiliar material is introduced.

Contents

1 Introduction 1
What Is CP/M? 1
Why Use CP/M? 2

2 Getting Started 4
Installing the CP/M Card 4
The A> Prompt 5
The Directory 5
Making Copies 6
A QUick Look at the System 6

3 The Structure of CPIM 9
The Memory Organization 9
The CCP 10
The Transient Command File 18
A Summary of CCP Built-in and Miscellaneous Commands 19
A Summary of CCP Line-Edit Commands 20

4 Fundamentals 21
The CP/M Concept 21
CP/M Devices 22
The Microsoft Use of Physical Devices 25
Disk I/O 25

5 The STAT Utility 29
Disk Space 29
File Size and Parameters 30
Altering File or Disk Status 31
Physical Device Assignments 32
Disk Parameters 33
User Areas 34
The STAT Help Command 35
A Summary of STAT Commands 35

8 The PIP Utility 37
Copying Files 37
File Concatenation 38

Error Conditions 39
Swapping Disks 39
The CCP Command Line 40
Copying Files to a Device 40
PIP Parameters 42
Special PIP Devices 48
A Summary of PIP Assignments 49

7 The SUBMIT Utility 52

8 The DDT Utility 55
Loading a Disk File into Memory 55
Saving Data to a Disk File 56
More on Loading a File 57
Displaying Memory 58
DDT Commands for the Nonexpert 59
DDT Commands for the Advanced User 61

9 The ED Program 69
Loading or Creating an ED File 69
Editing Text 70
An Example 72
ED Command-Mode Instructions 74
ED Insert-Mode Commands 79
Error Messages 79

10 The BIOS 81
BIOS Functions 81
The Microsoft Vector Jump Table 85
Other CP/M Requirements 87
Zero-Page BIOS Requirements 90
The Standard Microsoft SoftCard 91
Peripheral Cards 94

11 The Microsoft Version 2.20B BIOS 97
The BIOS Map 97
The CPM56.COM Map 101
The CPM56 Diskette Map 102
CPM56 Card Driver Entry Points 103

12 The Microsoft Version 2.23 BIOS 104
The BIOS Map 105
The CPM60.COM Map 110
The CPM60 Diskette Map III
CPM60 Card Driver Entry Points 112

13 Patching the Microsoft Standard SoftCard BIOS 113
Squashing Microsoft Version 2.20B Bugs 113
Squashing Microsoft Version 2.23 Bugs 115
Using Other Slots for the Printer 115
Stopping the Printer from Double-spacing 119
Adding XON/XOFF Handshaking 120

14 The Microsoft Premium SoftCard lie (2.28 BIOS) 122
The Comparison to Earlier BIOS Versions 122
The PS lIe Hardware and Software'Configuration 123
PS lIe Standard 6502 BIOS Calls 128
The 6502 BIOS 135
The Z-80 BIOS 140
The PS lIe Diskette Map 143

15 Uploading and Downloading 144

Appendix A: Binary Numbers 147
The Definition of a Binary Number 147
The Hexadecimal Number 148
Converting Decimal to Hexadecimal Notation 149
More Definitions 150

Appendix B: ASCII 151

Appendix C: A Primer on Diskettes 155
The Physical Diskette 155
Sector Skewing 156
The CP/M Diskette 157

Appendix D: The CPIM RWTS (Versions 2.20B and 2.23) 159

Index 161

Introduction

II What Is CP/M?
CP/M is a copyrighted name belonging to Digital Research, Incorporated;
it stands for Control Program for Microprocessors. CP/M is an operating
system (aS). The term operating system is computer jargon for the
collection of programs used by a computer to communicate with the
world. This world as seen by a computer is its hardware, such as the
keyboard, the display device, the printer, the disk drives, and any other
devices that may be plugged in. A good operating system should permit
the computer user to easily access the hardware.

The disk drive is a special piece of hardware and in general requires
a great deal of attention. The disk drive is used to read information from
or write information to a magnetic disk placed in the drive (refer to
Appendix C for a detailed description of disks and disk drives.) The disk
may be thought of as a chalkboard where information can be written and
saved or erased, as required. The problem with a disk is that, although
information can be saved on it at arbitrary physical locations, these
arbitrary locations cannot be random. This means that there must be a
plan to putting information on a disk. Without a plan, the computer could
never retrieve anything saved on a disk. Information is usually stored on
a disk in physical segments calledfiles. The file locations are stored in a
special disk area called the directory. Whenever new information is
written to a disk, the as must create a file and put the address of its
location in the directory. If the information is to be retrieved, then the as
uses the directory data to find the file and read its contents back to the
computer. An as must also be able to delete files, add information to a
previously created file, and read a specified segment of information
from a file.

CP/M is an operating system that has become the de facto standard
for computers using the Intel 8080 or 8080-compatible microprocessors.
It is virtually impossible to find a computer using the Intel 8080, Intel
8085, or Zilog Z-80 microprocessor that doesn't feature CP/M as its as.
Consequently, there is currently a tremendous inventory of programs,
both commercial and in the public domain, available to the user. The

1

2 • Introduction

remarkable thing about these programs is that they can run, with a few
noted exceptions, on any computer operating under CP/M. The reason for
this is the machine-independent structure of CP/M; details of the CP/M's
internal workings are covered later in this book.

II Why Use CP/M?
As an Apple owner you are probably wondering what justification there is
for installing a CP/M operating system in your computer. There are three
reasons serious Apple users such as business people and programmers
should consider.

The first reason is that you can tap into a source of program material
not available under Apple DOS. For instance, there are compilers
available under CP/M for FORTRAN, COBOL, Pascal, FORTH, BASIC, C,
ADA, and so on; there are some extremely powerful business packages,
such as data-base programs, whose quality is frequently better than that
of similar programs found in Apple DOS.

The second reason is related to the lack of standards for Apple DOS.
Many vendors, in an attempt to protect their programs written for the
Apple, have created their own nonstandard operating systems that are
incompatible with Apple DOS. This means that making backup copies of
a disk is often difficult, time-consuming, and expensive. The disk files
made by these proprietary operating systems are frequently unusable by
programs written by different vendors. Conversely, there is no copy
protection under CP/M. Technically speaking, a copy-protected disk
cannot have a CP/M format. However, there is another reason for the lack
of copy protection: the program vendors are sensitive to the fact that
many of their customers are businesses that need the ability to back
up their disks. After a recent attempt by the vendor of a successful
commercial program to copy-protect its disk, there was such a strong
public reaction that the vendor relented and distributed its wares on
standard CP/M-format disks.

The final reason for acquiring CP/M is that under CP/M, files created
by programs written by one vendor can usually be read and modified by
programs written by a second vendor. For instance, it is possible to create
a document on any of the currently available word-processing programs
and have the spelling checked by any of a number of spelling-checker
programs. This compatibility is due in part to the CP/M's structure and in
part to the fact that vendors realize that the more compatible their
programs are, the more easily they are sold.

Let us assume that I have persuaded you to give CP/M a try. You can
install CP/M in your Apple by getting one of the currently available CP/M
packages. These packages will contain at the very least a Z-80 card (the

Why Use CP/M? • 3

Microsoft Z-80 cards are called the SoftCard and the Premium SoftCard
lIe). This is required because CP/M is 8080 (or Z-80) microprocessor
based, and the Apple's native microprocessor is the 6502. The Z-80 card
will plug into one of the slots on the Apple's motherboard. This card is so
designed as to take over the 6502's control of the Apple when a CP/M
diskette is booted. The Z-80 may be in control of the Apple, but it still
must call on the 6502 to perform certain hardware functions, so in effect
the Apple CP/M has two microprocessors working in concert.

The package will also contain the CP/M master diskette, which when
booted loads the operating system into the Apple's memory. The diskette
will have a collection of programs supplied by Digital Research and the
Z-80 card's manufacturer. There will be at least one manual included
that will contain the Digital Research description of CP/M and the
accompanying software (software is jargon for computer programs). The
card's manufacturer will usually include instructions on installing the
card and using the software.

You should be able to run CP/M on an Apple with one disk drive, a
Z-80 card, and at least 32K of memory. This is the minimum hardware
configuration. I strongly recommend that if you do not possess a second
disk drive, you get one. CP/M can create such enormous files that
sometimes it is impossible to fit both a program and its data file on
one disk. Also, CP/M is not extremely tolerant of disk swapping. Disk
swapping is almost inevitable with a one-drive system. Finally, the
cardinal rule for all computer users is to make backups; this procedure
is greatly simplified with two disk drives.

Many CP/M software packages are designed to run on terminals that
have screen widths greater than 40 columns. You are therefore well
advised to also install an 80-column video card in your Apple. The
80-column card will give the added convenience of displaying lowercase
letters (assuming that your Apple is a version prior to the Apple lIe,
which includes lowercase capability).

If you own an Apple lIe, you may wish to install the Microsoft
Premium SoftCard lIe. This card goes into the auxiliary slot and provides
the capabilities of an extended-memory 80-column card and a Z-80B
microprocessor, which operates nearly three times faster than the Z-80A
microprocessor used on the cards installed in the other Apple slots. The
disadvantages of this card are that it is more expensive and that making
modifications to its operating system is extremely difficult, even for the
advanced user. This means that highly specialized hardware may have
difficulties with the Premium SoftCard lIe.

Getting Started

_ Installing the CP/M Card

4

The very first thing you should do after acquiring a CP/M package is to
read the installation instructions. The instructions will have one thing
in common. They will all say to turn off the power to your Apple before
inserting or removing any cards in any of the slots on the Apple
motherboard. If you do not heed this warning, than you are almost
certain to damage the cards, the Apple, or both.

After the CP/M card is installed, it should be booted. Booting is
jargon for starting up, in this case turning on the power with the CP/M
master diskette in the Apple's drive 1. This seemingly simple operation
sometimes causes problems for the new user because of the conflicting
instructions given in the Apple manuals.

The recommended procedure is to power up your Apple with the
door to drive 1 left open. After the noise of the drive recalibration has
stopped, place the diskette into drive 1, and gently close the door. This
may contradict Apple's instruction not to touch the drive when the in-use
light is on, but it is safe. Diskette damage will occur only if the drive is in
the write mode. When the Apple is powered up, the drive is in the read
mode, and closing the drive door at this time will cause no damage. I
recommend this procedure because if there is a malfunction, then
minimal diskette damage will result. The drive head will be on track 0
of the diskette, and that will probably be the only damaged track (see
Appendix C). Track 0 contains the CP/M operating system only. In this
way the data tracks are left undamaged and may be recovered. The
description of the Apple diskette tracks can be found in your Apple DOS
manual. The description of the diskette's physical layout applies to both
Apple DOS and CP/M. Another suggestion is to open the drive door before
turning the Apple off. This again will minimize the chances of your
damaging a diskette if there is a malfunction.

The power-up boot in CP/M is called the cold boot. The first three
tracks of the master diskette are put into the Apple's memory. These
three tracks are called the system tracks because the CP/M operating
system is contained there. When the cold boot is completed, a message

The Directory • 5

will be displayed showing the CP/M version number and copyright
notices. You will also notice that if you have an 80-column card placed in
slot 3 or the auxiliary slot of the Apple lIe, then the display mode is in the
80-column format. You will also get an 80-column display if a Microsoft
Premium SoftCard lIe was installed in the Apple lIe auxiliary slot. Below
is the cold-boot screen display for one of Microsoft's versions of CP/M.

Softcard CP/t'l
44K I.)et-. 2.23

(c) 1980,1982 Microsoft

II The A> Prompt
The symbol A> is called a prompt and will appear after the cold booting
of CP/M in all computers. The meaning of A> is that the active drive is
A:. The active drive is the drive that CP/M will access when a file is
requested. The drive names require some explanation. CP/M uses letters
to deSignate drives; Apple DOS uses slot and drive numbers to deSignate
drives. Currently, all Apple CP/M versions deSignate drive A: to be drive 1
in slot 6, drive B: to be drive 2 in slot 6, drive C: to be drive 1 in slot 5,
and so on. The colon (:) after the drive designation is standard CP/M
nomenclature to distinguish a device from a file. This will be clarified
later, but for the time being assume that whenever you refer to a drive
you must always follow the drive name with a colon.

II The Directory
The first thing you should do after completing the cold boot is to look at
the directory by entering without any spaces

DIP<CP>

The <CR> stands for carriage return, which you get on the Apple by
pressing the RETURN key. The diskette directory will then be printed to
the screen. The directory is analogous to the Apple DOS CATALOG and is
a listing of all the files stored on the diskette. Below is the directory
listing of a Microsoft master diskette.

Microsoft Master Diskette Directory

A: CAT COt'l COt·~F I G I 0 BAS DDT COt'l BOOT COt'l
A: t'lFT COt'l PATCH COt'l CPt'16(1 COt'l PIP COt'l
A: ::;TAT COt'l ASt'l COt'l AUTOF.:UH COt'l LOAD COt'l
A: COP\' COt'l ADPOS COt'l SUBt'lI T COt'l ::-::SUB COt'l
A: DUt'lP ASt'l DUt'lP COt'l DO~·Jt·~LOAD COt'l t'lBAS I C COt'l
A: GBASIC COt'l ED COt'l

8 • Getting Started

II Making Copies
The second thing you should do is to make a copy of the CP/M master
diskette. The master diskette should contain a program for formatting
and copying diskettes. The Microsoft copy program is suitably named
COPY.COM. Microsoft CP/M version 2.20B requires the running of
FORMAT to format the diskettes. To run FORMAT simply type

FOPt'1AT <: CP >
and respond to the screen prompts. Incidentally, FORMAT notices if the
diskette has been previously formatted. I suggest that you reformat the
diskette you will copy the master diskette to. After the diskette has been
formatted, the master diskette can be copied. To invoke COPY, enter

The COpy program will be loaded from the diskette and run. The
program will then prompt you in the making of the copy and return you
to the console prompt A>. A formatting progam doesn't come with
Microsoft's CP/M versions 2.23 and higher. The copy program for these
CP/M versions will format diskettes automatically. At this point you may
notice the differences between CP/M and Apple DOS. To run a program in
CP/M you need enter only the progam's name. To run a program in Apple
DOS you must enter RUN or BRUN followed by the program's name.

Place your original CP/M master in a safe place, and make a second
copy of the CP/M master using the duplicate master. Always keep at least
two copies of the master diskette, and never use the original unless
absolutely necessary. Making backups is the most important duty in
maintaining a computer. If you are negligent in this task, you may
someday find yourself spilling coffee on your only copy of a diskette
containing irreplaceable files.

II A Quick Look at the System
Now that you have made backup copies of the CP/M master diskette, you
can safely expore the system. The first thing you probably noticed was
that it was when the A> prompt appeared that commands such as DIR
were entered into the computer. This is because CP/M loaded a special
program into the computer called the Console Command Processor (CCP).
Assuming that you already know Apple DOS, you are familiar with how
to enter commands such as CATALOG from the keyboard. The keyboard
input routine is built into Apple DOS. What we are getting at is that the
operating system must supply a means of entering commands from the

A Quick Look at the System • 7

keyboard, also called the console. In CP/M the CCP is the part of the
operating system that· handles the keyboard commands.

Before proceeding, be sure to write-protect the CP/M master backups
by placing tabs over the diskette notches. Put one CP/M master diskette
in drive A: and the other in drive B: (drives 1 and 2, respectively), and
enter CONTROL-C (hold down the CONTROL key while you press the C
key). This is called a warm boot, and it tells the operating system to
forget about any previous operations and start up fresh. In this particular
instance, drive A: will become active; then the A> prompt will appear on
the next line, followed by the screen cursor.

A word of caution at this point: Apple DOS allows you to be almost
careless about the placement of spaces in a command line; CP/M does
not permit this luxury. Commands by the user should start immediately
following the prompt; for instance, entering

A>DIF.:<CF.:>

will print the directory of the diskette in drive A:. To print the directory of
the diskette in drive B:, enter

A>DIF.: B:<CF.:>

Notice the space between DIR and B:.
The active drive in the previous examples has been A:. Any

commands that involve disk access automatically assume that the active
drive is the drive to be accessed. For instance, the command

DIF.:<CF.:>

printed the directory to drive A: without our explicitly specifying drive A:.
The active drive is also called the default drive. The word default is
frequently used in computer jargon to refer to the data the computer
assumes if no data is given by the user. Because default is so commonly
used, we will use it in preference to the word active.

You change the default drive to B: by entering B: after the A>
prompt, as shown below.

A>B:<CF.:>

produces

B>

on the next line. You will notice that the prompt has changed and now
indicates that the default drive is B:. Before changing the default drive,
be sure that you have placed a CP/M-formatted diskette in drive B:.

8 • Getting Started

Otherwise, you will get an error message, and the situation can get a little
messy. Entering

DIP<CP>

now will print the drive B: directory. The drive A: directory is printed
by entering

DIP A:<CP>

Changing the default drive back to A: is done analogously by entering

A:<CP>

This completes the preliminary discussion on starting up CP/M. The
remaining chapters will enable you to better understand the role of the
software in the operation of CP/M.

The Structure
of CP/M

• The Memory Organization
Knowing how CP/M is laid out in the computer's memory will help you
understand how CP/M works. The following description assumes that you
are familiar with hexadecimal notation. If you are not familiar with
hexadecimal numbers, you may wish to refer to Appendix A.

The CP/M memory is arranged in the following way. The memory
locations from OOOOH to OOFFH are reserved by CP/M for internal use.
The suffix H used here means that the number is a hexadecimal
representation. The memory locations from OIOOH to the beginning of
the BOOS (Basic Oisk Operating System) are called the TPA (Transient
Program Area). The TPA is where all programs are loaded. This implies
that all standard CP/M programs start at OIOOH. You may now notice a
significant difference between Apple DOS and CP/M. Apple DOS places
almost no restrictions on where programs can be loaded or run.

Above the TPA is the BOOS. The BOOS is supplied by Oigital
Research and contains the routines used by programs in the TPA to read
from and write to disk files, operate the keyboard and display device
(called the console), and I/O (input or output) to other physical devices
such as printers and modems. The BOOS starts at CCOOH for the 56K
version of CP/M, at OCOOH for the 60K version of CP/M, and at ECOOH
for the 64K version of CP/M. The BOOS locations depend only on the
memory configuration of the computer. This means that, for example, all
computers with the BOOS placed at CCOOH will be running the 56K
version of CP/M.

Immediately above the TPA is the BIOS (Basic Input Output System).
The BIOS is the only part of CP/M that differs from one type of computer
to another. The BIOS is used by the BOOS to access the computer's
hardware, which includes the console, disk drives, and printers. Since
CP/M programs interact with the computer through the BOOS, they are
insensitive to the differing BlOSs. There is no restriction on where the
BIOS may reside in memory as long as it does not interfere with the
BOOS or the TPA. Generally, the BIOS resides directly above the BOOS.
In the Apple using the standard Microsoft SoftCard, the 56K BIOS starts

9

10. The Structure of CP/M

at DAOOH, which is immediately above the BDOS, while the 60K BIOS
starts at F800H, which is not adjacent to the BDOS. An Apple lIe using
the Microsoft Premium SoftCard lIe (PS lIe) has part of the BIOS inside
the BDOS area. The PS lIe is a 64K CP/M version, and Microsoft calls it
version 2.26.

II The CCP
When CP/M is first booted, it is placed in the command mode. This is
evidenced by the A> prompt. The command mode is actually a program
called the CCP (Console Command Processor). The CCP is loaded into
memory just below the BDOS. Because the CCP is not loaded into the
TPA at OIOOH, you can run many CP/M programs without overwriting
the CCP. This is very useful and convenient for programmers and is
particularly helpful in debugging programs. The CCP, however, may be
overwritten by a program to make more memory available. For this
reason, the warm boot reloads the CCP into memory.

The warm boot is a CP/M routine that reinitializes the computer. It is
commonly used by programs as a way of exiting to the command mode.
The warm boot must reset certain parameters, reload the CCP, and put
the computer into the command mode. Since the CCP is loaded from the
disk in drive A:, there must always be a CP/M-bootable disk in drive A:
prior to a warm boot. You cause a warm boot, for example, by entering a
CONTROL-C while CP/M is in the command mode.

The CCP is used only when CP/M is in the command mode, that is,
when a prompt such as A> is displayed. The CCP prompt may take the
form B> or C> or D>, and so on, up through P>. The letter in the
prompt indicates which disk drive is the default drive. CP/M allows up to
sixteen disk drives. The Apple user, however, is permitted only six drives
in Microsoft's CP/M version 2.20B and only four drives in Microsoft's
CP/M versions 2.23, 2.25, and 2.26.

The CCP is the link between your Apple's keyboard and CP/M. The
CCP has built-in commands just as does Apple DOS, but the CCP and
Apple DOS commands have only a few similarities, which will become
apparent as they are discussed. The CCP command line (that is, the line
on which the CP/M prompt, such as A >, appears) can be as long as 255
characters. The command is accepted only after a carriage return is
entered (you enter a carriage return on the Apple by pressing the
RETURN key). There is one exception to the carriage return requirement.
If you press CONTROL-C at the beginning of a line, you need no carriage
return. CONTROL-C performs a warm boot.

The CCP • 11

CCP Line-Edit Commands
The CCP has the following line-editing features:

1 .- The backspace (same as CONTROL-U) backspaces and
overwrites the character to the cursor's left. The CCP backspace is
similar to the Apple DOS backspace, but you cannot go further left
than the CP/M prompt, A>.

2 CONTROL-X This command deletes the entire command line by
backspacing to the CP/M pro~pt.

3 DELETE This is CONTROL-@ on the Apple II. This command
removes the character typed and echoes that character back to the
terminal. This command is a holdover from teletypewriter (TTY)
days, and you do not need it when you are using the Apple display
monitor. Its use may cause you some confusion and therefore should
be avoided.

4 CONTROL-E This command performs a jump to the beginning of
the next line without issuing a carriage return. CONTROL-E is of
value to TTY users.

5 CONTROL-R This command writes a # at the cursor and jumps to
the beginning of the next line. The current command line is then
retyped. Again, this command is of value to TTY users.

6 CONTROL-J This is the line feed command. Entering it has the
same effect as pressing the RETURN key.

7 CONTROL-M Entering this command is another way of entering a
carriage return and therefore has the same effect as pressing the
RETURN key.

The CCP console input routine has one more very useful command.
CONTROL-P is a switch for echoing the screen output to the printer. First
of all, a printer must be connected to an interface card in slot 1 of your
Apple in order for this command to have any meaning. You can enter
CONTROL-P at any time to cause the screen output to appear at the
printer. You turn off the printer output by again pressing CONTROL-Po
You turn the printer output on and off by alternate CONTROL-P entries.
Be sure that the printer is turned on before using CONTROL-Po If the
printer is off. the computer will probably hang up. You can restore the
computer to normal operation by turning the printer on.

Technically speaking, the CONTROL-P command is not a CCP
command; it is a BDOS command. The BDOS is used by the CCP to print
to the console. When the BDOS sees a CONTROL-P coming from the CCP,
the console output is then echoed to the printer.

12. The Structure of CP/M

CONTROL-S is another BDOS command that is used by the CCP.
Pressing CONTROL-S while there is output to the console, such as with
the DIR command, stops the output. The console output is resumed after
any other console key is pressed.

Again, the CCP commands are entered immediately after the prompt
and are always terminated by the pressing of the RETURN key. The
notation < CR > after each command is to be understood and will no
longer be explicitly written in this text. A description of the built-in CCP
commands follows.

CCP Built-in Commands
DIR
DIR prints the directory of files found on a diskette. DIR is similar to the
Apple DOS CATALOG command. If the default drive is A:, then the
directory of the diskette in A: is obtained by entering

DIP

Please note that you do not enter the prompt A>, but that you enter
DIR immediately after A >. To get the directory of the diskette in drive
B:, enter

DIP B:

We can generalize this last command to

DIP ::-:::

where x: is the drive on which the directory is to be displayed. The
allowable values for x are A, B, C, ... , P. An Apple with two drives will
allow only the values A and B for x. The directory example below
illustrates the way files may be named in CP/M.

Sample Directory

A: DDT COt'l PIP COt'l DUt'lP A:::;t'l LETTEP T>::T

A: I t·~I')ADEPS BAS PEGPES::; FOF.: S ·SGEt·~ PEL LETTEP
A: PESUt'lE DOC DUt'lP HE::-=: I t·~I')Et·~T I t·~I')Et·~ 2
A: DUt'lP PPt·~ PEPL'/

You will notice that some file names (PIP COM, LETTER TXT, and
DUMP ASM, for instance) consist of two parts. The second part of the file
name is called the extension or file type. File names need not have
extensions, but extensions help the user differentiate among various
kinds of CP/M files. For instance, here the TXT extension is used to
indicate that the file LETTER. TXT is simply a text file, while the ASM
extension is used to indicate that file DUMP.ASM is an assembly
language source-code file. The period between the file name and file

The CCP • 13

extension is standard nomenclature in CP/M. The rules to follow for
naming files are that

1 The file name must not exceed eight characters in length.

2 The file name must not contain the following characters:

<
>

?
*

3 Blank spaces are not permitted.

4 The file extension must not exceed three characters in length.

The DIR command permits the use of ambiguous file names and file
types. An ambiguous name is one that contains either question marks (?)
or asterisks (*) in place of a character or characters. The question marks
and asterisks so used are called wild-card characters. For example, let's
assume that your diskette contains the files shown below.

A: t'1'lTE::-:;T
A: 'lOUP

T::-::T : OUP
T::-n : LETTEP

T::-:;T : t'1\'TE::-:;T 1
T::-:;T : DOCUt'1Et·~T

TXT : MYTEXT1A TXT
: LA::;T BAS

You wish to get a listing of only those files with names that begin with
MYTEXT and have the extenstion TXT. The command

DIP t'1'lTE::-:;T? T::<T

will print the following display to the console screen:

A: t'1'lTE::-::T TXT : MYTEXTl TXT

The? is used as an ambiguous character (a wild card), which means that
any character found in the ambiguous character's position is to be
ignored. The command

DIP ????????TXT

will display all files with the extension TXT. Remember that a file name
may contain up to eight characters; therefore, eight ?s are required to list
all possible files with the TXT file extension.

14. The Structure of CP/M

The use of ambiguous characters is handy, but having to fill the
name with ?s can be tedious. There is a shortcut available. It is the *.
The * may be used to fill the remaining available positions with ?s.
For example:

DIP *. T::·::T

is equivalent to DIR ????????TXT. Or if you want to list all file names
beginning with Q and having the extension DOC, then

DI~: 0*. DOC

will produce the desired results. The ambiguous character may also be
used in file-name extensions. For example:

DIP t'1'lTE::<T? ?::<?

and

D I~: t'1'lTE>::T? *
are valid commands. Finally, each of the following three commands will
produce the complete directory listing of the diskette in drive B:.

DIP B:
DIP B:???????????

DI~: B:*.*

Please note the use of spaces in the above examples. The DIR is a
CCP command. All CCP commands must be followed by one space to
separate the command from the remainder of the command instruction.
There are no other spaces permitted in the command line. Unlike Apple
DOS, CP/M is quite finicky about spaces. If you find that you are getting
error messages after entering commands. the first thing you should check
is whether there are any extraneous spaces typed into the command line.

REN
REN is used to rename a file. REN is similar to the Apple DOS RENAME
command. but there is a major difference in the order in which the file
names must appear. To rename the file LETTER.TXT to TEXT.LTR
requires entering

A)PEN TEXT.LTP=LETTEP.TXT

A DIR command will now show that the file LETTER.TXT has been
replaced by TEXT.LTR.

The logic of the REN command line structure is mathematical. You
may think of the command as an algebraic equation: the left side of the

The CCP • 15

equation is set equal to the right side. The mathematical analogy is used
in all CP/M commands containing an equals sign. (Strictly speaking, this
is not algebraic logic but memory replacement logic, the difference being
that under memory replacement the memory location remains the same,
but the contents of the location get altered, whereas algebraic logic would
assign a new location to a new value. Fortunately, the distinction need
not be made by the user for nearly all the applications found in this text.)

REN can be used with or without file-name extensions. Consider the
following three REN command lines:

REN NEWFILE=OLDFILE
REN NEWFILE.DOC=OLDFILE
REN NEWFILE=OLDFILE.TXT

The renamed files will appear in the directory with or without extensions
as demanded by their new names.

You can rename a file on any drive by specifying the file drive in the
command line. For example:

REN B:NEWNAME=B:OLDNAME

says that the file OLDNAME on drive B: is to be renamed NEWNAME. It
is important that the drives specified on both sides of the equals sign be
the same; otherwise an error condition will result. If you think of the
equals sign as signaling an equation, you can avoid most errors. The use
of ambiguous characters is not permitted in the REN command.

Sometimes the error message

BDOS ERROR: R/O

will appear if an attempt is made to rename a file. There are two sources
of this error. The first is that there is a write-protect tab on the diskette.
The second is that the diskette was not properly logged in (usually
because there has been a diskette change in the drive but there has been
no warm boot). The solution to the first problem is to remove the
write-protect tab. The solution to the second problem is to do a warm
boot by pressing CONTROL-C.

ERA
The ERA command erases files. ERA is similar to the Apple DOS
DELETE command. Examples of ERA in use are

ERA BADFILE
ERA t"Ktt"~EED. T>::r
EPA OLlr??"? 1'/.1

ERA *.DOC

16. The Structure of CP/M

If ambiguous characters are used, all files with names fitting the
ambiguous description will be erased. For instance, the command
ERA * .DOC will erase all files with the DOC file-name extension. The use
of ambiguous characters in the ERA command should not be haphazard.
Once a file is erased, there is no CP/M command to restore it. For this
reason, when the command

EPA *.*
is given, the CCP responds with

ALL ('l/t·~)?

If a Y is entered, the disk is completely erased.
An attempt to erase a file may produce the error message

BDOS EPPOP ON x:P/O

where x is the drive name (any letter A through Pl. The solution is the
same as that given'in the REN discussion.

The erasure of a file does not mean that the file is destroyed. It
means that the directory space where the file name and file allocation
information are stored is internally labeled as available to be overwritten
by a new file.

TYPE
The TYPE command has no equivalent in Apple DOS. TYPE reads a file
and prints it to the console. This useful command lets you determine
what a file contains without having to load it into a text editor. Consider
two examples of usage:

T'lPE LETTEP.DOC
T'lPE B: D I AP'l

The file prints to the screen quite rapidly. If you want to stop the
printing temporarily, press CONTROL-So To restart the printing, press
any other key. To abort the TYPE command, press any key other than
CONTROL-So

Ambiguous file names cannot be used with TYPE. Using the TYPE
command on nontext files can produce some strange results and should
be avoided.

USER
CP/M allows you to assign files to specific groups in the disk directory.
These groups are called user areas. Up to sixteen user areas may be
specified. To enter a user area, issue the command

U:::EP n

TheCCP • 17

where n is any number 0 through 15. User areas may be used to
segregate the diskette files. For instance, the correspondence files may be
kept in user area 0, the accounts receivable files in user area 1, the
accounts payable files in user area 2, and so forth. Only one user number
can be in effect at a time; therefore, the current user number is active
for all logged-in drives. For example, if drive A: is active and you change
the user area to 1, then the user area for drive B: is automatically 1.
You cannot use drives A: and B: simultaneously with different user
area numbers.

DIR commands will list the files of the currently active user area
only. For that matter, all CCP commands act only on the currently active
user area. You cannot erase a file in user area 1 if you are logged into user
area 3. Unfortunately, the CCP doesn't provide a means for displaying the
user area number. The user area number can be made known through
the STAT utility discussed in chapter 5.

Lest you wax ecstatic over the virtues of user areas, you should
know that there is a major inconvenience involved in using them. You
cannot easily get files to cross user areas. This means, for example,
that a word-processing program such as WordStar, if it is stored in user
area 0, cannot load files from user area 1. If you need WordStar for user
area 1, you must transfer it either by using the CCP SAVE command or
by using the PIP utility covered in chapter 6. In either instance, you
would have the WordStar program saved twice on the same diskette,
which is a wasteful use of disk space. For this reason, the use of user
areas is discouraged for the Apple. User areas are better suited to
systems with large-capacity disk drives. The Apple 5 1,4-inch drive has a
capacity of a little over 100 kilobytes, which is not enough to make user
areas viable.

The default user area number is O. The cold boot always brings you
up in user area O.

SAVE
The SAVE command is similar to the Apple DOS SAVE, but its use is
much more restricted. The SAVE command will write to the diskette the
memory area starting at 01 OOH and ending at a specified location. It is
used primarily in conjunction with the DDT utility. The SAVE command
is included here for completeness, but it is discussed more fully in
chapter 8.

You may have noticed that all the CCP commands have appeared in
uppercase letters. Unlike Apple DOS, CCP does not in fact restrict you to
using uppercase only. If you have an Apple lIe or a lowercase adapter for
your Apple II, you can enter all CCP input in lowercase if you want.

18. The Structure of CP/M

The CCP converts all input to uppercase. The directory appears in all
uppercase letters, and the command

d i t- * .. t >:: t

generates the same results as

DIP *. T::<T

II The Transient Command File
Comparing the CCP to Apple DOS at this point will give you the
impression that Apple DOS has nearly five times as many commands as
does the CCP. This is not an accurate impression. The CCP can extend its
command options to be almost limitless by using transient command
files. To understand how the CCP uses a transient command file, consider
the following example.

Assume that you wish to transfer the file DUMP .ASM from the
diskette in drive A: to the diskette in drive B:. The diskette in drive A:
must have two files on it. It must obviously have DUMP .ASM, and it must
also have the file called PIP.COM. The command that will transfer the file is

PIP B: =DUt'1P • ~r:;t'1

The disk drives will go into action in response to this command. The file
will be transferred, and the CP/M prompt will reappear. A directory listing
of drive B: will now include the file DUMP.ASM.

The CCP handled the PIP command by first looking for PIP in its
internal command list. PIP is not an internal CCP command, so the CCP
then looked for a transient command file in drive A: with the name PIP. A
transient command file is identified by the extension COM. The CCP then
loaded PIP into the TPA, where PIP was then run. PIP then processed the
rest of the command line and returned to the CCP by doing a warm boot.
A complete description of PIP may be found in chapter 6.

Anything entered on a command line and followed by a carriage
return is considered by the CCP to be a command. If the command isn't
internal or in the transient command file found on the diskette, the CCP
echoes the command line and follows it with a ?

The transient command has a very useful extension. If, for example,
the currently logged-in drive is B: and the file PIP.COM is on drive A:, the
last example becomes

A:PIP B:=DUMP.ASM

The generalized transient command is

x:tcfile (command line)

A Summary of CCP Built-in and Miscellaneous Commands • 19

where x: is the drive where the transient command file (tejile) is to be
found. The drive can be omitted in the command; then the currently
active drive is assumed. An optional command line is permitted. The
command line in the example just cited is B: = DUMP.ASM.

The use of transient command files is similar to the use of RUN and
BRUN in Apple DOS, but the entering of the file name is sufficient to
run the program. Note that running a transient command file requires
typing the name of the file without the extension; typing PIP.COM would
produce an error message. The traqsient command file allows the
inclusion of a variety of parameters in the command line. Apple DOS
allows only a very restricted use of command parameters.

There is a way to fool the CCP into ignoring a command line. Typing
one of the following characters as the first entry in a command line will
prevent the CCP from acting:

,,:'

':"

This feature is useful for making comments. The CONTROL-P switch
may be activated to get a hard copy. Digital Research doesn't document
this feature. It therefore may not be present in CP/M versions other
than 2.2x.

The Apple has a RESET key that is not defined by CP/M. Microsoft in
its CP/M versions 2.20B and 2.23 has made hitting the RESET key cause
a warm boot. Other Apple CP/M versions make pressing the RESET key
cause the system to perform a cold boot.

II A Summary of CCP Built-in and
Miscellaneous Commands
The CCP built-in and miscellaneous commands are as follows:

CONTROL-C Causes a warm boot. You need no carriage return
(Apple RETURN key) to enter the command.

CONTROL-P Acts as a switch to toggle on and off the listing device,
that is, the printer. The Apple's listing device is the device connected
to slot 1.

CONTROL-S Stops terminal output. The output resumes if any key
is pressed.

DIR x:filename.ext Searches the diskette directory of drive x: and
displays all matching files. Ambiguous file names are allowed in the

20. The Structure of CP/M

command line. If no drive is specified, the active drive is assumed. If
no files are specified, then all files are displayed.

ERA x:filename.ext Erases the file on drive x: with the specified
file name. If no drive is specified, the active drive is assumed.
Ambiguous file names are permitted. Using ambiguous file names
erases all matching files.

REN x:filenamel.extl =x:filename2.ext2 Renames the file
namedfilename2.ext2 on drive x: asfilenamel.extl. Ambiguous file
names are not permitted. If the drive is not specified, the active drive
is assumed.

SAVE n x:filename.ext Saves the memory in the TPA starting
at 256 (100H) and ending at [(n + 1) x 256] to the diskette with
the specified name. If the drive is not specified, the active drive
is assumed.

TYPE x:filename.ext Prints the specified file to the screen. The
CONTROL-P and CONTROL-S switches are active. If no drive is
specified, the active drive is assumed.

USER n Changes the user area; n may be any value 0 through 15.
The cold boot always brings up user area O.

II A Summary of CCP Line-Edit Commands
The CCP line-edit commands are as follows:

~ The backspace character. Deletes the character to the left of
the cursor.

CONTROL-X Deletes all characters on the current command line.

CONTROL-R Retypes the current line.

CONTROL-J Generates a carriage return-line feed combination.
This is equivalent to pressing the Apple RETURN key.

CONTROL-E Terminates the current command line without
causing the CCP to take action!

DELETE Deletes the character to the cursor's left while echoing
that character to the console. The Apple II uses the CONTROL-@ for
this function.

Fundamentals

II The CP/M Concept
CP/M is meant to be an operating system that is not computer-specific, so
that a program written on computer x can be run without modification
on computer y. The only condition CP/M imposes is that the computer
use an 8080 or Z-80 microprocessor. The method used by Digital
Research, Incorporated (DRI) to create this computer-independent
operating system will now be discussed.

DRI divided the CP/M operating system into two parts. The first part
is called the Basic Disk Operating System (BDOS). The second part is
called the Basic Input Output System (BIOS). The BDOS is the heart of
the CP/M operating system and is copyrighted by DR!. The purpose of
the BDOS is to act as an intermediary between the program and the
computer's hardware. A program written for a CP/M-based computer
accesses the hardware by calling a routine in the BDOS. As an example,
let's write the letter A to the video monitor. Incidentally, CP/M assumes
that all BDOS calls are in machine language, which means that the
example must be in machine language. The prescribed method for
writing the A to the monitor is to place 4lH in the Z-80's E register,
place 2H in the Z-80's C register, and perform a call to location 5H
(hexadecimal notation is used; see Appendix A). These instructions will
write the letter A to the screen of any computer operating under CP/M.

CP/M versions 2.20 and higher have thirty-nine BDOS routines for
hardware and disk file manipulation. The BDOS calls and procedures are
included in the Microsoft CP/M documentation. Some suppliers of Apple
CP/M do not include this documentation in their packages. Be sure to
inquire if the DRI CP/M 2.0 Interface Guide is part of the documentation.
It is possible to acquire all the generic CP/M documentation directly
from DR!.

The CP/M programmer benefits greatly from the BDOS since writing
software is Simplified by not having to consider the hardware variations
among computers. Computers, however, do vary greatly among
manufacturers. CP/M handles these variations by making the BDOS
interact with hardware through the BIOS.

21

.2. Fundamentals

The second segment of the CP/M operating system, the BIOS, is not
supplied by DRI, but DRI does specify what the BIOS must do. It is left
to the computer user or manufacturer to provide the BIOS. The BIOS
must contain routines that perform seventeen hardware input/output
functions. These 110 functions must be placed in a specified memory
location, and they must perform the hardware functions defined by DRI.
A detailed discussion of the BIOS is given in chapter 10.

The BIOS hardware routines perform simple functions such as
reading a character from the keyboard or reading a disk sector into
memory. The BDOS integrates the simpler BIOS functions into routines
that can do considerably more complex tasks. For instance, the BDOS
uses the BIOS disk-sector read and write routines to create disk files,
delete disk files, append disk files, form disk directories, and so on. The
BDOS can do this because it knows that in order to read a given disk
sector, all it has to do is initialize the registers of the Z-80 in a certain
way and call a routine at a known memory location. The BDOS can write
to a disk sector and perform similar hardware 110 by analogous methods.

II CP/M Devices
CP/M brings uniformity to the myriad configurations by creating logical
devices. The BDOS performs all its I/O in terms of logical devices. The
reason for this is that the BDOS doesn't know what hardware (physical
devices) is attached to the computer. A command, such as one that
outputs data to a printer, results in the BDOS's writing the data to the
logical listing device called LST:. The BDOS output to the LST: device
goes to the LST: routine in the BIOS. The BIOS LST: routine then routes
the output to the proper physical device, that is, the printer. You can
understand the usefulness of such a scheme if you consider the instance
of two printers attached to the computer. One is a fast dot-matrix printer,
and the other a slower daisy-wheel printer. We wish to quickly print
out the rough draft of a letter that is stored in a disk file. The BIOS is
instructed (through IOBYTE, discussed below) to write the LST: output to
the dot-matrix printer. If we use the CONTROL-P switch and list the letter
with the CCP TYPE command, the letter will be printed on the dot-matrix
printer. In a similar way, we can instruct the BIOS to print the letter on
the daisy-wheel printer.

CPIM Logical Devices
The logical devices used by CP/M are the following:

CON: The console device, which includes the keyboard and
display device. This is the default device used by the CCP (Console
Command Processor).

CP/M Devices • 23

RDR: The paper-tape reader. This name is a throwback to an
earlier time. Paper punches are not frequently seen on today's
microcomputers. RDR: has become a generic name for a wide class of
input devices.

PUN: The paper-tape punch, another name that is a throwback.
PUN: is the generic name for any of a variety of output devices.

LST: The output listing device. This is most commonly a printer.

You have probably noticed that all devices have names that end with
a colon. The colon is used by CP/M as a delimiter that identifies devices.
Delimiter is computerese for a symbol that is used by the computer to
indicate the beginning or end of a data string. This is why you use a
colon in certain commands when requesting a disk operation, such as

A> II I P B: * . COt·~
The disk drive is a device, and the directory command will know to look
to drive B: for the directory.

The CON: and LST: devices are directly accessible from the CCP; the
RDR: and PUN: devices are not. The LST: device is activated by the
CONTROL-P switch.

Associated with each logical device is an assortment of physical
devices. The assignment of a physical device to a particular logical device
takes place in the BIOS. Because the logical devices are generic, physical
devices can be assigned in ways that may seem slightly odd. For
example, it is possible to assign the CRT: physical device to the logical
LST: device. This assignment makes the output of the LST: device appear
on the video monitor instead of going to a printer.

CPIM Physical Devices
The physical devices that may be assigned to the logical devices are
the following:

TTY: The teletypewriter device. This is the slow console device,
which is usually a printer-keyboard combination.

CRT: The cathode-ray-tube device. This is the high-speed
console device.

BAT: The batch-processing device. The input is the current RDR:
device. The output is the current PUN: device.

UCl: The user-defined console device. This device can be anything
the CP/M user desires, provided it can perform the functions of
a console.

PTR: The high-speed paper-punch reader.

24. Fundamentals

URI: The user-defined reader device. This device is an alternate
input device defined by the user.

UR2: A second-user defined reader device.

PTP: The high-speed paper-tape-punch device.

UPl: A user-defined punch or input device.

UP2: A second user-defined punch or input device.

LPT: The line printer.

ULl: A user-defined list device, usually a second printer.

As mentioned above, the physical devices are selected by the
changing of the IOBYTE. For further information on the reassignment
of physical devices, see chapter 5.

The IOBYTE is found at memory location 0003H and defines
the active device by the bit arrangement. Table 4.1 shows the bit
configuration for each physical device. Note that this table also gives the
allowable physical-device assigments for each logical device.

To see how these concepts are used, consider the case in which the
BDOS is requested to send a character to the printer. The BDOS outputs
to the printer by placing the character in the C register of the Z-80 and
calling the sixth BIOS function, named LIST. The LIST function looks at

Table 4.1 • IOBYTE Bit Configuration

Logical Physical
Device Device IOBYTE

CON: TTY: xxxxxxOO
CRT: xxxx xxOl
BAT: xxxx xxlO
UCI: xxxx xxII

RDR: TTY: xxxxOOxx
PTR: xxxx Olxx
URI: xxxx 10xx.
UR2: xxxx llxx

PUN: TTY: xxOOxxxx
PTP: xxOl xxxx
UPI: xxlO xxxx
UP2: xxII xxxx

LST: TTY: OOxxxxxx
CRT: Olxx xxxx
LPT: 10xx xxxx
ULI: llxx xxxx

Disk 1/0 • 25

the 2 high bits of the IOBYTE and decides which output routine to use. If
the 2 bits are cleared. the character will be sent to the TTY: device. If the
leftmost bit is cleared and the adjacent bit is set. the character is sent to
the CRT: device. If the leftmost bit is set and the adjacent bit is cleared.
then the character is sent to the LPT: device. If both bits are set. then the
character is sent to the UL 1: device.

You can alter the IOBYTE by using DDT (see chapter 8) or by using
STAT (see chapter 5). Microsoft CP/M has the following default values for
the IOBYTE:

COt·~: =CPT :
PDP:=PTP:
put·~ : =PTP:
L:::;T: =LPT:

II The Microsoft Use of Physical Devices
Microsoft CP/M implements the physical devices through the use of
vectors in the I/O Configuration Block (IOCB). A vector is a 2-byte location
in memory containing the address of a routine. For the case of the IOCB.
the vectors point to the 110 routines in the BIOS. The IOCB vector
locations depend on whether the BIOS is a standard SoftCard (SS) BIOS
or a Premium SoftCard lIe (PS lIe) BIOS. The 2-byte vector locations are
defined as shown in table 4.2.

Consider again the BDOS's sending of a character to the logical LST:
device when you are using the Microsoft SS BIOS. The BDOS will enter
the BIOS through the LIST function. The LIST function checks the
IOBYTE. If the IOBYTE is of the form OOxx xxxx. then the list function
will read locations F386H and F387H and jump to the address found
there. If the IOBYTE is of the form Olxx xxxx. then the LIST function will
again jump to the address found in F386H and F387H. If the IOBYTE is
of the form lOxx xxxx. then the LIST function will jump to the address
found in F392H and F393H. Finally. if the IOBYTE is of the form llxx
xxxx. then the LIST function will jump to the address found in F394H
and F395H.

II Disk 1/0
The most complex hardware handling that CP/M has to undertake is
the disk I/O. All disk systems partition the media (floppy disks. floppy
diskettes. hard disks. and so on) into tracks and sectors (refer to
Appendix C). The tracks are concentric rings about the center of rotation.
Each track is divided further into sectors. The Apple divides the diskette

28. Fundamentals

Table 4.2 • Microsoft IOCB Vector Locations

Logical
Device

CON:

RDR:

PUN:

LST:

Function

Console Status (This is not a
physical device and is not altered
by the IOBYTE. The Console
Status is a supplementary
function that may be used by
any of the physical devices
assigned to CON:.)

Console input vector for the TTY:
and CRT: devices·

Console input vector for the
UCI: device

Console output vector for the
TTY: and CRT: devices·

Console output vector for the
UCI: device

Reader input vector for the
PTR: device

Reader input vector for the URI:
and UR2: devices··

Punch output vector for the
PTP: device

Punch output vector for the UPI:
and UP2: devices···

List output vector for the
LPT: device

List output vector for the
ULI: device

*Microsoft makes TTY: and CRT: identical.
* * Microsoft makes URI: and UR2: identical.

* * * Microsoft makes UPI: and UP2: identical.

Microsoft BIOS Version

SS PS IIe

F380H F3COH

F382H F3C2H

F384H F3C4H

F386H F3C6H

F388H F3C8H

F38AH F3CAH

F38CH F3CCH

F38EH F3CEH

F390H F3DOH

F392H F3D2H

F394H F3D4H

into thirty-five tracks with each track divided into sixteen sectors. Some
geriatric Apples may have thirteen-sector tracks, but these are no longer
common and will be neglected in this discussion.

Data is written to and read from the diskette one sector at a time. An
operating system such as CP/M will set up a scheme to efficiently store

Disk 1/0 • 27

data on the diskette. The method CP/M uses is to arrange the diskette
into parts: the system tracks, the directory sectors, and the data sectors.
The first two or three tracks are used by CP/M to store the CP/M operating
system, which includes the cold boot program, the BDOS, the BIOS, and
the CCP. The Apple diskette uses the first three tracks as the system
tracks. The track immediately following the system tracks contains the
directory sectors. Since the first track is numbered 0, the directory is
found on track 3 for the Apple. The directory sectors contain the file
names and the locations where the files are stored on the diskette.

The way the BDOS stores files' is a little involved. First of all, files are
stored as blocks, also called groups. A block can have many different
values depending on the computer and the disk drives. The Apple block
is the smallest permissible size of 1,024 bytes. The Apple diskette sector
is 256 bytes; therefore, the block is a unit using four sectors. The BDOS
must write to the diskette in sector units. The blocking algorithm
optimizes the disk-access time by physically locating the block sectors on
the diskette to ensure that a minimum length of time is needed to access
sequentially written sectors. If this seems complicated, there is more. The
BDOS handles the diskette data in logical sectors of 128 bytes. This
makes an Apple block eight logical sectors in length. It is up to the BIOS
to translate the logical sectors into physical sectors.

The reason for logical sectors is to ensure that CP/M programs can be
run on any disk format. The reason for a logical sector's being 128 bytes
is that CP/M was originally written for systems using the IBM 3740 disk
format, which involves an 8-inch disk having seventy-seven tracks,
twenty-six sectors per track, and 128 bytes per sector. The first logical
sector is numbered O. Physical sectors on many disk formats, the Apple
included, also start at O. There is at least one exception to this physical
numbering scheme, and it is the 3740 format, which gives the number 1
to the first physical sector. It is up to the BIOS to relate the proper
physical sector number to the logical sector number. This may seem
to be unnecessary hairsplitting if you have an Apple, since the logical
and physical sectors both start at O. Some disk utilities running under
CP/M assume that your disk has a 3740-type format and start physical
sector numbering at 1. If you don't know what's going on, you can get
into trouble.

The BIOS must provide tables to tell the BDOS how many tracks
there are per disk, how many logical sectors per track, how many system
tracks, the maximum number of directory entries, and some data for
blocking. The Apple diskette has thirty-five tracks, thirty-two logical
sectors per track, forty-eight directory entries, and three system tracks.
Forty-eight is an unusual number of directory entries for most CP/M
systems; sixty-four is more common. Microsoft chose forty-eight entries

28. Fundamentals

because the Apple diskette is small in capacity compared to most other
systems, and the diskette would most probably be filled up before
sixty-four files could be stored. The smaller number of directory entries
also increases the speed of disk operations because directory checks are
frequently made by the BOOS during those operations. The fewer entries
to be checked, the faster the disk operation.

The STAT Utility

The transient command program STAT.COM is a CPIM hardware and disk
statistics program. STAT .COM is a powerful and extremely useful utility
provided by Digital Research. The STAT command enables the user to
check on or change the status of the system hardware or disk files.

_ Disk Space
The STAT command will give the space usage for currently logged-in
diskettes. For example, entering STAT followed by a carriage return
will print

x: R/W~ Space: nnnK

for each drive that has been logged in. A more specific example is

A: R/W, Space: 22K
B: RIO, Space: 100K

Here we have two logged-in drives. The R/W means that drive A: can be
either read from or written to. The RIO means that drive B: is in read-only
condition and cannot be written to. The RIO status can come from
swapping diskettes in drive B: and not relogging in B: with a warm boot
(by issuing a CONTROL-C, for instance). You also make drive B: RIO by
explicitly making it so with the STAT command. The Space in each of the
above examples is the number of kilobytes remaining on the diskette.

The space remaining on a specific diskette may be found by entering

STAT >:::

where x: is the drive requested. For example:

STAT A:

will print

Bytes remaining on A: 22K

29

30. The STAT Utility

If you change the diskettes without doing a warm boot, the STAT
command gives the incorrect remaining space for the swapped diskette. It
is a good idea to do a CONTROL-C before using the STAT command to
ensure that you don't get misleading results.

II File Size and Parameters
The space used by a given file and the status of that file may be found by
entering either

STAT file. e::·::t

or if the file is on drive x:

~:;TAT >::: file. e::<t

For example, we wish to learn the status of the file PIP.COM. The
command

STAT PIP. Cot'1

will print

Rees Bytes Ext Aee
:::k A: PIP. Cot'1

The Recs is the number of 128-byte logical sectors used by the file. Bytes
is the file length in 1,024-byte (kilobyte) multiples. The bytes used are in
block multiples. Remember, for the Apple a block is eight logical sectors,
or 1K. Since one block is the smallest unit allocated to a file, the number
of records (Recs) is often less than the number of blocks times the block
size. For example, the 58 records used by PIP.COM indicates that
fifty-eight logical sectors are actually required to store that file; that is,
PIP.COM is 7,424 bytes long. CP/M, however, requires that eight blocks
be reserved for the PIP .COM file. This means that PIP .COM actually uses
8,192 bytes of disk space. CP/M is slightly wasteful in using disk space.
What is lost in file space economy is more than made up for in increased
speed of disk operations.

The extent (Ext) number is the number of logical extents occupied
by a file. A logical extent is used by the BDOS (Basic Disk Operating
System) for file maintenance and is generally transparent to the user. One
logical extent equals sixteen blocks. The CP/M disk directory stores files
in terms of logical extents. Depending on the file size, the directory will
have the number of entries for that file equal to the number of logical
extents. Consider a 22K file that is two logical extents in length. This file
would be stored in two directory locations and would reduce the number

Altering File or Disk Status • 31

of new files capable of being stored by two. A file using one extent
reduces the number of new files capable of being stored by only one.

The file-access type (Acc) indicates the file status, which may be
read-only (RIO) or readlwrite (R/W). A file that is read-only cannot be
written to or erased. An RIO file is similar to a LOCKED file in Apple
DOS. There is a distinction between an RIO file and an RIO disk. An RIO
disk is equivalent to a disk with a write-protect tab, and it can be
changed to an RlW disk by a warm boot (provided that there really isn't a
write-protect tab on the diskette). An RIO file can be changed to an R/W
file only by the appropriate STAT command (to be discussed shortly).

The STAT command permits the use of ambiguous file names.
For example:

::;TAT *. Cot'1

will give the status of all files with the COM extension. In addition, the
ambiguous character? can be used in the same way as described in
chapter 3. You can learn the status of all files on a diskette by entering

::;TAT *. *
Until now we have considered the status of only directory files. A

directory file is simply a file that is displayed in response to the DIR
command. CPIM permits a second type of file called a systemfile. A
systemfile is not displayed in the directory. A system file, however, is
displayed by a STAT command. If the file SAMPLE.TXT is a system
file, then

STAT SAt'1PLE. r::-::T

will display

Rees Bytes Ext Aee
2k 1 R/W (A:SAMPLE.TXT)

if SAMPLE.TXT is set to R/W. Notice that a system file is identified by
being enclosed in parentheses.

II Altering File or Disk Status
The STAT command can be used to change the status of a file or disk. A
drive may be set to RIO by a command such as

STAT B:=R/O

or generally

STAT ::<: =R/O

32. The STAT Utility

where x: is the drive name.
A file or a group of files can be made RIO by commands of the

following types:

STAT LOCKUP.DOC $R/O
STAT *. COt'l $F.:/O
STAT MANY???TXT $R/O

These may be generalized to

STAT x:filename.ext $R/O

where x: is the drive name.
Much as files can be made RIO, they can be made R/W. The general

instruction is

STAT x:filename.ext $R/W

A file can be made a system file with the command

STAT x:filename.ext $SYS

and a file can be made a directory file with the command

STAT x:filename.ext $DIR

The ambiguous file names can be used in all of the above STAT
commands.

II Physical Device Assignments
STAT will display the current logical device assignments with the
command

~=;TAT DEI):

Typically, STAT DEV: will print

cot·~ : is CRT:
RDF.: : is PTR:
PUt·~ : is PTP:
LST: is LPT:

An explanation of the logical and physical devices is given in chapter 4.
The logical devices may be reassigned with commands such as the
following:

STAT U:;T: =UL 1 :
~=;TAT PUt·~: =CRT:
STAT PTR:=UR1:

Disk Parameters • 33

More than one device assignment is permitted in the command line. The
last three assignments could have been written as

STAT LST:=UL1:,PUN:=CRT:,PTR:=URI

Each assignment must be separated by a comma without spaces. The
available physical assignments have been shown above. The Microsoft
CP/M BIOS (Basic Input Output System) for the Apple makes the
aSSignments of physical devices unique. Again, please refer to chapter 4
for the discussion of the logical and,physical device assignments for
the Apple.

II Disk Parameters
The command

will display the disk parameters of each logged-in drive. This command is
intended primarily for systems with drives that can read more than one
disk format. For instance, 8-inch drives can have single-density or double
density formats and can be single-sided or double-sided. Density here
means the density of bytes that can be stored on a disk; a double-density
disk stores approximately twice as many bytes as a single-density disk.
The variety of disk formats is almost limitless, especially if high-density
hard disks are considered. Due to the varying capacities of disks
available, the STAT DSK: can be quite useful. The standard Apple
computer, however, can accommodate only one disk format, so that,
typically, when you request STAT DSK:, the following is displayed:

A:Drive Characteristics
1024: 128 Byte Record Capacity

128: Kilobyte Drive Capacity
48: 32 Byte Directory Entries
48: Checked Directory Entries

128: Records/ Extent

7':' •

~: Records/ Block
:::ectors/ Track

3: Reserved Tracks
"-'':'- .

Let's examine the drive characteristics, entry by entry:

1 The 128-byte record capacity is the number of 128-byte logical
sectors available for data and directory space. The Apple diskette has
1,024 logical sectors, which translates into 512 physical sectors.

34. The STAT Utility

2 The kilobyte drive capacity is a restatement of entry 1. A kilobyte is
1,024 bytes. It takes eight logical sectors to make 1 kilobyte.
Consequently, entry 1 is always eight times entry 2.

3 The 32-byte directory entry is called a File Control Block (FCB). The
Apple can have a maximum of forty-eight FCBs. The FCB contains
the information as to where a file is stored on the diskette. At least
one FCB is required for each directory entry.

4 The checked directory entries gives the number of directory entries
identified when the drive is logged in. The purpose of checking the
entries is to recognize if the diskette has been changed in the drive
without that drive's having been relogged in. If this check isn't made,
it is possible that the BDOS could overwrite files and make a
shambles of the diskette. The number of directory entries checked is
usually the same as the value given in entry 3.

5 An extent is 128 logical sectors. A file record is one logical sector.
Extents are used by the BDOS for file maintenance. In CP/M 2.2
there are 128 records per extent. The extent is 16 kilobytes.

6 The records per block is the number of logical sectors per block. The
block is the minimum disk space allocated to a file. The Apple block
is 1 kilobyte, or eight logical sectors.

7 The sectors per track is actually the number of logical sectors per
track, which for the Apple is thirty-two.

S The reserved tracks are the tracks forbidden to the BDOS for data
storage. These are usually the system tracks where the CP/M image
is stored. The cold and warm boots load from the system tracks. The
Apple requires three system tracks.

II User Areas
CP/M gives no ready indication which user area is active for the currently
logged-in drives. The STAT command

:::TAT U:::P:

will list the currently active user number and the user areas whose
directories have files. A typical display is

Acti'v"::! U~:5E:!t- : 1
Active Files: 0 1 2

This display indicates that the current user area is 1 and that user areas
0, 1, and 2 have files stored in their directories.

A Summary of STAT Commands • 35

_ The STAT Help Command
A help command is available for the identification of the possible

device assignments. The command

::;TAT I.)AL:

results in the following listing.

Temp RIO Disk: d:=R/O
Set Indicator: d:filename.typ $PIO $R/W $SYS $DIR
Disk Status DSK: d:DSK:
User Status USR:
Iobyte Ass il:;Jn:
COt·~ : = TT ' : CRT: BAT: UCi:
RDR: TT'l: PTR: URi: UR2:
PUt·~ : = TT'l: PTP: UPi: UP2:
U:;T: = TT'l: CRT: LPT: UL i :

The d: in the above is the optional drive name. Because it is possible
under CP/M to name a drive d:, the optional drive name in this book is
usually referred to as x:.

II A Summary of STAT Commands
The STAT commands are as follows:

STAT Displays the R/W or RIO attributes of each logged-in drive and
the space remaining on each drive.

STAT x: Displays the space remaining on the specified drive.

STAT x:filename.ext Displays the statistics of the specified file.
Ambiguous file names will list the statistics of all matching files. If
the drive is omitted, the active drive is assumed.

STAT x:filename.ext $attribute Places the file attribute in the
disk directory. Ambiguous file names are allowed. If the drive is not
specified, then the active drive is assumed. The attributes are
as follows:

RIO read-only
R/W read/write
SYS system file, not displayed in directory
DIR directory file, displayed in directory

STAT x:DSK: Displays the drive characteristics of the specified
drive. If the drive is not specified, then the characteristics of all
logged-in drives are displayed.

38. The STAT Utility

STAT USR: Displays user areas with active files for each
logged-in drive.

STAT DEV: Displays the current physical device assignments
belonging to each logical device.

STAT logical device=physical device or
STAT logdev 1 =phydev 1 ,logdev2 = phydev2, ... ,logdevn =phydevn
Assigns the specified physical device to the specified logical device by
altering the IOBYTE.

STAT VAL: Displays all available STAT commands, file assignments,
and device assignments.

STAT USR: Displays user areas with active files for each
logged-in drive.

The PIP Utility

• Copying Files
The Peripheral Interchange Program (commonly called PIP) is another
extremely useful utility provided by Digital Research. PIP provides the
means to transfer disk files between drives and all other logical and
physical devices. PIP can be used even to merge files.

Typing PIP at the prompt will put you in PIP's command mode. The
PIP command mode is identified by the prompt's becoming an asterisk
(*). You may exit from PIP to the CCP (Console Command Processor) by
either pressing RETURN or entering CONTROL-C. PIP uses the equals
sign (=) in the logical sense described in chapter 4. PIP is most often used
to copy disk files. The files may be copied to another drive, or they may
be duplicated on the same drive. The simplest form of the file-copy
command is

x:filel.extl=y:file2.ext2

where x: is the destination drive and y: is the source drive. This
command will copy file2.ext2 from drive y: to drive x: and store it under
the name file 1. ext 1. An example is

B:MYTEXT=A:YOUR.TXT

where the file YOUR. TXT is copied from drive A: to drive B: and renamed
MYTEXT.

When drive names are omitted, the currently active drive is
assumed. For the case in which A: is the active drive, the above example
can be changed to

B:MYTEXT=YOUR.TXT

If B: is the active drive, then the example becomes

MYTEXT=A:YOUR.TXT

If the destination file name is omitted, then the copied file has the
same name as the source file:

B: =A: \'OUR. T>::T

37

38. The PIP Utility

is the same as

B:YOUR.TXT=A:YOUR.TXT

An interesting aspect of PIP is that the command

B: 'lOUR. T>::T=A:

will also perform the copying, although this form is not recommended.
When the destination file's name is given and the source file's name is
omitted, PIP assumes that both names are identical and proceeds with
the copying.

PIP may be used to duplicate a file on the same diskette; for example,
the command

A:OUR.TXT=A:YOUR.TXT

will duplicate the file YOUR.TXT and name the duplicate OUR.TXT.
The use of ambiguous file names is permitted when you are copying

files between two drives and the source and destination files have the
same name. Consider the following examples.

B: =A : * . COt'1

copies all files with the COM extension.

B: =A: ??? T>n

copies all files that have three-letter names and the extension TXT.

B: =A : >::??\' • *
copies all files with four-letter names beginning with X, ending with y,
and having any extension. And

B:=A:*.*

copies the entire diskette in drive A: to the diskette in drive B:.

II File Concatenation
PIP will also merge files, that is, concatenate files in a given sequence.
The concatenation command is

x:newfile.ext=y:oldfilel.ext~z:oldfile2.ext~ ... ~p:oldfileN.ext

where X:, y:, Z:, and p: are drive names. If the drive names are omitted,
then the currently active drive is assumed. An example is

B:NEW.TXT=MYTEXT~YOUR.TXT~OUR.TXT

Swapping Disks • 39

This command creates the file NEW.TXT with YOUR.TXT added to the
end of MYTEXT and OUR. TXT added to the end of that file.

II Error Conditions
An error condition may occur if the diskette fills up before the copy is
completed. PIP will then print an error message and either terminate the
copying or ask for a response. If a termination occurs, the copied file
appears in the directory with a $$$ extension. PIP uses the $$$ file
extension as the destination file na'me during the copy process. At the
completion of the copying, the file is then renamed.

Another error condition is indicated by the message

BDOS ERR ON x: RIO

where x: is the destination drive. This condition occurs if the diskette in
the destination drive is swapped but not logged in or if the diskette is
write-protected by either a write-protect tab or the STAT command.
Because the destination drive must be logged in, PIP cannot be used to
copy files between diskettes using the same drive. Remember that the
diskette must be logged in with a CONTROL-C, which will also abort PIP.

II Swapping Disks
There is a condition under which disk swapping is condoned. Assume
that we wish to copy some or all of the contents from the diskette in drive
A: to the diskette in drive B:. The diskette in drive A: must be logged in.
Drive B: must be either logged in or waiting to be logged in. If neither of
the diskettes in A: and B: has the PIP .COM file on it, the diskette from a
logged-in drive may be temporarily replaced by a diskette with PIP .COM
on it. PIP may then be run and the original diskette put back in its drive.
The file copying may now proceed. So, for the example cited, we will
replace the diskette in drive A: with a diskette with PIP .COM and give the
transient command

PIP

We will now replace the diskette in drive A: with the diskette containing
the files we wish to duplicate. Entering

B:=A:*.*

copies the entire diskette. Entering

B: =A : f i 1 e • e::·::t

40. The PIP Utility

copies selected files, as previously discussed. This is possible because it is
not necessary to log in a diskette if only transient command programs are
to be run. A diskette needs to be logged in if files are to be stored on it.
A log-in is done when the drive is accessed for the first time after a
warm boot.

_ The CCP Command Line
PIP allows the use of the CCP command line. For example, entering

PIP B:=A:*.*

is equivalent to entering PIP, then giving the command B: = A: * . *, and
then returning to the CCP through a warm boot. The only difference is
that the CCP command line usage returns you to the CCP if an error is
encountered, whereas the PIP command line usage returns you to the PIP
prom pt after an error.

_ Copying Files to a Device
PIP can also be used to transfer files between logical or physical devices.
For instance, a file may be printed on LST:, the logical list device. The
command from the PIP command mode is

where x: is the drive that contains the file. Again, if x: is omitted, then
the currently active drive is assumed. The CCP command line usage
would be

PIP LST:=x:file.ext

Output to a physical list device is Similarly performed with one of the
physical device designations instead of LST:. For example, the command

PIP LPT:=x:file.ext

will print the file to the printer device assigned as LPT:. Further, the
command

PIP UL1:=x:file.ext

will print the file to the physical ULl: device. The difference between
using the logical device and using one of the physical devices in PIP is
that using the logical device involves using the physical device indicated
by the IOBYTE (see chapter 4), whereas using the physical device directly
bypasses the IOBYTE. Recall that the unmodified Microsoft BIOS (Basic
Input Output System) has LPT: and UL 1: as the same physical device.

Copying Files to a Device • 41

That physical device is connected to the card in slot 1. In chapter 13 we
will examine how to alter the Microsoft BIOS to take advantage of having
more than one physical device.

Transferring a file to the logical or physical punch device is done in a
way analogous to the method for the list device. You can output a file to
the logical punch device with

PUt·~ : =::{ : f i 1 e • e::·::t

while in the PIP command mode, or by

PIP PUN:=x:file.ext

when using the CCP command line. The physical devices are directly
accessed in a like manner, as in the following examples:

PIP PTP:=x:file.ext
PIP UP1:=x:file.ext
PIP UP2:=x:file.ext

The Microsoft BIOS makes the physical devices UPl: and UP2: identical,
with each using the card in slot 2 as its output port. I show in chapter 13
how to modify the Microsoft BIOS to take advantage of the different
physical definitions.

The punch device may be used as a printer if a printer is attached to
a card in the Apple's slot 2. Output to the printer is accomplished by a
PIP command to the PUN: device. Remember to turn on your printer
before using PIP, or you will cause the Apple to hang up. More
commonly, however, the PUN: device is used in conjunction with the
RDR: device to transfer files between two computers. One usually does
this by identifying the PUN: and RDR: logical devices with physical
devices that transfer data serially. The Apple requires a serial-type card in
slot 2 in order to transfer files between itself and another computer. To
perform the transfer, the two computers must be linked by a cable
between their serial ports. Port is jargon for the site at which a computer
can accept input and send output. There are often slight differences in
physical makeup between the serial ports, and the cables must be
designed to accommodate these differences.

Let's assume you have the Apple's serial card connected to the serial
port of a second computer, and you wish to copy the file HIS.TXT from
the second computer to the Apple and rename that file HER. TXT. First
enter the PIP command mode on the Apple, and type

>:: : HEP • T::<T=PD~: :

where x: is the optional destination drive. Then on the second computer
enter the PIP command mode, and type

42. The PIP Utility

PUt·~: =y: HIS. T::-::T

where y: is the optional source drive. The disk drives on both machines
will become active. When the transfer is completed, the prompt will
reappear. The sequence of commands just given is arbitrary and is valid
for any two computers using CP/M. If you want to send a file from an
Apple to another computer, you need only reverse the command
sequence.

The RDR: device is the logical reader device. Had we decided to use a
physical device instead, one of the following would have been necessary:

::<: HEP. T::<T=PTP:
x : HEF.~ • T::<T=UP 1 :
::< : HEF.~. T::<T=UF.~2:

The unmodified Microsoft BIOS makes the physical devices PTR:, UR 1:,
and UR2: identical and has them all receiving the input from the card in
slot 2. See chapter 13 for information on modifying the Microsoft BIOS.

Files may be copied to the remaining logical device: the console, or
CON: device. The CON: device is active in two ways: it outputs to the
console, and it accepts input from the keyboard. A command such as

PIP CON:=x:file.ext

(in which the standard definitions apply) will list the named file to the
console screen. This is almost equivalent to the TYPE command-almost
because the TYPE command automatically expands tabs, but the PIP
CON: command expands tabs only if requested to do so. As with the
previously discussed devices, the console has its share of physical
devices, namely the CRT:, the TTY:, and the UCl:. These devices are
identical in the Microsoft BIOS.

_ PIP Parameters
The copying of files can be enhanced by the use of parameters. Consider,
for example, the PIPping of the file DUMP.ASM to the console. DUMP is a
file supplied by Digital Research to' display a file in hexadecimal form.
DUMP .ASM is a source file that must be assembled before it can be used.
If you are not familiar with 8080 assembly language, don't be concerned.
We are going to use this file for demonstration purposes only. To continue
with the example, the command

PIP CON:=DUMP.ASM

prints the file contents to the screen, but you should notice that the
display lacks ordered columns. This is because the tab markers in the file

PIP Parameters • 43

have not been expanded. (Incidentally, a tab is the character
CONTROL-I.) Now enter the command

PIP CON:=DUMP.ASM[TSJ

The characters inside the brackets are PIP parameters. In the example
cited, we have requested that the tabs be expanded to eight spaces. The
file will now be printed to the screen with the columns aligned. The CCP
TYPE command expands tabs automatically, so that the command

T'r'PE DUt'1P. A::;t'1

will produce results that look the same as those produced by the PIP
command with the tabs expanded. If we wish to send the output to the
printer and send nothing to the console, then

PIP LST:=DUMP.ASM[TSJ

will do the job. If we would like to see the file appear on the console as
well as have it printed, then we need

PIP LST:=DUMP.ASM[TSEJ

The E within the brackets tells PIP to reflect the output to the console
device. The order of the parameters is not important.

PIP LST:=DUMP.ASM[ETSJ

will work as well.
The Apple lIe has left and right brackets, but the Apple II does not.

See the manual for your SO-column card to obtain the keys for the left
and right brackets. The 40-column mode of Microsoft's CP/M uses the
CONTROL-K for the left bracket; there is no right bracket. The right
bracket is not needed in CP/M commands if it is the last character on the
command line.

All the PIP parameters are described below.

B
B invokes the block transfer mode. This mode is useful if data is to be
copied into a disk file from a reader device that doesn't allow hardware
handshaking. Handshaking is a computer term for the interaction
between computer devices while they are transferring data. Typically,
handshaking is the sending device's listening to the receiving device for a
message to stop sending data because the listening device's input buffer
is full. When the listening device has room in its input buffer, it will then
tell the sending device to resume transmission. In some instances, the
sending device cannot handshake-when the Apple is receiving data by
means of a tape recorder, for example. The block transmission mode tells

44. The PIP Utility

PIP to accept data into a buffer until an XOFF character (XOFF is the
same as a CONTROL-S) is received. The XOFF must be in the source file.
PIP then writes the buffer to the disk file. clears the buffer. and is ready
to accept more data. Practically speaking, the data transmission must be
at a rate that is slow enough to prevent data from being lost while PIP is
writing the data to a file, or the buffer must be large enough to accept the
entire input. These conditions make the B option difficult to use on
the Apple.

On
This option deletes all characters extending past the nth column on a
line. A line is defined as all characters between the ASCII characters for a
carriage return (ODH) or a line feed (OAH); refer to Appendix B. The D
option is usually used for outputs to the console or a printer. The value of
n can be any number from 1 through 255.

E
This parameter tells PIP to echo the output to the console. The E
parameter should be used only when text files are being copied. A text
file is a file generated by a word-processing or editing program and
consists of ASCII characters. A non-ASCII file may print unintelligible
garbage to the console and cause the system to behave very strangely.

F
The F parameter is a form-feed (ASCII value OCH) filter. Form feeds
imbedded in a file are ignored and do not appear in the destination file.
This option is useful for creating files for printers that cannot respond to
form feeds from source files that have imbedded form feeds.

Gn
Files may be copied from different user areas to the currently active user
area with the G command. For example. the command

PIP SAMPLE=SAMPLE[G2]

copies the file named SAMPLE from user area 2 to the current user area.
The parameter n can range from 0 through 15. Ambiguous file names are
not allowed for this option.

A minor predicament arises with the G option. How do you get a
copy of PIP to the user area where you would like to have the file copied?
The answer is. by using the DDT utility. which is discussed more fully in
chapter 8. For the time being. simply do the following:

1 Make sure that there are a copy of DDT.COM and a copy of
PIP.COM on the diskette to be used. DDT.COM and PIP.COM can

PIP Parameters • 45

be copied from the CP/M master diskette to user area 0 on the
present diskette.

2 Enter the command

DDT PIP. COt'l

3 After the DDT prompt (#) appears, press CONTROL-C to reenter
the CCP.

4 Go to the desired user area by entering

U~::EP n

5 Enter

:::AI . .JE 29 PIP. COt'l

A copy of PIP .COM is now in the current user area.

B
There is a file format called Intel hex. This format is generated by the
Digital Research assembler for the construction of an intermediate file
used in the process of generating a machine-code file from a program
source. The copying of hex files is enhanced by the H option.
Nonessential characters are removed, and the file is checked for
proper format.

I
The I parameter is used for copying hex files. The null character
sequence :00 is ignored in the copying. The I parameter automatically
invokes the H parameter. The value of this function is primarily for
transferring files from paper-tape readers that use null sequences as
record separators.

L
The L parameter instructs PIP to convert all alphabetic characters to
lowercase when copying a file. This parameter is intended for transferring
files to devices that have no provision for uppercase letters.

N
The N parameter puts a number (followed by a colon and a space) at the
beginning of each line being copied. This option is intended for only text
files. The line number can contain up to six digits. Leading zeroes are
suppressed with the N parameter. The N2 parameter prints each line
number using six digits, which means that leading zeroes are included.
The N2 parameter replaces the colon and space inserted after the line
number with a tab, which you may expand using the T parameter option.

48. The PIP Utility

o
CP/M uses the character CONTROL-Z (ASCII character lAH) to indicate
the end of a file. The CONTROL-Z is the last character found in all files
produced by programs that create text files. PIP normally continues a file
copy until it sees a CONTROL-Z, at which time PIP considers the file
copying complete and terminates the copying. Now, all CP/M files are not
text files. The most common nontext file is the transient command file.
CONTROL-Zs may be interspersed throughout a nontext file. PIP may
prematurely terminate copying such a file. The 0 parameter tells PIP to
use another method to determine the end of a file. PIP will then copy the
file in terms of directory blocks. The file transmission is completed after
the last block is transferred. InCidentally, the 0 parameter is assumed by
PIP when it copies files with the COM extension.

Po
The Pn option is a directive to help paginate output to a printer. A form
feed is inserted after n lines are printed. Aformfeed instructs a printer to
advance to the top of the next page. The parameter n may range from 1
through 255. If n is 1 or is omitted, PIP will place the form feed after
sixty lines. You may use the F option with the P option to remove form
feeds imbedded in the text and replace them where desired in the
printer output.

QstriogAZ
The Q option requests that PIP examine the file or device being copied for
a specified string. When that string is found, the copying is terminated.
The symbol A Z stands for CONTROL-Z and is used to terminate the
character string for which PIP is searching. An example of usage is

PIP LST:=BOOK.TXT[QCHAPTER 2A Zl

The file BOOK. TXT is sent to the printer. When the character string
CHAPTER 2 is encountered, the printing is terminated.

R
The R parameter is used to copy system files (see chapter 5). System files
will be ignored by PIP unless this option is used.

SstriogAZ
The S option is the obverse of the Q option. Transfer from the source file
or input device doesn't start until the specified string is encountered. For
example, the command

PIP LST:=BOOK.TXT[SCHAPTER 1A Zl

PIP Parameters • 47

starts printing the file BOOK.TXT as soon as the character string
CHAPTER 1 is found.

Using the Sand Q options together will copy a given file segment.
For example, the command

PIP SHORTER.TXT=BOOK.TXT[SCHAPTER l A ZQCHAPTER 2A Zl

will create the file SHORTER.TXT, which contains only the material
between CHAPTER 1 and CHAPTER 2 of the file BOOK.TXT. Note that
the start and stop strings are always copied.

If you wish to use lowercase le'tters in the Q or S options, then enter
the PIP command mode. Using the CCP command line will change all
lowercase letters to uppercase. The command

PIP LST:=BOOK.TXT[SChapter l A Zl

is identical to

PIP LST:=BOOK.TXT[SCHAPTER l A Zl

Tn
Use Tn to set tabs at every nth column. Usually, program source files
contain the tab character, and ordinary document files produced by text
processors replace the tabs with spaces. The document files will show no
change if the T parameter is used with PIP.

u
The U option converts all lowercase letters being copied to uppercase.
This option is useful for transferring files to devices that do not support
lowercase letters.

V
This is the file-verify parameter, which is recognized for disk-file
destinations only. PIP will verify the copied file against the original file.
PIP copies a file by copying the original file into memory and then writing
the memory to the new file. When PIP is asked to verify, it reads the
segment just written to the new file and compares it to the segment in
memory. This comparison is done for each file segment transferred until
the entire file is copied. If a discrepancy is found, the error message

I.) E f::: I F'l ERf:::Of:::

is printed, and the transfer is aborted. Copying files with the V parameter
can increase the time of copying noticeably.

48. The PIP Utility

W
You use the W parameter when you wish to copy a file into an already
existing file that is designated as RIO. Using the W parameter avoids
responding to the message

DESTINATION FILE IS RIO, DELETE (YIN)?

which will otherwise appear. Entering a Y will change the RIO attribute to
RIW. Entering an N will produce the

t·KIT DELETED

message, and the copying will be aborted.

Z
The Z parameter is used to zero the eighth bit on all ASCII characters
being copied. This option is intended for receiving input from a device
such as a reader. Most Apple users will have little need for this option.

Concatenation of files may be performed with individual parameters
for each file. For instance

PIP HUGEFILE=MYFILE[UEJ,YOURFILE[OJ,OURFILE[UJ

will copy MY FILE using the verification option and echo the file to the
console, copy YOURFILE under the block transfer option, and copy
OURFILE with only the verification option.

II Special PIP Devices
PIP includes some special logical devices. The most useful of these
devices is PRN:. The PRN: is a listing device. An example of usage is

PIP PRN:=DOCUMENT.TXT

which is identical to the command

PIP LST:=DOCUMENT.TXT[NPTSJ

The special NUL: device is intended primarily for paper punches.
Paper tapes separate data segments with null characters. Null characters
are innocuous instructions that tell the computer to do nothing. A string
of nulls is used to allow equipment enough time to initialize. This time
was needec;I for the older and slower equipment. Modern equipment rarely
needs the setup time given by this NUL: device. The NUL: device will
literally send forty null characters when evoked. If we wished to place a
string of nulls at the beginning and the end of a data file transferred by
the PUN: device, then we would enter

A Summary of PIP Assignments • 49

PIP PUN:=NUL:,DATA.TXT,NUL:

Apple users should find no occasion to use the NUL: device.
The special EOF: device performs the task of issuing an end-of-file

marker, a ~Z. There is practically no need for this device since PIP
automatically issues end-of-file markers when the copying of text files
is completed.

There are two other special devices, INP: and OUT:. To take
advantage of them, you have to be an experienced programmer. The INP:
and OUT: devices permit the user to include his or her own input or
output routines in PIP. The command

PIP OUT:=filename.ext

will output a file via a user-supplied routine. The command

PIP filename.ext=INP:

will copy a file via a user-supplied routine. The programmer must obey
some simple rules in writing the routines. First, the routine for OUT:
must be accessed by calling location I06H, and the routine for INP: must
be accessed by calling location I03H. Second, the output routine should
transmit the character in the C register, and the input routine should
place in location I09H the input character with the eighth bit cleared. PIP
provides the memory area from I09H through I FFH for use by these
special functions. The OUT: and INP: routines must be entered into the
PIP.COM program with DDT (see chapter 8). OUT: and INP: are, again,
rarely used devices, and most Apple users will have no need for them.

Finally, there is one more device found in PIP; it is the mysteriOUS
IRD: device. IRD: is used for input. It has been included in PIP probably
through an oversight. IRD: uses the 8080 ports at OIH and 03H for
getting input. The input routine is intended for a specific paper-tape
hardware configuration and is of no value to the majority of CP/M
computers. Needless to say, it cannot be used on the Apple, since the
Apple CP/M cards make no provision for the port functions of the
Z-80 microprocessor.

_ A Summary of PIP Assignments
File Commands
The PIP file commands are as follows:

x:filenamel.extl=y:filename2.ext2 Copies files on drive y: on
the right side of the equals sign (=) to drive x: and gives the file the
name on the left side of the =. If the drives are not specified, the

60. The PIP Utility

currently active drive is assumed. If a file name is omitted on either
side of the =, the stated file name is assumed for the omitted file
name. When no file name is given on the left side of the =, a drive
must be specified on the left side. Ambiguous file names are
permitted on the right side of the = only, in which case the left side
of the = must contain no file names, ambiguous or otherwise.

x:filename.ext 1 =y:filename2.ext2,z:filename3.ext3, ...
Concatenates files on the right side of the = in the order given and
stores them in the file on the left side of the =. Ambiguous file names
are not allowed, and a file name must be specified on the left side
of the =.

Output Device Commands
All output device commands are of the form

dev:=x:filename.ext

Ambiguous file names are not allowed. If the specified drive is omitted,
the currently active drive is assumed. The logical devices are

CON: console (Apple video monitor)
LST: listing device (Apple slot I)
PUN: punch device (Apple slot 2)

The physical devices are

TTY:
CRT:
UCI:
LPT:
ULI:
PTP:
UPI:
UP2:

teletypewriter device
fast terminal device
user-supplied console device
line printer
user-supplied listing device
paper-tape punch
user-supplied punch device
second user-supplied punch device

Input Device Commands.
All input device commands are of the form

~< : f i 1 ename=dev :

Ambiguous file names are not allowed. If the specified drive is omitted,
the currently active drive is assumed. The logical devices are

CON: console (Apple keyboard)
RDR: reader device (Apple slot 2)

The physical devices are

TTY: teletypewriter device
CRT: fast terminal device

A Summary of PIP Assignments • & 1

UCI: user-supplied console device
PTR: paper-tape reader
UR I: user-supplied reader device
UR2: second user-supplied reader device

Special Devices
These devices are defined only by PIP.

EOF:
INP:
NUL:
OUT:
PRN:

command that sends a CONTROL-Z to the device
optional user-supplied input device
command that sends forty nulls to the device
optional user-supplied output device
same as LST: with parameters [T8NP]

Transfer Parameters
All transfer parameters are written immediately after the file affected as

x:filenamel.extl=y:filename2.ext2[parmlparm2 ... J

The file transfer parameters are

B transfers blocks
Dn deletes characters after column n
E echoes the transfer to the console
F filters form feeds from the file
H transfers hex data
I ignores :00 in the transfer (for hex-format files)
L translates uppercase to lowercase
N adds line numbers to the transferred file
N2 same as N but includes leading zeroes in numbers
o transfers object files
Pn places page ejects after every n lines
Qstring - Z stops transferring from the source after string
Sstring - Z starts transferring from the source with string
Tn expands tabs every nth column
U translates lowercase to uppercase
V verifies the copy
Z clears the eighth bit from the input device

52

The SUBMIT Utility

The SUBMIT transient command is the CP/M analog to the Apple DOS
EXEC command. Like the EXEC command, the SUBMIT command
requires a text file filled with the instructions to be performed. The text
file can be constructed with a word-processing program such as WordStar
or the CP/M text editor, ED.

Assume that we wish to perform the following sequence of
commands:

DIP B::
PIP B ~ = A ;: * " COt';
TYPE A~LOOKSEE.DOC

One way is to enter the commands from the keyboard. Another way is to
create a submit file that contains the three lines

DIP B::
PIP B:: = A :: * .. COt';
TYPE A:LOOKSEE .. DOC

Each line is written as if it were a CP/M command line. This means that
there are no unnecessary spaces and all lines end with a carriage return.
This file is then saved with a .SUB extension. Let's call this file
SILLY.SUB. If the transient file SUBMIT. COM is on the same diskette,
entering the command

~=; U B t,; I T ~=; ILL 'y'

will create the same results as the instructions that were entered
individually from the keyboard. .

The SUBMIT command can be extended to include parameters in the
command line. If we rewrite the submit file to become

DIP $2::
PIP $2::=$1 ::*.$:!
TYPE $1~LOOKSEE .. DOC

and enter

The SUBMIT Utility • 53

SUBMIT SILLY A B COM

we produce the same result as the last submit file produced. SUBMIT
identifies the first parameter following the submit file name with the
variable $1. the second parameter with the variable $2. and so on. The
parameters may be any suitable character strings. and adjacent
parameters must be separated by a single space. The general SUBMIT
command is of the form

SUBMIT submitfile parm1 parm2 pqrm3 •..

The SUBMIT command must be given entirely in the command line.
Entering SUBMIT without a secondary command sequence will produce
the message

Error On Line 001 No ISUB 1 File Present

and return you to the CCP (Console Command Processor).
The submit file may contain a program that. while executing.

requires that data be entered from the console. To enter data into that
program. use the XSUB.COM file. As an example. let's create a submit
file called EXAMPLE. SUB that will copy PIP.COM. Using a text editor. we
create a file with the following six lines:

>:::::UB
DDT
1$1
P
GO
SAI')E 2':;' $1

The command

SUBMIT EXAMPLE PIP.COM

copies the PIP.COM file as follows: first. XSUB is invoked because DDT
expects data from the console; second. DDT is run; third. while the
system is in DDT the file name is entered; fourth. the file is read into
memory; fifth. the command GO exits from DDT with a warm boot;
and. sixth. the file is saved to the disk. This example is mainly a
demonstration and seems to have little practical value.

When XSUB is used. it must be the first entry in the submit file.
XSUB cannot be used anyplace but in a submit file. What happens when
the XSUB is executed is that it gets relocated to the memory area just
below the CCP. It then becomes part of the CCP until there is a cold boot
or until a program overwrites it. The message

(::-:;SUB Act i ve)

&4. The SUBMIT Utility

will be displayed over the CP/M prompt after the XSUB has been
executed. As long as the message is showing, you do not need to include
the XSUB instruction in a submit file.

The submit file may contain a SUBMIT command as the last
instruction. For example, consider the following submit file:

STAT
SUBMIT TRYAGAIN LETTER

where the submit file TRY AGAIN .SUB consists of

PIP LST:=$l

Any number of submit files may be chained together.
The SUBMIT command functions by creating a file named $$$.SUB

to contain the commands. The $$$.SUB file lists the commands with the
variables $1, $2, and so on replaced by their respective parameters. After
the $$$.SUB file is created, the program warm-boots. On a warm boot the
CCP looks to see if there is a file named $$$.SUB. IF $$$.SUB is found,
the file is read, and the commands are executed just as if they had been
entered from the console. After reading the file, the CCP erases it and
warm-boots the system.

Finally, control characters are represented in a submit file as
preceded by a caret (), so that a CONTROL-Z is represented as ~Z. Not
all control characters can be used in a submit file, particularly those
control characters recognized by the CCP. Thus, CONTROL-C,
CONTROL-X, and so forth cannot be used in a submit file. This fact is not
stated in the Digital Research manuals or in most CP/M tutorials and can
be a source of frustration to the unwary. The best thing to do is to avoid
using control characters in submit files. If you need a control character,
then run an experiment to see if it is recognized. If it is rejected by the
submit file, then the program requiring that control character may have
to be altered to use a standard character in the place of the control
character.

A dollar sign ($) in a submit file represents a variable. When a $ is
needed in a submit file as a standard character, it should be written as
$$. For example, assume that the file name MONEY$ is required in the
submit file. The file name should be written as MONEY$$ inside that
su bmit file.

You can abort a SUBMIT execution by pressing the DELETE key. On
the Apple II, press the CONTROL-@.

The DDT Utility

The Dynamic Debugging Tool (DDT) is the CP/M version of the Apple
monitor and miniassembler. Unlike'the monitor and miniassembler. DDT
is not resident in the computer. It must be loaded each time it is used.
DDT is intended primarily for people familiar with machine-code
programming. There is one useful DDT feature that even the least
sophisticated user should learn. however: the file-loading facility.

II Loading a Disk File into Memory
A file may be loaded into memory with DDT. and it then may be saved
back onto a diskette. This is useful for one-drive file copying and for
copying files to other user areas. DDT is invoked with the command

DDT

The next thing to appear on the console is

DDT I')EPS 2.2

where the - is the DDT prompt indicating the DDT command mode. To
exit DDT. enter a CONTROL-C. A program is loaded into memory by
entering at the prompt

-Ifi lename.e>::t
-P

The I identifies the next file to be read. The R tells DDT to read the file
into the TPA (Transient Program Area) starting at location lOOH. DDT
will read the file and respond with the message

t·~E>:;T PC
::< ::< ::< ::< >::)::):: ::{

where xxxx stands for a hexadecimal number. The hexadecimal number
under NEXT is the memory location immediately after the last location

55

56. The DDT Utility

used by the file that was just loaded into the memory. The hexadecimal
number beneath PC is the value of the DDT program counter. This PC
value is of only minor interest to machine-language programmers.
Nonprogrammers may safely ignore the PC number.

II Saving Data to a Disk File
Suppose you want to copy the program PIP.COM to another diskette
using only one drive. Enter DDT and type

IPIP. COt'1

F.:

DDT will respond with

t·~E::<T PC
1 EO(1 (11 0(1

This message tells us that PIP.COM has been loaded into the memory
region lOOH to lDFFH. We now exit DDT by entering a CONTROL-C. We
have just warm-booted into the CCP (Console Command Processor). The
diskette on which we wish to save PIP.COM is loaded into the drive. The
diskette is logged in with another CONTROL-C. PIP.COM is still in
memory. The previous activities did not overwrite or erase the file image.
We then type after the CP/M prompt

SAI')E 29 PIP. COt'1

PIP.COM is now copied onto the second diskette.
The general command

SAUE n filename.ext

creates a disk file and copies to that file n pages of memory starting at
location lOOH; n must be a decimal number. A memory page is a length
of memory 256 decimal bytes, or lOOH bytes, long. The value of n used
for saving PIP .COM was calculated this way: the DDT loading message
said that the file ended before the location lEOOH. Now, lEOOH is lDH
pages from lOOH, the start of the PIP.COM storage location. The decimal
value of lDH is 29. You can avoid most hexadecimal arithmetic by first
noting if the hexadecimal number beneath the NEXT in the DDT loading
message ends with 00. If it does, then take the two most significant
digits, lEH in the previous example, and convert the number they form
to the decimal equivalent; lEH becomes 30. This number minus 1 is the
number of pages occupied by the file in memory. For the case of our

More on Loading a File • 57

example, 30 minus 1 is 29, the result already obtained. When the
number under NEXT does not end in 00, then the number of pages
exactly equals the two most significant digits. For example, consider
saving the file ABITLONG.TXT. First we type

DDT :~B I TLOt·H:;

The following message is then printed:

DDT I')EP::; 2.2
t'~E::<T PC
1E:::(1 OU:W

The number under NEXT ends with BOH. This means that the number of
pages to be saved is lEH, or 30 decimal. The file is therefore saved with
the command

::;AI')E 30 TOOLOt'~G

which creates a copy of the file ABITLONG.
You may use DDT in conjunction with the SAVE command to copy

progams, as long as you take care not to run transient command files
between the time you exit DDT and the time you use the SAVE
command. A transient command file loads in the memory area starting at
100H and will overwrite anything that is there. Resident CCP commands
such as USER and CONTROL-C do not disturb the TPA, so you may issue
them with impunity before using the SAVE command.

II More on Loading a File
A file may be loaded from the command line with the command

DDT x:filename.ext

where x: is the optional drive. The standard loading message will appear
after the file has been loaded. Incidentally, this brings up a peculiarity
of DDT. If the file you wish to load is not in the currently active drive,
the command

I::-:::filename
F.:

will not work. The drive designation in the I command is ignored. When I
is used, the file name is placed in a file-control block starting at location
005CH. The locations starting at 005DH contain the file name. DDT sets
the byte at 005CH to OOH, which tells the BDOS (Basic Disk Operating

58. The DDT Utility

System) to use the currently active drive. This location may be changed
with the S command, discussed below, to indicate to the BDOS to look
for the file on a specified drive. The permissible values for location
005CH are

OIH drive A:
02H drive B:
03H drive C:

IOH drive P:

_ Displaying Memory

~34~3~~1

~341 ~~1

~342(1

~343~3

(144(1
~345~3

046(1
(147(1
~~14:::(1

~349~~1

~34A~3

(14B~3

DDT's most useful feature is its ability to display and alter memory. The
memory display can take two forms, a memory dump or a disassembly
of the memory into 8080 instructions. You obtain the memory dump
by typing

Dn

where n is the hexadecimal value of the location to be viewed. Had you
entered DDT with the command

DDT PIP. COt'l

and then typed

D4(1(1

the console would display

24 44 45 1::"7 54 49 4E 41 54 49 4F 4E 2(1 49 1::" 2(1 $DEST I t"~AT I Ot"~ 10:-0_10_1 o_I.!. "-'
1:".-.
,_I'::' 2F 4F 2C 2~~1 44 45 4C 45 54 45 2(1 2::: 59 2F 4E F.: I 0 , DELETE (\' It"~
29 3F 24 2A 2A 4E 4F 54 20 44 45 4C 45 54 45 44)?$**t"WT DELETED
2A 2A 24 24 24 24 24 24 24 4E 4F 54 2(1 4E, 4F 55 **$$$$$$$t"WT FOLI
4E 44 24 47 "-' 4F 5(1 5'3 49 4E 47 2(1 2D 24 1:".-.

,_I':::' 45 51 t"~D$COP\' I t"~G -$PEG!
1::"1::"
"_1"_1 49 .::-.-,

,_I'::' 45 1::"7 ,_10_- 2(1 47 "-' 5(1 2F 4D 20 32 2E 3~~1 2(1 4F UIPES CP/t'l "2.0 0 .
52 2(1 4E 45 I::"~ 45 52 2~~1 46 4F 1:"'-, 2~3 4F 5~3 45 £::",-. P t"~D"JEP FOF.: OPEP "_I" ,_I'::' ,_I':::'

41 54 49 4F 4E 2E 24 1::"1::"
"_1"_1 4E £:".-.

,_I'::' 45 47 "-' 4F 47 4E 49 AT I Ot"~, $Ut"WECOGt"~ I
5A 45 44 2(1 44 45 1::"7 ,_10_- 54 4'3 4E 41 54 49 4F 4E 24 ZED DEST I t"~AT I Ot"U
47 "-' 41 4E 4E 4F 54 2(1 I::"~

"_I .. 52 4'3 54 45 24 49 4E 56 CAt"~t~OT ~"JP I TE$ I t"H.J
41 4C 49 44 20 5(1 49 5(1 2(1 46 4F 52 4D 41 54 24 ALID PIP FOPt'lAT$
47 "-' 41 4E 4E 4F 54 2(1 52 45 41 44 24 49 4E 56 41 CAt"~t"~OT PEAD$ I t"RJA

DDT Commands for the Nonexpert • 59

The D stands for display; that is to say, the memory contents are
sent to the screen. The CONTROL-P and CONTROL-S switches are active
(see chapter 3), so the display can be echoed to the listing device. The
memory contents are displayed in a line, first in hexadecimal notation
and then in the ASCII equivalent. The leading number in each line is the
memory location of the first data element. The first line in our example
shows the data in location 0400H to be 24H ($ in ASCII). The last data
element in the first line is found in location 04FFH and is 20H (a blank
space in ASCII). To display the next 192 bytes of memory, we simply
enter a D followed by a RETURN. The next 192 bytes of the PIP.COM
file are

04C0 4C 49 44 20 53 45 50 41 52 41 54 4F 52 24 31 F2 LID SEPARATOR$l.
04D0 lD 01 80 00 C5 IE 80 01 CC IE C0 18 0A 3A CC IE
04E0 D6 00 D6 01 9F 32 A5 IE CD 4C 08 EB 3E 20 CD 84 2 ... L .. > ••
04F0 lD D2 FD 04 01 4D 04 CD 39 08 CD 00 00 CD 16 09 M .. 9
0500 32 C0 IE 11 00 00 0E 19 CD 05 00 32 FC lD 31 F2 2 2 .. 1.
(1510 lD CD 40 lA 3A 0] IE 32 Cl IE 21 6F IF 36 00 2B .. Ct.!.: •• 2 .. ! 0.6.+
0520 36 00 2B 36 00 21 A6 IE 36 01 23 36 00 21 F3 lD 6.+6.! .. 6.#6.! ..
0530 ~b 00 23 36 FE 3A A5 IE IF D2 47 05 0E 2A CD lC 6.#6.: G .. * ..
0540 08 CD 6F 09 CD 2E 08 21 4E IF 36 FF 3A CC IE FE .. 0 ...• !N.6.: .. .
0550 00 C2 5E 05 2A FC lD 4D CD 5E 08 CD 00 00 21 4B .. A.* .. M.A !K
0560 IE 36 00 21 03 IE ~b 00 21 A4 IE 36 00 2B 36 00 .6.! .. 6.! .. 6.+6.
057(1 ~~11 27 1 E CD 2(1 12 3A A9 1 E FE ~~13 C2 ::: 1 (15 C3 24 . I •• .: •••••••• $

When the hexadecimal data has no ASCII equivalent, DDT simply
represents that data with a period (.) in the ASCII portion of the display.

II DDT Commands for the Nonexpert
D-The Memory Display Command:
Additional Comments
See the discussion above. The D command defaults to displaying
twelve lines of data at a time. A range of data may be displayed with
the command

where begin is the first memory location to be displayed and end is the
last memory location to be displayed. All data in the specified range will

80. The DDT Utility

be sent to the screen. The example just discussed can be displayed with
the command

Please notice that leading zeroes need not be entered.

S-The Memory Modification Command
DDT provides the means to alter the contents of memory locations
through the set (S) command. The command

(where n is the memory location in hexadecimal notation) places you in
the set mode. As an example, let's alter the memory locations at 100H,
101H, 104H, and 200H. First enter

Remember that a data entry is accepted by the computer when it is
followed by a carriage return, which you get on the Apple by pressing the
RETURN key. The SIOO command will cause DDT to respond with

01~~10 C3

The 0100 is the location of the memory data that may be altered; the C3
is the current contents of that location in hexadecimal notation. The
cursor waits on the line for another user command. If we enter a
hexadecimal number, then the data at that memory location will change
to the new value. Continuing with the example, let's change the
location's contents to OOH. The command line will become

~~11 00 C3 0[1

After the carriage return, DDT will respond by showing the contents of
the next location, that is:

We are going to change these contents to C9H. The command line
then becomes

[1101 CE C'3

Entering a carriage return advances us to the next memory location,
showing

DDT Commands for the Advanced User • 81

We do not want to change this location, so we enter a carriage return
without entering any new values. The memory location is left unchanged,
and the next location is displayed. Our example should look like

0102 04
0103 C'3

This location is to be left unchanged, so we press the RETURN key again.
We will change the 104H location to the new value C9H, which will make
the entire display become

(11 (1(1 C3 00

~~11 ~~11 CE C9
~~11 ~~12 (14

~~11 (13 roq
~~11(14 ~~1 ~~1 C9
0105 00

Now the next location to be altered is 200H. We can get there by
repeatedly pressing the RETURN key, but this is extremely tedious.
Another method is to exit the set-command mode and then reenter it at
the new location. To exit the set-command mode, enter a . for the new
location data, and press the RETURN key. This will place you in the DDT
command mode, with the - prompt showing. We can make the last
alteration, placing OOH at location 200H and then exiting the
set-command mode again.

::;2~)0

0200 2~:::1 (10

0201 20

Incidentally, the previous example modified the image of the PIP.COM
file in memory but did not affect the PIP.COM file on the disk. The
modification was strictly a demonstration and produced no useful
changes.

The DDT display and set modes are very useful and should be
learned by all serious CP/M users. Later in this book we will use the
previous material for making corrections and alterations to the Microsoft
BIOS (Basic Input Output System).

II DDT Commands for the Advanced User
The following material is of interest to those who have some 8080
programming experience. If you lack that experience, you may forgo
reading the rest of the chapter.

82. The DDT Utility

L-The 8080 Disassembler
DDT will disassemble a range of memory into 8080 mnemonics. The
disassembler is invoked through the L, or list, command. The command
has the form

Ln

where n is the hexadecimal value of the location at which the
disassembly is to begin. If we use PIP .COM as an example, the command

L4CE

produces the following display:

(14CE L::-::I SP, lDF2
(14Dl L::·::I B, (1:::fj(1

~34D4 PUSH B

04D5 NI) I E, :::0
(14D7 L::·::I B, lECC

04DA CALL ~3A 1:::
(14DD LDA lECC
04E(1 SUI (10
(14E2 ~:;U I 01
(14E4 SBB A

04E5 STA lEA5

The disassembler lists eleven lines unless requested to do otherwise.
Entering L alone will cause the disassembly to begin wherever the
program counter is pointing. For the example cited, entering L will start
the listing at 4E8H and will show the following:

(14E::: CALL (1:::4C

04EB ::<CHG
(14EC t'11.) I A,20
~34EE CALL lD:::4
(14F 1 .Jt·~C (14FD

(14F4 L::<I B,044D
~Z14F7 CALL ~3:::39

(14FA CALL (1(10(1

(14FD CALL (1916
~35~3(1 STA lEC0
05(13 L>::I D, (1(1(1(1

The disassembler will list any memory range with the command

DDT Commands for the Advanced User • 83

where begin is where the disassembly is to start and end is where
the disassembly is to stop. You can get the results just cited with
the command

L4CE,503

The disassembler will display any unrecognizable command as ?? = .
Take, for example, the listing of PIP.COM starting at IODH:

(11 (1D t·~OP

~~11 ~~1E t·~Op

~~11 H~1 "?'7" = 2:::
0111 t'l 0 I.) C,C
~~1l12 t'101.) C, t'l
fH 13 t'101.) D,E:
~~1114 LDA 4F2F
~j 117 t'101.) D,L
011::: t'101.) D,H
(1119 LDA 5~j53

The ?? = indicates an unknown machine code that is 28H. If you try to
list some of your Apple CP/M files or certain areas in the BIOS, you may
find that DDT reports some unrecognizable code in areas where there
shouldn't be any. The reason for this is that the Apple BIOS and some of
the Apple CP/M utilities are written in Z-80 code, which supports the
same machine codes as the 8080 but also has some additional
instructions. It is the additional instruction set that produces the ?? = in
the disassembly. You will need a disassembler such as that found in
Digital Research's ZSID utility to create the proper listing for Z-80 code.

A-The 8080 Assembler
DDT also includes an 8080 assembler that accepts 8080 mnemonic
instructions as arguments. The assembler reqUires the use of absolute
locations; that is, no labels are allowed. This assembler is similar to the
Apple miniassembler found in the Integer Basic ROM. You enter the
assem bIer by typing

An

where n is the hexadecimal value of the location at which the code is to
be placed. The following is an example of usage.

starts the assembly at IOOH. The code is then entered:

84. The DDT Utility

(1100 LDA 3
~j 1 ~j2 STA ~jAFFF

~jHj5 PET
~j HjE. •

The memory locations at the left are automatically printed by DDT. The
code is entered by the programmer. You stop the assembler by entering a
. for the last instruction.

M-The Data Move Command
There is a memory move command in DDT. The command is

Mbegin~end~destination

where begin is the first address of the memory block, end is the last
address of the memory block, and destination is the address of the new
location to which the block is to be sent. The move command actually
copies the memory block to the new location, leaving the original block
intact (provided that the original block does not overlap the destination
block). Let's copy the memory lying between 4FFFH and 60A3H to
lOOOH. The command

will accomplish the task.

F-The Memory Fill Command
A memory fill command is available. Typing

places the data byte into each memory location starting at begin and
stopping at end. For example, the command

will place the byte OOH into each location of the memory range beginning
at lOOOH and ending at 1500H.

G-The Run Program Command
A machine language program can be run from within DDT. The go, or G,
command is used for that purpose. The go command has six forms:

Gstart
Gstart ~ bt-eak
Gstart~break1~break2

G, bt-eak
G ~ b t- e a k 1 , b rea k 2

DDT Commands for the Advanced User • 85

The G command alone will begin program execution starting at the
current value of the program counter. Gstart starts program execution
with the code located at start. For example, the command

G1 ~]0

starts execution for the program beginning at memory location IOOH.
The Gstart, break begins execution at the location start but will stop
execution and return to the DDT command mode if the program
execution takes the program count,er to location break. For example,
the command

starts execution at location IOOH and stops execution when program
execution reaches location 230H. The form Gstart,breakl,break2 will stop
the program if the program counter pOints to either breakl or break2.
The two forms G,break and G,breakl,break2 start execution at the
current program counter location and stop execution at either break,
breakl, or break2. When a breakpoint is encountered, DDT prints

where n is the address at which execution has halted. Then DDT returns
to the DDT command mode. Programs run with the G command without
any breakpoints will usually be unable to return control to DDT unless
there is an RST 7 to terminate the program.

T-The Trace Program Execution Command
There are two forms of a command to trace program execution. One
form is

Tn

where n is the number (in hexadecimal notation) of program steps to be
traced. If n is omitted, then it is assumed to be I by DDT. The trace
starts at the current program counter location. As an example, let's trace
PIP.COM starting at IOOH. We will look at five lines of execution with
the command

T5

The following is displayed:

C(1Z0t'1(1E0 I 0 A=~~1(1 B=00(1~~1 D=0~~1~~1(1 H=(H~H~10 ~:;=~~11 ~](1 P=~~1 i 00 --'t'lP ~~14CE

C0Z(1t'1(1E(1 I ~~1 A=~]~~1 B=0~]0(1 D=(10(1~~1 H=~~1000 S=~~1100 P=04CE L::< I ~:;P ~ 1DF2
C~]Z(1t'1(1E0 I (1 A=~~H] B = ~~1 ~~1 ~] ~~1 D=~]~](1(1 H=~](1(1~~1 S=lDF2 P=(14D 1 L::< I B, ~~10:::(1
O]Zm'10E~] I~] A=0~] B=0~]::a] D=~]~]~]~] H=~]~]~]~] ~:;= 1 DF2 P=~~14D4 PU~:;H B
C~~1Z(1t'l~~1E(1 I 0 A=~~1(1 B=~~1~]8~~1 D=0~~1(1~] H=00~~1(1 S=lDF2 P=04D5 t'll) I E, 8~~H04D7

88. The DDT Utility

The explanation of the display is as follows:

Cn the bit in the 8080 carry flag with a value of n
Zn the bit in the 8080 zero flag with a value of n
Mn the bit in the 8080 minus flag with a value of n
En the bit in the 8080 parity flag with a value of n
In the bit in the 8080 interdigit flag with a value of n
A the value in the 8080 accumulator
B the value in the 8080 BC registers
D the value in the 8080 DE registers
H the value in the 8080 HL registers
S the location of the stack pOinter
P the location of the program counter
instruction the 8080 code at the program counter location
*n the next address to be executed

The trace can be terminated from the keyboard by the pressing of the
DELETE key, or for the Apple II the CONTROL-@.

U-Another Trace Program Execution Command
The untrace command is similar to the trace command, but it will
display the flags and registers for the first step only. The command is
identical in format to the trace command but is written

Un

If the previous example were done with a

U5

command, then the display would be

C0Z0M0E0I0 A=00 B=0000 D=0000 H=0000 8=0100 P=0100 JMP 04CE*04D7

X-The 8080 Register Examination Command
The 8080 registers and flags can be examined and altered with the X
command. To examine the current condition of the 8080, enter

The display will be identical to that produced by the command

T

The registers or flags may be changed with the command

where r is one of the following:

C the carry flag
Z the zero flag
M the minus flag
I the interdigit flag
A the accumulator
B the BC register
D the DE register
H the HL register
S the stack pOinter
P the program counter

DDT Commands for the Advanced User • 87

As an example, we will change the program counter from its current
value to 100H. First enter

::<P

DDT responds with

P=04El

The current value of the program counter is displayed. If we didn't want
to change it, we would need only to press RETURN, and we would be put
into the DDT command mode with no changes made. To place 100H in
the program counter, we type 100, and the display looks like

P=[14E 1 10[1

Entering RETURN places us back into the DDT command mode, with the
program counter now pointing to 100H. The identical procedure is used
to change any of the flags or registers.

R-The File Read Command:
Additional Comments
A note on the R command: a file previously identified with the I
instruction can be read into the TPA by the command

P

There is a second form of this command. It is

Pn

where n is a hexadecimal number indicating an offset value for the read
command. For example, the command

88. The DDT Utility

will read the identified file into the TPA offset by lOOH; that is, the file
will be read into the memory area beginning at 200H. This procedure is
useful for modifying files with overlays.

Finally, let's discuss what happens when DDT is invoked. The
transient command

DDT

loads DDT into the TPA and starts execution. DDT moves itself to just
below the BDOS, overwriting the CCp, and then goes into the command
mode. The transient command

DDT filename.ext

does all of this, too, except that before going into the command mode, it
loads the file in the command line into the TPA.

The ED Program

Your CP/M master diskette comes with a text editor called ED.COM.
Digital Research prefers to call ED '3. context editor. ED is technically a
line editor with character features. A line editor is one in which the text
is divided into lines. A line is defined as a string of characters ending
with a carriage return, the ASCII character ODH. * ED assigns a line
number to each line for internal use. The line number is not included in
the text file. All text editing is done with reference to the internal line
numbers. A file may have a maximum of 65,535 lines.

When Digital Research introduced CP/M, it included ED to give new
users the ability to create assembly-language source files. As CP/M
became more popular, other text editors evolved that were more powerful
and much easier to use. ED may be considered an artifact from the early
days of CP/M whose use should be avoided by any person with extensive
need of a text editor. ED's salient feature is that it can quickly create a
short text file, say for use as a submit file.

- Loading or Creating an ED File
ED is entered by typing after the CP/M prompt

ED f i 1 ename • e::{ t

·CP/M and Apple DOS treat carriage returns differently. CP/M performs a carriage return in
the strict sense; that is, it places the cursor or printer head at the leftmost column and
does not advance to the next line. Apple DOS, when it sees a carriage return, always adds
a line feed, the ASCII character OAH, which advances the cursor or printer head to the
next line. As a result, there is a major difference between text files created under Apple
DOS and those created under CP/M: all CP/M text files contain carriage return-line feed
combinations, but Apple DOS text files have no line feeds following carriage returns. This
difference must be corrected when files are transferred between CP/M and Apple DOS. If it
is left uncorrected, Apple DOS files will print entirely on one line in CP/M, and CP/M files
will have double-spaced lines in Apple DOS.

There is a second major difference between CP/M and Apple DOS. Apple DOS has
the most significant bit set in each byte representing an ASCII character; CP/M generally
has the most significant ASCII bit cleared. If you don't know what this means, don't
worry; the utilities that transfer files between CP/M and Apple DOS will correct for this
difference automatically.

89

70. The ED Program

A file must be specified in the command line. ED looks in the directory to
see if the file already exists. If no file is found, a new file is created, and
ED prints

t·~D·J FILE

ED then goes into the command mode, which is identified by the * prompt.
ED can create or modify text only if that text is in the computer's

memory. ED sets aside a portion of memory called the file buffer for
editing purposes. A text file that is to be edited must be read into the file
buffer first; then the changes are made. After the changes are made, the
modified text can then be transferred from the memory to a disk file. Of
course, if a new file is being created, the reading of a file into the file
buffer is omitted. In this instance, the new text is placed in the file buffer
by the user, and the text can then be transferred to a disk file. The
manipulation of text in the file buffer will be covered later.

The size of the file buffer is a function of available memory. There is
a problem if the text file being modified or created is larger than the file
buffer. The way ED take cares of this is to create a temporary file whose
name is the same as the one in the ED command line but has a .$$$
extension. For instance, if you enter ED with the command

ED LETTEF.:. T::<T

ED will create the temporary disk file LETTER.$$$. When the file buffer
is at or near capacity, ED will inform the user of the condition. The user
can then write the file buffer to the temporary file with the W command
(discussed below). The transferred text is deleted from the file buffer,
which leaves room for new text to be placed in the file buffer.

II Editing Text
ED is a line editor. The maximum number of lines permitted in any text
is 65,535. Consider this example of editing a file with two thousand lines.
The file's name is EXAMPLE.TXT. We enter ED by typing after the
CP/M prompt

ED E::<At'1PLE. T::<T

Since EXAMPLE.TXT is an existing file, the next thing to appear is the
ED prompt, *. At this time the file buffer is empty. We will fill the file
buffer with the append command, A. The file is too large to fit it'l the file
buffer, so we will read only a portion of the file into the buffer. Let's edit
one hundred lines at a time. The command

Editing Text • 71

typed after the ED prompt reads the first hundred lines from the file
EXAMPLE. TXT into the file buffer. After the text has been modified, we
wish to edit the following hundred lines in the file EXAMPLE. TXT. We
get into the ED command mode and type

after the prompt. The file buffer is written to the file EXAMPLE.$$$.
There is now room for us to enter more data into the file buffer.
The command

will read the second hundred lines from the file EXAMPLE. TXT into
the file buffer. After the text is altered, it can be added to the file
EXAMPLE.$$$ with the command

The second hundred lines of text written to EXAMPLE.$$$ is sequential
to the first hundred lines of text, so the order of the file data remains
unchanged. The sequence of reading into and clearing the file buffer is
continued until the file EXAMPLE. TXT is completely transferred to the
temporary file EXAMPLE.$$$.

When ED is exited with the E command (described below), the file
EXAMPLE.TXT is renamed EXAMPLE.BAK and the file EXAMPLE.$$$ is
renamed EXAMPLE.TXT. In this example, had we transferred only the
first two hundred lines to the temporary file and then exited ED, we
would have the file EXAMPLE. TXT containing only the two hundred
transferred lines. In order that a file be properly edited, a complete
transfer must be made.

Had we chosen for an example a newly created file, we would not
need to bother with the append command. We could flush the file buffer
as required by using the W command. InCidentally, ED informs the user
when the file buffer nears capacity. The temporary file is expanded as
previously described, and exiting with the E command renames the
temporary file.

There are more commands available for flushing the buffer and
exiting ED than those used in the above examples. These commands are
discussed later in the chapter.

Before considering how to enter text into the buffer, you will need to
know about ED's imaginary character pOinter (CP). The CP is a device
that ED uses to indicate the location in the file buffer where data is to be
inserted. The CP is what makes ED so difficult to use. There is no visual
indication of where the CP is in the text, and all relocation of the CP

72. The ED Program

requires the ability to see the text in your imagination in order to know
where the CP has gone.

II An Example
Let's create a text file using ED. First enter

ED TEt'1P. DOC

ED responds with

t·~D·J FILE

*
The NEW FILE means that there is no file on the diskette named
TEMP.DOC, so ED just created it. The * is the prompt indicating the ED
command mode. Type

I

(for insert) to enter the edit mode. The edit mode will place line numbers
before each line to be entered. The line numbers are not stored in the
diskette file. Terminating each line with a carriage return (RETURN key),
we enter

l:Peter Piper picked
2: a peck of pickled
3: ~:II:~ p r'::I1::~ r s •
4:

Press CONTROL-Z to exit the edit mode. Pressing the RETURN key
without entering data will simply place empty lines in the text. To exit
ED, type

E

If you look at the directory, you will find two files, one named
TEMP.DOC and another named TEMP.BAK. ED always saves the original
file and names it the same but witl\ the BAK extension (BAK stands for
backup). The newly edited file is saved under the original name. When a
file with the BAK extension already exists, it is erased, and the cycle is
repeated. For the case of a new file, the backup file is an empty file.

Let's add some more text to TEMP.DOC. Type

ED TEt'1P. DOC

An Example • 73

This time NEW FILE doesn't appear because TEMP.DOC was found on
the diskette. We must now read TEMP.DOC into the file buffer with
the command

#A

which reads all the lines in the file into the file buffer. The CP is now at
the end of the file. By typing I, we can append the text. Then the
following additional text is typed:

4:A peck of pickled
5: peppet-s Peter
6: Piper picked.
7.
I •

We get out of the edit mode at line 7 by entering a CONTROL-Z. We are
now in the command mode.

To see what the file contains, type T (which stands for type). The T
command will print to the screen the file starting from the CP position. In
our example, the CP is at the end of the file, so we will see nothing
printed. The CP can be moved to the beginning of the file by typing

B

Typing T will print the first line and move the CP to the beginning of line
2. Had we typed

#T

all the lines in the buffer would have been printed. Let's change the
peppers in line 5 to pigs' feet. First we must move the CP to the
beginning of line 5 by typing

5:

Then we put the CP at the beginning of peppers by typing

1C

which moves the CP one position to the right from the line's beginning.
Then we delete peppers by typing

7D

74. The ED Program

which deletes the next seven characters to the right, starting at the CPo
The CP is now in the position where the first p in peppers used to be. We
insert the new character string by typing

I

which will start the insertion mode at the CP, and then typing pigs' feet.
It is possible to combine steps. We could have gotten to the point of the I
instruction by typing

5: 1 e7D

We exit the insert mode by typing CONTROL-Z. We can then save the
altered file by typing

E

just as before.
There is an easier way to replace the peppers in the above file. The

string peppers could have been replaced with the string pigs' feet on line
5 with the command

where ~ Z is a CONTROL-Z. This search and replace command is just one
of the edit commands discussed below.

III ED Command-Mode Instructions
The ED command-mode instructions are as follows:

nA Reads the host file into the file buffer. The A stands for append.
The n tells how many lines to read into the buffer. A # may be used
instead of a number to read as much from the host file as the file
buffer can hold. Using the # usually results in reading the entire host
file into the file buffer. The command

will read the file into the file bl,lffer until the buffer is at least half full.

B Moves the CP to the beginning of the file buffer.

-B Moves the CP to the end of the file buffer.

nC Moves the CP n character positions forward in the file buffer.
(Forward means toward the last character in the buffer.)

-nC Moves the CP n character positions backward in the file buffer.

nD Deletes n characters, starting after the CP and going forward.

-nD Deletes n characters, starting at the CP and going backward.

ED Command-Mode Instructions • 75

E Ends the edit mode. This command saves the file buffer to the
diskette using the source file name, and returns control to the CCP.

nFstring" Z Finds the nth occurrence of the designated character
string. The character string immediately follows F and must be
terminated by a CONTROL-Z, which is denoted by the symbol ~ Z.
The command instructs ED to find the nth occurrence of string and
then place the CP at the next character in the file.

H Has the same effect as an E command followed by reentry to ED
with the updated source file. The H command should be used
periodically to save the file buffer to the disk as insurance against
losing work in the case of equipment failure or operator blunder. The
H stands for the head (that is, the beginning) of a new source file.
The CP is placed at the beginning of the file buffer. It is advisable to
issue a

#A

after the H command to fill the file buffer with the saved text since
the H command flushes the buffer. It is also advisable to type

-B

so that the editing will begin at the end of the file. If these steps are
not taken, the saved file will be appended to the bottom of the new
file when the H command is reused or the edit mode is terminated,
and a strangely jumbled file will be created.

I Inserts; that is, enters the edit mode at the position of the CP. You
terminate the insert mode by typing CONTROL-Z.

Istring Inserts the character string following I into the file buffer
after the CPo ED will place a carriage return-line feed combination at
the end of the string, which will make the insertion a line. The
command returns to the edit command mode.

Istring"Z Inserts the character string after the I into the file buffer
after the CP. The string has no carriage return-line feed termination,
so the insertion does not create a new line. The command returns to
the edit command mode.

nJstringl "Zstring2 "Zstring3 "Z Juxtaposes. The command
searches for string 1 and places the CP after it. String2 is then
inserted at the CP. The CP is advanced beyond string2, and all
characters are deleted from the CP to the position just before the first
occurrence of string3. If string3 is not found, no deletions are made.
The process may be repeated n times. As always, the ~ Z stands for
the CONTROL-Z.

78. The ED Program

nK Deletes n lines forward from the current position of the CP. If n
is omitted, then one line is assumed. Be certain that the CP is at the
beginning of the first line to be deleted; otherwise the characters
before the CP will not be erased.

-nK Acts much as does nK but deletes n lines backward from
the CPo

nL Moves the CP to the beginning of the line n lines forward. The
command OL places the CP at the beginning of the current line.

-nL Moves the CP to the beginning of the line n lines backward.

nMcommand sequence"Z Repeats a given sequence of commands
n times. This is the macro command. If n is omitted or equal to 0 or
1, the command is repeated until an error condition arises. An
exam pIe of use is

MFHELLOAZI OUT THEREAZ0LT AZ

which will find all occurrences of HELLO, insert the character string
OUT THERE (preceded by a space) after HELLO, move the CP to the
beginning of the line containing the insertion, and print that line.

nN string" Z Mimics the actions of the F command, with one
exception. This command looks at the entire file, not just the portion
in the file buffer. If only a portion of the file is in the buffer. the file
remaining on the diskette is also searched.

o Returns to the original file. The file buffer is flushed. and the
original file (the file with the BAK extension) is used. This is
equivalent to reentering ED. The append command will be needed
to fill the file buffer. You will be asked to verify if you want to flush
the buffer.

nP Prints n pages of text to the screen. (P stands for page.) A page
is 23 lines of text. The CP is first advanced to the start of the next
page, which is 23 lines away. The n pages are then printed from the
CPo The command
(1F'

leaves the CP on the current page and prints that page.

-nP Resembles the nP command, but moves the CP to the previous
page and prints the previous n pages in ascending order.

Q Quits: terminates ED, does not save the file buffer, erases the
temporary file, removes the BAK extension from the original source
file, and gives back its original extension. ED will verify the Q
command before acting.

ED Command-Mode Instructions • 77

R Acts as a block move command that inserts into the file buffer,
after the CP, the file X$$$$$$$.LIB from the diskette. This command
is used in conjunction with the X command. It is unlikely that you
will need an R command unless you are a serious machine-level
programmer. If you are a serious programmer, it is also unlikely that
you will be using ED.

Rfilename Resembles the R command, but allows any file with the
LIB extension to be read into the file buffer. The LIB extension is
understood and is not required in the file name.

nSstring 1 "Zstring2" Z Searches and replaces. This command is
probably the most useful of the character-string commands. Stringl
is searched for in the file buffer and is replaced by string2. The
replacement will be made for the first n occurrences after the CP.

nT Displays n lines after the CPo (T stands for type.) If the CP is not
at the beginning of a line, the command

~~1T

displays the beginning of the line to the CP.

-nT Resembles the nT command, but displays the n lines before
the CPo

U Translates to uppercase all characters entering the file buffer
from either the console or a diskette. This command is useful to
programmers who have assemblers that can recognize only
uppercase letters.

- U Translates all characters to lowercase.

V Verifies line numbers by displaying them next to each line. ED
defaults to this mode.

-V Removes the line-number display.

OV Prints the space remaining in the file buffer and the total
available space, in the format

Free Space/Available Space

The numbers printed are in decimal notation. The available space
depends on which memory configuration for CP/M is being used. A
56K version will have an available space of 33,719 characters.

nW Writes the first n lines of the file buffer to the temporary file.
ED flushes those lines from the buffer, but the line-numbering
sequence is left unchanged. The command

~~1l·J

78. The ED Program

writes the buffer to the temporary file until the buffer is at least
half empty.

nX Acts as a block transfer command that writes n lines after the
CP to the file X$$$$$$$.LIB. If X$$$$$$$.LIB exists, the n lines are
appended to the file. This command is intended for machine
language programmers who need to create library files.

OX Deletes the contents of the file X$$$$$$$.LIB.

nZ Creates a delay before executing the next command; the larger
n, the longer the delay. This sleep command is a holdover from the
early days of slow machine responses and shouldn't be necessary for
the Apple user.

n Offers a convenient way of commanding

nLT

-n Acts the same as

-nLT

n: Places the CP at the beginning of line n.

:n When used in conjunction with another command, tells ED to
execute the command from the current line until reaching line n.
For example:

:25T

prints the lines from the current CP position to line 25. Commands
can be concatenated; for example:

1 (1: : 25T

will print lines 10 through 25.

When n is omitted in those commands using it, a value of 1 is
assumed. The # may be used as a value for n when all occurrences are to
be used.

The command mode of ED has console input editing commands
similar to those of the CCP (Console. Command Processor). The control
characters that perform special functions are listed below.

CONTROL-C Does a warm boot back to the CCP, abandoning the
work without updating. This command should be avoided.

CONTROL-E Prints a carriage return-line feed (ASCII ODH and
OAH) pair, but does not enter the command.

CONTROL-H Acts as does the backspace or left arrow (~) key on
the Apple. It performs the delete character left, as does its
counterpart in the CCP.

Error Messages • 79

CONTROL-I Acts as a tab, which is of little use to most users.

CONTROL-L Provides another way of placing a carriage return-line
feed into the command line. Its primary value is that it can be used
to place the ODH-OAH pair in a character string in the commands
using character strings (the I, F, J, and S commands, for instance).

CONTROL-X Deletes the current command line.

CONTROL-Z Is used to terminate strings in the commands that use
character strings.

DELETE Performs the same'function as in the CCP and produces
the same confusing display.

II ED Insert-Mode Commands
There are some commands active in the insert mode. They are

CONTROL-H Acts as does the backspace or left arrow (~) key on
the Apple. This command deletes the character to the immediate left
of the cursor and moves the CP left one character position.

CONTROL-I Inserts a tab character (ASCII 09H) into the file buffer.
A CONTROL-U or right arrow (~) key will also insert the 09H. On
the Apple lIe the TAB key will also insert the 09H. The CP is moved
to after the tab.

CONTROL-J Places a simple line feed (ASCII OAH) in the file buffer.
No carriage return (ASCII ODH) is included.

CONTROL-M Performs a carriage return, just as does pressing the
Apple RETURN key. A carriage return-line feed combination is
inserted into the file, and the CP is advanced to the beginning of the
next line. CONTROL-L is equivalent to CONTROL-M.

CONTROL-R Retypes the line. This command is not very useful.

CONTROL-X Deletes the entire line, which may be rewritten. This
is identical to the CCP CONTROL-X. The CP is placed at the
beginning of the line.

DELETE Produces the same result as with the CCP. This command
should be avoided because of the confusing display it produces.

II Error Messages
The ED error messages are printed with the last character read before the
error followed by one of the four symbols whose meaning is given below.

80. The ED Program

? The command given was not understood.

> The file buffer is full. To continue, flush the buffer with a W
command, or delete some lines. Also, the > may indicate that a
string is too long in the ED command.

The command cannot be performed the number of
times requested.

o The LIB-extension file cannot be read in the R command.

An error detected in reading a diskette produces the message

PEPt'1 EPP D I ~::K ::{

where x is the currently active drive. You can get rid of the message by
pressing any key on the console. The file buffer should then be checked
for errors. Otherwise, ED can be terminated with the Q command and the
backup file renamed and used as the host file.

The BIOS

The Basic Input Output System, or BIOS, is the interface between a
computer and CP/M. Any discussion of a BIOS will have to contain
references to machine-level programming. For the Apple, the BIOS is a
mixture of 6502 and Z-80 language instructions. This chapter will
assume that the reader has at least a rudimentary knowledge of
programming the 6502 and Z-80 microprocessors and that he or she is
also familiar with the Apple hardware.

The BIOS is a strict function of the variety of Z-80 card installed in
the Apple. The BlOSs to be discussed in this chapter will be those used in
the Microsoft standard SoftCard and Premium SoftCard lIe (PS lIe). The
description of the standard SoftCard's hardware is given here, while the
PS lIe's hardware description is deferred to chapter 14.

CP/M is structured so that it can be made to run on almost any
microcomputer that is 8080 or Z-80 microprocessor-based. The BDOS
(Basic Disk Operating System) will do all hardware interfacing if the
user provides seventeen routines that perform functions prescribed by
Digital Research.

II BIOS Functions
BOOT
This is the cold boot routine, which loads into memory the CCP (Console
Command Processor), BDOS, and BIOS from the diskette. The IOBYTE is
initialized, the default drive is set to A:, and other system parameters are
initialized. The sign-on messages, which will include the copyright
notices, must be shown on cold boot. The cold boot will then fall into the
warm boot.

WBOOT
The warm boot loads the CCP into memory, does some more initializing,
and jumps to the CCP. The Z-80 C register is set to the drive
currently selected.

81

82. The BIOS

CONST
CONST is the console status routine. The Z-80 A register must contain
OFFH if a character is waiting to be read or OOH if no character is waiting.

CONIN
CONIN is the console input routine. The console character is read into the
A register. The input is an ASCII character with the parity bit (the eighth
bit) set to O. If CONIN is called and there is no character ready, it must
wait until a character is received. The Apple's console is the keyboard
and the video monitor. The Apple's keyboard input sets the parity bit to
1; therefore, CON IN must mask this bit to O.

CON OUT
With this routine, the character in the Z-80 C register is sent to the
console. The output is an ASCII character with its parity bit set to O. The
Apple monitor requires that noninverse characters have the parity bit set.
to 1. CON OUT for the Apple must set the parity bit before printing the
character in C.

LIST
This routine sends the ASCII character in the C register to the current
LST: device. The character has its parity bit set to O.

PUNCH
This routine sends the ASCII character in the C register to the current
PUN: device. The character has its parity bit set to O.

READER
This routine reads the ASCII character from the current RDR: device into
the A register. The input character must have its parity bit set to O.

HOME
This routine homes the disk read/write head to track 0 of the currently
active drive; that is, it sets the current track to track O.

SELDSK
This routine selects the disk drive. The C register contains the drive to be
selected. The drive values permitted in register Care

00 drive A:
01 drive B:
02 drive C:

10 drive P:

BIOS Functions • 83

Upon returning from a call to SELDSK, the Z-80 HL registers must
contain the address of the Disk Parameter Header, which is discussed
below in this chapter. If a nonexistent drive is selected, the HL registers
should contain OOOOH to indicate an error.

SETTRK
With this routine, the track on the current diskette is selected. The Z-80
BC registers contain the track number. The Microsoft BIOS ignores the B
register since there are only thirty-five tracks on a standard Apple
diskette. The C register will range f;om 00 through 22H.

SETSEC
With this routine, the physical sector on the current diskette is selected.
The BC registers contain the sector number. The Apple has sixteen
sectors per track. Microsoft uses only the C register, which will range in
value from OOH through OFH. SETSEC in the Microsoft BIOS actually
accepts the logical sector. The translation to physical sectors is done in
the BIOS RWTS (Read Write Track Sector) routine. The fact that logical
sectors are used in SETSEC causes no difficulty, as we shall see when we
discuss the SECTRAN routine.

SETDMA
With this routine, the Direct Memory Access (DMA) location is set. The
DMA is the memory region where the data read from the selected diskette
sector is stored. The DMA area is used also to store the data to be written
to a diskette sector. The DMA address is placed in the BC registers before
SETDMA is called; for example, if BC is 0080H, then the read/write buffer
will start at 0080H and end at OOFFH. Please recall that CP/M logical
sectors are 128 (80H) bytes in length.

READ
This is the routine to read the sector selected by SETTRK and SETSEC
on the current drive into the DMA. Upon returning from a read, the A
register should contain OOH if no error was encountered or 01H if an
error was encountered. Incidentally, the disk need not actually be read
each time READ is called. The CP/M logical sector is 128 bytes, but a
physical sector on an Apple diskette contains 256 bytes. A call to READ
on an Apple will actually read two CP/M logical sectors. If the next
CP/M logical sector to be read is from the same physical sector as the
previously read CP/M logical sector, no disk access is required. The Apple
BIOS uses a 256-byte buffer to read the Apple physical sectors. The BIOS
moves either the first half or the second half of this buffer to the DMA

84. The BIOS

area, depending on which CP/M logical sector was requested. If the buffer
already contains the CP/M logical sector requested to be read, the
corresponding half of the buffer is moved to the DMA area, and the
drive is not activated. This procedure increases the speed of disk-
read commands.

WRITE
This is the routine to write the contents held in the DMA to the currently
selected sector on the currently selected drive. The error codes pertaining
to the READ command apply. Writing a sector is slightly complicated if
the diskette's physical sectors are more than 128 bytes, as with the
Apple. Since the Apple's physical sectors are 256 bytes long, a 256-byte
buffer is used by the BIOS for writing physical sectors to the diskette.
Since CP/M logical sectors are only 128 bytes, writing a CP/M logical
sector to the diskette requires that the write buffer be filled with the
remaining 128 bytes to go into the corresponding physical sector. This
leads to the BIOS's acting on a series of conditions before actually writing
data to a diskette. The BIOS must act in one of three ways:
1 Writing to a physical sector that has information on it (this sector is

in an allocated block) requires the BIOS to first read the sector's
entire 256 bytes into the buffer. The DMA area is then copied to the
appropriate half of the buffer. If the next disk command is a read
from this physical sector, don't access the drive. If the next disk
command is a write to one of the two CP/M logical sectors contained
in the buffer, don't access the drive. If the next disk command is
either to read or to write a CP/M logical sector not contained in the
buffer, then first write (flush) the buffer to the physical sector, and
then proceed with the next command.

2 Writing to a physical sector that has not been used (this sector is in
an unallocated block) requires the same activity as with writing to
an allocated sector, except that a preread of the physical sector is
not required.

3 Writing to a directory sector i~ an operation that assumes that the
write buffer is properly constructed and that the physical sector is
written immediately to the diskette.

The C register is used in the write command to indicate which mode is to
be applied. The BDOS will set the C register to one of the following:

OOH, if writing to a sector in an allocated block
01 H, if writing to a directory sector
02H, if writing to an unallocated block

The Microsoft Vector Jump Table • 85

LISTST
This is the listing-device status routine. The A register contains OOH if
the device is not ready or OFFH if the device is ready. The Microsoft BIOS
assumes that the driver routines for the LST: device check the status.
The LISTST is written to always return OOH in the A register.

SECTRAN
This is the routine to translate logi<;al sector numbers to physical sector
numbers. The routine provides a means to include a sector-skewing
factor to speed up disk access time. Placing sectors in physically
sequential order on a track is not efficient. Consider the case in which we
would wish to read from sector 1 and sector 2 on a given track. Reading a
sector requires first getting the data from the diskette, then decoding the
data, and finally placing it in the DMA area. By the time all the
procedures are completed, the following adjacent sector has already
passed by the drive read/write head. If sector 2 is located, say six sectors
from sector 1, then the data from sector 1 can be processed before the
read/write head reaches sector 2. Such a scheme permits reading more
than one sector in a single diskette revolution. Such an interleaving of
sectors is often called sector skewing. The BC registers receive the
logical sector number, and the DE registers receive the address of the
sector-translate table. The sector-translate table is held in the BIOS
memory area and contains information about the skewing relationship
of the CP/M logical sectors to the CP/M physical sectors. Upon returning
from SECTRAN, the HL registers contain the physical sector number
to be used by SETSEC. Since the Apple BIOS has the sector skewing
built into the RWTS, SECTRAN simply copies the BC registers to the
HL registers.

II The Microsoft Vector Jump Table
The seventeen routines described above are accessed by the BDOS
through a vector jump table. The vector jump table is usually located at
the start of the BIOS. The table of vector jump addresses for the standard
SoftCard's 56K CP/M version 2.20B, the standard SoftCard's 60K CP/M
version 2.23, and the PS lIe's 64K CP/M version 2.26 are given in
table 10.1.

Table 10.1 is required by Digital Research. Z-80 mnemonics are used
because Microsoft uses Z-80 code in much of its BIOS. Microsoft makes

88 • The BIOS

Table 10.1 • Microsoft BIOS Vector Jumps

Version Address Instruction Description

56K DAOOH JP BOOT Cold boot routine
60K,64K FAOOH
56K DA03H JPWBOOT Warm boot routine
60K,64K FA03H

56K DA06H JP CONST Console status routine
60K,64K FA06H

56K DA09H JP CON IN Console input routine
60K,64K FA09H
56K DAOCH JP CONOUT Console output routine
60K,64K FAOCH

56K DAOFH JP LIST Listing device output
60K,64K FAOFH routine

56K DA12H JP PUNCH Punch device output
60K,64K FA12H routine
56K DA15H JP READER Reader device input
60K,64K FA15H routine

56K DA18H JPHOME Home head on selected
60K,64K FA18H drive routine

56K DAIBH JP SELDSK Select drive routine
60K,64K FAIBH
56K DAIEH JP SETTRK Select track routine
60K,64K FAIEH

56K DA21H JP SETSEC Select sector routine
60K,64K FA21H

56K DA24H JPSETDMA Routine to set DMA
60K,64K FA24H address
56K DA27H JP READ Routine to read selected
60K,64K FA27H sector

56K DA2AH JP WR~TE Rou tine to write to
60K,64K FA2AH selected sector

56K DA2DH JP LISTST Routine to get listing
60K,64K FA2DH device status
56K DA30H JP SECTRAN Sector translation routine
60K,64K FA30H

Other CP/M Requirements • 87

two changes to the vector jump table. The jump to the LISTST routine is
replaced with the instructions

;:·:;OP A ; Zeroes th~~ A t-e'J i 5 te t- a.nd m!:\ k es the LST: d~"?\1· i c: e
; never rea.dy.

PET

The jump to the SECTRAN routine is replaced with

LD H~B ;Places the logical sector in the HL registers and lets
LD L,C ;the SETSEC routine perform the sector skewing.
PET

II Other CP/M Requirements
CP/M requires that the user provide, in addition to the vector jump table,
disk parameter tables within the BIOS area. The tables are used by the
BDOS to identify the disk formats used in the system. It is therefore
possible to run CP/M with a variety of drives attached to a single
computer. The disk parameter tables are of six types: Disk Parameter
Headers (DPH), Sector Skewing Tables (XLT), Directory Buffer (DIRBUR),
Disk Parameter Blocks (DPB), Check Sum Vectors (CSV), and Allocation
Vectors (ALV).

DPB
The DPH tables are usually located just after the BIOS jump vectors.
Each drive requires a DPH. The Microsoft version 2.20B permits up to
six drives, while the versions 2.23 and 2.26 permit a maximum of
four drives. Each DPH consists of 16 bytes and is arranged in the
following order.

DPH = XLT, OOOOH, OOOOH, OOOOH, DIRBUF, DPB, CSV, ALV

The DPH for drive A:, for Microsoft's 60K version 2.23, is

DPHA: = OOOOH, OOOOH, OOOOH, OOOOH, FDFEH, 73FAH,
C5FFH,7DFFH

Please notice that the addresses are all given in the standard format of
low byte, high byte, so that, for example, the address of the DPB is

88. The BIOS

actually FA 73H. The DPHs for the remaining three drives are listed in the
BIOS sequentially as follows:

DPHB: = OOOOH. OOOOH. OOOOH. OOOOH. FDFEH. 73FAH.
DIFFH.BFFFH

DPHC: = OOOOH. OOOOH. OOOOH. OOOOH. FDFEH. 73FAH.
DDFFH.AIFFH

DPHD: = OOOOH. OOOOH. OOOOH. OOOOH. FDFEH. 73FAH.
E9FFH.B3FFH

XLT
XLT is the address of the Sector Skewing Table used by the drive
assigned to that DPH. If no skew is required. as with the Apple. then

XLT = OOOOH

The next 6 bytes are used by the BDOS as a scratch pad. The user
doesn't need to be concerned with what their values become.

DIRBUF
DIRBUF is the address of a 12B-byte memory location reserved in the
BIOS for BDOS directory operations. The DPH for each drive uses the
same DIRBUF address.

DPB
DPB is the address of the Disk Parameter Block. The Disk Parameter
Block contains the drive characteristics. The Apple has one Disk
Parameter Block since all the drives are formatted identically. If the
system contained drives with different formats. there would be a Disk
Parameter Block for each format.

The DPB is a 15-byte table of values identifying a drive's
characteristics. The table contains. in the following order:

SPT A 2-byte area giving the number of sectors per track. The
Apple has thirty-two CP/M sectors per track and SPT = 2000H.
Remember that all 2-byte values used by CP/M are listed in the order
low byte. high byte.

BSH A I-byte value called the block shiftjactor. This number is
used by the BDOS to determine the block size. The BSH is the
logarithm of the number of sectors per block. The Apple block is
1.024 bytes. or eight CP/M logical sectors. Then. BSH = 3.

Other CP/M Requirements • 89

BLM A I-byte value called the block mask. The block mask is the
number of sectors per block, minus 1. The BLM for the Apple is
8 - 1, or BLM = 7.

EXM A I-byte value called the extent mask. The extent mask is
used by the BDOS to determine which disk format is being used. An
extent is 1,024 bytes, or eight CP/M logical sectors. EXM is the
maximum number of extents less one that may be used in a File
Control Block (FCB) in the disk directory. The Apple directory FCB
uses one extent per directory 6ntry to allocate file blocks. The EXM is
then 1 - 1, or EXM = O.

DSM A 2-byte value giving 1 less then the maximum number of
blocks available on a disk. This number does not include the system
tracks. The Apple has thirty-two tracks available; the first three
tracks are system tracks. This computes to 128 blocks; therefore,
DSM = 7FOOH. DSM is used to compute the size of the allocation
table pointed to by ALV in the DPB. The table size is (DSM + 1)/8.
The Apple allocation table size is 16 bytes.

DRM A 2-byte value for the maximum number of directory entries,
less 1. The Apple allows forty-eight entries; therefore, DRM = 2FOOH.

ALO and AL 1 The allocation table assigning the directory blocks.
The I-byte values ALO and ALl are actually used together. Each bit
in ALO and ALl corresponds to a reserved block. The Apple reserves
the first two blocks for the directory; therefore, ALO, ALl =

COH, OOH. More information on ALO, ALl is found below in the
ALV description.

CKS A 2-byte value for the size of the area pOinted to by CSV in the
DPB. The CSV area size is (DRM + 1)/4, which for the Apple is 12
bytes. See also CSV, discussed below.

OFF A 2-byte number indicating the number of system tracks. The
Apple reserves the first three tracks for the operating system;
therefore, OFF = 0300H.

csv
CSV is the address of the scratch-pad area used by the BDOS to check if
the disk has been changed. The size of this area is a function of the
maximum number of directory entries for that drive and is found in the
drive's DPB. Each DPH must have its own scratch-pad area.

90. The BIOS

ALV
ALV is the address of the disk storage allocation table. Each DPH has its
own allocation table. The allocation table is filled during a warm boot and
is used to keep track of which disk blocks are occupied. The BDOS
checks the allocation table before each write to prevent the overwriting of
data. The table is updated after each write to reflect which blocks have
become occupied. File deletion will also be reflected in the allocation
table. The allocation table can be thought of as a series of bits rather than
bytes. Each bit in the table indicates the status of a disk block. If the bit
is set, the block is being used. If the bit is cleared, the block is available.
Consider the allocation table for disk A: for the 60K version of CP/M. The
table starts at FF7DH and ends at FFBEH. The ascending byte memory
locations represent ascending block numbers. For example, the following
locations represent the respective blocks:

Address

FF7DH
FF7EH
FF7FH

Block Numbers

OOH-OFH
IOH-IFH
20H-2FH

and so on. The blocks are sequenced in each byte such that the high
order bit represents the lowest block number, while the low-order bit
represents the highest block number. For instance, if block number OOH
is the only occupied block, then the byte at address FF7DH is BOH. If
blocks OOH and OIH are occupied, then the byte becomes COHo

II Zero-Page BIOS Requirements
CP/M requires that some zero-page memory locations be set aside. The
BIOS must take this into account. The memory area OOOOH through
OOFFH is used as follows:

00008-00028 The address containing the instruction
JP WBOOT. The address ofWBOOT is placed in addresses OOOIH
and 0002H as part of the warm boot routine as designated by
Digital Research. Most programs use this jump instruction to locate
the vector jump table, and they frequently exit to the CCP by a
JP OOOOH instruction.

00038 The IOBYTE location. Refer to chapter 4 for a discussion of
IOBYTE usage.

00048 The location where the currently active drive is stored. See
SELDSK for the number code used to designate a drive.

The Standard Microsoft SoftCard • 91

0005H-0007H The address containing the instruction JP BDOS.
The BDOS routines are accessed through a call to this location. See
the Digital Research CP/M Interface Guide supplied with your
Microsoft documentation for details on using the BDOS. Locations
0006H and 0007H contain the lowest address used by the operating
system (the top of the TPA). The area from OlOOH to the latter
address is the space available for program usage.

0008H-0027H Z-80 interrupt locations RST 0 through RST 5, not
used by CP/M.

0030H-0037H The RST 7 location, not currently used by CP/M
but reserved for future use.

0038H-003AH The RST 8 location, used by DDT but not
otherwise used by CP/M.

003BH-003FH An area unused by CP/M but reserved for
future use.

0040H-004FH An area that may be used by the BIOS for
scratch-pad purposes. CP/M does not use this area. The Microsoft
PS lIe BIOS uses this area.

0050H-005BH Another reserved area unused by current
CP/M versions.

005CH-007CH The default File Control Block area used by the
BDOS and transient command programs. See the CP/M Interface
Guide for details on usage.

007DH-007FH An optional area for random records. See the CP/M
Interface Guide for details.

0080H-00FFH The default DMA area. The CP/M warm boot
always resets the DMA address to this location.

II The Standard Microsoft SoftCard
The Mapping of the Standard SoftCard
The Apple BIOS uses both 6502 and Z-80 code. The Apple hardware
design places the slot locations and hardware ROM areas in the memory
areas bounded by $COOO and $CFFF. The dollar sign ($) is a prefix
used to deSignate hexadecimal locations with respect to the 6502
microprocessor, while the H is a suffix designating hexadecimal locations
used by the Z-80 microprocessor. The sixteen hardware pages are in a
very inconvenient location for CP/M; they fall inside the Transient
Program Area. When the standard SoftCard is activated, it remaps the

92. The BIOS

Apple Memory as shown in table 10.2. Mapping the memory this way
places the Apple hardware pages in the BIOS memory area. The Z-80
mapping is valid only while the Z-80 is running the Apple. When the
Z-80 relinquishes control to the 6502, the standard Apple addresses are
in effect. See chapter 14 for the PS lIe's memory mapping.

The Operation of the Standard SoftCard
The standard SoftCard's operation is simple and rather clever (see
chapter 14 for the PS lIe's operation). You turn the standard SoftCard on
by writing to the slot containing the card, and you turn it off by writing
again to the slot; that is, the standard SoftCard is toggled on and off by
alternate write commands. When the standard SoftCard is turned on, it
takes control of the Apple address and data buses and puts the 6502
microprocessor in a standby, or waiting, state. When the standard
SoftCard is turned off, the Z-80 is put into a waiting state, and control is
returned to the 6502. The switching of control between the Z-80 and the
6502 is easily done because the slots on the Apple's motherboard are

Table 10.2 • Standard SoftCard Memory Mapping

6502 Address Z-80 Address

$OOOO-$OFFF FOOOH-FFFFH

$1000-$IFFF OOOOH-OFFFH

$2000-$2FFF 1000H-IFFFH

$3000-$3FFF 2000H-2FFFH

$4000-$4FFF 3000H-3FFFH
$5000-$5FFF 4000H-4FFFH

$6000-$6FFF 5000H-5FFFH

$7000-$7FFF 6000H-6FFFH
$8000-$8FFF 7000H-7FFFH

$9000-$9FFF 8000H-8FFFH .
$AOOO-$AFFF 9000H-9FFFH
$BOOO-$BFFF AOOOH-AFFFH

$COOO-$CFFF EOOOH-EFFFH

$DOOO-$DFFF BOOOH-BFFFH
$EOOO-$EFFF COOOH-CFFFH

$FOOO-$FFFF DOOOH-DFFFH

The Standard Microsoft SoftCard • 93

connected to the address bus. the data bus. and every important control
line. In the Microsoft CP/M versions 2.23 and 2.20B. the routine that
controls the toggling between the Z-80 and 6502 is located at $3CO
referencing to the 6502 or F3COH referencing to the Z-80.

It is instructive to see how the standard SoftCard switches between
the 6502 and the Z-80 microprocessors. The routine at location $3CO for
the Microsoft version 2.23 is

$3CO: LItA $CO:::3
LItA $C~~1:::3

STA SOFTCAPIt

STAPT : LItA $C(1::: 1
J:::P SET6502

J:::P POUT I t·~E
STA $CO:::1
:::E I
JSP :::A'')E

;Put the Apple 16K language card into the
;read!writ~ mode.
;Enable the SoftCard and disable the 6502.
;The SOFTCAPIt address is loaded during the
;cold boot. For the SoftCard in slot 4~

;SOFTCAPIt is $C400.
;Enable the Apple Monitor POM.
;Load the 6502 registers.
;Accumulator loaded from location $45.
;X-register loaded from location $46.
;Y-register loaded from location $47.
;Status register loaded from location $4:::.
;Enable the 6502 interrupts.
;SET6502 is located at $E3F in the 60K BIOS.
;Pun the 6502 subroutine.
;Make sure the POM is enabled.
;Itisable the 6502 interrupts.
;Place accumulator contents in $45~
;X-register contents in $46~ V-register
;contents in $47~ and status register in $4:::.
;Loop back to beginning.

When the standard SoftCard has been booted by the Microsoft BIOS.
the 6502 is put into a waiting state with its program counter (PC)
pointing to START. In order for a 6502 routine to run. the routine address
must be inserted into the ROUTINE location. which is at $3DO for the
6502 or at F3DOH for the Z-80. The 6502 registers may be initialized
before the call by the loading of memory locations $45. $46. $47. and
$48. A write to the standard SoftCard location causes the 6502 to begin
executing the program at the address START. The supplied program is
run. The 6502 registers are stored back to their respective memory
locations. A jump is taken. and a write instruction to the standard
SoftCard location puts the Z-80 in control of the Apple. Recall that before
a microprocessor executes an instruction. the PC is advanced to the next
instruction. This means that the 6502 is put back into a waiting state

94. The BIOS

with its PC pointing to START, and the Z-80 is now executing the
instruction following the write to the standard SoftCard location. The cold
boot finds the standard SoftCard slot and saves its Z-80 address in
locations F3DEH and F3DFH.

We have just seen that the standard SoftCard BIOS is set up so that
the 6502 microprocessor can be used in the execution of a routine
running under CP/M. It is important to note that the 6502 and Z-80
cannot run simultaneously. If one microprocessor is working, the other
must be waiting. A generalized program for running a 6502 program
under CP/M versions 2.20B and 2.23 is shown below.

LD HL,6502ROUTINE ;Load the HL registers with the address of

LD (0F3D0H),HL

LD .:: (1F(145H) , A

LD HL, «(1F3DEH::'

LD (HL),A

LD A, «(1n~145H::'

;the 6502 routine. The address must use the
;6502 memory address of that routine.
;Place the address in the ROUTINE location.
;Pass values to the 6502 registers
; if requi t-ed.
;For example, set up the accumulator. After
;initializing registers, continue.
;Load SoftCard address in the HL registers.
;For the SoftCard in slot 4, E400H is loaded
;into HL.
;A write instruction to the SoftCard address
;runs the 6502 program, and control is passed
;to the 2-80 when the program executes its
;RTS. Read the 6502 registers by reading
;their respective memory locations.
;For example, read the accumulator. After the
;registers are read, the remainder of the
;2-80 program follows.

_ Peripheral Cards
Peripheral card locations and identities are established when the standard
SoftCard goes through a cold boot. A card slot is recognized as being
filled or empty when two checksums are peformed on the slot page. A
checksum is simply the result of adding a given number of bytes. If the
checksums agree, the slot has a card. The card is identified by a
signature byte. The Signature byte is protocol defined by Apple
Computer. The Signature bytes are located at $Cn05, $Cn07, $CnOB, and
$CnOC, where n is the slot number. Microsoft's CP/M version 2.20B looks
at locations $Cn05 and $Cn07 only, while versions 2.23 and higher also

Peripheral Cards • 95

inspect the $CnOB byte. Apple peripheral cards are identified by the
following values:

Card Type

Parallel
Communications
Serial
Disk con troller

Signature Byte

$Cn05 $Cn07

$48 $48
$18 $38
$38 $18
$03 $3C

Firmware cards can have the above values in locations $Cn05 and
$Cn07, but they are identified by having a $01 in location $CnOB. It is
therefore possible for version 2.20B to wrongly identify a firmware card.
This is important since the standard SoftCard cold boot routine assigns
input/output routine vectors according to card identities (see chapter 4).
The cold boot stores the Disk Count Byte at $3B8; the Disk Count Byte is
twice the number of disk controller cards plugged into the Apple. The
cold boot also stores the card types in the Slot Type Table starting at
$3B9 and ending at $3BF, where slot 1 is $3B9. The BIOS uses the
following code to identify the card types:

o No card identified; the slot may be empty.
1 Card detected, but it cannot be identified.
2 Disk controller card.
3 Communications card.
4 Serial card.
5 Parallel card.
6 Firmware card (versions 2.23 and higher only).

The cold boot routine is needed only when the system is brought up.
In order to save space, the BIOS uses the cold boot routine area for the
DIRBUF, the CSV scratch-pad areas, and the ALV allocation scratch-pad
areas. This means that the cold boot routine must change the BOOT
address in the vector jump table. CP/M version 2.20B replaces the JP
instruction with a RET instruction. Versions 2.23 and 2.26 replace the
bytes at BOOT with three NOP instructions, which means that a cold boot
request will fall through to the warm boot.

Cold-booting the system requires more than just doing a jump to
BOOT. The sequence of events during a cold boot is as follows for the
standard SoftCard and the PS lIe.

1 The boot 0 routine in the disk controller card ROMs (read-only
memory) loads track 0, sector 0 from the diskette into the memory
starting at $800 and then does a jump to location $801.

98. The BIOS

2 The boot 1 routine at $801 then loads the CP/M RWTS and the boot
2 routine. The RWTS on the disk controller card is used by boot 1.

3 The boot 2 routine then makes sure that the booting is from the card
in slot 6. Microsoft requires that drive A: be in slot 6, so such a
precaution is necessary. In the standard SoftCard version, memory
pages 2 and 3 are initialized, and the standard SoftCard is located by
a routine that treats each peripheral card as if it were a standard
SoftCard; that is, it tries to turn it on and perform a simple Z-80 code
program. The PS lIe boot 2 doesn't use a card-finder routine. The
remaining card slots are identified by a double checksum over the
card addresses. The warm loader routine is then used to load the
remaining systems. The warm loader is then modified to load only
the CCP and BDOS. The standard SoftCard is turned on, and a jump
is made to the BIOS cold boot routine. The PS lIe boot 2 differs
slightly after the warm boot loader has been used and modified. The
BIOS is relocated (see chapter 14) before jumping to the cold boot
routine.

4 The cold boot completes the initializations, prints the Sign-on
message, and performs the warm boot.

The Microsoft
Version 2.20B BIOS

The BIOS for the Microsoft standard SoftCard 56K CP/M version 2.20B
will be described in this chapter. The Z-80 coded sections will use the H
suffix for memory locations. The 6502 coded sections will use the $ prefix
for the memory locations; the 6502 memory offset is assumed. It will be
assumed here that the reader has sufficient programming experience that
the descriptions can be kept terse.

The 2.20B BIOS extends into the Apple language card area, but it
uses only bank 2 of the language card. The language card bank 1 is
left unused.

All the logical device routines use the I/O Configuration Block (lOCB);
see chapter 4. The 10BYTE is used to determine which physical device is
to be used. The address for that device is taken from the 10CB, and a
jump is made to that address.

_ The BIOS Map
The BIOS map is as follows:

DAOOH-DA32H The BIOS vector jump tables.

DA33H-DA92H The Disk Parameter Headers for six drives.

DA93H-DAAIH The Disk Parameter Block.

DAA2H-DAC4H The slot initialization routine, which initializes
communications and serial cards. The cards are identified from the
Slot Type Table. The initialization starts at slot 7 and goes down to
slot 1. The Asynchronous Communication Interface Adapter (ACIA)
of the communications cards is set to 7 data bits, even parity, and 2
stop bits, and transmit interrupts are enabled.

DAC5H-DACBH A routine to place EnOOH in the HL registers; n is
the slot number passed to the routine in the E register.

DACCH-DB07H WBOOT The warm boot routine. The stack
pointer is initialized. The warm loader routine is called at $EOO. The
slot initialization routine is called. The CP/M BDOS zero-page

97

98. The Microsoft Version 2.20B BIOS

addresses are initialized. The CCP is patched for either a 2- or
4-column directory. DAFDH = 1 for 2 columns; DAFDH = 3
for 4 columns. The warm boot ends with a jump to the CCP at
address C400H.

DB08H-DBOBH CONST The routine to get the address of the
console status routine from the IOCB at F380H and jump to
that routine.

DBOCH-DBIIH The CONST routine for the Apple keyboard.

DB12H-DB28H CONIN The console input routine. A call to the
input character routine at DB50H is made, and the character is
checked against the redefinition table at F3ACH. The routine returns
with a character or translated character in register A.

DB29H-DB3AH The default address in the IOCB for console input.
The DE registers are set to 3, for slot 3. If an 80-column card is in
slot 3, the cold boot changes the next jump to go to the appropriate
input routine. If no 80-column is detected, the routine proceeds to
the Apple keyboard input routine starting at DB2FH.

DB3BH-DB41H The routine to set up and make the call to the
6502. The HL registers on entry contain the 6502 program address.

DB42H The routine that places the contents of the A register in C
and falls into the CONOUT routine.

DB43H-DB4FH CONOUT The routine that checks the IOBYTE for
the output device and then jumps to the selected routine. If the
output goes to the logical LST: device, then the physical LPT: device
is used.

DB50H-DB61H The character input routine, which checks the
IOBYTE for the physical input devices and goes to the selected
routine.

DB62H-DB65H A jump to the physical PTR: device. This routine
may be used by the console input or logical RDR: device.

DB66H-DB74H LIST The logical LST: device routine, which
checks the IOBYTE for the physical device. A jump is then made to
the selected physical device.

DB75H-DB86H PUNCH The logical PUN: device routine, which
checks the IOBYTE for the physical device. A jump is then made to
the selected physical device.

DB87H-DB95H READER The logical RDR: device routine, which
checks the IOBYTE for the physical device. A jump is then made to
the selected physical device.

The BIOS Map • 99

DB96H-DBB7H A routine for 80-column cards. It conditions the
memory locations and looks to see if an escape sequence is coming.
Control is passed to routines to perform specific functions depending
on how the output is to be performed.

DBB8H-DBDFH A routine that positions the cursor in the
GOTOXY sequence.

DBEOH-DBF4H A routine that checks to see if there was a
terminal lead-in character sent and calls routines as required.

DBF5H-DCSDH A routine tl1at considers all the possible
combinations and finally prints the character to the console via
physical device TTY: or UC 1: as required.

DCSEH-DC4SH The physical TTY: device. This is the general
console output routine. The jump address to the specific output
routine is patched in during the cold boot. Since the output routines
are slot-dependent, the slot number of the console is supplied in
location DC3FH. The slot number here is 3.

DC44H-DCDEH The screen output routine for the standard
40-column Apple screen. This is the routine patched into the former
routine if no serial or 80-column card is found in slot 3.

DCDFH-DCE9H The communications card output routine. A
status loop is run. When the ACIA is ready, the character in the C
register is transmitted.

DCEEH-DDOSH A preparatory routine for setting up a serial card
for either input or output.

DD04H-DD 11H The serial card output routine. The output is
performed by calling the 6502.

DD12H-DD1BH The communications card input routine. This
routine resembles the output routine in structure.

DD1CH-DD2AH The serial card input routine.

DD2BH-DDSOH The physical LPT: device output function. A jump
is made to the card driver routine. The jump address is loaded
during the cold boot and depends on the card type found in slot 1.
Since the card routines are slot-dependent. this routine supplies the
slot number in location DD2CH.

DDS1H-DDSEH The parallel card output routine.

DDSFH-DD44H The physical PTP: device output function. A jump
is made to the card driver routine. The jump address is loaded
during the cold boot and depends on the card type found in slot 2.

100. The Microsoft Version 2.20B BIOS

Since the card routines are slot-dependent, this routine supplies the
slot number in location DD40H.

DD45H-DD4CH The physical PTR: device output function. A jump
is made to the card driver routine. The jump address is loaded
during the cold boot and depends on the card type found in slot 2.
Since the card routines are slot-dependent, this routine supplies the
slot number in location DD46H.

DD4BH-DD55H HOME A disk routine to select track O.

DD56H-DD5AH SETTRK A disk routine to select the track in
register C.

DD5BH-DD6CH A computational routine used by the peripheral
card drivers and disk I/O routines to get needed slot and memory
addresses and the numbers passed to them from the physical
device routines.

DD6DH-DD88H SELDSK A routine to select the disk drive and set
flags to notify the disk I/O routines if the drive has been changed or a
nonexistent drive was called.

DD89H-DD8DH SETSEC A routine to select the 128-byte
CP/M sector.

DD8EH-DD92H SETDMA A routine to select the disk I/O
buffer address.

DD93H-DDA2H READ A routine that sets up the disk read
operation according to all the CP/M protocols; see chapter 10.

DDA3H-DDFIH WRITE A routine that performs the disk write
operation using the CP/M protocols.

DDF2H-DE72H A routine used by both READ and WRITE to
make sure that the CP/M protocols are met. A sector skew is done
with the CP/M sector skew table. The data is moved to or from the
CP/M RWTS buffer at $800. The read or write operation is
then called.

DE73H-DE91H A routine tl\at performs the actual read and write
routines by calling the 6502 CP/M RWTS function.

DE92H-DEAIH The CP/M logical sector skew table. The table
relates the 256-byte sector number to the logical 128-byte sector
number used by CP/M.

F200H-F37FH The I/O Patch area. This is a space for user
provided routines required for special I/O situations. The IOCB must
be patched to vector the device I/O to the routines in this area.

The CPM56.COM Map • 101

F380H-F395H The 10CB containing the vectors to the CP/M
physical devices.

F396H-F3AAH A table used by the console routines to perform
console functions. The table can be set up so that a variety of
terminals may be run off the Apple.

F3COH-F3DAH The routine that calls the 6502 microprocessor.

F3FOH-F3FFH The space used by the Apple to vector the
interrupts and resets. The vectors under CP/M all point to $3CO, so
the Z-80 never loses control of'the Apple.

F800H-F900H The buffer used by the CP/M RWTS.

FAOOH-FFFCH The CP/M RWTS routines. These are all written in
6502 code.

The CP/M 2.20B includes a patch in the 110 Patch area to allow a
serial card to be used in slot 3. The 10CB contains the patch addresses for
the primary console routines.

II The CPM56.COM Map
The program CPM56.COM contains the entire operating system image.
You can modify the BIOS most easily by making modifications to
CPM56.COM and then running the latter program. Below is a mapping of
the CPM56.COM program when loaded into memory by DDT.

lOOH-2FFH The command portion of CPM56.COM.

300H-3FFH The boot 1 portion, which loads from track 0, sector 0
and is responsible for loading the CP/M RWTS sectors into the
memory range $AOO-$FFF and the boot 2 portion into the range
$1000-$13FF.

400H-9FFH The CP/M RWTS.

AOOH-BFFH The boot 2.

COOH-D7FH The I/O Patch area, which gets moved by boot 2 to
F200H-F37FH.

D80H The 10CB console status vector.

D82H The 10CB console input vector 1 or TTY: device.

D84H The 10CB console input vector 2 or UC 1: device.

D86H The 10CB console output vector 1 or TTY; device.

102. The Microsoft Version 2.20B BIOS

D88H The 10CB console output vector 2 or UCI: device.

D8AH The 10CB reader vector I or PTR: device.

D8CH The 10CB reader vector 2 or URI: device.

D8EH The 10CB punch vector I or PTP: device.

D90H The 10CB punch vector 2 or UPI: device.

D92H The 10CB list vector I or LST: device.

D94H The 10CB list vector 2 or UL I: device.

D96H-DFFH The console hardware and software definition tables
and the remainder of page 3 routines and vectors. The data in the
range 080H-OFFH gets moved by boot 2 to F380H-F3FFH.

EOOH-15FFH The CCP.

l600H-23FFH The BOOS.

2400H-29A7H The BIOS.

29A8H-29E7H The cold boot routine.

29E8H-29FFH Patches required for 2.20B to run a turnkey and
correct a disk read/write problem.

II The CPM56 Diskette Map
The Apple CP/M diskette system tracks are mapped as follows:

Track OOH, sector OOH The boot I sector.

Track OOH, sector OlH through track OOH, sector 06H
The CP/M RWTS.

Track OOH, sector 07H through track OOH, sector 08H
The boot 2 routine.

Track OOH, sector 09H through track OOH, sector OAH
The I/O Patch area plus page F300H routines and tables.

Track OOH, sector ODH through track OlH, sector 02H
The CCP. i

Track OlH, sector 03H through track 02H, sector OOH
The BOOS.

Track 02H, sector OlH through track 02H, sector 06H
The BIOS.

The routines listed above use the CP/M RWTS sectors; see Appendix C.

CPM56 Card Driver Entry Points • 103

II CPM58 Card Driver Entry Points
A list of the entry points to the peripheral card drivers will be useful for
BIOS patching. The list is given below.

DCDFH The entry point to the communications card
output routine.

DD04H The entry point to the serial card output routine.

DD 12H The entry point to the communications card input routine.

DDICH The entry point to tl1e serial card input routine.

DD31H The entry point to the parallel card output routine.

All the driver routines require that the DE registers contain the card slot
number before entry. The A and C registers are used as required by
CP/M protocols.

104

The Microsoft
Version 2.23 BIOS

The Microsoft 2.20B BIOS uses some ungainly fixes to correct a few
problems, but still a few problems remain in the area of hard\vare
interfacing. Microsoft has corrected most of the 2.20B problems with its
standard SoftCard 2.23 BIOS. The few existing problems will be corrected
in chapter 13.

The hardware interfacing is greatly improved because version 2.23
uses Apple Computer's protocols for operating what Apple callsfirmware
cards. Most of the cards that can operate a host of peripheral devices and
have them do all sorts of neat tricks are firmware cards. Version 2.20B
could not identify firmware cards and would often use the wrong I/O
drivers. This caused a gnashing of teeth by those unfortunates who
invested in expensive equipment and could not get it to operate under
CP/M. Version 2.23 will operate the firmware cards, provided that the
card manufacturers followed the Apple protocols.

There is another improvement in version 2.23. It is that the BIOS
communications card driver uses the 6502 instead of the Z-80 to access
the ACIA (Asynchronous Communication Interface Adapter). The Z-80
has a memory-refresh provision, which causes the address to be accessed
to be preread before the actual reading or writing occurs. Reading the
data port on an ACIA clears the ACIA status flags, which means that
the data can disappear before a second read is made. You can lose data
when the ACIA is read by the Z-80; using the 6502 instead eliminates
this problem.

The 60K 2.23 version has more memory available to programs than
the 56K 2.20B version because both 4K banked memories on the
language card are used. The 56K 2.20B version uses only bank 2 on the
language card. Version 2.23 uses bank 1 to store the BIOS disk-handling
routines, which include the 6502 CP/M RWTS, the Z-80 BIOS routines,
and two-thirds of the BDOS, which leaves bank 1 available for
program memory.

The BIOS Map • 105

II The BIOS Map
The BIOS map given below uses the same conventions as are used in
chapter 11. The routines written in Z-80 code use the H suffix in their
addresses. The routines written in 6502 code use the $ prefix in their
addresses.

F200H-FS 7FH The I/O Patch area. This is a space for user
provided routines required for special I/O situations. The 10CB must
be patched to vector the devic~ I/O to the routines in this area.

FS80H-FS95H The 10CB, which contains the vectors to the CP/M
physical devices.

FS96H-FSAAH A table used by the console routines to perform
console functions. The table can be set up so that a variety of
terminals may be run with the Apple.

$SCO-$SDA The routine that calls the 6502 microprocessor.

$SFO-$SFF The space used by the Apple to vector the interrupts
and resets. The vectors under CP/M all point to $3CO, so the Z-80
never loses control of the Apple.

$800-$8FF The default I/O buffer area used by the CP/M RWTS.

$900-$9FF A nibble buffer used by the CP/M RWTS.

FAOOH-FAS2H The BIOS vector jump tables.

FA33H-FA92H Disk Parameter Headers for four drives.

FA9SH-FAAIH The Disk Parameter Block.

FA82H-FABOH The slot initialization routine, which initializes
communications, serial, and firmware cards. The cards are identified
from the Slot Type Table. The initialization starts at slot 7 and goes
down to slot 1. The ACIA of the communications cards is set to
7 data bits, even parity, and 2 stop bits, and transmit interrupts
are enabled.

FABIH-FAB7H A routine to place EnOOH in the HL registers; n is
the slot number passed to the routine in the E register.

FAB8H-FBOFH WBOOT The warm boot routine. The stack
pointer is initialized. The warm loader routine is called at $EOO. The
slot initialization routine is called. The CP/M BDOS zero-page
addresses are initialized. The CCP is patched for either a 2- or
4-column directory. FB05H = 1 for 2 columns; FB05H = 3 for
4 columns. The warm boot ends with a jump to the CCP at
address C400H.

108. The Microsoft Version 2.23 BIOS

FBIOH-FB13H CONST The routine that gets the address of the
console status routine from the IOCB at F380H and jumps to
that routine.

FB14H-FB19H The CONST routine for the Apple keyboard.

FBIAH-FB32H CONIN The console input routine. A call to the
input character routine at FB5AH is made, and the character is
checked against the redefinition table at F3ACH. The routine returns
with a character or translated character in register 4.

FB33H-FB38H The default address in the IOCB for console input.
The DE registers are set to 3, for slot 3. If an 80-column card is in
slot 3, the cold boot changes the next jump to go to the appropriate
input routine. If no 80-column card is detected, the routine proceeds
to the Apple keyboard input routine starting at FB39H.

FB45H-FB4BH The routine that sets up and makes the call to the
6502. The HL registers on entry contain the 6502 program address.

FB4CH The routine that places the contents of the A register in C
and falls into the CONOUT routine.

FB4DH-FB59H CON OUT The routine that checks the IOBYTE for
the output device and then jumps to the selected routine. If the
output goes to the logical LST: device, then the physical LPT: device
is used.

FB5AH-FB6BH The character input routine, which checks the
IOBYTE for the physical input device and goes to the selected
routine.

FB6CH-FB6FH A jump to the physical PTR: device. This routine
may be used by the console input or logical RDR: device.

FB70H-FB7EH LIST The logical LST: device routine, which
checks the IOBYTE for the physical device. A jump is then made to
the selected physical device.

FB7FH-FB90H PUNCH The logical PUN: device routine, which
checks the IOBYTE for the physical device. A jump is then made to
the selected physical device.

FB91H-FB9FH READER The logical RDR: device routine, which
checks the IOBYTE for the physical device. A jump is then made to
the selected physical device.

FBAOH-FBCAH A routine for 80-column cards. It conditions the
memory locations and looks to see if an escape sequence is coming.
Control is passed to routines to perform specific functions depending
on how the output is to be performed.

The BIOS Map • 107

FBCBH-FBFIH The location where the cursor positioning by the
GOTOXY sequence routine starts; then the routine jumps to FCA4H.
Routines required for the functioning of the routine at FBAOH are
also placed out of sequence compared to version 2.20B and start at
address FC56H. This displacement is required so that room for a
buffer used by the RWTS can be located at $COO.

FBF4H-FBF8H SETSEC A routine that selects the 128-byte
CP/M sector.

FBF9H-FBFDH SETDMA A'routine that selects the disk I/O
buffer address.

$COO-$C55 The location of one of the CP/M RWTS nibble buffers.

FC56H-FC6AH A routine that checks to see if there was a
teriminallead-in character sent and calls routines as required.

FC6BH-FCB4H A routine that considers all the possible
combinations and finally prints the character to the console via
physical device TTY: or DC 1: as required.

FCB5H-FCBAH The physical TTY: device. This is the general
console output routine. The jump address to the specific output
routine is patched in during the cold boot. Since the output routines
are slot-dependent, the slot number of the console is supplied in
location FCB6H. The slot number here is 3.

FCBBH-FDODH The screen output routine for the standard
40-column Apple screen. This is the routine patched into the
preceding routine if no serial or 80-column card is found in slot 3.

FDOEH-FD27H The communications card output routine using
6502 code. A status loop is run. When the ACIA is ready, the
character in the C register is transmitted.

FD28H-FD70H Screen function routines, located in the BIOS out
of sequence compared to version 2.20B.

FD71H-FD82H The serial card output routine. It performs the
output by calling the 6502.

FD83H-FD98H A preparatory routine for setting up a serial card
for either input or output.

FD99H-FDA8H The console status routine for a firmware card,
which calls a 6502 routine for operation.

FDA9H-FDB6H The firmware card output routine, which calls a
6502 routine for operation.

108. The Microsoft Version 2.23 BIOS

FDB7H-FDCOH The firmware card input routine, which calls the
6502 routine at $EOF for operation.

FDCIH-FDCFH The serial card input routine.

$DDO-$DEO The firmware card initialization routine, which is
followed by a routine that uses the Apple protocol for firmware 110.

$DEl-$DEE The firmware card output routine.

$DEF-$DFA The firmware card routine that waits for the card to
accept 110.

$EOO-$E02 The CP/M entry to the warm loader routine.

$E03-$E08 The entry to the CP/M RWTS routine on the language
card bank 1.

$E09-$EOE The second entry to the warm loader routine on bank
1 of the language card.

$EOF-$EIC The firmware card input routine.

$EID-$E25 The firmware card routine to obtain the card's
110 status.
$E26-$E3E The routine that sets up all the parameters used by
the firmware card protocol and sets up the coresident ROM area at
$C800 to be ready for the firmware card's requirements.

$E3F-$E4A The routine that is used by the routine at $3CO to set
all the 6502 registers and flags from their respective memory areas.
The 6502 interrupt is also enabled.

FE48H-FE54H The communications card input routine. This
routine resembles the output routine in structure.

FE55H-FE5AH The physical LPT: device output function. A jump
is made to the card driver routine. The jump address is loaded
during the cold boot and depends on the card type found in slot 1.
Since the card routines are slot-dependent, this routine supplies the
slot number in location FE56H.

FE5BH-FE68H The parallel card output routine.

FE69H-FE6EH The physical PTP: device output function. A jump
is made to the card driver routine. The jump address is loaded
during the cold boot and depends on the card type found in slot 2.
Since the card routines are slot-dependent, this routine supplies the
slot number in location FE6AH.

FE6FH-FE74H The physical PTR: device output function. Ajump
is made to the card driver routine. The jump address is loaded

The BIOS Map • 109

during the cold boot and depends on the card type found in slot 2.
Since the card routines are slot-dependent. this routine supplies the
slot number in location FE70H.

FE75H-FE7FH HOME A disk routine to select track o.
FE80H-FE84H SETTRK A disk routine to select the track in
register C.

FE85H-FE96H A computational routine used by the peripheral
card drivers and disk I/O routines to get needed slot and memory
addresses and from the numbers passed to them from the physical
device routines.

FE97H-FEC5H SELDSK A routine that selects the disk drive and
sets flags to notify the disk I/O routines if the drive has been changed
or a nonexistent drive was called.

FEC6H-FECBH READ The entry point to the disk read routine
found on bank 1 of the language card.

FECCH-FEDIH WRITE The entry point to the disk write routine
found on bank 1 of the language card.

FED2H-FED8H The routine used when the 6502 must be called
by a routine on bank l.

FED9H-FEDFH The routine used when a disk 110 error is
encountered by the disk-handling routines on bank 1. Bank 2 is
switched back on, and the BDOS error routine is called.

FEEOH-FEE3H The function through which the bank 1 routines
return. Their return turns on bank 2.

$FF AC-$FFE8 The memory used by the CP/M RWTS for what is
called prenibblizing routines. It is located above the BDOS in
memory and doesn't fit neatly into this memory map. Microsoft had
to put it here to fit the second segment of BDOS on the first language
card bank. Version 2.23 gets choppy from here on.

The following are located on bank 1 of the language card.

$DOOO-$D246 The first segment of the CP/M RWTS. The RWTS
is split into two segments for reasons known only to Microsoft.

B247H-B256H The disk read operation, set up according to all the
CP/M protocols. See chapter 10.

B257H-B270H The disk write operation, performed according to
the CP/M protocols.

110. The Microsoft Version 2.23 BIOS

B271H-B333H A routine used by both READ and WRITE to make
sure that the CP/M protocols are met. A sector skew is done with the
CP/M sector skew table. The data is moved to or from the CP/M
RWTS buffer at $800. The read or write operation is then called.

B334H-B358H The location where the actual read and write
routines are performed by the calling of the 6502 CP/M RWTS
function.

B359H-B368H The CP/M logical sector skew table. The table
relates the 256-byte sector number to the logical 128-byte sector
number used by CP/M.

$D369-$D5BC The second segment of the CP/M RWTS.

B5COH-BFFFH The second BDOS segment. This is not the BIOS,
but it is included for completeness.

_ The CPM60.COM Map
The program CPM60.COM contains the entire operating system image.
You can modify the BIOS most easily by making modifications to
CPM60.COM and then running the latter program. Below is a mapping of
the CPM60.COM program when it is loaded into memory with DDT.

100H-3FFH The command portion of CPM60.COM.

400H-500H The boot 1 portion, which loads from track 0, sector 0
and is responsible for loading the CP/M RWTS sectors into the
memory range $AOO-$FFF, loading boot 2 into $1000-$12FF, and
loading the $300-page area into $1300-$13FF.

500H-746H The first segment of the CP/M RWTS.

747H-858H The BIOS read/write portions of the disk-handling
routines.

859H-AFFH The second segment of the CP/M RWTS.

BOOH-CFFH The boot 2.

DOOH-E7FH The I/O Patch area, which gets moved by boot 2 to
F200H-F37FH.

E80H The 10CB console status vector.

E82H The 10CB console input vector 1 or TTY: device.

E84H The 10CB console input vector 2 or UC 1: device.

E86H The 10CB console output vector 1 or TTY: device.

E88H The 10CB console output vector 2 or UC 1: device.

The CPM60 Diskette Map • 111

ESAH The 10CB reader vector I or PTR: device.

ESCH The 10CB reader vector 2 or URI: device.

ESEH The 10CB punch vector I or PTP: device.

E90H The 10CB punch vector 2 or UPI: device.

E92H The 10CB list vector I or LST: device.

E94H The 10CB list vector 2 or ULI: device.

E96H-EFFH The console hardware and software definition tables
and the remainder of page 3 routines and vectors. The data in the
range E80H-EFFH gets moved by boot 2 to F380H-F3FFH.

FOOH-17FFH The CCP.

lSOOH-IBFFH The non-language card BDOS segment plus the
prenibblizing CP/M RWTS routines.

lCOOH-26FFH The language card segment of BDOS.

2700H-2BE9H The BIOS.

2BEAH-2BFFH The cold boot routine.

II The CPM60 Diskette Map
The Apple CP/M diskette system tracks are mapped as follows:

Track OOH, sector OOH The boot I sector.

Track OOH, sector OlH through track OOH, sector 06H
The CP/M RWTS and Z-80 BIOS disk routines.

Track OOH, sector 07H through track OOH, sector OSH
The boot 2 routine.

Track OOH, sector 09H through track OOH, sector OAH
The I/O Patch area plus page F300H routines and tables.

Track OOH, sector OBH through track OlH, sector 03H
The CCP.

Track OlH, sector 04H through track OlH, sector 07H
The first segment of BDOS.

Track OlH, sector OSH through track 02H, sector 02H
The second segment of BDOS.

Track 02H, sector 03H through track 02H, sector 03H
The BIOS.

The routines listed above use the CP/M RWTS sectors; see Appendix C.

112. The Microsoft Version 2.23 BIOS

II CPM60 Card Driver Entry Points
The entry points to the BIOS card driver routines are listed below as an
aid to BIOS patching.

FDOEH The entry point to the communications card
output routine.

FD71H The entry point to the serial card output routine.

FDA9H The entry pOint to the firmware card output routine.

FDB7H The entry point to the firmware card input routine.

FDC IH The entry point to the serial card input routine.

FE4BH The entry point to the communications card input routine.

FE5BH The entry point to the parallel card output routine.

All the driver routines require that the DE registers contain the card slot
number before entry. The A and C registers are used as required by
CP/M protocols.

Patching the
Microsoft Standard
SoftCard BIOS

In this chapter a variety of patches to the Microsoft standard SoftCard
BIOS (Basic Input Output System) will be presented. The standard
SoftCard manual discusses making BIOS patches using the CONFIGIO
program. The use of this program can be confusing to both the novice
and the sophisticated user. For this reason, an alternative approach to
BIOS patching will be shown.

The complete CP/M operating system is included in the CPM56.COM
and CPM60.COM files. It is an easy matter to place the patches in these
files with the aid of DDT (see chapter 8). When CPM60 or CPM56 is run,
the altered operating system will be permanently installed on the
diskette. The mapping of these files was shown in chapters 11 and 12.

_ Squashing Microsoft Version 2.20B Bugs
For the initial example, we will correct some bugs that exist in the 60K
and 56K CP/M versions. The first thing to be done is to copy DDT.COM
and CPM60 or CPM56 to another diskette; don't make any alterations to
your original copy. Make sure that the duplicate diskette has the CP/M
operating system installed so that it can be placed into drive A:. Place the
duplicate diskette in drive A:, and enter a CONTROL-C to warm-boot the
system. Use DDT to load the file into memory. The first example is the
correction of the bug in the 56K version that exchanges the PTP: and
UP 1: devices. This bug generally goes unnoticed because the default
vectors in IOCB (see chapter 4) both point to the same output routine for
the card in slot 2. If you were to have different routines for PTP: and
UPl:, then problems would arise.

On with the correction: first type

After the DDT prompt (#) appears, type

S25::: 1

113

114. Patching the Microsoft Standard SoftCard BIOS

and remember to terminate all input by pressing the RETURN key. DDT
will respond with

25::: 1 20

After the 20, enter 28, and press RETURN. You have just changed the
byte in memory location 2581H from 20H to 28H. On the next line, enter
a period (.), and then press RETURN. The DDT prompt will reappear.
Type CONTROL-C, and you will exit DDT to the CCP (Console Command
Processor). Type

SAUE 42 CPM56.COM

The altered file CPM56.COM will now be stored on the diskette. Now type

CPt'156 A:

After you respond to the program prompts, the new operating system will
be placed permanently on the drive A: diskette's system tracks. The
patched operating system may be transferred to other diskettes by the
COpy program on the master diskette. The command

COP'r' B: =A: /::;

will copy only the operating system from the diskette in drive A: to that
in drive B:.

The 56K version has an annoying feature when an Apple lIe has an
80-column card in the auxiliary slot. Every time there is a warm boot, the
screen is cleared. The reason for this is that the BIOS initializes all the
peripheral cards on each warm boot. You may correct this by using DDT
to change the following bytes. Type

S24D:::

DDT will respond with

24D::: CD

Enter 0 and RETURN. DDT will then respond with

24D':;' A2

Enter 0 and RETURN. DDT will then respond with

24DA DA

Enter 0 and RETURN. DDT will then respond with

24DB AF

Using Other Slots for the Printer • 115

Then enter a period (.) and RETURN to exit the set mode. You have
changed the bytes at locations 24D8H, 24D9H, and 24DAH to OOH. This
removes the call to the initialization program in the warm boot routine.
One more byte needs to be changed. Pressing the RESET key will cause
the Apple to perform some reinitializations of its own before CP/M does a
warm boot. This will cause a weird screen display. The RESET has to be
changed to cause the system to cold-boot. You accomplish this by using
the set command in DDT to change the byte in location DF4H from A6H
to OOH. Exiting DDT as before and typing .
SAUE 42 CPM56.COM

will place the modified BIOS on the system tracks.
Multiple changes can be made during one session with DDT. The

change to the PTP: and UP 1: vectors and the warm boot fix can be
handled in one pass through DDT.

• Squashing Microsoft Version 2.23 Bugs
CPM60 is not without problems. The PUN: vector problems were
corrected, but an error in the RDR: vectoring was introduced. This error
is always noticeable and must be corrected. The Apple lIe warm boot
problem is present as well. Using DDT to change the following locations
in the CPM60.COM file will correct the problems. To correct the warm
boot problem:

Change OEF4H from A6H to OOH.
Change 27C4H from CDH to OOH.
Change 27C5H from 82H to OOH.
Change 27C6H from DAH to OOH.

To correct the RDR: vector problem:

Change 2897H from 08H to 04H.

Type

SAUE 44 CPM60.COM

to save the patched version of the file .

• Using Other Slots for the Printer
Often a user has more than one printer attached to the Apple. The
Microsoft BIOS defaults to slot 1 for the LST: device. This means that the

116. Patching the Microsoft Standard SoftCard BIOS

card for a second printer, which is in some other slot, is not available.
There is a very simple patch to make a peripheral card in any slot
become the logical device I/O card.

As an example, let's assume there is a printer attached to a card in
slot 1, and we wish to access a printer attached to a card in slot 5. We
will assign the physical device type LPT: to the slot 1 printer and the
physical device type UL1: to the slot 5 printer. This means that the IOCB
0/0 Configuration Block) vector in locations F392H and F393H must
point to the BIOS routine that drives the card in slot 1, and locations
F394H and F395H must point to the routine that drives the card in slot 5.
The routine for the slot 1 card already exists in the BIOS, and we don't
have to change the first vector. Microsoft has provided space for BIOS
patches in the memory region F200H through F37FH. We will put the
routine to drive the slot 5 card in the memory locations starting with the
address F200H. Then the second IOCB vector must point to F200H.
Therefore, we must place OOH in location F394H and F2H in location
F395H; remember that a vector contains the address with the high byte
and low byte in an inverted order. In most cases, the driver routine is
already available in the BIOS. We can use the existing routines to drive
our slot 5 card.

The BIOS card driver routines require some of the Z-80 registers to
be initialized before they are entered. First the DE registers must contain
the slot number of the peripheral cards. This means that the D register
contains OOH, and the E register contains the slot number. Our example
of a card in slot 5 requires that the E register contain a 05H. An output
routine requires that the ASCII character to be sent to the card be
contained in the C register. An input routine will place the input
character in the A register. The last two statements reflect the CPIM
protocols for input and output devices.

Assume that the slot 5 card is a parallel card and that we are
patching the 60K BIOS version. By the time the BIOS jumps to the
routine pOinted to by the IOCB, the output character is in the C register,
so we needn't consider setting up the C register. The routine at F200H
need only place the slot number in the DE registers and then jump to the
parallel card output routine. The parallel card output is located at F35BH.
The routine at F200H should then be

F2Cu:::1 LD DE, 0005
F203 .JP F35BH

This is represented in machine code by the following:

Using Other Slots for the Printer • 117

Location Content

F200H llH
F20lH 05H
F202H OOH
F203H C3H
F204H 5BH
F205H F3H

The above patch can be done to the BIOS with DDT, but it will not be
permanent. A cold boot will remove it. To make a permanent patch, use
DDT to change the following locations in the CPM60.COM file.

Location Insert

DOOH llH
DOlH 05H
D02H OOH
D03H C3H
D04H 5BH
D05H F3H

This will place the latter code into the patch area. The next change will
alter the IOCB to point to the patch.

Location

E94H
E95H

Insert

OOH
F2H

Saving the patched CPM60.COM and then running it will place the patch
permanently on the system tracks.

The above procedure may be generalized to patch CPM60.COM for a
card in any slot. The card's driver routine must be present in the BIOS.

Location Insert

DOOH IlH
DOlH Card's slot number
D02H OOH
D03H C3H
D04H Low byte of the card driver routine's address
D05H High byte of the card driver routine's address

If the UP l: device is to be changed, then change the following:

Location

E94H
E95H

Insert

OOH
F2H

118. Patching the Microsoft Standard SoftCard BIOS

If the LPT: device is to be changed, then change the following:

Location

E92H
E93H

Insert

OOH
F2H

The addresses of the card driver routines are in chapter 12.
Patching CPM56.COM is analogous to patching CPM60.COM;

however, the addresses are different. To patch in the peripheral card's
drivers, enter the following:

Location Insert

COOH IIH
COIH Card's slot number
C02H OOH
C03H C3H
C04H Low byte of the card driver routine's address
C05H High byte of the card driver routine's address

If the UP 1: device is to be changed, then change the following:

Location

D94H
D95H

Insert

OOH
F2H

If the LPT: device is to be changed, then change the following:

Location

D92H
D93H

Insert

OOH
F2H

The addresses of the card's driver routines are in chapter II.
It has been assumed that you know your peripheral card type. If you

don't know what type your card is, use DDT to examine the SLOTYPS
table starting at F3B9H. Enter DDT and type

DF3B9

Then press the RETURN key. DDT will print a memory dump with the
first line possibly looking like this:

F3B9 05 03 06 00 05 02 00

The bytes following F3B9H are the identification codes for the card types.
The first byte is for slot 1, the second is for slot 2, and so on. The above
example shows a parallel card in slot 1, a communications card in slot 2,
and so on. The identification codes are given in chapter 10. Note the card

Stopping the Printer from Double-spacing • 119

type from this table, and select the appropriate driver routine for the
BIOS patch.

II Stopping the Printer from
Doable-spacing
The card driver routines bypass all or most of the software on the
peripheral card ROMs. This is why the special printer control sequences
do not work in CP/M. An often-encountered problem is the printer's
double-spacing of lines. The reason for this double-spacing is that CP/M
issues a line-feed instruction after each carriage return. A printer that
does an automatic line feed after a carriage return will issue two line
feeds instead of one when operating under CP/M. The cure is to turn off
the automatic line feed on the printer. This is sometimes impossible; for
example, the printer may be a typewriter. Many cards will strip the line
feeds from the output if they receive an instruction such as CONTROL-I K
from the computer. These card features are accessible under Apple DOS
because the card ROMs are used. The same instruction will do nothing
under CP/M because the ROMs are bypassed. The following patch is the
double-spacing cure.

The patch program looks for a carriage return-line feed sequence. A
line feed will not be sent to the printer if the previously sent character
was a carriage return. The program should be placed at F200H or
the appropriate locations in the CPM60.COM or CPM56.COM files.
Remember, if you have already entered one patch at F200H, then
you must start this patch at a higher address in the patch area. The
program is

t·~OTCP :
t·WTLF:

LD
CP
JP
LD
CP
JP
LD
PET
LD
LD
LD
JP
DB

A, (LA::::T >
~::mH

t·~Z, t·~OTCP

A,C
OAH
t·e, t·WTLF
(LA::::T> , A

A,C
(LA::::T> , A
DE,slot
dt"ivE~t"

~:10H

;Load the last chat"actet" pt"inted into A.
;Is it a cat"t"iage t"etut"n?
;Branch if it isn't.
;Place the curt"ent output chat"actet" in A.
;Is it a line feed?
;Bt"anch if it isn't.
;Save the cut"t"ent chat"actet".
;Retut"n ~ithout pt"inting a line feed.
;Place the cut"t"ent chat"actet" in A.
;Save the cut"t"ent chat"actet".
;Place the cat"d's slot numbet" in DE.
;Jump to the suitable cat"d dt"ivet".
;The last chat"actet" pt"inted is stot"ed het"e.

120 • Patching the Microsoft Standard SoftCard BIOS

Placing the machine-coded version of this program into the CPM60.COM
requires using DDT to load the following addresses:

Location

DOOH
DOIH
D02H
D03H
D04H
D05H
D06H
D07H
D08H
D09H
DOAH
DOBH
DOCH
DODH
DOEH
DOFH
DIOH
DIIH
DI2H
DI3H
DI4H
DI5H
DI6H
DI7H
DI8H
DI9H

Insert

3AH
I9H
F2H
FEH
ODH
20H
08H
79H
FEH
OAH
20H
04H
32H
I9H
F2H
79H
32H
I9H
F2H
IIH
Card's slot number
OOH
C3H
Low byte of the card driver routine's address
High byte of the card driver routine's address
OOH

The requisite IOCB vector must be patched. Again, save CPM60.COM,
and run the program.

_ Adding XON/XOFF Handshaking
Sometimes a driver routine doesn't exist for the card, or it is impossible
to use the existing routines. The patch in these cases must contain the
complete driver. We end this chapter with such a patch. Some printers,
such as the Diablo brand, do software handshaking. This is done by the
printer's sending a message to the computer to stop issuing data when
the printer's input buffer is full. When the printer is ready to accept more
data, a message is sent to the computer to resume sending. This scheme
is required for remote terminals that operate over telephone lines. The

Adding XON/XOFF Handshaking • 121

programs given are for printers that use the XON/XOFF protocol. This
protocol dictates that the sending unit stop sending when it receives an
XOFF character (a CONTROL-S) from the receiving unit. The sending
unit may continue sending when it receives an XON character (a
CONTROL-Q) from the receiving unit. The programs are listed in machine
code only since they contain both Z-80 and 6502 codes. The first
program is intended for a communications card. The listing is sequential
and should be placed in the CPM60.COM file or the CPM56.COM file by
DDT. The code should be inserted starting at location DOOH for
CPM60.COM or at location COOH for CPM56.COM. The code that follows
is in hexadecimal notation.

3E)::>:: 7·:-0_1t:- 46 F0 7'3 7·:-0_1':" 45 F(1 21 14 (12 22 D(1 F3 2A DE F3 77 C'3 A5
0A (1A (1A ~~1A AA BD :::E C0 2'3 (13 n~1 F'3 2'3 (11 D(1 (16 A5 45 '3D :::F C0
BD 8F C~~1 2 1::a 7F C'3 13 D0 E6 BD 8E C(1 2'3 (11 F(1 F'3 BD :::F C~~1 4C 1B

The xx is the slot number of the communications card. The IOCB
locations for the chosen device must be made to point to F200H in the
CPM60.COM or CPM56.COM files. The second program is for the Apple
Super Serial card and is to be implemented exactly as for the
communications card. The code for the program is as follows:

46
6~~1

~~12

3E xx 32 46 F0 7'3 32 45 F0 21 14 02 22 D0 F3 2A DE F3 77 C'3 A5 46
0A 0A 0A 0A AA BD 8'3 C0 2'3 1::: F0 F'3 2'3 08 D0 06 A5 45 '3D :::8 C0 60
BD 88 C0 2'3 7F C'3 13 D0 E6 BD 8'3 C0 2'3 08 F0 F'3 BD :::8 C0 4C 1B 02

The Microsoft
Premium SoftCard
lie (2.26 BIOS)

The Microsoft Premium SoftCard lIe (PS lIe) is constructed very
differently from the standard SoftCard. The PS lIe (Microsoft version 2.26
BIOS) will run only on the Apple lIe. It is designed to be put into the
Apple lIe auxiliary slot and produces an 80-column display for CP/M
without the need of additional hardware. The PS lIe contains 64K of
memory and a Z-80B microprocessor. The Z-80B is run three times faster
than the Z-80A used on the standard SoftCard. CP/M programs executing
on the PS lIe will run up to three times faster than on the standard
SoftCard. The 64K of memory on the PS lIe means not only that more
memory is available for the CP/M programs but also that some interesting
hardware functions can be performed. For instance, when the Apple lIe is
not running CP/M, the PS lIe behaves exactly like an extended-memory
80-column card. The other hardware functions will be described later.

II The Comparison to Earlier
BIOS Versions

122

The user will not see any difference in the operations of programs with
the 2.26 BIOS except as regards speed. The 2.26 BIOS is remarkably
bugfree, and no patches will be given for the BIOS alteration. An earlier
BIOS (version 2.25) does have some bugs. If you have the earlier version,
it is recommended that you get it upgraded. Unfortunately, the PS lIe's
manuals contain errors. The most troublesome errors are in the 6502
BIOS section of the manual. The corrections to those errors will be
covered later.

The 2.26 BIOS displays some similarity to the Microsoft BIOS
versions 2.20B and 2.23 in that patch areas and I/O tables are assigned.
The location of these assignments has been changed arbitrarily from
those used for the standard SoftCard. The user patch area is the page of
memory starting at FEOOH (we are using the standard notation of the H
suffix for Z-80 hexadecimal addresses and the $ prefix for 6502

The PS lie Hardware and Software Configuration • 123

hexadecimal addresses). The Slot Type Table is still at F3B8H, with the
card types identified as discussed in chapter 10. The IOCB is at F3COH.
The reason for Microsoft's changing the locations of the patch and IOCB
areas from the standard SoftCard BIOS versions is known only to
Microsoft. No matter which location is chosen, the tables or patch areas
will end up in the middle of the BDOS. The 2.26 BIOS has a hole in its
middle to make room for the tables.

II The PS lie Hardware and
Software Configuration
The PS lie BIOS consists of two parts, the 6502 BIOS and the Z-80 BIOS.
The 6502 BIOS resides in the main memory, that is, the memory on the
Apple lIe motherboard. The Z-80 BIOS and the BDOS reside in the
auxiliary memory, that is, the 64K of memory on the PS lie. The
Premium SoftCard lIe's hardware is designed to isolate the Z-80 from the
main memory while running CP/M. This isolation allows the Z-80 and
6502 microprocessors to run programs simultaneously. The standard
SoftCard requires that only one microprocessor be in operation at a time.

The Z-80 calls on the 6502 to perform all hardware functions.
Because the hardware-handling part of the BIOS is so extensive, it takes
up considerable memory space, but this space is occupied in the main
memory. This makes the Z-80 BIOS much smaller than its counterpart on
the standard SoftCard. This adds to the available room to run CP/M. The
standard SoftCard could not use the memory addresses assigned to the
hardware slots ($COOO to $CFFF), and in order to make the memory
contiguous, it had to remap the memory addresses for the Z-80. This
memory problem with the hardware slots doesn't exist for the PS lIe.
Since the auxiliary 64K memory is isolated while CP/M is running, the
memory addresses are kept unaltered, and direct access to the hardware
slots by the Z-80 is impossible.

The PS lIe does not use any of the Apple lIe built-in firmware to
operate the 80-column display. The reason is that Apple has so much
software overhead to run the video display that the 80-column mode runs
more slowly than the 40-column mode. The loss of speed is noticeable
when the screen scrolls upward. The PS lIe uses its own screen
dr~vers, which arrangement noticeably increases the response of the
80-column display.

124. The Microsoft Premium SoftCard lIe (2.26 BIOS)

Under standard operation of the Apple lie auxiliary-slot 80-column
card, lK of memory in the auxiliary memory is used by the 80-column
display. Since the PS lie isolates the entire 64K auxiliary memory, it
provides the needed lK of memory for 80-column operation with an
additional 1 K video memory bank. The special 1 K video memory is used
only while CP/M is running.

The method used by the Z-80 to tell the 6502 to perform a task is
somewhat involved. The communication is done by the hardware on the
PS lIe. The following Z-80 instruction sequence is first executed.

LD A,INTUEC ;INTUEC has a value depending on what the 6502 is

LD I,A
;to do.
;This is the remainder of the 6502
;instruction sequence.

The hardware then effectively makes the INTVEC byte appear at location
$2000 in the auxiliary memory when that memory location is looked at
by the 6502. The 6502 polls this location and tests to see if a byte with
bit B7 set (see Appendix A for definitions) has been written there. If such
a byte appears, then it halts the Z-80. This is to prevent conflicts from
occurring if the Z-80 requests the 6502 again before the 6502 has
completed its tasks. The parameters needed to run the 6502 routines are
then passed from the auxiliary memory to the main memory. The 6502
then executes the routine and passes any data, if required, back to the
main memory. The 6502 tells the Z-80 to resume. The 6502 then
continues to poll the memory location $2000 for a message from
the Z-80.

The polling procedure used by the 6502 is a loop that looks at
location $2000 and tests the byte found there. If no Z-80 request is
pending, the loop will perform a print-spooling procedure. After it has
cycled through the spooling procedure, it goes back to the top of the loop
and tests location $2000.

The print-spooling procedure is another feature of the PS lIe. Any
request by CP/M to write to the LST: device is handled in the following
way by the 6502 BIOS. A write instruction to slot 1 when the slot
contains a parallel card or a communications card will not send the data
directly to the card. The data is first placed in a buffer. The data is read
from the buffer and written to the card only during the Z-80 polling
operation. Since a physical device is much slower than the computer, the
buffer will absorb the data very quickly, which in turn makes the CP/M
program run faster. The memory available for a print spool buffer lies

The PS lIe Hardware and Software Configuration • 125

between the locations $4000 and $BFFF. This is 32K of memory, which
will hold approximately eight pages of standard text. If the buffer should
fill before all the text has been printed, the CP/M system slows down and
runs as if no buffer existed. While the buffer is full, each write instruction
transfers data to the buffer only after 1 byte has been removed from the
buffer and sent to the printer. The CP/M system will run slowly until
all the text has been placed into the buffer. When no more text is
forthcoming, the CP/M system resumes normal speed while the
remaining contents of the buffer are dumped to the printer. Note that
the print spooler works only for slbt 1, and the card must be either a
parallel or communications type.

The print-spooling operation also polls the keyboard. Each time the
print spooler is called, the keyboard is checked for input. Any input is
stored in the 256-byte keyboard buffer starting at $1400 in the main
memory. The keyboard buffer is read when CP/M asks the console
for input.

The 6502 sees the PS lIe simply as an BO-column extended-memory
card. The standard extended-memory BO-column card permits memory
management through the use of soft-switches. The soft-switches used by
the 6502 BIOS for memory management not requiring video output are
shown in table 14.1.

Table 14.1 • The PS lIe's Memory Management Soft-Switches

Function Soft-Switch

Read from auxiliary memory range $200 Write to $C003
through $BFFF

Read from main memory range $200 through $BFFF

Write to auxiliary memory range $200
through $BFFF

Write to main memory range $200 through $BFFF

Make the auxiliary memory ranges $000 through
$IFF and $DOOO through $FFFF active, and make
the auxiliary memory bank-switched memory active

Make the main memory ranges $000 through $IFF
and $DOOO through $FFFF active, and make the
main memory bank-switched memory active

Write to $C002

Write to $C005

Write to $C004

Write to $C009

Write to $COOB

128. The Microsoft Premium SoftCard lie (2.26 BIOS)

The soft-switches permit data to be read from the main memory and
stored in the auxiliary memory, and vice versa. The 6502 BIOS uses
these switches when data transfers are required between the two
memories, such as with disk operations. But note that data transfer
between the main and auxiliary memories for memory regions consisting
of the zero page, the $100 page, and the banked memory areas is not
possible through a soft-switch. This data must be transferred by use of
software that moves the data around to a transfer-permitted area. This
procedure takes time and has been avoided with the addition of a
switchable hardware memory offset in the PS lIe.

When the 6502 BIOS either writes to or reads from the location
$C07E, any of four hardware functions on the PS lIe are activated or
deactivated. The hardware functions are determined by what is on the
data bus at the time of the access to the location $C07E. If data bit B2 is
set, the hardware on the PS lIe translates all addresses sent to it from
the Apple lIe motherboard. The translation is to EXCLUSIVE-OR the
incoming address on the address bus with the value $8000. For example,
if the address offset switch is set, then the 6502 BIOS reading from the
location $7350 in the auxiliary memory will actually be reading the
location $F350 on the PS lIe. The same offset applies to writing. The
previous example would correspondingly have the data written to
location $F350 when the 6502 BIOS was thinking it was writing to $7350
in the auxiliary memory. By using this address offset switch, you can
transfer data directly between memory regions inaccessible before. The
6502 BIOS uses a routine such as the one shown below to transfer data
from the auxiliary memory to the main memory.

STA $C~~103

LDA #$(15
STA $Ct17E
LD\' #$(1B

t'10 I..JE : LDA $7395,

~:;TA $131B,

DE\'
Bt·4E t'10 1..JE
LDA #~~11

~:;TA $C(17E
~:;TA $C(1(12

\'

I •• '

I

;Enable the auxiliary memory read.
;Set bit B2 on the data bus.
;Offset the auxiliary memory bus.
; Set loop i nde::< .
;Load accumulator with the data from the table
;in the auxiliary memory starting at the
; !:\ddress $F3'35.
;Store the data in a table in the main memory
;starting at $131B.
;Decrement the loop counter.
;Loop until the table is filled.
;Clear bit B2 on the data bus.
;Disable auxiliary memory offset.
;Enable the main memory read.

The PS lie Hardware and Software Configuration • 127

Table 14.2 gives the hardware function associated with the values on
the data bus at the time of an access to the $C07x location. The BO bit is
arbitrary. The Apple lIe will accept any value for BO and give identical
results. Microsoft arbitrarily uses $C07E.

The BIOS transfers information between the auxiliary and main
memories through the use of the INTVEC (discussed above), the use of
the main memory locations $44 through $4B (ZPM memory), and the use
of the auxiliary memory locations 44H through 4BH (ZPA memory).
Whenever the Z-80 calls the 6502, the ZPA memory is transferred to the
ZPM memory. When the 6502 returns control to the Z-80, it always
transfers the ZPM memory to the ZPA memory. There are seventeen
standard functions the Z-80 BIOS can request the 6502 BIOS to perform.
The standard functions require that the memory locations 45H through
4BH be initialized in a prescribed way. After the 6502 call, these latter
locations will contain prescribed data. Please noti~e that the 44H location
is not used in the standard 6502 BIOS calls. This location is reserved for
transmitting the console status byte. A description of the standard 6502
BIOS calls follows. Any discrepancies between the following and the
PS lIe manual should be resolved in favor of this text. To use the
standard functions, first do the memory initialization, and then perform

CALL 4C1H

which executes the standard 6502 BIOS function.

Table 14.2 • $C07x Hardware Functions:

Bit

B6

B2

Bl

BO

Set

Data Bus Value versus
Hardware Function

Do not halt Z-80

Offset memory to PS lIe by
XOR $8000

Isolate auxiliary memory
buses from main memory

Do not reset Z-80

Cleared

Halt Z-80

Clear PS lIe memory offset

Remove auxiliary memory
bus isolation

Reset Z-80

128. The Microsoft Premium SoftCard lie (2.26 BIOS)

II PS lie Standard 6502 BIOS Calls
PS lIe standard 6502 BIOS calls are as follows:

Function Location Initial Value Returned Value

CALLSUB 49H OOH N/A
45H [A] assignment [A] last

46H [X] assignment [X] last

47H [Y] assignment [Y] last

48H N/A [S] last

4AH 6502 routine N/A
address, low byte

4BH 6502 routine N/A
address, high byte

Note that the CALLSUB function does a JSR to the routine at the address
found in 4AH and 4BH. The Apple monitor ROM is enabled. The 6502
registers are defined as follows:

[A] accumulator
[X] X register
[Y] Y register
[S] status register

Function Location

READMEM 49H
Read 6502 45H
memory

46H

47H

48H

4AH

4BH

Initial Value Returned Value

OIH N/A
N/A Data byte read

N/A N/A
N/A N/A
N/A N/A
6502 memory N/A
address, low byte

6502 memory N/A
address, high byte

PS lIe Standard 6502 BIOS Calls .129

Function Location Initial Value Returned Value

WRITEMEM 49H 02H N/A
Write data 45H Data to be written N/A
to 6502
memory 46H N/A N/A

47H N/A N/A
48H N/A N/A
4AH 6502 memory N/A

address, low byte

4BH 6502 memory N/A
address, high byte

READSEC 49H 03H N/A
Read a 45H Track number OOH Error code:
diskette to 22H OOH = no error,
sector to a 10H = write-
buffer protect, other =

1/0 error

46H Drive 01 H or 02H N/A
47H Drive slot N/A
48H Sector number N/A

OOH to OFH

4AH Z-80 110 buffer N/A
address, low byte

4BH Z-80 I/O buffer N/A
address, high byte

Note that READSEC is the PS lIe version of a call to the CPM RWTS.

130. The Microsoft Premium SoftCard lIe (2.26 BIOS)

Function Location Initial Value Returned Value

WRITESEC 49H 04H N/A
Write a 45H Track number Error code:
buffer to a OOH to 22H OOH = no error.
diskette IOH = write-
sector protect. other =

I/O error

46H Drive OIH or 02H N/A
47H Drive slot N/A
48H Sector number N/A

OOH to OFH

4AH Z-80 I/O buffer N/A
address. low byte

4BH Z-80 I/O buffer N/A
address. high byte

Note that WRITESEC is the PS lIe version of a call to the CPM RWTS.

Function Location Initial Value Returned Value

READS LOT 49H 05H N/A
Read data 45H N/A Data byte read
from a
recognized 46H N/A N/A
card in a slot 47H Slot number I N/A

to 7

48H N/A N/A
4AH N/A N/A
4BH N/A N/A

Note that if the card is not recognized in the slot addressed. no read is
performed. The routine returns witl}.out doing anything. and the value in
45H is arbitrary.

PS lIe Standard 6502 BIOS Calls .131

Function Location Initial Value Returned Value

WRITES LOT 49H 06H N/A
Write data to 45H Data byte to be N/A
a recognized written
card in a slot

46H N/A N/A
47H Slot number 1 N/A

to 7

48H N/A N/A
4AH N/A N/A
4BH N/A N/A

Note that if the card is not recognized in the slot addressed, no write is
performed. The routine returns without doing anything.

Function Location Initial Value Returned Value

STATSLOT 49H 07H N/A
Get status of 45H N/A Status: OOH =
a recognized not ready to
card in a slot read, FFH =

ready to read

46H N/A N/A
47H Slot number 1 N/A

to 7

48H N/A N/A
4AH N/A N/A
4BH N/A N/A

Note that if the card is not recognized in the slot addressed, the routine
returns without doing anything.

132. The Microsoft Premium SoftCard lie (2.26 BIOS)

Function Location Initial Value Returned Value

INITSLOT 49H 08H N/A
Initialize a 45H N/A N/A
recognized

46H N/A N/A card in a slot
47H Slot number 1 N/A

to 7

48H N/A N/A
4AH N/A N/A
4BH N/A N/A

Note that if the card is not recognized in the slot addressed. the routine
returns without doing anything.

Function Location Initial Value Returned Value

WSTART 49H 09H N/A
Load CCP 45H N/A N/A
from

46H N/A N/A diskette in
drive A: 47H N/A N/A

48H N/A N/A
4AH N/A N/A
4BH N/A N/A

FORMAT 49H OAH N/A
Format a 45H N/A Error code:
diskette OOH = no error.

lOH = write-
protect. other =
I/O error .

46H Drive 01 H or 02H N/A
47H Drive slot N/A
48H N/A N/A
4AH N/A N/A
4BH N/A N/A

PS lIe Standard 6502 BIOS Calls .133

Function Location Initial Value Returned Value

UPDATE 49H OBH N/A
Move the 45H N/A N/A
keyboard

46H N/A N/A redefinition
and software 47H N/A N/A
and hardware 48H N/A N/A
screen func-

4AH N/A N/A
tion tables to
6502 BIOS 4BH N/A N/A

BEEP 49H OCH N/A
Perform the 45H Tone duration N/A
GBASIC

46H Tone period N/A BEEP
47H N/A N/A

48H N/A N/A
4AH N/A N/A
4BH N/A N/A

CLEAR 49H ODH N/A
Perform the 45H N/A N/A
GBASIC

46H N/A N/A Gl command
47H N/A N/A

48H N/A N/A
4AH Byte written to N/A

even screen
address

4BH Byte written to N/A
odd screen
address

134. The Microsoft Premium SoftCard lIe (2.26 BIOS)

Function Location Initial Value Returned Value

INVERT 49H OEH N/A
Invert the 45H N/A N/A
GBASIC

46H N/A N/A high-
resolution 47H N/A N/A
screen 48H N/A N/A

4AH N/A N/A
4BH N/A N/A

SETPTI 49H OFH N/A
Set GBASIC 45H N/A N/A
high-

46H XOR mask N/A resolution
graphics 47H AND mask N/A
point 1 48H N/A N/A

4AH Screen address, N/A
low byte

4BH Screen address, N/A
high byte

SETPT2 49H lOH N/A
Set GBASIC 45H Byte to XOR with N/A
high- screen byte
resolution
screen 46H N/A N/A

47H N/A N/A
48H N/A N/A
4AH Screen address, N/A

low byte

4BH Screen address, N/A
high byte

The 6502 BIOS • 135

II The 6502 BIOS
The 6502 BIOS will now be described. This BIOS resides in the main
memory.

The Low Memory Segment of the 8502 BIOS
The low memory segnlent of the 6502 BIOS is as follows:

$C40-$C76 The memory and screen initialization routine used
during the cold boot.

$C77-$C80 The routine that highlights the cursor position.

$C81-$C8C The loop that waits for the Z-80 to call the 6502. The
print spooler is called during the looping.

$C8D-$CB5 The 6502 command processor. The Z-80 is halted.
The ZPA memory is moved to the ZPM memory. The command is
decoded and executed.

$CB6-$CB8 The entry point to the WSTART command.

$CB9-$CE4 The command exit processor. The ZPM memory is
transferred to the ZP A memory. The Z-80 is restarted. The processor
waits for the Z-80 to zero its A register and perform the LD I,A
instruction.

$CE5-$D06 The command vector table.

$D07-$DIF The CALLSUB routine.

$D20-$D28 The WRITEMEM routine.

$D29-$DIF The READMEM routine.

$D30-$D32 The entry to the READSEC routine.

$D33-$D43 The WRITESEC routine.

$D44-$D4C The FORMAT routine.

$D4D-$D65 The location where the parameters for the RWTS
are set.

$D66-$D87 The READSLOT routine. If the slot is slot 3, then use
the PS lIe keyboard routine and keyboard redefinition table.

$D88-$DD6 The WRITESLOT routine. If the slot is slot 3, then
use the PS lIe screen write routine if there is no terminal card in
slot 3.

$DD7-$E06 The write routine if there is a terminal card in slot 3.

$E07-$E6B The screen function processor. Tests are made for
hardware and software screen functions and processed as required.

138. The Microsoft Premium SoftCard lIe (2.26 BIOS)

$E6C-$E72 The entry to the INITSLOT and STATSLOT routines.

$E73-$E9F A routine used by the READS LOT, WRITESLOT,
STATSLOT, and INITSLOT routines. The card type is checked, and
the routine address is taken from a table. After the proper routine is
chosen, a jump is made to that routine.

$EAO-$EDE The vector table used by the preceding routine.

$EDF-$EF2 The firmware card initialization routine.

$EF3-$FOO The firmware card write routine.

$F01-$FOE The firmware card read routine.

$FOF-$FI7 The firmware card status routine.

$FI8-$F23 The routine that waits for the firmware card to be
ready for I/O.

$F24-$F2E The serial card write routine.

$F2F-$F3A The serial card initialization routine.

$F3B-$F4B The communications card status routine.

$F4C-$F53 The console status routine.

$F54-$F58 The serial card status routine.

$F59-$F5B The routine called to return the status-unready byte.

$F5C-$F62 The firmware status routine.

$F63-$F65 The routine called to return the status byte.

$F66-$F6F The parallel card status routine.

$F70-$F88 The routine called to set the card parameters for I/O.

$F89-$F95 The communications card read routine.

$F96-$FA9 The communications card write routine.

$F AA-$FBF The parallel card write routine.

$FCO-$FE2 The routine to store LST: device output in the print
spooler buffer.

$FE3-$FFO The routine to initialize the communications card
ACIA to 8 data bits, no parity bit, 1 stop bit, and sixteen times the
baud rate.

$FF 1-$FFF The console input routine, which reads the keyboard
input buffer.

$1000-$1014 The routine to get a character from the print
spooler buffer.

The 6502 BIOS • 137

$1015-$1064 . The console general input function. The keyboard
is polled for input, which is stored in the keyboard buffer. The print
spooler buffer is read, and the data is written to the LST: device. This
routine is used before the routine at $FF 1.

$1065-$1067 The routine to load $lA or the end-of-file marker,
used when a read is made to a slot with an unrecognized card.

$1068-$1074 The routine to sound the Apple monitor bell.

$1075-$1078 The table of screen control characters.

$1079-$10F2 The console output routine. The print spooler is
active. This routine when active controls the Z-80 directly without
calling the 6502 command processor. The console input status is
passed to the Z-80 BIOS through the $44 memory location. There
is a simple screen output routine incorporated that does not
process control characters. All of this increases the speed of the
console routine.

$10F3-$10F6 The routine that places the cursor at the upper left
screen corner.

$10F7-$10FB The routine that places the cursor at column 0 of
the current line.

$10FC-$1103 The routine that pushes the cursor down to the
next line. The column remains unchanged.

$1104-$114E The screen scroll-up routine. The keyboard is
polled for input.

$110F-$115F The routine that enables the correct 80-column
screen memory page as a function of the cursor's position.

$1160-$116C The location where the pointer to the screen row
memory location is determined with the aid of a screen memory
map table.

$116D-$119C The 80-column screen memory map table.

$119D-$IIB6 A table of screen function addresses used by the
routine at $E07.

$IIB7 -$IIBD The routine to move the cursor one position
to the left.

$IIBE-$IIC4 The routine to home the cursor and clear
the screen.

$IIC5-$IICE The routine to clear the screen from the current
line to the screen bottom.

138. The Microsoft Premium SoftCard lIe (2.26 BIOS)

$IICF-$IIEB The routine to clear the current line and poll the
keyboard for input.

$IIEC-$1202 The routine to clear the screen from the current
cursor position to the bottom of the screen.

$1203-$121A The routine to clear the line to the cursor's right.

$121B-$121D The routine to set the screen output inverse mask.

$121E-$1222 The routine to clear the screen output
inverse mask.

$1223-$1229 The routine to move the cursor up to the next line.

$122A-$1233 The routine to move the cursor right one position.

$1234-$124C The BEEP routine.

$124D-$1269 The INVERT routine.

$126A-$1292 The SETPT1 routine.

$1293-$1298 The SETPT2 routine.

$1300-$130C The character redefinition used by the 6502 BIOS.
This is the image of the table in the Z-80 BIOS.

$130D-$131B The image of the Z-80 hardware screen
function table.

$131C-$132B The image of the Z-80 software screen
function table.

$132C-$1333 The image of the Z-80 Slot Type Table.

$1400-$14FF The keyboard input buffer.

$2000-$BFFF The print spooler buffer.

Before I describe the remainder of the 6502 BIOS, it is useful to insert
some detail into the PS lIe cold boot procedure that was not included in
chapter 10. The first PS lIe cold boot stage is to load the track 0, sector 0
data into the $800 memory page. The second stage is to jump to the
routine on page $800, which loads the 6502 BIOS into the banked
memory starting at $DIOO and endihg at $EIFF. A jump is then made to
the third boot stage, which moves the data from the memory range
$DAOO-$E1FF to the memory range $COO-$13FF. The third stage then
identifies the cards in the slots and temporarily stores the results in a
table starting at $E 12B. The Z-80 CCP, BDOS, and BIOS are loaded into
the auxiliary memory with the aid of the warm boot loader routine. The
warm boot loader is then modified to load the CCP only. The zero-page
Z-80 BIOS vectors and data are then transferred to the auxiliary memory,

The 6502 BIOS • 139

and the Z-80 is told to reset. The remaining vectors and data tables are
then moved to their lower memory locations, and control is given to
the Z-80.

The High Memory Segment of the 6502 BIOS
The high memory segment of the 6502 BIOS is as follows:

$DOOO-$DIFF A nibble buffer used by the RWTS routine.

$D200-$DIBD Routines used by the RWTS routine.

$DIBE-$DICB The checksum routine used for slot identification.

$DICC-$DIDC The routine used to move memory segments.

$DIDD-$DIE2 The values used by the third-stage boot to
initialize the 6502 reset and interrupt vector addresses.

$DIE3-$DIEF The table of Signature bytes used to identify the
cards found in the slots.

$D200-$D37B Routines used by the RWTS routine.

$D37C-$D3E2 The routine used by the third-stage boot to load
the Z-80 CCP, BDOS, and BIOS. The tables and vectors are moved to
their respective locations.

$D400-$D4FE Nibble buffers used by the RWTS routine.

$D500-$D68A More routines used by the RWTS routine.

$D68B-$D699 The sector skew table used by the RWTS.

$D69A-$D6A4 The location where the RWTS parameters are
stored, that is, track, sector, drive, and so on.

$D6A5-$D6EF The entry into the RWTS routine. The sector
buffer is located in the auxiliary memory.

$D6FO-$D6FF A table used by the disk-formatting routine.

$D700-$D912 The disk-formatting routine.

$D913-$D97C The WSTART routine. This is the warm loader
routine.

$D97D-$D986 The routine that tests location $2000 and is used
by the routines that see if the Z-80 is calling.

$D987-$D9FD The entry to the third-stage boot. The slots are
checked, and the cards are identified. The routine exits with a jump
to $D37C.

$D9FE-$DA39 The UPDATE routine.

140. The Microsoft Premium SoftCard lie (2.26 BIOS)

II The Z-80 BIOS
The Z-80 BIOS is as follows:

FAOOH-FA32H The BIOS jump vectors.

F A33H-F A92H The disk parameter headers for four drives. There
is space for six drives, but the remaining two drives are not used.

FA93H-FAAIH The disk parameter block.

F AA2H-F AAEH The routine that initializes all the cards using the
6502 BIOS function.

FAAFH-FAEEH The warm boot routine. The stack pOinter is
initialized. The cards are initialized. The zero-page CP/M vectors are
reset. The WSTART 6502 BIOS routine is called. The DMA is reset to
80H. The routine exits to the CCP.

FAEFH-FAF2H CONST The routine to get the address of the
console status routine from the IOCB at F3COH and jump to
that routine.

FAF3H-FAF8H CONIN The console input routine. A call to the
routine at FBIOH is made to check the input device, and a call to the
correct input routine is made.

F AF9H The routine that places the contents of the A register in C
and falls into the CON OUT routine.

F AF AH-FBOBH CONOUT The routine that checks the IOBYTE for
the output device and then jumps to the selected routine. If the
output goes to the logical LST: device, then the physical LPT: device
is used.

FBOCH-FBOFH The routine to output a character to the
LPT: device.

FB lOH-FB IDH The character input routine, which checks the
IOBYTE for the physical input device and goes to the selected
routine.

FB lEH-FB21H The routine to get input from the TTY: device.

FB22H-FB25H A jump to the physical PTR: device. This routine
may be used by the console input or logical RDR: device.

FB26H-FB34H LIST The logical LST: device routine, which
checks the IOBYTE for the physical device. A jump is then made to
the selected physical device.

FB35H-FB46H PUNCH The logical PUN: device routine, which
checks the IOBYTE for the physical device. A jump is then made to
the selected physical device.

The Z-80 BIOS • 141

FB47H-FB55H READER The logical RDR: device routine, which
checks the IOBYTE for the physical device. A jump is then made to
the selected physical device.

FB56H-FB66H The lead-in routine for output to the console. The
character is checked to see if it is a control character. If it is a
control character, the routine outputs the character through the
WRITES LOT 6502 BIOS routine. Noncontrol characters cause the
INTVEC to be loaded with FFH, which will cause the 6502 BIOS to
output the character through Jts special routine. The routine exits
with a jump to FB72H.

FB67H-FB71H The routine used to get the console status. A
check is made if 44H contains a value other than AAH. An AAH
indicates that the last 6502 BIOS call didn't check the slot status. If
there is another value, it will be the console input status, and it will
return to the caller. The AAH value will cause a call to the 6502
STATSLOT routine.

FB72H-FB75H The entry to the console output routine. The E
register is loaded with 3 for slot 3, and the 6502 BIOS is called.

FB76H-FB79H The entry to the console input routine. The E
register is loaded with 3 for slot 3, and the 6502 BIOS is called.

FB7 AH-FB7DH The entry to the punch output routine. The E
register is loaded with 2 for slot 2, and the 6502 BIOS is called.

FB7EH-FB83H The entry to the reader input routine. The E
register is loaded with 2 for slot 2, and the 6502 BIOS is called.

FB84H-FB88H The entry to the list output routine. The E register
is loaded with 1 for slot 1, and the 6502 BIOS is called.

FB89H-FBB4H The routine that calls the 6502 BIOS and is used
by the Z-80 BIOS routines. The Z-80 registers are assigned the
zero-page addresses used by the 6502 BIOS. The data is sent to the
6502 BIOS from these registers, and the returning 6502 BIOS data is
placed in these registers. The register assignments are:

A 45H
B 46H
E 47H
D 48H
C 49H
L 4AH
H 4BH

142. The Microsoft Premium SoftCard lIe (2.26 BIOS)

The value found in INTVEC is used for the call to the 6502 BIOS.
After the return from the 6502 BIOS call, the INTVEC is loaded
with 80H.

FBB5H-FBBCH The standard routine to call the 6502 BIOS. This
routine is the one jumped by a call to 40H.

FBBDH-FBCCH The CP/M logical sector skew table. The table
relates the 256-byte sector number to the logical 128-byte sector
number used by CP/M.

FBCDH-FBD5H A computational routine used by the disk I/O
routines to get needed memory addresses. The HL register is
incremented by sixteen times the A register.

FBD6H-FBEOH HOME A disk routine to select track O.

FBEIH-FBE5H SETTRK A disk routine to select the track in
register C.

FBE6H-FBEAH SETSEC A routine to select the 128-byte
CP/M sector.

FBEBH-FBEFH SETDMA A routine to select the disk I/O
buffer address.

FBFOH-FC19H SELDSK A routine to select the disk drive and set
flags to notify the disk I/O routines if the drive has been changed or a
nonexistent drive was called.

FCIAH-FCIEH The routine called when an error was found
in SELDSK.

FCIFH-FC2EH READ The disk read operation, set up according
to all the CP/M protocols. See chapter 10.

FC2FH-FC76H WRITE The disk write operation, performed
according to the CP/M protocols.

FC77H-FDOBH A routine used by both READ and WRITE to
make sure that the CP/M protocols are met. A sector skew is done
according to the CP/M sector skew table. The data is moved to or
from the CP/M RWTS buffer at' FFOOH. The read or write operation is
then called.

FDOCH-FD2FH The location where the actual read and write
routines are performed by the calling of the 6502 CP/M RWTS
functions.

FD30H-FDFFH The area used for allocation tables, the directory
buffer, and data storage required by the BIOS.

FEOOH-FEFFH The I/O patch area.

142 • The Microsoft Premium SoftCard lie (2.26 BIOS)

The value found in INTVEC is used for the call to the 6502 BIOS.
After the return from the 6502 BIOS call, the INTVEC is loaded
with BOH.

FBB5H-FBBCH The standard routine to call the 6502 BIOS. This
routine is the one jumped by a call to 40H.

FBBDH-FBCCH The CP/M logical sector skew table. The table
relates the 256-byte sector number to the logical 12B-byte sector
number used by CP/M.

FBCDH-FBD5H A computational routine used by the disk 110
routines to get needed memory addresses. The HL register is
incremented by sixteen times the A register.

FBD6H-FBEOH HOME A disk routine to select track o.
FBEIH-FBE5H SETTRK A disk routine to select the track in
register C.

FBE6H-FBEAH SETSEC A routine to select the 128-byte
CP/M sector.

FBEBH-FBEFH SETDMA A routine to select the disk 110
buffer address.

FBFOH-FC19H SELDSK A routine to select the disk drive and set
flags to notify the disk 110 routines if the drive has been changed or a
nonexistent drive was called.

FCIAH-FCIEH The routine called when an error was found
in SELDSK.

FCIFH-FC2EH READ The disk read operation, set up according
to all the CP/M protocols. See chapter 10.

FC2FH-FC76H WRITE The disk write operation, performed
according to the CP/M protocols.

FC77H-FDOBH A routine used by both READ and WRITE to
make sure that the CP/M protocols are met. A sector skew is done
according to the CP/M sector skew table. The data is moved to or
from the CP/M RWTS buffer at YFOOH. The read or write operation is
then called.

FDOCH-FD2FH The location where the actual read and write
routines are performed by the calling of the 6502 CP/M RWTS
functions.

FD30H-FDFFH The area used for allocation tables, the directory
buffer, and data storage required by the BIOS.

FEOOH-FEFFH The 110 patch area.

The PS lIe Diskette Map • 143

FFOOH-FFFFH The BOOT routine. This is used by the cold boot to
initialize the stack painter and zero-page vectors and data areas to
their cold boot values. The routine is used only once. For this reason,
this area is used for the CP/M RWTS I/O buffer.

II The PS lie Diskette Map
The PS lIe diskette map is as follows:

Track OOH, sector OOH The boot 1 sector.

Track OOH, sector OlH through track OlH, sector OlH
The 6502 BIOS.

Track OlH, sector OlH through track OlH, sector 09H
The CCP.

Track OlH, sector OAH through track 02H, sector 07H
The BDOS.

Track 02H, sector OSH through track 02H, sector ODH
The Z-80 BIOS.

144

Uploading and
Downloading

The term uploading is used to describe the sending of data from your
computer to another computer. The term downloading is the term for
receiving data into your computer from another computer. It is
sometimes desirable to transfer a file to or from another computer that
doesn't use Apple-compatible diskettes.

For instance, you may wish to use a software package that is
available only on a noncompatible 8-inch disk. There are two easily
applied methods of transferring the program to an Apple diskette.

The first method is to use PIP to do the file transferring. To use PIP,
the Apple must be connected to a CP/M-compatible computer (the host
computer) that can read the non-Apple disk. The connection must be
made between the serial port in the host computer and the serial port in
the Apple. The Apple's serial port is the serial card placed in slot 2. I
recommend that the slot 2 card be a communications-type card. After the
connection is made and both computers are booted, the procedure to
transmit the file from the host computer to the Apple is to enter the
following into the Apple at the CP/M prompt:

A>PIP A:YOURFILE.DOC=RDR:

Then enter the following after the CP/M prompt in the host computer:

A>PIP PUN:=A:MYFILE.TXT

The file called MY FILE found on drive A: will be sent to the punch device
in the host computer. The Apple will create a file on drive A: called
YOURFILE.DOC, and the data received from the reader device will be
written into YOURFILE.DOC. Other drives may be specified, and all the
appropriate PIP options apply (see chapter 6).

The second method requires the use of a telephone modem. Modem
stands for modulator/demodulator. Simply put, a modem is a device
that transforms a serial stream of voltage data pulses into electrical
frequencies (modulation). These frequencies can then be transmitted by
telephone to another modem that translates the electrical frequencies
back into a serial stream of voltage data pulses (demodulation).
Computers use the voltage data pulses to transmit serial data.

Uploading and Downloading • 145

To download a file through a modem requires a modem for your
Apple, a modem for the host computer, and a telephone line. The
advantage over the first method is that the computers do not have to be
in the same room or even in the same city. The disadvantage is that a
modem is generally more expensive than a serial port, and there is now
an additional telephone bill. You will also require the use of a modem
program for the Apple. Such programs are available commercially, or
they may be obtained at little or no cost from CP/M users' groups. All
the modem programs will be able to download a file from the host
computer. The use of modems for transmitting files is by far the most
popular method.

There is yet one more method for reading files from a noncompatible
disk. This method is the most expensive, but it is also the most direct.
Interface cards are available for the Apple that will control drives other
than the Apple 51,4-inch drives. The interface card I recommend is the
one that will control an 8-inch drive. The addition of 8-inch drives to the
Apple will increase the storage capacity of the Apple by as much as
twenty times. The CP/M interfaces for the 8-inch drives can often run up
to three 8-inch disk formats. The IBM 3740 format is the standard CP/M
disk format. With the interface card and an 8-inch drive, the Apple can
then read a standard 8-inch CPM disk. It is then possible to transfer a file
from that disk to one of the Apple's 5 1A-inch drives. The latter method
requires the acquisition of an interface card and at least one 8-inch drive.
Before making any purchases, shop carefully and compare what is
available. There is a wide variation in the quality of the 8-inch drive
interfaces available for the Apple. Some are much more flexible and easy
to use than others.

Appendix A:
Binary Numbers

II The Definition of a ~inary Number
This appendix is intended to be a very brief explanation of the binary
number system. Please see any book on computer methods for a more
detailed discussion.

Binary numbers are most easily understood in terms of the standard
decimal numbers. Decimal is based on a Latin word meaning tenth. A
decimal number is a symbolic way of dividing a quantity into multiples of
10. Consider the number 5,423; it can be written as

5423 = (5 x 1000) + (4 x 100) + (2 x 10) + (3 x 1)

which may be expressed in terms of powers of 10 as

5423 = (5 x 103) + (4 X 102) + (2 X 101) + (3 x 10°)

Recall that any number raised to the 0 power is 1.
Instead of dividing 5,423 into multiples of 10, let's divide it into

multiples of 2. We will then get

5423 = (1 x 4096) + (0 x 2048) + (1 x 1024) + (0 x 512)
+ (1 x 256) + (0 x 128) + (0 x 64) + (1 x 32) + (0 x 16)
+ (1 x 8) + (1 x 4) + (1 x 2) + (1 x 1)

which may be expressed in terms of powers of 2 as

5423 = (1 X 212) + (0 X 211) + (1 x 210) + (0 X 2 9) + (1 X 2 8)

+ (0 X 27) + (0 X 2 6) + (1 X 2 5) + (0 X 24) + (1 X 2 3)

+ (1 X 22) + (1 X 21) + (1 x 2°)

The interesting thing about expressing a number in powers of 2 is
that the coefficient of each power is either 1 or O. Numbers expressed as
powers of 2 are called binary numbers, and there are only two values for
the coefficients. Numbers expressed as powers of 10 have ten values for
coefficients: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The shorthand method of
writing a decimal number is to use the place of the digit in the number
sequence to identify which power of 10 is to be multiplied by that digit.
Thus, for the number 5,423 we understand that the 3 is multiplied by 1,

147

148. Appendix A: Binary Numbers

the 2 is multiplied by 10, and so on. We can use the same scheme to
create a shorthand notation for a binary number. Translating decimal
5,423 into binary gives

5423 10 = 1010100101111 2

The subscripts indicate which representation is being used. The 10
indicates that the base of the number system is 10, while the 2 indicates
that the base of the number system is 2. The base-2 representation is
read to mean that, going from right to left, the first digit is to be
multiplied by 1, the second digit is to be multiplied by 2, the third digit
by 4, and so on.

The binary system is used by computers because of their internal
construction. Each binary digit is called a bit (the shortened form of
binary digit). A binary representation can be rather lengthy; therefore,
another shorthand has evolved. Binary numbers are frequently formed
into groups of 4 bits called nibbles (nibble is an acronym for nothing;
somebody's humor simply took charge). Regrouped, our example
becomes

5423 10 = 0001,0101,0010,1111 2

Leading zeroes have been included here to form a neater package. Each
nibble can take on sixteen values ranging from 0 to 15. Let's change the
representation yet again.

_ The Hexadecimal Number
Consider going to a number system whose base is 16. Our example
becomes

5423 10 = (1 x 163) + (5 x 162) + (2 X 16 1) + (15 x 160)

It is desirable to use a single digit for a coefficient. The base-16
representation can have coefficients with values as large as decimal 15.
We will need to create a new set of symbols for the coefficients in a
base-16 representation. The symbol~ used are

016 = 010
1 16 = 1 10
2 16 = 2 10
3 16 = 3 10
4 16 = 4 10
5 16 = 5 10
6 16 = 6 10
7 16 = 7 10

8 16 = 8 10
9 16 = 9 10
A 16 = 10 10
B 16 = 11 10
C 16 = 12 10
D 16 = 13 10
E 16 = 14 10
F 16 = 15 10

Converting Decimal to Hexadecimal Notation • 149

Following the procedure used b~fore, we can rewrite the example as

5423 10 = 152F 16

The base-16 number system is called the hexadecimal number system.
The notation in this book follows the mnemonic convention used for the
8080 and Z-80 microprocessors; hexadecimal numbers are witten with an
H suffix, while decimal numbers are written with no suffix. Our
oveworked example becomes

5423 = 152FH

The byte, by the way, is made up of two nibbles (pun intended). The
number 152FH consists of the 2 bytes 15H and 2FH. The byte is useful to
computer programmers because memory locations in most computers,
Apple included, hold 1 byte (8 bits) of data.

It is useful to know how to convert hexadecimal numbers to decimal
numbers. The conversion is quite simple. All we need do is use the
definitions. Consider converting 2AH into decimal. Now

2AH = [(2 x 16) + (10 x l)ho
= 42 10

Let's convert C24BH into decimal. As before:

C24BH = [(12 x 4096) + (2 x 256) + (4 x 16) + (11 x l)ho
= 49739 10

II Converting Decimal
to Hexadecimal Notation
Converting a decimal number to hexadecimal notation is a bit more
tedious, but again the conversion comes from the definitions. Let's
convert decimal 58,892 into hexadecimal notation. First determine how
many times 58,892 is divisible by 4,096.

58892/4096 = 14 + (1548/4096)

150 • Appendix A: Binary Numbers

The first hexadecimal digit is E. The numerator of the fractional part
remaining after a division is called the modulus. The modulus in this
example is 1,548. Now divide the modulus by 256.

1548/256 = 6 + (12/256)

The second hexadecimal digit is 6. Take the modulus of this result,
which is 12, and divide it by 16.

12/16 = 0 + (12/16)

The third hexadecimal digit is O. The modulus of this result is the fourth
hexadecimal digit, which is C. The final result is

58892 10 = E60CH

II More Definitions
Computer jargon includes the term kilobyte. A kilobyte is 1,024 oytes,
that is, 210 bytes. This can become a little confusing since memory and
disk capacity are often referred to in terms of multiples of kilobytes, or
Ks. For instance, a 64K computer such as the Apple is said to have 64
kilobytes, but 64K is actually 65,536 bytes.

There is a standard method for labeling the bits in a byte. The most
Significant bit (MSB}-that is, the leftmost bit-is numbered B7. The bits
are then numbered sequentially in descending order. For example,
consider the byte A3H, which has the bit representation

10100011
B7 B6 B5 B4 B3 B2 B 1 BO

The number of each bit is shown below the respective bit. The least
Significant bit (LSB) is called BO. If the bit value is 1, the bit is said to be
set. If the bit value is 0, the bit is said to be cleared. Our example has B7
set, B6 cleared, B5 set, and so on.

Finally, the last bit of binary jargon: the term page refers to 256
bytes of memory. These 256 bytes always start at a page boundary. A
page boundary is an address starting at an integral multiple of 100H. For
example, the zero page includes the addresses beginning with OOOOH and
ending with OOFFH, page 1 includes the memory beginning with 01 OOH
and ending with OlFFH, and so on. Four pages equal 1 kilobyte.

Appendix B: ASCII

ASCII stands for American Standard Code for Information Interchange.
The code is used to represent cer.tain printable and nonprintable
characters. The code assigns a number to each character. There are 128
characters for the number range 0 through 127. The nonprintable
characters are often called control characters because computer
peripheral equipment uses them to control certain functions. Although
the control characters are technically nonprintable, some terminals and
printers may actually display some of them. The table below gives the
ASCII assignments. The table lists control functions as well. No attempt
is made here to define the functions. You will have to refer to your
equipment manual for that information.

Keyboard Control Function Decimal Hexadecimal

CONTROL-@ NULL 0 00
CONTROL-A SOH 1 01
CONTROL-B STX 2 02
CONTROL-C ETX 3 03
CONTROL-D EOT 4 04
CONTROL-E ENQ 5 05
CONTROL-F ACK 6 06
CONTROL-G BELL 7 07
CONTROL-H Backspace 8 08
CONTROL-I Horizontal tab 9 09
CONTROL-J Line feed 10 OA
CONTROL-K Vertical tab 11 OB
CONTROL-L Form feed 12 OC
CONTROL-M Carriage return 13 OD
CONTROL-N SO 14 OE
CONTROL-O SI 15 OF
CONTROL-P DLE 16 10
CONTROL-Q DC1 17 11
CONTROL-R DC2 18 12
CONTROL-S DC3 19 13
CONTROL-T DC4 20 14

151

152. Appendix B: ASCII

Keyboard Control Function Decimal Hexadecimal

CONTROL-U NAK 21 15
CONTROL-V SYN 22 16
CONTROL-W ETB 23 17
CONTROL-X CAN 24 18
CONTROL-Y EM 25 19
CONTROL-Z SUB 26 lA
ESC Escape 27 IB
CONTROL-[Same as ESC
CONTROL-\ FS 28 lC
CONTROL-] GS 29 10
CONTROL-A RS 30 IE
CONTROL-_ US 31 IF
space N/A 32 20
! N/A 33 21
" N/A 34 22
N/A 35 23
$ N/A 36 24
% N/A 37 25
& N/A 38 26

N/A 39 27
N/A 40 28
N/A 41 29

* N/A 42 2A
+ N/A 43 2B

N/A 44 2C
N/A 45 20
N/A 46 2E

I N/A 47 2F
0 N/A 48 30
1 N/A 49 31
2 N/A 50 32
3 N/A 51 33
4 N/A 52 34
5 N/A 53 35
6 N/A 54 36
7 N/A 55 37
8 N/A 56 38
9 N/A 57 39

N/A 58 3A
N/A 59 3B

< N/A 60 3C
N/A 61 30

Appendix B: ASCII .153

Keyboard Control Function Decimal Hexadecimal

> . N/A 62 3E
? N/A 63 3F
@ N/A 64 40
A N/A 65 41
B N/A 66 42
C N/A 67 43
D N/A 68 44
E N/A 69 45
F N/A 70 46
G N/A 71 47
H N/A 72 48
I N/A 73 49
J N/A 74 4A
K N/A 75 4B
L N/A 76 4C
M N/A 77 4D
N N/A 78 4E
0 N/A 79 4F
P N/A 80 50
Q N/A 81 51
R N/A 82 52
S N/A 83 53
T N/A 84 54
U N/A 85 55
V N/A 86 56
W N/A 87 57
X N/A 88 58
y N/A 89 59
Z N/A 90 5A
[N/A 91 5B
\ N/A 92 5C
] N/A 93 5D

N/A 94 5E
N/A 95 5F
N/A 96 60

a N/A 97 61
b N/A 98 62
c N/A 99 63
d N/A 100 64
e N/A 101 65
f N/A 102 66
g N/A 103 67

154. Appendix B: ASCII

Keyboard Control Function Decimal Hexadecimal

h N/A 104 68
i N/A 105 69
j N/A 106 6A
k N/A 107 6B
I N/A 108 6C
m N/A 109 6D
n N/A 110 6E
0 N/A III 6F
P N/A 112 70
q N/A 113 71
r N/A 114 72
s N/A 115 73
t N/A 116 74
u N/A 117 75
v N/A 118 76
w N/A 119 77
x N/A 120 78
Y N/A 121 79
z N/A 122 7A
{ N/A 123 7B
I N/A 124 7C
} N/A 125 7D

N/A 126 7E
DELETE DEL 127 7F

Note that all the characters given are available on the Apple lIe keyboard.
Some of the characters are not on the Apple II keyboard but are available
with certain keystroke combinations if there is an 80-column card
installed. Refer to your manual for the appropriate information.

Appendix C: A
Primer on Diskettes

II The Physical Diskette
The disk drive's operation is in many ways similar to the operation
of a tape recorder. There is a read/write head, which is used to take
information from or place information on a magnetic medium. The tape
recorder generally keeps its read/write head stationary while the tape
passes over it. The disk drive uses a rotating magnetic diskette that
passes over the read/write head. Information is stored on or retrieved
from the diskette that passes beneath the head. Since the disk drive's
read/write head has a small area, only a very narrow circular track is
used when the head is in a given position. Most diskettes are considerably
larger than the read/write head, which means that a diskette has room for
much more than one track. In order to read from or write to other disk
tracks, the read/write head can move radially.

Since a read/write head can move radially in a random fashion, there
must be means by which the computer knows whether the head is on a
given track or in between tracks. In fact, formatting a diskette amounts
to writing onto the diskette magnetic signatures that can be read by the
computer to tell it where the read/write head is located. Each track has
its own individual number, which is imbedded in the track's magnetic
signature. Thus, if the computer wishes to find track 3, it now knows
how to recognize it.

A diskette track has room to store a very large amount of data.
Dividing the tracks into equal segments called sectors has been found to
increase the efficiency of data storage. Sectors are defined on the tracks
by magnetic Signatures, with each sector having its own number. The
sectors are created when the disk is formatted. The computer can now
retrieve data from or store data to a particular sector on a given track.
This ability to read from or write to a given sector on a given track is
called random access.

The Apple diskette has thirty-five tracks, which are numbered OOH
through 22H. The track nearest the outside edge of the diskette is
numbered OOH; the track nearest the inside edge is numbered 22H. The
Apple diskette has sixteen sectors per track. The sectors are numbered

155

158 • Appendix C: A Primer on Diskettes

OOH through OFH. Each sector area is preceded by a magnetic code that
identifies the sector and track number. The sector area is followed by
more code designating the sector's end.

II Sector Skewing
The read/write head travels radially to access a given track. When the
chosen sector passes beneath the head, the magnetic code is either read
from or written to the rotating disk. Data must be encoded before it can
be written to the diskette. By the same token, the diskette data must be
decoded before it can be used by the computer. Since encoding and
decoding take time, a scheme is needed to optimize diskette I/O. The
scheme is called sector skewing.

Sector skewing, also called sector interleaving, is a method to reduce
the time of diskette I/O. Significant time is required after a sector is read
to translate the encoded diskette nibbles and store the results in memory.
If the sectors are sequential, the diskette will pass the next sector to be
read so that there is one diskette revolution for each sector reading. If the
sector sequence is changed so that, when the computer has completed
storing the data from the previous read, the read/write head is over the
next sector to be read, more than one sector can be read per revolution.
Sector skewing also reduces the time it takes to write data to a diskette.
Skewing permits the read/write head to be over the next sector to be
written before the diskette makes one revolution.

Apple diskettes are formatted with each 256-byte physical sector
located sequentially on the diskette. The sector skewing is done in
software. This means that if you ask DOS 3.3 for sector 01H, you will
actually be reading physical sector ODH. The CP/M RWTS (Read Write
Track Sector) subroutine will give you physical sector 02H if you ask for
sector 01H.

Apple CP/M track numbers are identical to DOS 3.3 track numbers,
but the sector numbering needs some elaboration. There are thirty-two
logical sectors on each track. A CP/M logical sector is 128 bytes. This
means that there are two logical sectors in each physical sector. The
BIOS sorts this mess out so that every time CP/M requests a logical sector
the proper half of the proper physical sector is read into the DMA (Direct
Memory Access).

The CP/M sector skewing in the Apple is actually a double skewing.
When a logical sector is requested, the BIOS translates the logical sector
to half of a CP/M physical sector. The CP/M RWTS routine then reads the
CP/M physical sector into a buffer and moves the proper half to the DMA.
The even-numbered logical sector corresponds to the first 128 bytes of
the physical sector, while the odd-numbered logical sector corresponds to

The CP/M Diskette • 157

the last 128 bytes. To complicate things more, the CP/M physical sector
is not the Apple physical sector. The CP/M physical sector is skewed so
that when the CP/M RWTS requests reading sector 01H, the Apple
physical sector 02H is read. Table C.l lists the sector relations.

The reason the Apple has a double sector skew is that the Apple
system tracks are skewed according to the CP/M physical sector skew,
while the data tracks use the logical sector skew. The CP/M physical
sector skew provides the fastest relation for reading a sector sequence.
This means that a cold or warm boot can be performed in the least time
possible. The logical sector is a compromise for getting the fastest sector
read skew in conjunction with the fastest sector write skew.

II The CPIM Diskette
The Apple CP/M diskette reserves the first three tracks to hold the boot
routine, which loads the CCP (Console Command Processor), BDOS (Basic
Disk Operating System), and BIOS (Basic Input Output System), which
are also contained there. The first three tracks are called the system
tracks. Track 03H (recall that track numbering starts at OOH) contains
the CP/M directory. Only six physical sectors on track 03H hold the

Table e.l • Apple Diskette Sector Skew Relations

CP/M Logical CP/M Physical DOS 3.3 Apple Physical
Sectors Sectors Sectors Sectors

00,01
02,03
04,05
06,07
08,09
OA,OB
OC,OD
OE,OF
10, 11
12,13
14,15
16,17
18,19
lA,IB
lC,ID
IE. IF

o
9
3
C
6
F
1
A
4
D
7
8
2
B
5
E

o
6
C
3
9
F
E
5
B
2
8
7
D
4
A
1

o
3
6
9
C
F
2
5
8
B
E
1
4
7
A
D

158. Appendix C: A Primer on Diskettes

directory. The directory sectors have the CP/M logical values OOH through
OBH. The remaining tracks and sectors are available for file storage.

The Microsoft versions 2.23 and higher use a trick to allow the
system tracks to be used for data storage. A file called cp/m.sys is created
in user area 31. This user area is inaccessible from the CCP, so this
directory entry is normally unseen by the user. The file cp/m.sys is a
dummy file whose space occupies the system tracks. The BIOS is written
to recognize the system tracks as accessible data areas. Since the
directory entry cp/m.sys says that the system tracks are already
occupied, the system tracks will not be overwritten by any new directory
entries. The version 2.23 COPY.COM program has an option to create a
data diskette. The data diskette is one in which the cp/m.sys directory
entry has been erased. This creates three more tracks for file storage. Of
course, it is impossible to boot a data diskette, but it is safe to use it in
any drive other than drive A:.

Appendix D: The
CP/M RWTS (Versions
2.208 and 2.23)

The Microsoft BIOS (Basic Input Output System) does the actual disk
access through the 6502 micro~rocessor. The CP/M RWTS (Read Write
Track Sector) routine is located at $E03 for CP/M versions 2.20B and
2.23. The CP/M RWTS routine is part of the BIOS Disk 110 Handlers
routine. The Disk 110 Handlers routine is mainly in Z-80 code and is
responsible for reading and writing the 128-byte sectors used by CP/M.
Since the Apple diskette has 256-byte sectors, the CP/M RWTS routine is
used for diskette 110. The CP/M RWTS routine uses an 110 buffer at
memory location $800. The diskette sector is read into that buffer, and
the contents of that buffer are written to the diskette. The BIOS Disk 1/0
Handlers routine reads from or writes to the appropriate half of that
buffer to simulate the 128-byte CP/M sector disk 110.

The CP/M RWTS may be directly accessed by the suitable calling
procedure to the 6502 as described in chapter 10. The following areas
must be initialized before the CP/M RWTS can be used:

$3EO Place the track to be accessed in here. The Apple track
numbers range from $00 through $22.

$3El Place the CP/M physical sector to be accessed in here. The
Apple sector numbers range from $0 through $F. The sector skew for
CP/M physical sectors is used; see Appendix C.

$3E2 and $3E3 These locations are holdovers from the DOS 3.3
RWTS and were used for volume numbers. The CP/M RWTS doesn't
use volume numbers, so $00 may be placed in these locations.

S3E4 The drive is placed here. The DOS 3.3 numbers are used, so
that this location should contain either a $1 or $2.

$3E5 This is another holdover from DOS 3.3. The last drive used is
put into this location.

$3E6 The drive's slot number times sixteen is placed here. If the
slot is slot 6, then $60 goes into this location.

159

160. Appendix D: The CP/M RWTS (Versions 2.20B and 2.23)

$3E·7 This is the last slot accessed. The number returns as a
multiple of sixteen. If the last slot was slot 6, then $60 is placed in
this location.

$3E8 and $3E9 The I/O buffer address is stored in the order low
byte, high byte. If the buffer is at $800, the $3E8 contains $00, and
$3E9 contains $08.

$3EA The error code is returned in this location:

$00 no error
$10 write-protect error
$40 drive error; that is, a read or write was impossible

$3EB The command code goes into this location:

$01 read sector to I/O buffer
$02 write I/O buffer to sector

CP/M version 2.23 always reinitializes the I/O buffer address to $800
before using the CP/M RWTS. CP/M version 2.20B doesn't reinitialize the
I/O buffer address. It is up to the programmer to see that the I/O buffer
address is correct for the CP/M RWTS.

The warm boot routine calls a program that reads the diskette by
using the CP/M RWTS directly. The sectors containing the CCP (Console
Command Processor) and BDOS (Basic Disk Operating System) are
quickly read from the diskette to their place in memory below the BIOS.
The warm loader routine is located at $EOO for CP/M versions 2.20B and
2.23. The CP/M 2.23 60K version reads the sectors starting at track $0,
sector $B and ending with track $2, sector $8 to the memory starting at
D300H. The CP/M 2.20B 56K version reads the sectors starting at track
$0, sector $B and ending with track $2, sector $0 to the memory starting
at C400H.

Index

A>.5
Active drive. 5. 7. 90
ALV, 90
Am biguous names. 13
ASCII characters. 151

Basic Disk Operating System. See
BDOS

BAT:. 23. 24. 26
BDOS. 9. 21
Binary numbers. 147
BIOS. 9.21, 81

card type. 95
firmware cards. 95
Microsoft BIOS Vector Jump Table.

86
Microsoft·s cold boot routine. 95
peripheral card locations, 94
standard SoftCard memory

mapping. 91
standard SoftCard operation. 92
vector jump table, 86
zero-page memory. 90

BIOS function
BOOT, 81. 86
CONIN. 82. 86
CONOUT, 82. 86
CONST, 82. 86
HOME. 82. 86
LIST, 82. 86
LISTST, 85. 86
PUNCH. 82. 86
READ. 83. 86
READER. 82. 86
SECTRAN. 85. 86
SELDSK. 82, 86. 90
SETDMA. 83. 86

SETSEC, 83, 86
SETTRK, 83. 86
WBOOT, 81. 86. 90
WRITE. 83. 86

Bit. 148
labeling. 150

BLM,89
BSH.88
Byte. 149

CCP.I0
CCP command line. 10
CCP commands

CONTROL-P.ll
CONTROL-S, 12
ERA. 15
REN,14
SAVE. 17
summary,19
TYPE. 16
USER, 16

CCP line-edit commands, 11
backspace. 11
CONTROL-E. 11
CONTROL-J, 11
CONTROL-M. 11
CONTROL-R. 11
CONTROL-X, 11
summary. 20

CKS.89
Cold boot, 4. 81. 95
Colon. use of, 5, 23
CON:. 22, 24. 26
Console. See CON:
Console command processor. See

CCP
CONTROL-C. 10. See also Warm boot

181

182. Index

Control character. 7. 151
Copy protection. 2
Copying diskettes. 6. See also PIP
CP/M. 1
CRT:. 23. 24. 26
CSv. 89

DDT, 55
I (file identifier). 55
prompt. 55
R (file read). 55

DDT command
A.63
D. 58. 59
F.64
G.64
L.62
M.64
R.67
S.60
T.65
U.66
X.66

DIR. 7. 12
DIRBUF.88
Direct Memory Access. See DMA
Directory. 1. 5. 157
Disk drive. 1

active. 90
default. 7
names. 5
read/write head. 155

Diskette. 155
directory. 27. 157
DOS 3.3. 156
formatting. 155
logical sector. 27. 83. 84. 156. 157
Microsoft data diskettes. 158
physical sector. 27. 83. 84. 155.

157
skewing. 85. 156
system tracks. 27. 157
track. 155

Disk files. See Files
Disk 110.25
Disk Parameter Block. See DPB
Disk Parameter Header. See DPH

DMA. 83. 84. 156
Downloading files. See File transfer
DPB.88
DPH.87
Dynamic Debugging Tool. See DDT

ED. 69
character pOinter. 71
error message. 79
prompt. 70

ED command
A. 70. 73. 74
B. 73. 74
C. 73. 74
CONTROL-C. 78
CONTROL-E. 78
CONTROL-H. 78
CONTROL-I. 79
CONTROL-L. 79
CONTROL-X. 79
CONTROL-Z. 72. 79
D.73
E. 72. 75
F.75
H.75
I, 72. 75
J.75
K.76
L.76
M.76
N.76
n:.78
0.76
P.76
Q.76
R.77
S. 77
T. 73. 77
U.77
V. 77
W. 71. 77
X.78
Z.78

ED insert-mode command
CONTROL-H. 79
CONTROL-I. 79
CONTROL-J. 79

CONTROL-M, 79
CONTROL-R, 79
CONTROL-X, 79
DELETE,79

EXM,89

FCB,89
File

directory, 31
blocks, 27
extension, 12
extent, 30
names, 12
system, 31
type, 12

File Control Block. See FCB
File transfer

8-inch disk, 144
modem, 144
PIP, 144

Hexadecimal number, 148

IOBYTE, 24, 90
IOCB,25
I/O Configuration Block. See IOCB

Kilobyte, 150

List device. See LST:
Logical devices, 22
Logical sectors, 27, 156
Log-in. See Active drive
Lowercase letters, 17
LPT:, 24, 26
LST:, 22, 23, 24, 26

Memory page, 150
Microsoft BIOS 2.20B, 97

CPM56 card driver entry points,
103

CPM56.COM diskette map, 102
CPM56.COM map, 101

Microsoft BIOS 2.23, 104
CPM60 card driver entry points,

112

Index .188

CPM60.COM map, 110
CPM60 diskette map, III

Microsoft BIOS 2.26, 122
cold boot procedure, 138
diskette map, 143
IOCB, 123
keyboard buffer, 125
print spooling, 124
6502 BIOS, 123, 135
6502 BIOS calls, 128
Z-80 BIOS, 140

Microsoft standard SoftCard BIOS
patches, 113

CPM56,113
CPM60, 115
printer, 115
stopping printer double-spacing,

119
XON/XOFF protocols, 120

Modem, 144

Nibble, 148

Operating system, 1

Paper-tape punch. See PUN:
Paper-tape reader. See RDR:
Physical devices, 23

UC1:,23
UL1:,24
UP1:,24
UP2:,24
URI:, 24
UR2:, 24

PIP, 18,37
aSSignment summary, 49
CCP command line usage, 40
different user areas, 44
error condition, 39
exiting,37
file concatenation, 38, 48
file copying, 37
prompt, 37
transferring between devices, 40

PIP devices, 48
EOF:, 49
INP:, 49

164. Index

IRD:.49
NUL:. 49
OUT:. 49
PRN:.48

PIP parameters. 42
B.43
D.44
E.44
F.44
G.44
H.45
I, 45
L.45
N.45
0.46
P.46
Q.46
R.46
S.46
T. 43. 47
U.47
V, 47
W, 48
Z.48

Premium SoftCard lIe. 3
BIOS. See Microsoft BIOS 2.26
$C07x hardware function. 127
memory management

soft-switches. 125
PTP:. 24. 26
PTR:. 23. 24. 26
PUN:. 23. 24. 26

RDR:. 23. 24. 26
RESET key. 19
RWTS. 156. 159

SAVE. 17.56
STAT. 29

command summary. 35
DEV:.32
device assignments. 32
DSK:.33
file access type. 30
file size. 30
file status. 31
RIO. 30. 31
R/W. 30. 31
space usage. 29
status of physical devices. 32
USR:.34
VAL:. 35

SUBMIT. 52
control characters. 54
$$$.SUB file. 54

Teletypewriter. See TTY:
Text editor. See ED
Text files. 69
TPA.9
Transient command files. 18
Transient Program Area. See TPA
TTY:. 23. 24. 26

Uploading files. See File transfer
User areas. 16. 34. 44

Warm boot, 7. 10.81
Wild-card character. See Ambiguous

name

XLT.88
XSUB.53

Z-80. 1

More Apple Books from
Scott, Foresman and Company

ProDOS Quick and Simple: For the Apple II Family
A complete gUide to ProDOS, Apple's powerful new operating system.
Includes 52 sample programs and original programming techniques, file
conversion tips, and a glossary of ProDOS terms, commands, and error
messages. By Burdick & Weiser. $19.95, 256 pages

Apple Writer Tutor
Learn to use the most popular word-processing program for the Apple
computer with this step-by-step tutorial. Includes instructions in plain
English, a "Quick Start" section, advanced features, command reference
sheets, and more. By Leshowitz. $15.95, 250 pages

The Apple WordStar Book
"This excellent tutorial/reference provides more detail than you'd need to
start using WordStar Clearly explains Apple hardware modifications,
WordS tar commands, applications & hints." -Computer Book Review. By
Mar. $17.95, 277 pages

The Financial Planning Software Tool Kit:
Apple II, lie, and II Plus Edition
This software package gives you 25 programs for calculating loans,
mortgages, investments, annuities, and depreciation quickly and easily.
By LeClair. $44.95

To order,
Contact your local bookstore or computer store, or send the order card to

Scott, Foresman and Company In Canada, contact
Professional Publishing Group Macmillan of Canada
1900 East Lake Avenue 164 Commander Blvd.
Glenview, IL 60025 Agincourt, Ontario

MIS 3C7

r----------------------------------l
I
I Order Form
I
I
I Send me:
I
I __ ProDOS Quick and Simple, $19.95, 18077
I
I __ Apple Writer Tutor, $15.95, 18012
I
I __ Apple WordStar Book, $17.95, 15992
I
I __ Financial Planning Software, $44.95, 15974
I
I D Check here for a free catalog
I
I

Please check method of payment:

D Check/Money Order o MasterCard D Visa

Amount Enclosed $ ____ _

CreditCaTdNo. __ _

Expiration Date ____________________________________ _

Signature __ _

Address __ _

City _________________________ State ___ Zip ____ _

Add applicable sales tax, plus 6% of Total for U.P.S.
Full payment must accompany your order. Offer good in U.S. only.

A18068

I
I
I
I
I
I
I
I L __________________________________ ~

"This book is for Apple CP/M users, an incredibly welcome relief
for those of us who have the more general reference books on
the shelf •••• I would recommend it. Definitely."
-Paul Mithra, GTS, Laser Publishing Analyst

>$12.95

Gain an in-depth understanding of the CP/M operating system with The Apple CP/M
Book. Designed for Apple II, lie, and II Plus users, this book guides you through
CP/M's structure, commands, and utilities.

This useful reference manual covers the fundamentals and the fine pOints of CP/M
operations, including

• the major CP/M utilities-STAT, PIP, ED, SUBMIT, and DDT
• the Basic Disk Operating System (BOOS) and its routines
• all four versions of the Basic Input Output System (BIOS) from Microsoft
• suggestions for debugging the Microsoft BIOS
• a helpful summary of CP/M commands

and more.

The Apple CP/M Book also explains CP/M's advanced features, including solid
examples and a wealth of technical detail. If you want to use the full capabilities of
CP/M on your Apple, you need this book.

Murray Arnow serves as a CP/M consultant to A.P.P.L.E., the largest Apple users' group in the
United States. He is also a contributing author to Cal/-A.P.P.L.E. magazine and a software
consultant. A resident of Chicago, Illinois, Dr. Arnow holds a Ph.D. in Physics.

Scott, Foresman and Company ISBN 0-673-18068-9

	The Apple CP/M Book - Murray Arnow
	Preface
	Contents
	1-Introduction
	What is CP/M
	Why use CP/M

	2-Getting Started
	Installing the CP/M Card
	The A> Prompt
	The Directory
	Making Copies
	A Quick Look at the System

	3-The Structure of CP/M
	The Memory Organization
	The CCP
	CCP Line-Edit Commands
	CCP Built-in Commands
	DIR
	REN
	ERA
	TYPE
	USER
	SAVE

	The Transient Command File
	A Summary of CCP Built-in ans Misc Commands
	A Summary of CCP Line-Edit Commands

	4-Fundamentals
	The CP/M Concept
	CP/M Devices
	CP/M Logical Devices
	CON:
	RDR:
	PUN:
	LST:

	CP/M Physical Devices
	TTY:
	CRT:
	BAT:
	UC1:
	PTR:
	UR1:
	UR2:
	PTP:
	UP1:
	UP2:
	LPT:
	UL1:
	IOBYTE Bit Configration

	The Microsoft Use of Physical Devices
	Microsoft IOCB Vector Locations

	Disk I/O

	5-The STAT Utility
	Disk Space
	File Size and Parameters
	Altering File or Disk Status
	Physical Device Assignments
	Disk Parameters
	User Areas
	The STAT Help Command
	A Summary of STAT Commands

	6-The PIP Utility
	Copiying Files
	File Concatenation
	Error Conditions
	Swapping Disks
	The CCP Command Line
	Copying Files to a Device
	PIP Parameters
	B
	Dn
	E
	F
	Gn
	H
	I
	L
	N
	O
	Pn
	Qstring ctl-z
	R
	Sstring ctl-z
	Tn
	U
	V
	W
	Z

	Special PIP Devices
	A Summary of PIP Assignments
	File Commands
	Output Device Commands
	Input Device Commands
	Special Devices
	Transfer Parameters

	7-The SUBMIT Utility
	8-The DDT Utility
	Loading a Disk File into Memory
	Saving Data to a Disk File
	More on Loading a File
	Displaying Memory
	DDT Commands for the Non-Expert
	D: Display Memory
	S: Modify Memory

	DDT Commands for the Advanced User
	L: 8080 Disassembler
	A: 8080 Assembler
	M: Move Data
	F: Memory Fill
	G: Run
	T: Trace Program Execution
	U: Untrace Program Execution
	X: 8080 Register Examination
	R: Read File

	9-The ED Program
	Loading or Creating an ED File
	Editing Text
	An Example
	ED Command Mode Instructions
	ED Insert Mode Commands
	Error Messages

	10-The BIOS
	BIOS Functions
	BOOT
	WBOOT
	CONST
	CONIN
	CONOUT
	LIST
	PUNCH
	READER
	HOME
	SELDSK
	SETTRK
	SETSEC
	SETDMA
	READ
	WRITE
	LISTST
	SECTRAN

	The Microsoft Vector Jump Table
	Other CP/M Requirements
	DPH
	XLT
	DIRBUF
	DPB
	CSV
	ALV

	Zero-Page BIOS Requirements
	The Standard Microsoft SoftCard
	The Mapping of the Standard SoftCard
	The Operation of the Standard Softcard
	Standard Softcard Memory Mapping

	Peripheral Cards

	11-The Microsoft Version 2.20B BIOS
	The BIOS Map
	The CPM56.COM Map
	The CPM56 Diskette Map
	CMP56 Card Driver Entry Points

	12-The Microsoft Version 2.23 BIOS
	The BIOS Map
	The CPM60.COM Map
	The CPM60 Diskette Map
	CPM60 Card Driver Entry Points

	13-Patching the Microsoft Standard SoftCard BIOS
	Squashing Microsoft Version 2.20B Bugs
	Squashing Microsoft Version 2.23 Bugs
	Using Other Slots for the Printer
	Stopping the Printer from Double-Spacing
	Adding XON/XOFF Handshaking

	14-The Microsoft Premium SoftCard IIe (2.26 BIOS)
	The Comarison to Earlier BIOS Versions
	The PS IIe Hardware and Software Configuration
	The PS IIe's Memory Management Soft-Switches
	$C07 Hardware Functions
	PS IIe Standard 6502 Calls
	CALLSUB
	READMEM
	WRITEMEM
	READSEC
	WRITESEC
	READSLOT
	WRITESLOT
	STATSLOT
	INITSLOT
	WSTART
	FORMAT
	UPDATE
	BEEP
	CLEAR
	INVERT
	SETPT1
	SETPT2

	The 6502 BIOS
	The Low Memory Segment
	The High Memory Segment

	The Z-80 BIOS
	The PS IIe Diskette Map

	15-Uploading and Downloading
	A-Binary Numbers
	The definition of a Binary Number
	The Hexadecimal Number
	Converting Decimal to Hexadecimal Notation
	More Definitions

	B-ASCII
	C-A Primer on Diskettes
	The Physical Diskette
	Sector Skewing
	The CP/M Diskette

	D-The CP/M RWTS (Versions 2.20B and 2.23)
	Index
	More Apple Books

